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Abstract: We study algebro-geometric (finite-gap) and elliptic solutions of fully dis-
cretized KP or 2D Toda equations. In bilinear form they are Hirota’s difference equation
for 7-functions. Starting from a given algebraic curve, we express-fla@ction and the
Baker—Akhiezer function in terms of the Riemann theta function. We show that the ellip-
tic solutions, when the-function is an elliptic polynomial, form a subclass of the general
algebro-geometric solutions. We construct the algebraic curves of the elliptic solutions.
The evolution of zeros of the elliptic solutions is governed by the discrete time gen-
eralization of the Ruijsenaars-Schneider many body system. The zeros obey equations
which have the form of nested Bethe-ansatz equations, known from integrable quantum
field theories. We discuss the Lax representation and the action-angle-type variables for
the many body system. We also discuss elliptic solutions to discrete analogues of KdV,
sine-Gordon and 1D Toda equations and describe the loci of the zeros.

1. Introduction

Among a vast class of solutions to classical non-linear integrable equations elliptic
solutions play a special role. First, these solutions occupy a distinguished place among
all algebro-geometric (also called finite-gap) solutions, i.e. solutions constructed out
of a given algebraic curve. The general formulas in terms of Riemann theta-functions
become much more effective — in this case the Riemann theta-function splits into a
product of Weierstrass-functions associated to an elliptic curve. Second, there exists a
remarkable connection between the motion of poles (zeros) of the elliptic solutions and
certain integrable many body systems.

The pole dynamics of elliptic solutions to the Korteweg—de Vries (KdV) equation
and the Calogero—Moser system of particles were linked together in the paper [1] (see
also [2]). It has been shown in [3],[4] that this relation becomes an isomorphism if one
considers elliptic solutions of the Kadomtsev—Petviashvili (KP) equation. More recently,
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these results were generalized to elliptic solutions of the matrix KP and the matrix 2D
Toda lattice equations (see [5] and [6], respectively). The dynamics of their poles obeys
the spin generalization of the Ruijsenaars—Schneider (RS) model [7].

Let us recall some elements of the elliptic solutions for the standard example of the
KP equation 3,, = (4u: + Buu, — ugas), for a functionu = u(x,y,t). An elliptic
solution in the variable: is given by

N

u(x,y,t) = const +2y " o(x — zi(y, 1)), (1.1)
i=1

wherep(z) is the Weierstrasg-function. The self-consistency of this ansatz is a man-
ifestation of integrability. It has been shown in [3],[4] that the dynamics of poles as
functions ofy obeys the Calogero-Moser many body system with the Hamiltonian

N

1 2

H=3> vi=2) ploi—a,). (1.2)
=1 7

This system in its turn is known to be integrable. There is an involutive set of conserved

quantitiesH %) — the Hamiltonian (1.2) and the total momentum &f® and H®, The
equations of motion are

N
85:101» =4 Z o' (@i — ;). (1.3)
1

Thet-dynamics is described b ®).
The reduction to the KdV equation restricts the particles tdabesL » in the phase
space:

Ly =< (i, z4)

pi=0 Y ¢(x;—x;)=0 (1.4)

i
(herep; = 0,x;). In spite of interesting developments, an analysis of the locus structure
is far from completed.

Inthis paper we extend these results to the fully discretized version of the KP equation
or 2D Toda lattice. Being fully discretized they become the same equation. In bilinear
form they are known as Hirota’s bilinear difference equation (HBDE) [8], [9] (see [10]
for a review). This is a bilinear equation for a functiei, m, n) (calledr-function) of
three variables:

A+ m,n)r(,m+1ln+)+ur(,m+Ln)r(l+1m,n+1)
+vr(l,m,n+1)r((+1,m+1n)=0, (1.5)

where\, u, v are complex parameters and the three variables are not necessarily integer.
In what follows we call thendiscrete timestressing the difference with continuous KP-
flows. Let us introduce a lattice spacingor one of the variables, say,and denote

x = nl. By elliptic solutions(in the variablex) to this equation we mean the following
ansatz for the-function:

N
m(l,m,n) = ") = [[olz — 27, (1.6)
j=1
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whereo(x) is the Weierstrass-function. We refer to the r.h.s. of (1.6) aBiptic poly-
nomialsin z. For brevity, we call solutions of this type elliptic though théunction
itself is not double-periodic. However, suitable ratios of thedenctions, for instance,

TN (x)Tm+l,n (Jj + ,'7)

Amen —
@)% Sty )

(1.7)

are already elliptic functions.

In this paper we derive equations of motion for polegi&t™(x) or zeros ofr™ ™ (x)
for discrete timesn, n and thus obtain a fully discretized Calogero-Moser many body
problem. This appears to be the discrete time version of the Ruijsenaars-Schneider (RS)
model proposed in the seminal paper [11]. Remarkably, the discrete equations of motion
have the form of Bethe equations of the hierarchical (nested) Bethe ansatz. The discrete
time runs over “levels” of the nested Bethe ansatz.

We also consider stationary reductions of HBDE. In this case the initial configuration
of poles (zeros) is not arbitrary but constrained to a stable locus as in the continuous
case (1.4). For the most important examples we give equations defining the loci.

A renewed interest in soliton difference equations, and especially in their elliptic
solutions is caused by the revealidgssicalintegrable structures present in integrable
models ofquantunfield theory. It turns out that Hirota’s Eq. (1.5) is the universal fusion
rule for a family of quantum transfer matrices. Their eigenvalues (as functions of spectral
parameters) obey a set of functional Egs. [12] which can be recast into the bilinear Hirota
Eq. [13] (see also [14] and [15] for less technical reviews). Furthermore, itturned out that
most of the ingredients of the Bethe ansatz and the quantum inverse scattering method
are hidden in the elliptic solutions of the entirely classical discrete time soliton Egs. [13].
In particular, the discrete dynamics of poles4sf:"(x) or zeros of (1.6) has the form
of Bethe ansatz equations, where the discrete time runs over “nested” levels.

The theory of elliptic solutions has direct applications to the algebraic Bethe ansatz
and to Baxter's/’-)-relation, which we plan to discuss elsewhere.

Here we attempt to develop a systematic approach to the elliptic solutions of the
integrable difference equations. The basic concept of the approach is the Baker—Akhiezer
functions on algebraic curves. We prove that all solutions to HBDE of the form (1.6) are
of the algebro-geometric type and present them in terms of Riemann theta functions.

The plan of the paper is as follows.

