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Abstract: We study algebro-geometric (finite-gap) and elliptic solutions of fully dis-
cretized KP or 2D Toda equations. In bilinear form they are Hirota’s difference equation
for τ -functions. Starting from a given algebraic curve, we express theτ -function and the
Baker–Akhiezer function in terms of the Riemann theta function. We show that the ellip-
tic solutions, when theτ -function is an elliptic polynomial, form a subclass of the general
algebro-geometric solutions. We construct the algebraic curves of the elliptic solutions.
The evolution of zeros of the elliptic solutions is governed by the discrete time gen-
eralization of the Ruijsenaars-Schneider many body system. The zeros obey equations
which have the form of nested Bethe-ansatz equations, known from integrable quantum
field theories. We discuss the Lax representation and the action-angle-type variables for
the many body system. We also discuss elliptic solutions to discrete analogues of KdV,
sine-Gordon and 1D Toda equations and describe the loci of the zeros.

1. Introduction

Among a vast class of solutions to classical non-linear integrable equations elliptic
solutions play a special role. First, these solutions occupy a distinguished place among
all algebro-geometric (also called finite-gap) solutions, i.e. solutions constructed out
of a given algebraic curve. The general formulas in terms of Riemann theta-functions
become much more effective – in this case the Riemann theta-function splits into a
product of Weierstrassσ-functions associated to an elliptic curve. Second, there exists a
remarkable connection between the motion of poles (zeros) of the elliptic solutions and
certain integrable many body systems.

The pole dynamics of elliptic solutions to the Korteweg–de Vries (KdV) equation
and the Calogero–Moser system of particles were linked together in the paper [1] (see
also [2]). It has been shown in [3],[4] that this relation becomes an isomorphism if one
considers elliptic solutions of the Kadomtsev–Petviashvili (KP) equation. More recently,
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these results were generalized to elliptic solutions of the matrix KP and the matrix 2D
Toda lattice equations (see [5] and [6], respectively). The dynamics of their poles obeys
the spin generalization of the Ruijsenaars–Schneider (RS) model [7].

Let us recall some elements of the elliptic solutions for the standard example of the
KP equation 3uyy = (4ut + 6uux − uxxx)x for a functionu = u(x, y, t). An elliptic
solution in the variablex is given by

u(x, y, t) = const + 2
N∑
i=1

℘(x− xi(y, t)), (1.1)

where℘(x) is the Weierstrass℘-function. The self-consistency of this ansatz is a man-
ifestation of integrability. It has been shown in [3],[4] that the dynamics of poles as
functions ofy obeys the Calogero-Moser many body system with the Hamiltonian

H =
1
2

N∑
i=1

p2
i − 2

∑
i6=j

℘(xi − xj). (1.2)

This system in its turn is known to be integrable. There is an involutive set of conserved
quantitiesH (j) – the Hamiltonian (1.2) and the total momentum areH (2) andH (1). The
equations of motion are

∂2
yxi = 4

N∑
j=1,6=i

℘′(xi − xj). (1.3)

Thet-dynamics is described byH (3).
The reduction to the KdV equation restricts the particles to thelocusLN in the phase

space:

LN =

 (pi, xi)
∣∣∣ pi = 0,

∑
i6=j

℘′(xi − xj) = 0

 (1.4)

(herepi = ∂yxi). In spite of interesting developments, an analysis of the locus structure
is far from completed.

In this paper we extend these results to the fully discretized version of the KP equation
or 2D Toda lattice. Being fully discretized they become the same equation. In bilinear
form they are known as Hirota’s bilinear difference equation (HBDE) [8], [9] (see [10]
for a review). This is a bilinear equation for a functionτ (l,m, n) (calledτ -function) of
three variables:

λτ (l + 1,m, n)τ (l,m + 1, n + 1) +µτ (l,m + 1, n)τ (l + 1,m, n + 1)

+ ντ (l,m, n + 1)τ (l + 1,m + 1, n) = 0, (1.5)

whereλ, µ, ν are complex parameters and the three variables are not necessarily integer.
In what follows we call themdiscrete timesstressing the difference with continuous KP-
flows. Let us introduce a lattice spacingη for one of the variables, say,l and denote
x ≡ ηl. By elliptic solutions(in the variablex) to this equation we mean the following
ansatz for theτ -function:

τ (l,m, n) ≡ τm,n(x) =
N∏
j=1

σ(x− xm,n
j ), (1.6)
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whereσ(x) is the Weierstrassσ-function. We refer to the r.h.s. of (1.6) aselliptic poly-
nomialsin x. For brevity, we call solutions of this type elliptic though theτ -function
itself is not double-periodic. However, suitable ratios of theseτ -functions, for instance,

Am,n(x) =
τm,n(x)τm+1,n(x + η)
τm+1,n(x)τm,n(x + η)

(1.7)

are already elliptic functions.
In this paper we derive equations of motion for poles ofAm,n(x) or zeros ofτm,n(x)

for discrete timesm,n and thus obtain a fully discretized Calogero-Moser many body
problem. This appears to be the discrete time version of the Ruijsenaars-Schneider (RS)
model proposed in the seminal paper [11]. Remarkably, the discrete equations of motion
have the form of Bethe equations of the hierarchical (nested) Bethe ansatz. The discrete
time runs over “levels” of the nested Bethe ansatz.

We also consider stationary reductions of HBDE. In this case the initial configuration
of poles (zeros) is not arbitrary but constrained to a stable locus as in the continuous
case (1.4). For the most important examples we give equations defining the loci.

A renewed interest in soliton difference equations, and especially in their elliptic
solutions is caused by the revealingclassicalintegrable structures present in integrable
models ofquantumfield theory. It turns out that Hirota’s Eq. (1.5) is the universal fusion
rule for a family of quantum transfer matrices. Their eigenvalues (as functions of spectral
parameters) obey a set of functional Eqs. [12] which can be recast into the bilinear Hirota
Eq. [13] (see also [14] and [15] for less technical reviews). Furthermore, it turned out that
most of the ingredients of the Bethe ansatz and the quantum inverse scattering method
are hidden in the elliptic solutions of the entirely classical discrete time soliton Eqs. [13].
In particular, the discrete dynamics of poles ofAm,n(x) or zeros of (1.6) has the form
of Bethe ansatz equations, where the discrete time runs over “nested” levels.

The theory of elliptic solutions has direct applications to the algebraic Bethe ansatz
and to Baxter’sT -Q-relation, which we plan to discuss elsewhere.

Here we attempt to develop a systematic approach to the elliptic solutions of the
integrable difference equations. The basic concept of the approach is the Baker–Akhiezer
functions on algebraic curves. We prove that all solutions to HBDE of the form (1.6) are
of the algebro-geometric type and present them in terms of Riemann theta functions.

The plan of the paper is as follows.
In Sect. 2 we describe general algebro-geometric (finite-gap) solutions to HBDE.

We start from the Baker–Akhiezer function constructed from a complex algebraic curve
of genusg with marked points. This function satisfies an overcomplete set of linear
difference equations. Their consistency is equivalent to Hirota’s equation. In this way,
one obtains a (4g + 1)-parametric family of quasiperiodic solutions to HBDE in terms
of the Riemann theta-functions. Solitonic degenerations of these solutions are discussed
in Sect. 2.4.

