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Abstrac t  

We clarify the mass dependence of the effective prepotential in N = 2 supersymmetric SU(Nc)  
gauge theories with an arbitrary number  N f  < 2Nc of flavors. The resulting differential equation 
for the prepotential extends the equations obtained previously for SU(2)  and for zero masses. 
It can be viewed as an exact renormalization group equation for the prepotential, with the beta 
function given by a modular form. We derive an explicit formula for this modular form when 
A~f = 0, and verify the equation to 2-instanton order in the weak-coupling regime for arbitrary N f  
and Nc. We also extend the renormalization group equation to the case of other classical gauge 
groups. @ 1997 Elsevier Science B.V. 
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1. I n t r o d u c t i o n  

New avenues for the investigation of N = 2 supersymmetric gauge theories have re- 
cently opened up with the Seiberg-Witten proposal [ 1 ], which gives the effective action 
in terms of a 1-form dh on Riemann surfaces fibering over the moduli space of vacua. 
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Starting with the SU(2) theory [ 1], a form d/l is now available for many other gauge 
groups [2], with matter in the fundamental [3,4] or in the adjoint representation [5]. 
This has led to a wealth of information about the prepotential, including its expansion 
up to 2-instanton order for asymptotically free theories with classical gauge groups [6]. 

These developments suggest a rich structure for the prepotential U, which may help 
understand its strong coupling behavior, and clarify its relation with the point particle 
limit of  string theories, when gravity is turned off [7]. Of particular interest in this 
context are the non-perturbative differential equations derived by Matone in [8] for 
SU(2) ,  and later extended by Sonnenschein-Theisen-Yankielowicz and Eguchi-Yang 
in [9] to SU(Nc) theories with massless matter. It was however unclear how these 
equations would be affected if the hypermultiplets acquire non-vanishing masses. 

In the present paper, we address this issue by providing a systematic and general 
framework for incorporating arbitrary masses m i. In effect, the masses mj are treated 
on an equal footing as the vev's a~ of the scalar field in the chiral multiplet, since they 
are both given by periods of d.~ around non-trivial cycles. For the masses, the cycles 
are small loops around the poles of d.~, while for ak, they are non-trivial A-homology 
cycles. This suggests that the derivatives of U with respect to the masses should be given 
by the periods of dA around "dual cycles", just as the derivatives of U with respect 
to ak are given by the periods of dA around B-cycles.We provide an explicit closed 
formula for such a prepotential, motivated by the r-function of the Whitham hierarchy 
obtained in [ 10]. (In this connection we should point out that intriguing similarities 
between supersymmetric gauge theories and Whitham hierarchies had been noted by 
many authors [11], and had been the basis of the considerations in [9], as well as in 
[4], the starting point of our arguments.) Written in terms of the derivatives of .T', this 
closed formula becomes the non-perturbative equation for ~- that we seek. It can be 
verified explicitly to 2-instanton order, using the results of [6]. 

Specifically, the differential equation for S is of the form 

79.T" = -2rril [Resp_ (z dA)Resp_ (z_ ldA)  + R e s e + ( z d A ) R e s p + ( z _ l d a )  ] (1.1) 

with D the operator 

Nc N± 
0 2. (1.2) 

+ ~-~mJc)m----Tj -- 7) = akcgak j=l 

The right-hand side in (1.1) has been interpreted in [8,9] in terms of the trace of 
the classical vacuum expectation value ~ k ~ l - 2  a e, although there are ambiguities with 
this interpretation when N f  >~ Nc. Mathematically, it can be expressed in terms of O- 
functions for arbitrary Nc when N f  = 0 (cf. Section 3.4 below, and also Ref. [ 17] for 
the cases of  SU(2) ,  SU(3) and massless SU(Nc) with N f  = Nc). There is little doubt 
that this should be the case in general. Now we have by dimensional analysis 
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if A is the renormalization scale of the theory. Thus the proper interpretation for 
Eq. (1.1) is as a renormalization group equation, with the beta function given by a 
modular form! 

Finally, we observe that the effective Lagrangian in the low momentum expansion 
determines the effective prepotential only up to ak-independent terms. However, masses 
can arise as vacuum expectation values of non-dynamical fields, and we would expect 
the natural dependence on masses imposed here to be useful in future developments, for 
example in eventual generalizations to string theories. 