In Sect. 2 we describe general algebro-geometric (finite-gap) solutions to HBDE.
We start from the Baker—Akhiezer function constructed from a complex algebraic curve
of genusg with marked points. This function satisfies an overcomplete set of linear
difference equations. Their consistency is equivalent to Hirota’s equation. In this way,
one obtains a (@ + 1)-parametric family of quasiperiodic solutions to HBDE in terms
of the Riemann theta-functions. Solitonic degenerations of these solutions are discussed
in Sect. 2.4.

Section 3 is devoted to elliptic solutions. They are shown to be a particular subclass
of the algebro-geometric family of solutions of Sect. 2. We derive equations of motion
for zeros of ther-function (the Bethe ansatz equations) and their Lax representation.
We discuss variables of the action-angle type and write down equations for the stable
loci for the most important reductions of Hirota’s equation.
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2. Algebro-Geometric Solutions to Hirota's Equation

In this section we construct algebro-geometric solutions of Hirota’s equation out of a
given algebraic curve. The general method of constructing such solutions of integrable
equationsis standard. As soon as the bilinear equation can be represented as a compatibil-
ity condition for an overdetermined system of linear problems, the first step is to pass to
common solution¥ to thelinear problems. Given a linear multi-dimensional difference
operator with quasiperiodic coefficients, one associates withpeatral curvadefined
by the generalized dispersion relations for quasimomenta of Bloch eigenfunctions of
the linear operator. The Bloch solutiodsare parametrized by points of this curve.
Solutions to the initial non-linear equation are encoded in the analytical propertles of
as a function on the curve. Spectral curves of general linear operators with quasiperi-
odic coefficients are transcendental and, therefore, intractable. However, soliton theory
mostly deals with th@verseproblem: to characterize specific operators whose spectral
curves aralgebraic curves of finite genuSuch operators are called algebro-geometric
or finite-gap. Their coefficients yield solutions to HBDE, that we are going to study.
Finite-gap multi-dimensional linear difference operators were constructed in the
paper [16] by one of the authors. We present the corresponding construction in a form
adequate for our purposes.

2.1. The Baker—Akhiezer functiods usual, we begin with the axiomatization of an-
alytical properties of Bloch solutiong. The Baker—Akhiezer function is an abstract
version of the Bloch function. Since we solve the inverse problem, the primary objects
areW-functions rather than linear operators.

Let I" be a smooth algebraic curve of genudNe fix the following data related to
the curve:

— Afinite set of marked points (puncture8) € I', « = 0,1, ..., M;

— Local parameters,, in neighbourhoods of,: w,(P,) = 0;

— A set of cutsC,, 3 between the point®,, P3 for some pairsy, 3 (it is implied that
different cuts do not have common points other than their endpoints at the punctures);

— AsetD of g (distinct) pointsyy, ...,v, € T.

Further, we introduce the following complex parametggs(times or flows):
— To each cul, 3 is associated a complex numldgg (it is convenient to assume that
lﬁa = _laﬁ)-
Consider a linear spacg(l; D) of functions¥(l; P), P € T, such that:

1. The function¥(l; P) as a function of the variablB € T" is meromorphic outside the
cuts and has at most simple poles at the pojpts

2. The boundary valueg= " of this function at opposite sides of the ¢t ; satisfy
the relation

w01, Py = W @A), P)e?rites; (2.1)

3. In a neighbourhood of the poift, it has the form

W(l; P) = wy e (5&“)(1) + ifﬁ“’(l)wi> v La=) lag. (22)
s=1 B8
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Note that ifl,g are integers, thew is a meromorphic function having simple poles at
~s and having zeros or poles of ordefs, | at the pointsP,.

Any function W obeying conditions 1 - 3 is calledBaker—Akhiezer functiotn our
approach, these functions are central objects of the theory. In some cases (especially in
the matrix generalizations of the theory) the notion ofdhal Baker—Akhiezer function
vl is also important (see e.g.[5], [6]). We omit its definition because it can be easily
restored using [5], [6].

Let us prepare some notation. Fix a canonical basis of cygléson " and denote
the canonically normalized holomorphic differentialsday;, : = 1,2, ..., g. We have

]{ dwj':57;j, % dwj:Bij,
a; b;

i

where B is the period matrix. Given a period matrix, the g-dimensional Riemann
theta-function is defined by

oX)=0(XB)= Y exp [m'(Bﬁ, 7) + 2mi(7, )?)} .

nezZ9

HereX = (X1,...,X,) is ag-component vector.

For each pair of point&,,, Ps € T, letd2“? be the unique differential of the third
kind holomorphic ol but having simple poles at the poins, Ps with residues-1
and 1 and zere-periods.

To write an explicit form of Baker—Akhiezer functions, let us choose one of the
marked points, say, and byA(P) = (A1(P), ... , Ay(P)),

P
Ay(P) = dw;,
Py

denote the Abel map. The Baker—Akhiezer function is given by the following theorem.

Theorem 2.1. If the pointsyy, . . ., v, are in a general position (i.eD is a non-special
divisor), thenF(l; D) is a one-dimensional space generated by the functiinP)
F(; D),

dQ@d 1 . (2.3)

T ¢ 7 > P
Wi P) = O(AP)+X()+ Z|B)®(Z|B) exp Zla,@/

O(A(P) + Z|B)©(X(l) + Z|B) (@B) @

Here Qo € T is an arbitrary point in the vicinity offy, Qo # Py, belonging to the
integration pathP, — P in the Abel map. Further,

g
=—K =) Ay), X@)=) U, (2.4)
=1 (aB)

whereK is the vector of Riemann’s constants and the components of the vE¢td?s
are

B 1
;= o— }{ A2 = A;(Ps) — A;(Pa). (2.5)
J
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The proof of theorems of this kind as well as the explicit formula¥om terms of
Riemanntheta-functions are standard in finite-gap theory (see e.g.[17]). The last equality
in (2.5) follows from Riemann’s relations.

Remark 2.1.Although the explicit formula (2.3) requires a fixed basis of cycles, the
Baker—Akhiezer function is modular invariant.

Remark 2.2.Since abelian integrals in (2.3) have logarithmic singularities at the punc-
tures, one can define a single valued brancladnly after cutting the curve along
Cag.

Remark 2.3.The choice of the initial point of the Abel map is in fact not essential. It
can be chosen not to be one of the punctures. In particular, it m&@yhghich slightly
simplifies the theorem. However, our choice simplifies the linear equationsiiefow.

Moreover, below we assume that the integration paths in the Abel A@Eps go along
the cutsCo,.