Section 3 is devoted to elliptic solutions. They are shown to be a particular subclass
of the algebro-geometric family of solutions of Sect. 2. We derive equations of motion
for zeros of theτ -function (the Bethe ansatz equations) and their Lax representation.
We discuss variables of the action-angle type and write down equations for the stable
loci for the most important reductions of Hirota’s equation.
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2. Algebro-Geometric Solutions to Hirota’s Equation

In this section we construct algebro-geometric solutions of Hirota’s equation out of a
given algebraic curve. The general method of constructing such solutions of integrable
equations is standard. As soon as the bilinear equation can be represented as a compatibil-
ity condition for an overdetermined system of linear problems, the first step is to pass to
common solutions9 to thelinearproblems. Given a linear multi-dimensional difference
operator with quasiperiodic coefficients, one associates with it aspectral curvedefined
by the generalized dispersion relations for quasimomenta of Bloch eigenfunctions of
the linear operator. The Bloch solutions9 are parametrized by points of this curve.
Solutions to the initial non-linear equation are encoded in the analytical properties of9

as a function on the curve. Spectral curves of general linear operators with quasiperi-
odic coefficients are transcendental and, therefore, intractable. However, soliton theory
mostly deals with theinverseproblem: to characterize specific operators whose spectral
curves arealgebraic curves of finite genus. Such operators are called algebro-geometric
or finite-gap. Their coefficients yield solutions to HBDE, that we are going to study.

Finite-gap multi-dimensional linear difference operators were constructed in the
paper [16] by one of the authors. We present the corresponding construction in a form
adequate for our purposes.

2.1. The Baker–Akhiezer function.As usual, we begin with the axiomatization of an-
alytical properties of Bloch solutions9. The Baker–Akhiezer function is an abstract
version of the Bloch function. Since we solve the inverse problem, the primary objects
are9-functions rather than linear operators.

Let 0 be a smooth algebraic curve of genusg. We fix the following data related to
the curve:

– A finite set of marked points (punctures)Pα ∈ 0, α = 0, 1, . . . ,M ;
– Local parameterswα in neighbourhoods ofPα: wα(Pα) = 0;
– A set of cutsCαβ between the pointsPα, Pβ for some pairsα, β (it is implied that

different cuts do not have common points other than their endpoints at the punctures);
– A setD of g (distinct) pointsγ1, . . . , γg ∈ 0.

Further, we introduce the following complex parameterslαβ (times or flows):

– To each cutCαβ is associated a complex numberlαβ (it is convenient to assume that
lβα = −lαβ).

Consider a linear spaceF (l;D) of functions9(l;P ), P ∈ 0, such that:

1. The function9(l;P ) as a function of the variableP ∈ 0 is meromorphic outside the
cuts and has at most simple poles at the pointsγs;

2. The boundary values9±,(αβ) of this function at opposite sides of the cutCαβ satisfy
the relation

9+,(αβ)(l;P ) = 9−,(αβ)(l;P )e2πilαβ ; (2.1)

3. In a neighbourhood of the pointPα it has the form

9(l;P ) = w−Lα
α

(
ξ(α)

0 (l) +
∞∑
s=1

ξ(α)
s (l)ws

α

)
, Lα =

∑
β

lαβ . (2.2)
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Note that iflαβ are integers, then9 is a meromorphic function having simple poles at
γs and having zeros or poles of orders|Lα| at the pointsPα.

Any function9 obeying conditions 1 - 3 is called aBaker–Akhiezer function. In our
approach, these functions are central objects of the theory. In some cases (especially in
the matrix generalizations of the theory) the notion of thedual Baker–Akhiezer function
9† is also important (see e.g. [5], [6]). We omit its definition because it can be easily
restored using [5], [6].

Let us prepare some notation. Fix a canonical basis of cyclesai, bi on0 and denote
the canonically normalized holomorphic differentials bydωi, i = 1, 2, . . . , g. We have∮

ai

dωj = δij ,
∮

bi

dωj = Bij ,

whereB is the period matrix. Given a period matrixB, the g-dimensional Riemann
theta-function is defined by

2( ~X) = 2( ~X|B) =
∑

~n∈Zg

exp
[
πi(B~n,~n) + 2πi(~n, ~X)

]
.

Here ~X = (X1, . . . , Xg) is ag-component vector.
For each pair of pointsPα, Pβ ∈ 0, letd�(αβ) be the unique differential of the third

kind holomorphic on0 but having simple poles at the pointsPα, Pβ with residues−1
and 1 and zeroa-periods.

To write an explicit form of Baker–Akhiezer functions, let us choose one of the
marked points, sayP0, and by~A(P ) = (A1(P ), . . . , Ag(P )),

Ai(P ) =
∫ P

P0

dωi,

denote the Abel map. The Baker–Akhiezer function is given by the following theorem.

Theorem 2.1. If the pointsγ1, . . . , γg are in a general position (i.e.D is a non-special
divisor), thenF (l;D) is a one-dimensional space generated by the function9(l;P ) ∈
F (l;D),

9(l;P ) =
2( ~A(P ) + ~X(l) + ~Z|B)2(~Z|B)

2( ~A(P ) + ~Z|B)2( ~X(l) + ~Z|B)
exp

∑
(αβ)

lαβ

∫ P

Q0

d�(αβ)

 . (2.3)

HereQ0 ∈ 0 is an arbitrary point in the vicinity ofP0, Q0 6= P0, belonging to the
integration pathP0 → P in the Abel map. Further,

~Z = − ~K −
g∑

i=1

~A(γi), ~X(l) =
∑
(αβ)

~U (αβ)lαβ , (2.4)

where ~K is the vector of Riemann’s constants and the components of the vectors~U (αβ)

are

(~U (αβ))j =
1

2πi

∮
bj

d�(αβ) = Aj(Pβ) −Aj(Pα). (2.5)
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The proof of theorems of this kind as well as the explicit formula for9 in terms of
Riemann theta-functions are standard in finite-gap theory (see e.g. [17]). The last equality
in (2.5) follows from Riemann’s relations.

Remark 2.1.Although the explicit formula (2.3) requires a fixed basis of cycles, the
Baker–Akhiezer function is modular invariant.

Remark 2.2.Since abelian integrals in (2.3) have logarithmic singularities at the punc-
tures, one can define a single valued branch of9 only after cutting the curve along
Cαβ .

Remark 2.3.The choice of the initial point of the Abel map is in fact not essential. It
can be chosen not to be one of the punctures. In particular, it may beQ0, which slightly
simplifies the theorem. However, our choice simplifies the linear equations for9 below.
Moreover, below we assume that the integration paths in the Abel maps~A(Pα) go along
the cutsC0α.

Remark 2.4.The theorem implies that any function fromF (l;D) has the form
r(l)9(l;P ), wherer(l) is an arbitrary function ofl but does not depend onP . It is
convenient to choose it such that at the pointP0 the first regular termξ(0)

0 (l) in (2.2)
equals 1.

Coefficientsξ(α)
s of the asymptotical behaviour of the9 (2.2) can be expressed through

theτ -function
τ (l) ≡ τ ({lαβ}) = 2( ~X(l) + ~Z). (2.6)

In particular,

ξ(α)
0 (l)

ξ(β)
0 (l)

= χαβ
τ (l0α + 1, l0β)
τ (l0α, l0β + 1)

, α, β 6= 0, (2.7)

whereχαβ arel-independent constants. Here and thereafter we skip unshifted arguments.