Remark 2.4.The theorem implies that any function frofi(/; D) has the form
r(l)¥(l; P), wherer(l) is an arbitrary function of but does not depend oR. It is
convenient to choose it such that at the pdibtthe first regular terng”(1) in (2.2)
equals 1.

Coefficientst(® of the asymptotical behaviour of thie(2.2) can be expressed through
ther-function

(1) = 7({lag}) = O(X (1) + 2). (2.6)
In particular,
&é‘“)(l) _ T(loa + 1, 10g)
FKO0) Xob - lom, log +1)’

o, 70, (2.7)

wherey s arel-independent constants. Here and thereafter we skip unshifted arguments.

Remark 2.5.If the graph of cuts includes a closed cycle, then a shift of varidhles-
lop+1 does not change thefunction but multiplies thes-function by a cycle dependent
constant. For instance, if the cycle consists of three litiks, Cg-, Cyq, then

T(laﬁ + 1, lgfy + 1, lfya + 1) = T(laﬁ, lﬁfy, l,y(,),
(2.8)
W(lag + L 15, + 11,0 + 1, P) = const¥(lag, gy, lya; P).

This follows from (2.1), (2.3).

In the sequel, we do not need the above construction in its full generality. For our
purposes it is enough to consider the case of four punciyes ., P; and a general
graph of cuts as is in the figure. Cuts connect each pair of points. Any three links (not
forming a cycle) give rise to a bilinear equation of the Hirota type. They have different
forms, but are in fact equivalent due to (2.8). For further convenience we specify

lor1=l, loa=lp, loz=1ls, la=la. (2.9)
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P l3 P,
I

lh A A

Py I3 P;

The general case of more punctures yields higher Hirota equations (i.e. the discretized
KP or 2D Toda lattice hierarchies).

2.2. Difference equations for the Baker—Akhiezer functibhe Baker—Akhiezer func-

tion W(/; P) obeys certain linear difference equations with respect to the variabjes
Coefficients of the equations are fixed by the analytical propertiggiof) as a func-

tion of P € T'. We restrict ourselves to the case of four punctures and use the notation
introduced at the end of the previous subsection. The general case of more punctures
can be treated in a similar way.

Theorem 2.2. Let ¥(I; P) be the Baker—Akhiezer function normalized so ﬂé%it: 1
Then it satisfies the following linear difference equations:

W(ly + 1,13, P) — W(la,lg+ 1, P)+ Anp(la, 18)¥(la, 13 P) = 0 (2.10)

with
) (1o, 15 +1)

Aaﬁ(laalﬂ)z 2 o (211)
& (las 1p)

foranya,3 =123 a# .

The proof is standard in finite gap theory. Denote the |.h.s. of Eq. (2.16).bhis
function has the same analytical propertieslag\t the same time the leading term at
the pointPy is zero:£$” = 0 for anyl,,, |5. From the uniqueness of the Baker—Akhiezer
function it follows thatd = 0. Equations (2.18), (2.20) are proved in the same way.

Remark 2.6.The dual Baker—Akhiezer functioh' obeys difference equations obtained
from Egs. (2.10), (2.18) by conjugating the difference operators in the right hand sides.

The coefficient functions of eq. (2.10) are given by the leading nonsingularggé}mf
the Baker—Akhiezer function at the punctures. They can be found from Eq. (2.3) and are
expressed through thefunction (2.6):

7o 1) (o + 1,15 + 1
Aosllon 1) = —Aos (la, 15)7( s+1)

o . 2.12
ity + Dl + L1j) (212)
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The constants,, 3 are expressed through the constant terfft@ in expansion of the
abelian integrals

P
/ 1Q(@P) = (645 — 0ya) loguwy + D + O(w,), (2.13)
Qo PP,
as follows:
N = — exp(rO — ) (214)

It can be shown thaXg, = —\, 3 for a Z 5 and

A Pe
208 = _exp / dQ© (2.15)
Asy P,

for any cyclic permutation ofa3v} = {123}. The integration path goes from, to the
neighbourhood of% along the cuCy, (in the opposite direction), passes through the
point Qo and then goes along the adg,,.

Eqautions (2.10), (2.11) can be viewed as linear_problems for the discretized KP
equation. Choosing another triplet of variables, &ajs, I3 and using Eq. (2.8), i.e.

T(l+ 1,1, I3 13 + 1) = 7(la, o + 1,13 13), (2.16)
3
(1,12, 13:13) = © (Z AP)lo + (A(P2) — A(Py))ls + Z) : (2.17)
a=1

one may rewrite Egs. (2.10), (2.11) in a form suitable for discretization of the 2D Toda
lattice. In this case eq. (2.10) far, 8 = 1, 3 remains the same. Another linear equation,

W(ly, l3; P) — W(ly, I3+ 1; P) + B(l1, l3)¥(l1 — 1,15, P) = 0, (2.18)
with

& latl) 7t Lis+ Dl — L)
D11 7 1+ V()

follows from (2.10) fora, 5 = 1,2 as a result of the change of variables. The third
equation,

B(ly,15) = (2.19)

W(is+ 1,13+ 1; P) — A(ls, la)W(ls, ls + 1; P) = W(lz + 1, I3; P) — B(ls, l3)¥(la, l3; P)

(2.20)
with
I (T + 103+ 113+ g+
A(l&lg):M:_ St L+ Ll hrlllaila+1) o)
£Dls, 13+ 1) (1 3+ Lla + D)r(ls+ 1,15l + 1)

B, la) = 5(()2)((25)3 +1108) _ A2 T(li+ 113 .+ 1z + 1)7'(5?, l3; l3)’ (2.22)
& (s, 13) Az (e, i3+ 151 T(I+ 1,155 13+ 1)
is a linear combination of two other equations (2.10) written in terms of the new vari-
ables. The constant prefactors in (2.21), (2.22) are derived using the reciprocity law for
differentials of the third kind [18].
Alternatively, Eqgs. (2.18), (2.20) can be proved in the same way as in Theorem 2.2.
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2.3. Bilinear equations for the-function. We have shown that the Baker—Akhiezer
function satisfies an overdetermined system of linear equations. For compatibility of
this system the coefficient functions must obey certain non-linear relations. In terms of
ther-function all these relations have a bilinear form.

Theorem 2.3. Ther-function obeys the Hirota bilinear difference equation

Aoa(l1 + 112, 13)7(l1, l2 + 1,13+ 1) — Aqa7(la, l2 + L I3)7(I1 + L, 12, I3 + 1)
+ Ao7(l1, b2, 3+ D)r(la+ L 12+ 1,13) =0 (2.23)

with the constants., s defined in (2.14).

Proof. First we examine the compatibility of Egs. (2.10) fard) = (12) and &0) =
(13). The variabld; is common for both linear problems. Equations (2.10) can be
rewritten as

(o +1;P) = M(,; P), «=23, (2.24)

Wherero‘) is the difference operator ii:

7—(ll7 Z(N)T(ll + 15 lOt + 1)

M = ¢ — ) :
L T e T+ D+ 1 1)

(2.25)

Equation (2.24) has a family of linearly independent solutions parametrized by points of
the curvel’. Whence the compatibility is equivalent to commutativity of the operators

M) = e=%a M), (2.26)
ie., A A
(M@, M=o, (2.27)
which is a discrete zero curvature condition. Commuting the operators (2.25), we find
after some algebra that this condition is equivalent to the relation
AraT(l1, 2+ 1, 13)7(la + L, lp, I3 + 1) — Ao (ln, b, I3 + L)r(la + 1, 12 + 1, 13)
+ Ha(l1; b2, l3)7(ln + 1,12, 13)7(la, 2 + 1,13+ 1) = O, (2.28)
whereH, is an arbitrary function such that;(i; + 1;15, I3) = H1(l1; l2, l3).
All this can be repeated for other two pairs of linear problems, i.e., dgf) (=
(21), (23) and ¢B) = (31), (32) in (2.10). This leads to bilinear relations similar to
(2.28) for the same-function but with different functionéf, and H3. To be consistent,

all three bilinear relations must be identical. This determiflgs= — 3, etc, which
proves the theorem. [O

Remark 2.7.In the class of the algebro-geometric solutions the Hirota Eq. (2.23) is
equivalent to Fay's trisecant identity [18].

The coefficients in Eq. (2.23) may be hidden by the transformation

)\1 12 Al lol3
s o, 3) — (3) (3) o, 13) (2.29)
A12 A23

bringing the Hirota equation into itsanonical form
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T+ 1,02, 13)7(l1, 2+ L I3+ 1) — 7(l, [ + 1, 13)7(l1 + 1,12, I3 + 1)

+ 7(lg, lo, I3+ Dyr(l1+ 1,1, +113) = 0. (2.30)
The formula
P, ) 3 N .
7(l1, 12, 13) = exp | 11l / dQOD + 151, / dQ® | e Z APl +Z
Py P a=1
(2.31)

thus provides the family of algebro-geometric solutions to Eqg. (2.30).

This family has 4 +1 continuous parameters. Indeed,das 1 the solution depends
on 3y — 3 moduli of the curve, oy pointsy; and on the 4 marked point8,. The
dependence on the choice of local parameters is not essential.

In terms of the variableg, I3, 3 the bilinear equations has the form

Mar(la, I I + 1r(la, ls + 1;l3) — A237(l1, 13; la)r(la, la + 1513 + 1)
=Aer(la+ 115 I3+ D)r(ly — 1,13+ 1;13). (2.32)

(Alternatively, this equation is a result of the compatibility of Egs. (2.10), (2.18) and
(2.20).) In contrast to Eq. (2.23), the varialjjds not shifted and skipped. The Hirota
equation in the form (2.23) can be considered as a discrete KP, whereas the form (2.32)
is a fully discretized 2D Toda lattice. Let us stress again that in the fully discretized setup
the KP equation and the 2D Toda lattice become equivalent.

2.4. Degenerate case®egenerations of the cuniglead to important classes of solu-
tions. Among them are multi-soliton and rational solutions. Some examples of soliton
solutions to Egs. (2.30), (2.32) were found by R.Hirota [8]. Here we outline the algebro-
geometric construction of the general soliton solutions.

Let us concentrate on multi-soliton solutions. In this caseNallhandles” of the
Riemann surface of genué become infinitely thin. In other words, the algebraic curve
of genusN degenerates into the complex plane with a setéfr@arked points;, g¢;:

F*){piaqi; Z':lv"'aN}a

wherep;, ¢; are the ends of th#" handle. The Baker—Akhiezer function has the same
value at each paj;, ¢;. The puncture®’, are replaced by points, with local param-
etersw,, = z — z,. In this case the meromorphic differentials of the third kind have the
form:

(25 — za)dz
(= — 28)(% — za)

Let Fy(z) be a polynomial of degre®':

dQeh) =

N N
Fo(z) =2+ 02N =[Gz =)
=1

J=1

Its zerosy; will stand for poles of the Baker—Akhiezer function.

Let us concentrate on the particular case when there are four punctures and three cuts
from zp to 2z, (o = 1, 2, 3) on the complex-plane. Here:, are thez-coordinates of the
marked pointd,: z, = z(P,). Inthis case the general definition of the Baker—Akhiezer
function suggests the ansatz:
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W(l: ) = F(l( Z)) Wo(l; 2) (2.33)
with 5 z
N Z—2a\ _
Wo(l; 2) = aﬂzl (Z — ZO) . 1=,y 13) (2.34)
and the polynomial
N
F(;2)=> a7 (2.35)
4=0

with yet undetermined-dependent coefficients. These coefficients are determined by
N conditions
W(l; pi) =v(; q), l=1...,N. (2.36)

They are equivalent to the systemMdflinear equations foiV + 1 unknown coeffi-
cientsa; in Eq. (2.35):

N
ZKijaj:O, Z'::I_’,,w]\/v7 j:(),:|_7._.7‘2\/'7

where
pN_j N—j
Kij = Fo(pi)qJO(l’pi) F( Z)\Vo(l S qi)- (2.37)

Solving the system of linear equations we represent the Baker—Akhiezer function in the
form
A(l; 2)

W(l; z) = (l) A0:2)

Wo(l; 2), (2.38)
where R
A(l;2) = qje'(Kij)
andK is the (N + 1) x (N + 1)-matrix with entries
Koj=2N7, K=Ky i=1...,N.
The normalization facto(() is fixed by the asymptotics
W(l;2) = (2 — 20) "L+ O(z — 20))

near the pointg. It gives

_ A(0;20)
At H< o= =)

We also point out the identity
A(la; za) = Al + 1; 20), a=123 (2.39)
The degeneration of thefunction (2.17) is
(1) = A(l; 20)- (2.40)
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It satisfies the bilinear Eq. (2.23) with
- Za — 23
(20 — za)(20 — 25)

Ao

The continuous parameters of the solution (2.40) &¥epdintsp;, ¢;, N points~y; and
4 pointsz,,. However, the--function is invariant (up to an irrelevant constant) under the
simultaneous fractional-linear transformation- (az +b)/(cz +d), ad — be = 1, of all
these parameters, so we are left withi 3 1 parameters.
In the case of rational degeneration the popt@nd g; merge and the condition
(2.36) becomes ~
(D;¥)(p;) = 0, 1=1,...,N, (2.41)

whereD; are some differential operators #nwith constant coefficients. This changes
the form of the matrixx but Egs. (2.38), (2.39) remain the same.