Remark 2.5.If the graph of cuts includes a closed cycle, then a shift of variableslαβ →
lαβ +1 does not change theτ -function but multiplies the9-function by a cycle dependent
constant. For instance, if the cycle consists of three linksCαβ , Cβγ , Cγα, then

τ (lαβ + 1, lβγ + 1, lγα + 1) = τ (lαβ , lβγ , lγα),

9(lαβ + 1, lβγ + 1, lγα + 1;P ) = const9(lαβ , lβγ , lγα;P ).
(2.8)

This follows from (2.1), (2.3).

In the sequel, we do not need the above construction in its full generality. For our
purposes it is enough to consider the case of four puncturesP0, . . . , P3 and a general
graph of cuts as is in the figure. Cuts connect each pair of points. Any three links (not
forming a cycle) give rise to a bilinear equation of the Hirota type. They have different
forms, but are in fact equivalent due to (2.8). For further convenience we specify

l01 = l1, l02 = l2, l03 = l3, l12 = l̄3. (2.9)
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-

6
�

l2

l3

l̄3

l1

P0 P3

P1 P2

6

-

R

The general case of more punctures yields higher Hirota equations (i.e. the discretized
KP or 2D Toda lattice hierarchies).

2.2. Difference equations for the Baker–Akhiezer function.The Baker–Akhiezer func-
tion 9(l;P ) obeys certain linear difference equations with respect to the variableslαβ .
Coefficients of the equations are fixed by the analytical properties of9(l;P ) as a func-
tion of P ∈ 0. We restrict ourselves to the case of four punctures and use the notation
introduced at the end of the previous subsection. The general case of more punctures
can be treated in a similar way.

Theorem 2.2. Let9(l;P ) be the Baker–Akhiezer function normalized so thatξ(0)
0 = 1.

Then it satisfies the following linear difference equations:

9(lα + 1, lβ ;P ) − 9(lα, lβ + 1;P ) +Aαβ(lα, lβ)9(lα, lβ ;P ) = 0 (2.10)

with

Aαβ(lα, lβ) =
ξ(α)

0 (lα, lβ + 1)

ξ(α)
0 (lα, lβ)

(2.11)

for anyα, β = 1, 2, 3, α 6= β.

The proof is standard in finite gap theory. Denote the l.h.s. of Eq. (2.10) by9̃. This
function has the same analytical properties as9. At the same time the leading term at
the pointP1 is zero:ξ̃(1)

0 = 0 for anylα, lβ . From the uniqueness of the Baker–Akhiezer
function it follows that9̃ = 0. Equations (2.18), (2.20) are proved in the same way.

Remark 2.6.The dual Baker–Akhiezer function9† obeys difference equations obtained
from Eqs. (2.10), (2.18) by conjugating the difference operators in the right hand sides.

The coefficient functions of eq. (2.10) are given by the leading nonsingular termξ(α)
0 of

the Baker–Akhiezer function at the punctures. They can be found from Eq. (2.3) and are
expressed through theτ -function (2.6):

Aαβ(lα, lβ) = −λαβ
τ (lα, lβ)τ (lα + 1, lβ + 1)
τ (lα, lβ + 1)τ (lα + 1, lβ)

. (2.12)
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The constantsλαβ are expressed through the constant termsr(αβ)
γ in expansion of the

abelian integrals∫ P

Q0

d�(αβ)

∣∣∣∣∣
P→Pγ

= (δγβ − δγα) logwγ + r(αβ)
γ +O(wγ), (2.13)

as follows:
λαβ = − exp

(
r(0β)
α − r(0β)

0

)
. (2.14)

It can be shown thatλβα = −λαβ for α 6= β and

λαβ

λβγ
= − exp

(∫ Pα

Pγ

d�(0β)

)
(2.15)

for any cyclic permutation of{αβγ} = {123}. The integration path goes fromPγ to the
neighbourhood ofP0 along the cutC0γ (in the opposite direction), passes through the
pointQ0 and then goes along the cutC0α.

Eqautions (2.10), (2.11) can be viewed as linear problems for the discretized KP
equation. Choosing another triplet of variables, sayl1, l3, l̄3 and using Eq. (2.8), i.e.

τ (l1 + 1, l2, l3; l̄3 + 1) = τ (l1, l2 + 1, l3; l̄3), (2.16)

τ (l1, l2, l3; l̄3) = 2

(
3∑

α=1

~A(Pα)lα +
(
~A(P2) − ~A(P1)

)
l̄3 + ~Z

)
, (2.17)

one may rewrite Eqs. (2.10), (2.11) in a form suitable for discretization of the 2D Toda
lattice. In this case eq. (2.10) forα, β = 1, 3 remains the same. Another linear equation,

9(l1, l̄3;P ) − 9(l1, l̄3 + 1;P ) +B(l1, l̄3)9(l1 − 1, l̄3;P ) = 0 , (2.18)

with

B(l1, l̄3) =
ξ(1)

0 (l1, l̄3 + 1)

ξ(1)
0 (l1 − 1, l̄3)

= −λ12
τ (l1 + 1; l̄3 + 1)τ (l1 − 1; l̄3)

τ (l1; l̄3 + 1)τ (l1; l̄3)
(2.19)

follows from (2.10) forα, β = 1, 2 as a result of the change of variables. The third
equation,

9(l3 + 1, l̄3 + 1;P ) − Ã(l3, l̄3)9(l3, l̄3 + 1;P ) = 9(l3 + 1, l̄3;P ) − B̃(l3, l̄3)9(l3, l̄3;P ) ,
(2.20)

with

Ã(l3, l̄3) =
ξ(1)

0 (l3 + 1, l̄3 + 1)

ξ(1)
0 (l3, l̄3 + 1)

= −λ12
τ (l1 + 1, l3 + 1; l̄3 + 1)τ (l1, l3; l̄3 + 1)

τ (l1, l3 + 1; l̄3 + 1)τ (l1 + 1, l3; l̄3 + 1)
, (2.21)

B̃(l3, l̄3) =
ξ(2)

0 (l3 + 1, l̄3)

ξ(2)
0 (l3, l̄3)

=
λ12λ32

λ13

τ (l1 + 1, l3 + 1; l̄3 + 1)τ (l1, l3; l̄3)

τ (l1, l3 + 1; l̄3)τ (l1 + 1, l3; l̄3 + 1)
, (2.22)

is a linear combination of two other equations (2.10) written in terms of the new vari-
ables. The constant prefactors in (2.21), (2.22) are derived using the reciprocity law for
differentials of the third kind [18].

Alternatively, Eqs. (2.18), (2.20) can be proved in the same way as in Theorem 2.2.
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2.3. Bilinear equations for theτ -function. We have shown that the Baker–Akhiezer
function satisfies an overdetermined system of linear equations. For compatibility of
this system the coefficient functions must obey certain non-linear relations. In terms of
theτ -function all these relations have a bilinear form.

Theorem 2.3. Theτ -function obeys the Hirota bilinear difference equation

λ23τ (l1 + 1, l2, l3)τ (l1, l2 + 1, l3 + 1)− λ13τ (l1, l2 + 1, l3)τ (l1 + 1, l2, l3 + 1)

+ λ12τ (l1, l2, l3 + 1)τ (l1 + 1, l2 + 1, l3) = 0 (2.23)

with the constantsλαβ defined in (2.14).