3. Elliptic Solutions

General finite-gap solutions of Hirota’s equation for an arbitrary algebraic ¢uwi¢h
puncturesP,, are quasi-periodicfunctions of all variables,. Below we construct a
special important class of solutions for which the quantity (1.®adsbly periodicin
one of the variables. The-function in this case is an elliptic polynomial (1.6). We call
them elliptic solutions. We show that the elliptic solutions also imply a spectral algebraic
curve and are therefore a subclass of the algebro-geometric solutions of Sect.2.
Among all algebro-geometric solutions described in the previous section the elliptic
solutions in one of the variables or their linear combination are characterized as follows.

Let
0= Xagll,, (3.1)

be a vector field in the space of variables and letl/ = D ap XopU©P, Let us
transport the--function (2.6) along the vector fielgl, and denote it by

()= © ((73: + X)) + Z) . 3.2)
Consider a set of algebraic curves with punctufgsand cuts such that the vector
has the property:

e There exist two constants,, w,, Im (wz/w1) # 0, such that Qaﬁ, a =12, belong
to the lattice of periods of the holomorphic differentialsian

7@+ 2g) = €707 (z),
Whel’eTa, s, are constants.

The r-function is then an elliptic polynomial in the variable Due to the commensu-
rability of U and the lattice of periods, solutions to the equation

OUz+2Z)=0 (3.3)

arexi(Z) +2Jyw1 + 2 w2, wherexi(Z) belong to the fundamental domain of the lattice
generated by, 2w, andJy, Jo run over all integers. Therefore,
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N
O(Tx + 7) = euvtaza’ [[o(z—=:(2)) (3.4)
=1

with z-independent, a, andN > g.

The requirement of the ellipticity imposeg Zonstraints on 4 + 1 parameters.
Therefore the dimension of the family of elliptic solutions is21.

Below we concentrate on a specific case where the ellipticity is imposed along
lo1 = I1 by settingl = ~10U©Y andz = nl;, where) is a complex constant.

The logic of this section is opposite to the one of Sect. 2. Here we solvdirt
problemand show thaall solutions which are elliptic in any “directiori, g of the form
(1.6) with a time-independent degrég are of the finite gap type (3.2).

3.1. Equations of motion for zeros of thefunction. Let us show how to obtain the
equations of motion for zeros of elliptic solutions by elementary methods.
First of all, let us rename variables to emphasize the “direction” of ellipticity:

lh=nz, lp=n, lz=m, l3=m, (3.5)

so that ther-function has the form (1.6). Let us now consider one of Egs. (2.10), say
for o, 6 = 1, 2. In this equation all variables excepandm are parameters and we skip
them wherever it does not cause confusigft:" — =, 7™"(x) — 7™(x),

T )+ )
)T+ 1)

P (x+n) — A3 Y™ (x) = ") (3.6)

Let us look for solutions of the form

P (x)
7m(x)

with some functiorp™ (x). Eq. (3.6) then reads

Pr(x) =

T @)™ (@ +m) — A ™ @ +n)p™ () = 7 (@ + n)p™ (@) (3.7

We are interested in the case wheéh(z) is an elliptic polynomial inz for any m:

N
Tm({,E) - H (T({L‘ _ LU;-”). (38)

j=1
The “equations of motion” forits roots" in the “discrete time’in can be easily obtained
from Eq. (3.7) in the following way. Substituting= z7"**, 2 = 27" —n, 2 = 27" — ),
we get the relations
T S T e B G s i
@ = )™ @) = T @ @ - ),
T — ) (@) = daar ™ @ ) (@ — ), (3.9)

respectively. Combining these relations, we eliminsaad obtain a system of equations
for the rootsz!™:
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ﬂ o(x — le*l)a(m}” —ap + )o@ — it —n)
o —x

P o) — o —n)oley —aph)

1 (3.10)
k=1

Note that these equations involve only one discrete variablehile the direct
substitution of the ansatz (3.8) into the non-linear Eq. (2.30) would give a system of
equations involving two discrete variables. Itis not easy to see that they in fact decouple.
The decoupling becomes transparent if one starts with the auxiliary linear problem (3.6).

Similar equations hold for the discrete= m-dynamics. From the linear problem
(2.18) we obtain the equations for thedependence af;:

ﬁ oz — - o] —xt + )o@l — )

cr(:c’jT — xf_l)a(:r;ﬁ — P — 77)0(:1%771 — P +) -

~1. (3.11)
k=1

To avoid confusion, let us stress that thiedepend on all discrete times. However, the
variables are separated in the equations of motions.

Remark 3.1.Another choice of the “direction” of ellipticity gives rise to different equa-
tions of motion. To illustrate this, let us requir€]) to be an elliptic polynomial in the
direction orthogonal te = I3+ 13 anda = I; +13 — I3, S0 that the zeros of thefunction
depend o ands. Then the vector field in (3.1) 8, = 0;, — 3., + 39y, In terms of

T%%(x) = (11, I3, I3) the bilinear Eq. (2.32) reads:
)\12Ta’8(17 + ,’7)1—@,5(17 o 77) + )\23Ta’8+1(17)Ta’871(£C) - )\lgTa+l,S(x)Tafl,S(I)’
and the zeros"* of T**(x) obey the system of coupled equations:

Ta+l’5+l a,s Ta—l,s a,s Ta,s—l a5 4
(xl a )s (xlaus T]) (xal S n) = _la
Tafl,sfl(xi s )Ta+l,s(1.i S 7])Ta,s+l(l-i S 77)

Ta+1,sfl(I?13)Tafl,s(I?»S o T])Ta’s-'—l(fﬂ:-hs + 77) _—
Ta—l,s+1($‘_1x5)Ta+l,s(x‘_lvs + n)Ta,s—l(x‘_lvs _ 77)
(] K3 K3
These equations are more complicated than (3.10). In contrast to the previous case,
evolutions ina ands are not separated.

3.2. Double-Bloch solutions to the linear problenis.order to further examine the el-
liptic solutions, we need the notion of double-Bloch functions. A meromorphic function
f(x) is said to bedouble-Blochif it enjoys the following monodromy properties:

f@+204) = Baf(x), a=12 (3.12)

The complex numberB, are calledBloch multipliers A non-trivial double-Bloch func-
tion can be represented as a linear combination of elementary ones:

N
F@) =) eid(w —a, Ok, (3.13)

=1
where [6]
d(x,¢) =

o((+x+n) [U(C - n)} =/ @) (3.14)

o(C+mna(x) [o(C+n)
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and complex paramete¢sandk are related to the Bloch multipliers by the formulas

o(¢ ~ n))““/“
o(C+n)

B = 12417 exp(@wn)(C + ) (3.15)
(¢(z) = o' (z)/o(x) is the Weierstrass-function).

Let us point out some properties of the functi®fz, (). Considered as a function
of ¢, ®(x, ¢) is double-periodic:

O(z, ¢+ 2wa) = Bz, Q).

For general values aof one can define a single-valued branchdgfz, ¢) by cutting
the elliptic curve between the poinfs= +n. In the fundamental domain of the lattice
generated by, the function®(z, {) has a unigue pole at the point= 0:

o(r,0) = T +0().

In the next subsection we need the identity:

D(z, 2)®(y, 2) = Pz +y,2) (@) + (W) + (= +m) — ((z+y +z+m)  (3.16)

which is equivalent to the well known 3-term bilinear functional equation forosthe
function.

Recall the notion of equivalent Bloch multipliers [6]. The “gauge transformation”
f(z) = f(z) = f(z)e*™ (bis an arbitrary constant) does not change the poles of any
function and transforms a double-Bloch function into another double-Bloch function.
If B, are Bloch multipliers forf, then the Bloch multipliers fof areBl Bje?ber,

B, = Bye?+2_ Two such pairs of Bloch multiplier8, and B, are said to bequwaleni
(In other words, they are equivalent if the prod@gt B, “* is the same for both pairs.)

This definition implies that any double-Bloch function can be represented as a ratio
of two elliptic polynomials of the same degree multiplied by an exponential function
and a constant:

o(x — ;)

flx) = &)/ H " (3.17)

The Bloch multipliers are

N
B, = (K)*/"exp | 20(wa) Y (x; — ;)

J=1

Equations (3.13) represents a Bloch function by its poles and residues, whereas Eq. (3.17)
represents a Bloch function by its poles and zeros.

3.3. The Lax representationThe coefficients in Eq. (3.6) are elliptic functions, i.e.
double-periodic with periodsu2,. Therefore, the equation has double-Bloch solutions
. Similarly to the case of the Calogero-Moser model and its spin generalizations the
dynamics of poles of the elliptic coefficient in the linear problem is determined by the
fact that Eq. (3.6) has an infinite number of double-Bloch solutions.

In What follows we always assume that the poles are in a generic position, i.e.
" — 2™ 7 0,4+n anda” — ;”il Z 0, +n for any pairi # j. Exceptional cases are

K3

also of mterest but must be treated separately
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Theorem 3.1. Let 7™ (z) be an elliptic polynomial of degre® . Equation (3.6) has
N linearly independent double-Bloch solutions with simple poles at the peffhisnd
equivalent Bloch multipliers if and only if zera@$* of ther-function satisfy “equations
of motion” (3.10).

Theorem 3.2. If Eqg. (3.6) hasN linearly independent double-Bloch solutions with
equivalent Bloch multipliers, then it has infinite number of them. All these solutions
have the form

N
™M) = eilm, ¢ k)D(x — 2, Ok (3.18)
=1
(®(z, ¢) is defined in (3.14)). The set of corresponding péirs:) is parametrized by
points of an algebraic curve.

These theorems are proved by the same arguments as in [6]. Here we present the
main steps.

N linearly independent double-Bloch solutions with equivalent Bloch multipliers
may be written in the form (3.18) with some values of the paramejers., s =
1,..., N. Equivalence of the multipliers implies that thecan be chosen to be equal
&=

Let us substitute the function™ (x) of the form (3.18) with this particular value of
¢ into Eqg. (3.6). Since any double-Bloch function (except equivalent to a constant) has
at least one pole, it follows that the equation is satisfied if its left hand side has zero
residues at the points= 2" — n andz = z7*1. The cancelation of poles at these points
gives the conditions

N
kei(m, ¢, k) = fim) Y ej(m, (k)@ — 2 —n,() =0, (3.19)
3=1
N
ci(m+1,,k) = gi(m) >_ ¢j(m, ¢, k)@t — ", ¢), (3.20)
j=1
where N
m o__ pmo__ m _ .m+l
film) = Aot o 20 (g )
Hs=l,7i o(@ — af) [[jz o] — a9*t =)
N m+l _ om+l + m+l _ .m
gulm) = Aqgg izt T 2T o~ ) (3.22)

o s o™ — 2 ) [ oy —awp +n)

Introducing a vecto€(m) with components;(m, ¢, z) we can rewrite these condi-
tions in the form

(L(m) — kI)C(m) =0, (3.23)
C(m+1) = M(@m)C(m), (3.24)

wherel is the unit matrix. The matrix elements 6{m) and M(m) are:
Lij(m) = fi(m)® (7" — 27" —n, (), (3.25)

M;j(m) = gi(m)QD(J;;'”l -z, Q). (3.26)

VI
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The compatibility condition of (3.19) and (3.20),
L(m + L)M(m) = M(m)L(m) (3.27)

has a form of the discrete Lax equation. The Lax Eq. (3.27) appeared in ref. [11], where
Egs. (3.10) were proposed as a time discretezation of the RS model.

Lemma 3.1. For matricesC and M defined by (3.25), (3.26) the discrete Lax Eq. (3.27)
is equivalent to the equations (3.10).

The proof is along the lines of ref. [11]. We have
Fyj = (@, QM(m)L(m) — L{m + 1)M(m))i;
= film + 1)2 gs(m)®(zt — 2™ —p o™t — NG|

+9:m) Y fo(m)®(a™t — 2, Q@' — 2 — 1, Q). (3.28)

The coefficient in front of the leading singularity@t —n is proportional to
Film+ 1) go(m) + gi(m) Y fo(m).