Proof. First we examine the compatibility of Eqs. (2.10) for (αβ) = (12) and (αβ) =
(13). The variablel1 is common for both linear problems. Equations (2.10) can be
rewritten as

9(lα + 1;P ) = M (α)
1 9(lα;P ), α = 2, 3, (2.24)

whereM (α)
1 is the difference operator inl1:

M (α)
1 = e∂l1 − λ1α

τ (l1, lα)τ (l1 + 1, lα + 1)
τ (l1, lα + 1)τ (l1 + 1, lα)

. (2.25)

Equation (2.24) has a family of linearly independent solutions parametrized by points of
the curve0. Whence the compatibility is equivalent to commutativity of the operators

M̂ (α)
1 = e−∂lαM (α)

1 , (2.26)

i.e.,
[M̂ (2)

1 , M̂ (3)
1 ] = 0, (2.27)

which is a discrete zero curvature condition. Commuting the operators (2.25), we find
after some algebra that this condition is equivalent to the relation

λ13τ (l1, l2 + 1, l3)τ (l1 + 1, l2, l3 + 1)− λ12τ (l1, l2, l3 + 1)τ (l1 + 1, l2 + 1, l3)

+ H1(l1; l2, l3)τ (l1 + 1, l2, l3)τ (l1, l2 + 1, l3 + 1) = 0, (2.28)

whereH1 is an arbitrary function such thatH1(l1 + 1; l2, l3) = H1(l1; l2, l3).
All this can be repeated for other two pairs of linear problems, i.e., for (αβ) =

(21), (23) and (αβ) = (31), (32) in (2.10). This leads to bilinear relations similar to
(2.28) for the sameτ -function but with different functionsH2 andH3. To be consistent,
all three bilinear relations must be identical. This determinesH1 = −λ23, etc, which
proves the theorem. �

Remark 2.7.In the class of the algebro-geometric solutions the Hirota Eq. (2.23) is
equivalent to Fay’s trisecant identity [18].

The coefficients in Eq. (2.23) may be hidden by the transformation

τ (l1, l2, l3) →
(
λ13

λ12

)l1l2
(
λ13

λ23

)l2l3

τ (l1, l2, l3) (2.29)

bringing the Hirota equation into itscanonical form:
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τ (l1 + 1, l2, l3)τ (l1, l2 + 1, l3 + 1)− τ (l1, l2 + 1, l3)τ (l1 + 1, l2, l3 + 1)

+ τ (l1, l2, l3 + 1)τ (l1 + 1, l2 + 1, l3) = 0. (2.30)

The formula

τ (l1, l2, l3) = exp

(
l1l2

∫ P2

P3

d�(01) + l2l3

∫ P2

P1

d�(03)

)
2

(
3∑

α=1

~A(Pα)lα + ~Z

)
(2.31)

thus provides the family of algebro-geometric solutions to Eq. (2.30).
This family has 4g+1 continuous parameters. Indeed, forg > 1 the solution depends

on 3g − 3 moduli of the curve, ong pointsγi and on the 4 marked pointsPα. The
dependence on the choice of local parameters is not essential.

In terms of the variablesl1, l3, l̄3 the bilinear equations has the form

λ13τ (l1, l3; l̄3 + 1)τ (l1, l3 + 1; l̄3) − λ23τ (l1, l3; l̄3)τ (l1, l3 + 1; l̄3 + 1)

= λ12τ (l1 + 1, l3; l̄3 + 1)τ (l1 − 1, l3 + 1; l̄3). (2.32)

(Alternatively, this equation is a result of the compatibility of Eqs. (2.10), (2.18) and
(2.20).) In contrast to Eq. (2.23), the variablel2 is not shifted and skipped. The Hirota
equation in the form (2.23) can be considered as a discrete KP, whereas the form (2.32)
is a fully discretized 2D Toda lattice. Let us stress again that in the fully discretized setup
the KP equation and the 2D Toda lattice become equivalent.

2.4. Degenerate cases.Degenerations of the curve0 lead to important classes of solu-
tions. Among them are multi-soliton and rational solutions. Some examples of soliton
solutions to Eqs. (2.30), (2.32) were found by R.Hirota [8]. Here we outline the algebro-
geometric construction of the general soliton solutions.

Let us concentrate on multi-soliton solutions. In this case allN “handles” of the
Riemann surface of genusN become infinitely thin. In other words, the algebraic curve
of genusN degenerates into the complex plane with a set of 2N marked pointspi, qi:

0 → {pi, qi, i = 1, . . . , N},
wherepi, qi are the ends of theith handle. The Baker–Akhiezer function has the same
value at each pairpi, qi. The puncturesPα are replaced by pointszα with local param-
eterswα = z − zα. In this case the meromorphic differentials of the third kind have the
form:

d�(αβ) =
(zβ − zα)dz

(z − zβ)(z − zα)
.

LetF0(z) be a polynomial of degreeN :

F0(z) = zN +
N∑
j=1

bjz
N−j =

N∏
i=1

(z − γi).

Its zerosγi will stand for poles of the Baker–Akhiezer function.
Let us concentrate on the particular case when there are four punctures and three cuts

from z0 to zα (α = 1, 2, 3) on the complexz-plane. Herezα are thez-coordinates of the
marked pointsPα: zα = z(Pα). In this case the general definition of the Baker–Akhiezer
function suggests the ansatz:



Elliptic Solutions to Difference Non-Linear Equations 383

9(l; z) =
F (l; z)
F0(z)

90(l; z) (2.33)

with

90(l; z) =
3∏

α=1

(
z − zα

z − z0

)lα

, l ≡ (l1, l2, l3) (2.34)

and the polynomial

F (l; z) =
N∑
j=0

aj(l)zN−j (2.35)

with yet undeterminedl-dependent coefficients. These coefficients are determined by
N conditions

9(l; pi) = 9(l; qi), l = 1, . . . , N. (2.36)

They are equivalent to the system ofN linear equations forN + 1 unknown coeffi-
cientsaj in Eq. (2.35):

N∑
j=0

Kijaj = 0, i = 1, . . . , N, j = 0, 1, . . . , N,

where

Kij =
pN−j

i

F0(pi)
90(l; pi) − qN−j

i

F0(qi)
90(l; qi). (2.37)

Solving the system of linear equations we represent the Baker–Akhiezer function in the
form

9(l; z) = c(l)
1(l; z)
1(0;z)

90(l; z), (2.38)

where
1(l; z) = det

ij
(K̂ij)

andK̂ is the (N + 1)× (N + 1)-matrix with entries

K̂0j = zN−j , K̂ij = Kij , i = 1, . . . , N.

The normalization factorc(l) is fixed by the asymptotics

9(l; z) = (z − z0)−l1−l2−l3(1 +O(z − z0))

near the pointz0. It gives

c(l) =
1(0;z0)
1(l; z0)

3∏
α=1

(z0 − zα)−lα .

We also point out the identity

1(lα; zα) = 1(lα + 1;z0), α = 1, 2, 3. (2.39)

The degeneration of theτ -function (2.17) is

τ (l) = 1(l; z0). (2.40)
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It satisfies the bilinear Eq. (2.23) with

λαβ =
zα − zβ

(z0 − zα)(z0 − zβ)
.

The continuous parameters of the solution (2.40) are 2N pointspi, qi,N pointsγi and
4 pointszα. However, theτ -function is invariant (up to an irrelevant constant) under the
simultaneous fractional-linear transformationz → (az + b)/(cz + d), ad− bc = 1, of all
these parameters, so we are left with 3N + 1 parameters.