On the other hand,
> (fs(m) — gs(m)) =0 (3.29)

S

(because this is the sum of residues of the elliptic coefficient in Eq. (3.6) ). Therefore,
film +1) = g;(m), i=1...,N. (3.30)

These equations are equivalent to (3.10).
To show that (3.28) is identically zero provided Egs. (3.30) hold, we use the identity
(3.16):
Fij(xa C) = —gi(m)CD(x;nH' - x;n - C) Ga

G == fum) (S — 2l + @l — ) — )
£ gom)C@t — 2l — ) + (@ — 27). (3.31)

Noting thatG is proportional to the sum of residues of the elliptic function

oz —x)o(x —a]"™ +1)
+1)

N
[t —n—a)+¢@—aP)] ]

iy olx -2 +n)o(x —z

at the pointse = z/** andx = 2" — 7, we conclude that = 0.

Itwas already proved that Eq. (3.6) hEdinearly independent solutionsiif Egs. (3.10)
or the Lax Eq. (3.27) hold for some value of the spectral parangetiithen follows
from Lemma 3.1 that the Lax equation holds for any valu€.dfherefore, for eacl
there exists a double-Bloch solution given by (3.18), where tlaee components of the
common solution to (3.23), (3.24).
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Theorem 3.3. All elliptic solutions of Eq. (2.23) of the form (3.8) are of the algebro-
geometric type and!” are given implicitly by the equation

0 (n_lff(Pl)x;” +mA(P3) + Z) =0, (3.32)

where the Riemann theta-function corresponds to the algebraic dudedined by the
characteristic equation

N
R(k,¢) = det(C(m) + kI) = kN + > " ri(QkN " = 0. (3.33)
i=1

The matrix is given by Egs. (3.25), (3.21) and the coefficienfs) have the form

o (¢ +n)=D26(C — (i — 1))
o(C —n)i/?

wherel; are integrals of motion. The characteristic Eq. (3.33) apdre functions of

2™ andz7*1 but stay the same for ath. The spectral curv€ determined by Eq. (3.33)

is an algebraic curve realized as a ramified covering of the elliptic curve. The function
(3.18) is the Baker—Akhiezer function bn

ri(¢) =

I;

We call the spectral curvE defined in Theorem 3.3 the Ruijsenaars-Schneider (RS)
curve. The RS curve is identical to the spectral curve for the continuous time RS model
studied in ref. [6]. The proof of the theorem is omitted. It is as in ref. [6].

The matrix £ is defined by fixingz;™ and x;”‘f'l. These Cauchy data uniquely
define the RS curvE, the vectorﬂ(Pa), a=12 andZ in Eqg. (3.32). The curve and
the vector&éf(Pa), a = 1,2 do not depend on the choice @f. They are action-type
variables. The vectoZ depends linearly on this choice and its components are thus
angle-type variables.

Remark 3.2.The discrete time dynamics defined in Theorem 3.3 is time-reversible, i.e.
the Cauchy data;", :p?‘"*l completely determine the dynamics for both time directions
up to permutation of the “particles”. Th& M-pair for the backward time motion is ob-
tained from the difference equations for the dual Baker—Akhiezer function (see Remark
2.6) with an ansatz similar to (3.18). An alternative way to derive equations of motion
(3.10) is to require the spectral Eq. (3.23) to be identical to the similar equation for the

backward time motion.

Remark 3.3.The form of equations for the dynamics in = n is identical to the
equations (3.10) of the dynamicsin = [3. The Cauchy data fom-dynamics, i.e.,
values ofz]” atm = 0 andm = 1 completely determine an evolution and Cauchy data in
n (as well as all other flows). Comparinzoperators for each flow, one finds relations
between the Cauchy data:

N 0,0 0,0
H o(z;” — 2200 (z;” — 2%t —n) _ A2

=2 12N 3.34
o(@y® — 220 (@)® — 22® —n) s o

s=1
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Similar connections exist for the initial data of theflow.

3.4. Loci equationsThe values of:?, z} may be arbitrary if no other reduction (apart
from the elliptic one) is imposed. If there is an additional reduction, then'the} are
constrained to belong to a submanifold2#", thereduction locusAn example of such
alocus in the continuous setup is the KFKdV locus (1.4). Here we present equations
defining the loci for three important reductions of Hirota’s difference equation. In these
cases spectral curves of algebro-geometric solutions are hyperelliptic. As béfarg,

are assumed to be in generic position.

A) Discrete KdV equatiofiL8]. The discrete KdV equation appears as the reduction
T(l1,lo + 1 I3+ 1) =7(lq, l2, [3), x =l
of the general 3-dimensional Hirota Eq. (2.23). In the notation (3.5) the equation is
Ao (@ + )™ () — Mg ™ @)™ @ + ) + Aaar ™ H@)T " + ). (3.35)

For algebro-geometric solutions the reduction meansif® + U/©3 belongs to the
lattice of periods. Therefore, the function

P
e(P) = exp( (d©2 + dQ(°3))> (3.36)
Qo

is meromorphic on the cunvé. From the definition of the abelian integrals it follows
that this function has a double poleat and simple zeros @, and P;. Outside these
pointse(P) is holomorphic and is not zero. The existence of such a function means that
the spectral curve iByperelliptic A hyperelliptic curve of genug can be defined by
the equation

2g+1

v =[] —<). (3.37)
=1

This is a two-fold covering of the complex plane of the variahl&he projection
of I onto thees-plane defines as a meromorphic function dn. This function has a
double pole ori" at the branch poinP,, (aboves = c0) and two simple zeros at the
pointsPéi) (aboves = 0). The identification of this notation for the punctures with our
previous ones is
Po=Py,, P)=pPy P=Ps

The branch points; in (3.37) may not be arbitrary since the curve should simul-
taneously be of the RS type. Correspondingly, the Cauchyafatal with respect to
the I3-flow obey certain constraints. Using the equations of motion (3.10) and (3.34),
we obtain a system of/2 coupled equations on allowed valuesiff =} (“equilibrium

locus™):
N

1 olwf —at+no@l—ad—n) _ s (3.38)
e e = oGl —a%% )~ w2’ |
ILV[ o(@d —ad+mo(? -zl —n) _ o (3.39)
vy 0@ =2 = mo(a? —al+n) ~ s
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fori =1,2,..., N. With the help of Eq. (2.15) the right hand sides can be expressed
through abelian integrals. The relation between the number of 2érmisd genug of
the spectral curve is a subtle question. We do not discuss it here.

Each of the systems (3.38), (3.39) has the form of Bethe equations férsat@ spin
chain of spin 1 at each site. One may trei(for instance) as arbitrary input parameters
while Bethe’s quasimomental are to be determined by Egs. (3.38). However, the
system of locus equations (3.38), (3.39) determirfeand} simultaneously.

In the continuous time limit we sef = x;, 2} = a; +ex; + 3€%#;, ©; = Oz, € — 0.
Assuminghis/A12 — —(1 + Ce) with a constantC, we get from (3.38), (3.39):

N
Z:’L'k[C(l‘i—wk—n)—C(xi—xk+n)] =C, (3.40)
k=1
N
Z . [p(r; — 2p — 1) — p(z; — 2 +7)] = 0. (3.41)
k=1

In the leading order ir the systems (3.38), (3.39) coincide with each other and yield
the first system (3.40) while the second one (3.41) follows from the higher order terms.
These equations define the equilibrium locus for the Ruijsenaars-Schneider system of
particles.

B) 1D Toda chain in discrete tin{8]. The reduction condition in this case is:
(1, Iz, I3 + 1,13 + 1) = 7(l, Iz, I3, l3).
The discrete time 1D Toda chain in the bilinear form reads
Mg H @)™ (@) = Mo ™ Ha + )T @ — ) = Aaa(7"(2))? (3.42)

where we have excluddg and have passed to the notation of Example A). In this case
U©3 + 712 pelongs to the lattice of periods. The corresponding curve is given by
Eq. (3.37) with a polynomial oévendegree in the r.h.s.

The Cauchy data?, =} with respect to thés-flow satisfy the locus equations:

i ozt —at+n)o?(@t—2%) _ A 3.43
| e pr e o s (3.43)
s=1 O.(xi T 77)0' (xz Zg +77) A13
N (@ — a0+ mod@d —al—p) _ A
| AL S L (3.44)

ot 0@ — 29— n)o(a) —ai) A12
The continuous time limit can be taken similar_to the way of the previous example.

In this case, however, we have to assug/ A1, — Ce~2 ase — 0 with a constanc.

We get

o2(1n) ﬂ o(z; — . +n)o(r; — xp — 1)

— 2
2 — o) =2, (3.45)

k=17
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N
> @@+ an) [Clws — ok —n) + (i — mp +) — 20(x —2)] =0, (3.46)
k=17

These equations follow also from Eqgs. (4.58), (4.59) of the paper [6]. They define the
stable locus for the RS system with respect to another flow than in Egs. (3.40), (3.41).

C) Discrete sine-Gordon equatibriThe reduction condition is
7(l, b, I3+ 1, 1g) = 7(la + 2,3, 13, I3 + 1),

S0, passing to the same independent variables as in the previous examples, we get the
equation

Aam™ (@ — )T (@ + ) — dogm™ Ha + )T Ha — ) = A7 (@))? . (3.47)

Now it is the vectol/ 0D +/32) that belongs to the lattice of periods. The continuous
SG equation is reproduced in the link§ — Py, P, — Pj. The spectral curves are again
hyperelliptic.

The locus equations for the Cauchy dafaz?} with respect to then-flow are

N

ot abeted -t - 2) o .
=1 o(af -zt — ) Mg’ '

N 1_ .0 1_ .0

p— o?(xt — 29 + 1) A1z’ '

Note that the structure of these equations is different compared to the previous examples.

3.5. Remarks on trigonometric solutiongrigonometric solutions are degenerations of
the elliptic solutions when one of the periods tends to infinity. They form a particular
subfamily in the variety of soliton solutions described in Sect. 2.4. The trigonometric
solutions admit a very explicit description in terms of the data defining the singular
curve.

Let us set the period to ber2

7™z +21) =7(x),

so an elliptic polynomial becomes a Laurent polynomiafin The Bethe-like equations
on motion (3.10) preserve its form, but the Weierstrass funet{aiis replaced by sin.
It follows from the periodicity that the functiow, (2.34) obeys

Wo(nz +2mn, m; p;) _ Yo(nz, m; p;)
Wo(na +2mn,m;q;)  Wolnz, m;q;)’

j=1,2,...,N,

or, explicitly

Pi— 2 o457 A —ing; (3.50)
Pj —20 4; — %20

1 This version of the discrete SG equation is different from the one considered in [20], [21]. The latter is
closer to a special degeneracy of the discrete Kd¥;at— \p3.
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whereJ; are integer numbers. This condition restricts admissible singular curves (Rie-
mann spheres witlV double points). Minimal Laurent polynomials correspond to the
choiceJ; = £1. This givesV conditions forp;, ¢;, so the number of continuous param-
eters in the trigonometric case i®2- 1 — the same as for the non-degenerate curves of
genusN.

Here we do not discuss the trigonometric degeneration of tid-pair and depen-
dence of ofp; andg; on initial data for Ruijsenaars-Schneider particles. This can be
done along the lines of the paper [5].

The trigonometric loci can be characterized alternatively by imposing a relation on
p; andg; in addition to (3.50):

E(pl):E(Ql)7 Di #Q’ia 1= 1727"'5N' (351)
For the examples A)-C) of Sect. 3.4 the functidn&) are

A B)= =2 *(222_)(;)*2 %)

_ (z — 22)(z — 23)
B) E(z) = m , (3.52)
(z — 21)(z — 22)

e )

Conditions (3.50), (3.51) leave us with a discrete set of admissible paigs The
continuous parametetg give then an implicit parametrization of the loci.

4. Conclusion

We have shown that the main body of finite-gap theory and the theory of elliptic solu-
tions to nonlinear integrable equations is also applicable to finite-difference (discrete)
integrable equations. Discrete equations includes the continuous theory as the result of
a limiting procedure. Furthermore, discrete equations reveal some symmetries lost in
the continuum limit. We have shown that all elliptic solutions with a constant number of
zeros in the evolution (compare to [13]), are of the algebro-geometric type. Moreover,
their algebraic curves are spectral curvesfeoperators of the Ruijsenaars-Schneider
model. Each point of this curve gives rise to discrete time dynamics of zeros of the
T-function.

The structure of equilibrium loci equations of reductions of Hirota’s Eq. (analogues
of the known KdV-locus (1.4)) is expected to be richer than in the continuous case
and requires further study. It would be very interesting to extend the algebro-geometric
approach to elliptic solitons of KdV of ref.[22] to the difference case as well as to
understand difference elliptic solitons in terms of the Weierstrass reduction theory [23].

To the two main motivations pointed out at the beginning of the paper we can now
add yet another one: an intriguing intimate connection between the elliptic solutions
to soliton equations and quantum integrable models solved by the Bethe ansatz. In our
opinion, the very fact that the zeros dynamics and equilibrium loci are described by
Bethe-like equations is remarkable and suggests hidden parallels between quantum and
classical integrable equations.
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