In the case of rational degeneration the pointspi andqi merge and the condition
(2.36) becomes

(D̂i9)(pi) = 0, i = 1, . . . , N, (2.41)

whereD̂i are some differential operators inz with constant coefficients. This changes
the form of the matrixK but Eqs. (2.38), (2.39) remain the same.

3. Elliptic Solutions

General finite-gap solutions of Hirota’s equation for an arbitrary algebraic curve0 with
puncturesPα are quasi-periodicfunctions of all variableslα. Below we construct a
special important class of solutions for which the quantity (1.7) isdoubly periodicin
one of the variables. Theτ -function in this case is an elliptic polynomial (1.6). We call
them elliptic solutions. We show that the elliptic solutions also imply a spectral algebraic
curve and are therefore a subclass of the algebro-geometric solutions of Sect.2.

Among all algebro-geometric solutions described in the previous section the elliptic
solutions in one of the variables or their linear combination are characterized as follows.
Let

∂x =
∑

Xαβ∂lαβ
(3.1)

be a vector field in the space of variableslαβ and let ~U =
∑

αβ Xαβ
~U (αβ). Let us

transport theτ -function (2.6) along the vector field∂x and denote it by

τ (x) = 2
(
~Ux + ~X(l) + ~Z

)
. (3.2)

Consider a set of algebraic curves with puncturesPα and cuts such that the vector~U
has the property:

• There exist two constantsω1, ω2, Im (ω2/ω1) 6= 0, such that 2ωa
~U , a = 1, 2, belong

to the lattice of periods of the holomorphic differentials on0:

τ (x + 2ωa) = erax+saτ (x) ,

wherera, sa are constants.

Theτ -function is then an elliptic polynomial in the variablex. Due to the commensu-
rability of ~U and the lattice of periods, solutions to the equation

2(~Ux + ~Z) = 0 (3.3)

arexi(~Z)+2J1ω1 +2J2ω2, wherexi(~Z) belong to the fundamental domain of the lattice
generated by 2ω1, 2ω2 andJ1, J2 run over all integers. Therefore,
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2(~Ux + ~Z) = ea1x+a2x
2

N∏
i=1

σ
(
x− xi(~Z)

)
(3.4)

with x-independenta1, a2 andN ≥ g.
The requirement of the ellipticity imposes 2g constraints on 4g + 1 parameters.

Therefore the dimension of the family of elliptic solutions is 2g + 1.
Below we concentrate on a specific case where the ellipticity is imposed along

l01 ≡ l1 by setting~U = η−1~U (01) andx = ηl1, whereη is a complex constant.
The logic of this section is opposite to the one of Sect. 2. Here we solve thedirect

problemand show thatall solutions which are elliptic in any “direction”lαβ of the form
(1.6) with a time-independent degreeN , are of the finite gap type (3.2).

3.1. Equations of motion for zeros of theτ -function. Let us show how to obtain the
equations of motion for zeros of elliptic solutions by elementary methods.

First of all, let us rename variables to emphasize the “direction” of ellipticity:

l1 ≡ ηx, l2 ≡ n, l3 = m, l̄3 ≡ m̄, (3.5)

so that theτ -function has the form (1.6). Let us now consider one of Eqs. (2.10), say
for α, β = 1, 2. In this equation all variables exceptx andm are parameters and we skip
them wherever it does not cause confusion:xm,n

i → xm
i , τ

m,n(x) → τm(x),

ψm(x + η) − λ13
τm(x)τm+1(x + η)
τm+1(x)τm(x + η)

ψm(x) = ψm+1(x) . (3.6)

Let us look for solutions of the form

ψm(x) =
ρm(x)
τm(x)

with some functionρm(x). Eq. (3.6) then reads

τm+1(x)ρm(x + η) − λ13τ
m+1(x + η)ρm(x) = τm(x + η)ρm+1(x). (3.7)

We are interested in the case whenτm(x) is an elliptic polynomial inx for anym:

τm(x) =
N∏
j=1

σ(x− xm
j ). (3.8)

The “equations of motion” for its rootsxm
j in the “discrete time”m can be easily obtained

from Eq. (3.7) in the following way. Substitutingx = xm+1
j , x = xm+1

j − η, x = xm
j − η,

we get the relations

−λ13τ
m+1(xm+1

j + η)ρm(xm+1
j ) = τm(xm+1

j + η)ρm+1(xm+1
j ),

τm+1(xm+1
j − η)ρm(xm+1

j ) = τm(xm+1
j )ρm+1(xm+1

j − η),

τm+1(xm
j − η)ρm(xm

j ) = λ13τ
m+1(xm

j )ρm(xm
j − η), (3.9)

respectively. Combining these relations, we eliminateρ and obtain a system of equations
for the rootsxm

i :
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N∏
k=1

σ(xm
j − xm−1

k )σ(xm
j − xm

k + η)σ(xm
j − xm+1

k − η)

σ(xm
j − xm−1

k + η)σ(xm
j − xm

k − η)σ(xm
j − xm+1

k )
= −1. (3.10)

Note that these equations involve only one discrete variablem while the direct
substitution of the ansatz (3.8) into the non-linear Eq. (2.30) would give a system of
equations involving two discrete variables. It is not easy to see that they in fact decouple.
The decoupling becomes transparent if one starts with the auxiliary linear problem (3.6).

Similar equations hold for the discretel3 ≡ m̄-dynamics. From the linear problem
(2.18) we obtain the equations for the ¯m dependence ofxi:

N∏
k=1

σ(xm̄
j − xm̄−1

k − η)σ(xm̄
j − xm̄

k + η)σ(xm̄
j − xm̄+1

k )

σ(xm̄
j − xm̄−1

k )σ(xm̄
j − xm̄

k − η)σ(xm̄
j − xm̄+1

k + η)
= −1. (3.11)

To avoid confusion, let us stress that thexi depend on all discrete times. However, the
variables are separated in the equations of motions.

Remark 3.1.Another choice of the “direction” of ellipticity gives rise to different equa-
tions of motion. To illustrate this, let us requireτ (l) to be an elliptic polynomial in the
direction orthogonal tos = l3 + l̄3 anda = l1 + l3 − l̄3, so that the zeros of theτ -function
depend ona ands. Then the vector field in (3.1) is∂x = η∂l1 − 1

2∂l3 + 1
2∂l̄3

. In terms of
T a,s(x) ≡ τ (l1, l3, l̄3) the bilinear Eq. (2.32) reads:

λ12T
a,s(x + η)T a,s(x− η) + λ23T

a,s+1(x)T a,s−1(x) = λ13T
a+1,s(x)T a−1,s(x),

and the zerosxa,s
i of T a,s(x) obey the system of coupled equations:

T a+1,s+1(xa,s
i )T a−1,s(xa,s

i − η)T a,s−1(xa,s
i + η)

T a−1,s−1(xa,s
i )T a+1,s(xa,s

i + η)T a,s+1(xa,s
i − η)

= −1 ,

T a+1,s−1(xa,s
i )T a−1,s(xa,s

i − η)T a,s+1(xa,s
i + η)

T a−1,s+1(xa,s
i )T a+1,s(xa,s

i + η)T a,s−1(xa,s
i − η)

= −1 .

These equations are more complicated than (3.10). In contrast to the previous case,
evolutions ina ands are not separated.

3.2. Double-Bloch solutions to the linear problems.In order to further examine the el-
liptic solutions, we need the notion of double-Bloch functions. A meromorphic function
f (x) is said to bedouble-Blochif it enjoys the following monodromy properties:

f (x + 2ωa) = Baf (x), a = 1, 2. (3.12)

The complex numbersBa are calledBloch multipliers. A non-trivial double-Bloch func-
tion can be represented as a linear combination of elementary ones:

f (x) =
N∑
i=1

ci8(x− xi, ζ)kx/η, (3.13)

where [6]

8(x, ζ) =
σ(ζ + x + η)
σ(ζ + η)σ(x)

[
σ(ζ − η)
σ(ζ + η)

]x/(2η)

(3.14)
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and complex parametersζ andk are related to the Bloch multipliers by the formulas

Ba = k2ωa/η exp(2ζ(ωa)(ζ + η))

(
σ(ζ − η)
σ(ζ + η)

)ωa/η

(3.15)

(ζ(x) = σ′(x)/σ(x) is the Weierstrassζ-function).
Let us point out some properties of the function8(x, ζ). Considered as a function

of ζ, 8(x, ζ) is double-periodic:

8(x, ζ + 2ωa) = 8(x, ζ).

For general values ofx one can define a single-valued branch of8(x, ζ) by cutting
the elliptic curve between the pointsζ = ±η. In the fundamental domain of the lattice
generated by 2ωa the function8(x, ζ) has a unique pole at the pointx = 0:

8(x, ζ) =
1
x

+O(1) .

In the next subsection we need the identity:

8(x, z)8(y, z) = 8(x + y, z)
(
ζ(x) + ζ(y) + ζ(z + η) − ζ(x + y + z + η)

)
(3.16)

which is equivalent to the well known 3-term bilinear functional equation for theσ-
function.

Recall the notion of equivalent Bloch multipliers [6]. The “gauge transformation”
f (x) → f̃ (x) = f (x)ebx (b is an arbitrary constant) does not change the poles of any
function and transforms a double-Bloch function into another double-Bloch function.
If Ba are Bloch multipliers forf , then the Bloch multipliers for̃f areB̃1 = B1e

2bω1,
B̃2 = B2e

2bω2. Two such pairs of Bloch multipliersBa andB̃a are said to beequivalent.
(In other words, they are equivalent if the productBω2

1 B−ω1
2 is the same for both pairs.)

This definition implies that any double-Bloch function can be represented as a ratio
of two elliptic polynomials of the same degree multiplied by an exponential function
and a constant:

f (x) = c′(k′)x/η
N∏
i=1

σ(x− yi)
σ(x− xi)

. (3.17)

The Bloch multipliers are

Ba = (k′)2ωa/η exp

2ζ(ωa)
N∑
j=1

(xj − yj)

 .

Equations (3.13) represents a Bloch function by its poles and residues, whereas Eq. (3.17)
represents a Bloch function by its poles and zeros.

3.3. The Lax representation.The coefficients in Eq. (3.6) are elliptic functions, i.e.
double-periodic with periods 2ωa. Therefore, the equation has double-Bloch solutions
. Similarly to the case of the Calogero-Moser model and its spin generalizations the
dynamics of poles of the elliptic coefficient in the linear problem is determined by the
fact that Eq. (3.6) has an infinite number of double-Bloch solutions.

In what follows we always assume that the poles are in a generic position, i.e.
xm

i − xm
j 6= 0,±η andxm

i − xm±1
j 6= 0,±η for any pairi 6= j. Exceptional cases are

also of interest but must be treated separately.
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Theorem 3.1. Let τm(x) be an elliptic polynomial of degreeN . Equation (3.6) has
N linearly independent double-Bloch solutions with simple poles at the pointsxm

i and
equivalent Bloch multipliers if and only if zerosxm

i of theτ -function satisfy “equations
of motion” (3.10).

Theorem 3.2. If Eq. (3.6) hasN linearly independent double-Bloch solutions with
equivalent Bloch multipliers, then it has infinite number of them. All these solutions
have the form

ψm(x) =
N∑
i=1

ci(m, ζ, k)8(x− xm
i , ζ)kx/η (3.18)

(8(x, ζ) is defined in (3.14)). The set of corresponding pairs(ζ, z) is parametrized by
points of an algebraic curve.

These theorems are proved by the same arguments as in [6]. Here we present the
main steps.

N linearly independent double-Bloch solutions with equivalent Bloch multipliers
may be written in the form (3.18) with some values of the parametersζr, kr, s =
1, . . . , N . Equivalence of the multipliers implies that theζr can be chosen to be equal
ζr = ζ.

Let us substitute the functionψm(x) of the form (3.18) with this particular value of
ζ into Eq. (3.6). Since any double-Bloch function (except equivalent to a constant) has
at least one pole, it follows that the equation is satisfied if its left hand side has zero
residues at the pointsx = xm

i −η andx = xm+1
i . The cancelation of poles at these points

gives the conditions

kci(m, ζ, k) − fi(m)
N∑
j=1

cj(m, ζ, k)8(xm
i − xm

j − η, ζ) = 0 , (3.19)

ci(m + 1, ζ, k) = gi(m)
N∑
j=1

cj(m, ζ, k)8(xm+1
i − xm

j , ζ) , (3.20)

where

fi(m) = λ13

∏N
s=1σ(xm

i − xm
s − η)σ(xm

i − xm+1
s )∏N

s=1,6=i σ(xm
i − xm

s )
∏N

s=1σ(xm
i − xm+1

s − η)
, (3.21)

gi(m) = −λ13

∏N
s=1σ(xm+1

i − xm+1
s + η)σ(xm+1

i − xm
s )∏N

s=1,6=i σ(xm+1
i − xm+1

s )
∏N

s=1σ(xm+1
i − xm

s + η)
. (3.22)

Introducing a vectorC(m) with componentsci(m, ζ, z) we can rewrite these condi-
tions in the form

(L(m) − kI)C(m) = 0 , (3.23)

C(m + 1) = M(m)C(m) , (3.24)

whereI is the unit matrix. The matrix elements ofL(m) andM(m) are:

Lij(m) = fi(m)8(xm
i − xm

j − η, ζ), (3.25)

Mij(m) = gi(m)8(xm+1
i − xm

j , ζ). (3.26)
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The compatibility condition of (3.19) and (3.20),

L(m + 1)M(m) = M(m)L(m) (3.27)

has a form of the discrete Lax equation. The Lax Eq. (3.27) appeared in ref. [11], where
Eqs. (3.10) were proposed as a time discretezation of the RS model.

Lemma 3.1. For matricesL andM defined by (3.25), (3.26) the discrete Lax Eq. (3.27)
is equivalent to the equations (3.10).

The proof is along the lines of ref. [11]. We have

Fij ≡ (x, ζ)(M(m)L(m) − L(m + 1)M(m))ij

= fi(m + 1)
∑

s

gs(m)8(xm+1
i − xm+1

s − η, ζ)8(xm+1
s − xm

j , ζ)

+ gi(m)
∑

s

fs(m)8(xm+1
i − xm

s , ζ)8(xm
s − xm

j − η, ζ). (3.28)

The coefficient in front of the leading singularity atζ = −η is proportional to

fi(m + 1)
∑

s

gs(m) + gi(m)
∑

s

fs(m).

On the other hand, ∑
s

(
fs(m) − gs(m)

)
= 0 (3.29)

(because this is the sum of residues of the elliptic coefficient in Eq. (3.6) ). Therefore,

fi(m + 1) = gi(m), i = 1, . . . , N. (3.30)

These equations are equivalent to (3.10).
To show that (3.28) is identically zero provided Eqs. (3.30) hold, we use the identity

(3.16):
Fij(x, ζ) = −gi(m)8(xm+1

i − xm
j − η, ζ)G,

G = −
∑

s

fs(m)
(
ζ(xm+1

s − xm
s ) + ζ(xm

s − xm
j ) − η)

)
+
∑

s

gs(m)(ζ(xm+1
i − xm+1

s − η) + ζ(xm+1
s − xm

j )
)
. (3.31)

Noting thatG is proportional to the sum of residues of the elliptic function

[
ζ(xm+1

i − η − x) + ζ(x− xm
j )
] N∏

i=1

σ(x− xm
i )σ(x− xm+1

i + η)
σ(x− xm

i + η)σ(x− xm+1
i )

at the pointsx = xm+1
i andx = xm

i − η, we conclude thatG = 0.
It was already proved that Eq. (3.6) hasN linearly independent solutions if Eqs. (3.10)

or the Lax Eq. (3.27) hold for some value of the spectral parameterζ. It then follows
from Lemma 3.1 that the Lax equation holds for any value ofζ. Therefore, for eachζ
there exists a double-Bloch solution given by (3.18), where theci are components of the
common solution to (3.23), (3.24).
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Theorem 3.3. All elliptic solutions of Eq. (2.23) of the form (3.8) are of the algebro-
geometric type andxm

i are given implicitly by the equation

2
(
η−1 ~A(P1)xm

i +m~A(P3) + ~Z
)

= 0, (3.32)

where the Riemann theta-function corresponds to the algebraic curve0 defined by the
characteristic equation

R(k, ζ) ≡ det(L(m) + kI) = kN +
N∑
i=1

ri(ζ)kN−i = 0 . (3.33)

The matrixL is given by Eqs. (3.25), (3.21) and the coefficientsri(ζ) have the form

ri(ζ) =
σ(ζ + η)(i−2)/2σ(ζ − (i− 1)η)

σ(ζ − η)i/2
Ii

whereIi are integrals of motion. The characteristic Eq. (3.33) andIi are functions of
xm

i andxm+1
i but stay the same for allm. The spectral curve0 determined by Eq. (3.33)

is an algebraic curve realized as a ramified covering of the elliptic curve. The function
(3.18) is the Baker–Akhiezer function on0.

We call the spectral curve0 defined in Theorem 3.3 the Ruijsenaars-Schneider (RS)
curve. The RS curve is identical to the spectral curve for the continuous time RS model
studied in ref. [6]. The proof of the theorem is omitted. It is as in ref. [6].

The matrixL is defined by fixingxm0
i andxm0+1

i . These Cauchy data uniquely
define the RS curve0, the vectors~A(Pα), α = 1, 2 and~Z in Eq. (3.32). The curve and
the vectors~A(Pα), α = 1, 2 do not depend on the choice ofm0. They are action-type
variables. The vector~Z depends linearly on this choice and its components are thus
angle-type variables.

Remark 3.2.The discrete time dynamics defined in Theorem 3.3 is time-reversible, i.e.
the Cauchy dataxm0

i ,xm0+1
i completely determine the dynamics for both time directions

up to permutation of the “particles”. TheL-M-pair for the backward time motion is ob-
tained from the difference equations for the dual Baker–Akhiezer function (see Remark
2.6) with an ansatz similar to (3.18). An alternative way to derive equations of motion
(3.10) is to require the spectral Eq. (3.23) to be identical to the similar equation for the
backward time motion.

Remark 3.3.The form of equations for the dynamics inl2 ≡ n is identical to the
equations (3.10) of the dynamics inm ≡ l3. The Cauchy data form-dynamics, i.e.,
values ofxm

i atm = 0 andm = 1 completely determine an evolution and Cauchy data in
n (as well as all other flows). ComparingL-operators for each flow, one finds relations
between the Cauchy data:

N∏
s=1

σ(x0,0
i − x1,0

s )σ(x0,0
i − x0,1

s − η)

σ(x0,0
i − x0,1

s )σ(x0,0
i − x1,0

s − η)
=
λ12

λ13
, i = 1, 2, . . . , N. (3.34)
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Similar connections exist for the initial data of the ¯m-flow.

3.4. Loci equations.The values ofx0
i , x

1
i may be arbitrary if no other reduction (apart

from the elliptic one) is imposed. If there is an additional reduction, then thex0
i , x

1
i are

constrained to belong to a submanifold ofC2N , thereduction locus. An example of such
a locus in the continuous setup is the KP→ KdV locus (1.4). Here we present equations
defining the loci for three important reductions of Hirota’s difference equation. In these
cases spectral curves of algebro-geometric solutions are hyperelliptic. As before,x0

i , x
1
i

are assumed to be in generic position.

A) Discrete KdV equation[18]. The discrete KdV equation appears as the reduction

τ (l1, l2 + 1, l3 + 1) = τ (l1, l2, l3), x ≡ ηl1

of the general 3-dimensional Hirota Eq. (2.23). In the notation (3.5) the equation is

λ23τ
m(x + η)τm(x) − λ13τ

m−1(x)τm+1(x + η) + λ12τ
m+1(x)τm−1(x + η) . (3.35)

For algebro-geometric solutions the reduction means that~U (02) + ~U (03) belongs to the
lattice of periods. Therefore, the function

ε(P ) = exp

(∫ P

Q0

(d�(02) + d�(03))

)
(3.36)

is meromorphic on the curve0. From the definition of the abelian integrals it follows
that this function has a double pole atP0 and simple zeros atP2 andP3. Outside these
pointsε(P ) is holomorphic and is not zero. The existence of such a function means that
the spectral curve ishyperelliptic. A hyperelliptic curve of genusg can be defined by
the equation

y2 =
2g+1∏
i=1

(ε− εi). (3.37)

This is a two-fold covering of the complex plane of the variableε. The projection
of 0 onto theε-plane definesε as a meromorphic function on0. This function has a
double pole on0 at the branch pointP∞ (aboveε = ∞) and two simple zeros at the
pointsP (±)

0 (aboveε = 0). The identification of this notation for the punctures with our
previous ones is

P∞ = P0, P (−)
0 = P2, P (+)

0 = P3.

The branch pointsεi in (3.37) may not be arbitrary since the curve should simul-
taneously be of the RS type. Correspondingly, the Cauchy datax0

i , x
1
i with respect to

the l3-flow obey certain constraints. Using the equations of motion (3.10) and (3.34),
we obtain a system of 2N coupled equations on allowed values ofx0

i , x
1
i (“equilibrium

locus”):
N∏
s=1

σ(x1
i − x1

s + η)σ(x1
i − x0

s − η)
σ(x1

i − x1
s − η)σ(x1

i − x0
s + η)

= − λ13

λ12
, (3.38)

N∏
s=1

σ(x0
i − x0

s + η)σ(x0
i − x1

s − η)

σ(x0
i − x0

s − η)σ(x0
i − x1

s + η)
= − λ12

λ13
(3.39)
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for i = 1, 2, . . . , N . With the help of Eq. (2.15) the right hand sides can be expressed
through abelian integrals. The relation between the number of zerosN and genusg of
the spectral curve is a subtle question. We do not discuss it here.

Each of the systems (3.38), (3.39) has the form of Bethe equations for anN -site spin
chain of spin 1 at each site. One may treatx0

s (for instance) as arbitrary input parameters
while Bethe’s quasimomentax1

s are to be determined by Eqs. (3.38). However, the
system of locus equations (3.38), (3.39) determinesx0

i andx1
i simultaneously.

In the continuous time limit we setx0
i = xi, x1

i = xi + εẋi + 1
2ε

2ẍi, ẋi = ∂txi, ε → 0.
Assumingλ13/λ12 → −(1 +Cε) with a constantC, we get from (3.38), (3.39):

N∑
k=1

ẋk [ζ(xi − xk − η) − ζ(xi − xk + η)] = C, (3.40)

N∑
k=1

ẋk [℘(xi − xk − η) − ℘(xi − xk + η)] = 0. (3.41)

In the leading order inε the systems (3.38), (3.39) coincide with each other and yield
the first system (3.40) while the second one (3.41) follows from the higher order terms.
These equations define the equilibrium locus for the Ruijsenaars-Schneider system of
particles.

B) 1D Toda chain in discrete time[8]. The reduction condition in this case is:

τ (l1, l2, l3 + 1, l̄3 + 1) = τ (l1, l2, l3, l̄3).

The discrete time 1D Toda chain in the bilinear form reads

λ13τ
m−1(x)τm+1(x) − λ12τ

m−1(x + η)τm+1(x− η) = λ23(τ
m(x))2 , (3.42)

where we have excluded̄l3 and have passed to the notation of Example A). In this case
~U (03) + ~U (12) belongs to the lattice of periods. The corresponding curve is given by
Eq. (3.37) with a polynomial ofevendegree in the r.h.s.

The Cauchy datax0
i , x

1
i with respect to thel3-flow satisfy the locus equations:

N∏
s=1

σ(x1
i − x1

s + η)σ2(x1
i − x0

s)
σ(x1

i − x1
s − η)σ2(x1

i − x0
s + η)

= − λ12

λ13
. (3.43)

N∏
s=1

σ(x0
i − x0

s + η)σ2(x0
i − x1

s − η)

σ(x0
i − x0

s − η)σ2(x0
i − x1

s)
= − λ13

λ12
(3.44)

The continuous time limit can be taken similar to the way of the previous example.
In this case, however, we have to assumeλ13/λ12 → C̃ε−2 asε → 0 with a constant̃C.
We get

σ2(η)
N∏

k=1,6=i

σ(xi − xk + η)σ(xi − xk − η)
σ2(xi − xk)

= C̃ẋ2
i , (3.45)
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N∑
k=1,6=i

(ẋi + ẋk) [ζ(xi − xk − η) + ζ(xi − xk + η) − 2ζ(xi − xk)] = 0. (3.46)

These equations follow also from Eqs. (4.58), (4.59) of the paper [6]. They define the
stable locus for the RS system with respect to another flow than in Eqs. (3.40), (3.41).

C) Discrete sine-Gordon equation1. The reduction condition is

τ (l1, l2, l3 + 1, l̄3) = τ (l1 + 2, l2, l3, l̄3 + 1),

so, passing to the same independent variables as in the previous examples, we get the
equation

λ13τ
m(x− η)τm(x + η) − λ23τ

m−1(x + η)τm+1(x− η) = λ12(τ
m(x))2 . (3.47)

Now it is the vector~U (01)+ ~U (32) that belongs to the lattice of periods. The continuous
SG equation is reproduced in the limitP3 → P0,P2 → P1. The spectral curves are again
hyperelliptic.

The locus equations for the Cauchy datax0
i , x

1
i with respect to them-flow are

N∏
s=1

σ(x0
i − x1

s)σ(x0
i − x1

s − 2η)

σ2(x0
i − x1

s − η)
=
λ12

λ13
, (3.48)

N∏
s=1

σ(x1
i − x0

s)σ(x1
i − x0

s + 2η)
σ2(x1

i − x0
s + η)

=
λ12

λ13
. (3.49)

Note that the structure of these equations is different compared to the previous examples.

3.5. Remarks on trigonometric solutions.Trigonometric solutions are degenerations of
the elliptic solutions when one of the periods tends to infinity. They form a particular
subfamily in the variety of soliton solutions described in Sect. 2.4. The trigonometric
solutions admit a very explicit description in terms of the data defining the singular
curve.

Let us set the period to be 2π:

τm(x + 2π) = τm(x) ,

so an elliptic polynomial becomes a Laurent polynomial ineix. The Bethe-like equations
on motion (3.10) preserve its form, but the Weierstrass functionσ(x) is replaced by sinx.

It follows from the periodicity that the function90 (2.34) obeys

90(ηx + 2πη,m; pj)
90(ηx + 2πη,m; qj)

=
90(ηx,m; pj)
90(ηx,m; qj)

, j = 1, 2, . . . , N,

or, explicitly
pj − z1

pj − z0
=
qj − z1

qj − z0
e−iηJj , (3.50)

1 This version of the discrete SG equation is different from the one considered in [20], [21]. The latter is
closer to a special degeneracy of the discrete KdV atλ12 → λ13.
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whereJj are integer numbers. This condition restricts admissible singular curves (Rie-
mann spheres withN double points). Minimal Laurent polynomials correspond to the
choiceJj = ±1. This givesN conditions forpj , qj , so the number of continuous param-
eters in the trigonometric case is 2N + 1 – the same as for the non-degenerate curves of
genusN .

Here we do not discuss the trigonometric degeneration of theL-M-pair and depen-
dence of ofpj andqj on initial data for Ruijsenaars-Schneider particles. This can be
done along the lines of the paper [5].

The trigonometric loci can be characterized alternatively by imposing a relation on
pj andqj in addition to (3.50):

E(pi) = E(qi), pi 6= qi, i = 1, 2, . . . , N. (3.51)

For the examples A)-C) of Sect. 3.4 the functionsE(z) are

A) E(z) =
(z − z2)(z − z3)

(z − z0)2
,

B) E(z) =
(z − z2)(z − z3)
(z − z1)(z − z0)

,

C) E(z) =
(z − z1)(z − z2)
(z − z3)(z − z0)

.

(3.52)

Conditions (3.50), (3.51) leave us with a discrete set of admissible pairspi, qi. The
continuous parametersγs give then an implicit parametrization of the loci.

4. Conclusion

We have shown that the main body of finite-gap theory and the theory of elliptic solu-
tions to nonlinear integrable equations is also applicable to finite-difference (discrete)
integrable equations. Discrete equations includes the continuous theory as the result of
a limiting procedure. Furthermore, discrete equations reveal some symmetries lost in
the continuum limit. We have shown that all elliptic solutions with a constant number of
zeros in the evolution (compare to [13]), are of the algebro-geometric type. Moreover,
their algebraic curves are spectral curves forL-operators of the Ruijsenaars-Schneider
model. Each point of this curve gives rise to discrete time dynamics of zeros of the
τ -function.

The structure of equilibrium loci equations of reductions of Hirota’s Eq. (analogues
of the known KdV-locus (1.4)) is expected to be richer than in the continuous case
and requires further study. It would be very interesting to extend the algebro-geometric
approach to elliptic solitons of KdV of ref. [22] to the difference case as well as to
understand difference elliptic solitons in terms of the Weierstrass reduction theory [23].

To the two main motivations pointed out at the beginning of the paper we can now
add yet another one: an intriguing intimate connection between the elliptic solutions
to soliton equations and quantum integrable models solved by the Bethe ansatz. In our
opinion, the very fact that the zeros dynamics and equilibrium loci are described by
Bethe-like equations is remarkable and suggests hidden parallels between quantum and
classical integrable equations.
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