2. A dosed  form for  the prepotential  

2.1. The geometric set-up for N = 2 supersymmetric gauge theories 

We recall the basic set-up for the effective prepotential 5 c of N = 2 supersymmetric 
SU(Nc) gauge theories. 

The moduli space of vacua is an Nc-1-dimensional variety, which can be parametrized 
classically by the eigenvalues ~k, ~k~l ~k = 0 of the scalar field ~b in the adjoint rep- 
resentation occurring in the N = 2 chiral multiplet. (The flatness of the potential is 
equivalent to [~b, ~bt ] = 0.) Quantum mechanically, the order parameters ~k get renor- 
malized to parameters ak. The prepotential .T determines completely the Wilson effective 
Lagrangian of the quantum theory to leading order in the low momentum expansion. 
Following Seiberg-Witten [ 1 ], we require that the renormalized order parameters ak, 
their duals aD,k, and the prepotential .T be given by 

ak = dA, aD,k = dA, 

Ak Bk 

a.T 
aD,k, 

Oak 
(2.1) 

where dh is a suitably chosen meromorphic 1-form on a fibration of Riemann surfaces 
F above the moduli space of vacua, and A j ,  B j  is a canonical basis of homology cycles 
on F. 

In the formalism of [4], the form d,~ is characterized by two meromorphic Abelian 
differentials dQ and dE on F, with da  = QdE. For SU(Nc) gauge theories with Nf  
hypermultiplets in the fundamental representation, Nf  < 2Nc, the defining properties of 
dE and dQ are 

• dE has only simple poles, at points P+, P_, Pi, where its residues are respectively 
- N c ,  Nc - Nf,  and 1 (1 <. i <. N f  ). Its periods around homology cycles are 
integer multiples of 27ri; 

• Q is a well-defined meromorphic function, which has simple poles at P+ and P_, 
and takes the values Q(Pi) = - m i  at Pi, where mi are the bare masses of the Nf  
hypermultiplets; 
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• The form d/i is normalized so that 

Resp+ (z d/i) = -Nc 2-1/N<, 

Resp_ ( z d/i ) = ( Nc _ Nf  ) ( A22-Ni ) 1/(Nc-ND ' 

Resp+ (d/ t )  = 0, (2.2) 

where A is the dynamically generated scale of the theory, and z = E-WNc or 
z = EW(N~-Ns) is the holomorphic coordinate system provided by the Abelian 
integral E, depending on whether we are near P+ or near P_. 

It was shown in [4] that these conditions imply that /" is hyperelliptic, and admits 
an equation of the form 

2 

y2= (Q-~t~)  --A2Nc-NII-[(Q+m.i)  = - A ( Q ) 2 - B ( Q ) .  (2.3) 

j=l 

Here ~ are parameters which coincide with fik when Nc < Nf, but may otherwise 
receive corrections. It is convenient to set 

= A½(2N~--Nf) .  

The function Q in d/i = Q dE is now the coordinate Q in the complex plane, lifted 
to the two sheets y = -t-v/-A -7 - B of (2.3), while the Abelian integral E is given by 
E = log (y + A(Q) ) .  The points P± correspond to Q = oc, with the choice of signs 
y = - 4 - v / - ~ - B .  

2.2. The prepotential in closed form 

We shall now exhibit a solution .T for Eqs. (2.1) in closed form. Formally, it is given 
by 

f ~ at dA - ~ mj dA 
Bk j=l p_ 

+Resp+ (z dA)Resp+ (z-1  d/l) + Rese_ (z dA)Resp_ (z -1 da ) ] .  (2.4) 

However, the above expression involves divergent integrals which must be regularized. 
For this, we need to make a number of choices. First, we fix a canonical homology 
basis Ai, Bi, along which the Riemann surface can be cut out to obtain a domain with 
boundary y[i=N~I-1A~iBZiAiBi. Next, we fix simple paths C_, Cj from P+ to P_, Pi 
respectively ( 1 <<. j <. ivy), which have only P+ as common point. As usual the cuts are 
viewed as having two edges. With these choices, we can define a single-valued branch 
of the Abelian integral E in /"cut = 1" \ ( C_ t J C1 t2 . . .  k3 CNf ) as follows. Near P+, 
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the function Q-1 provides a biholomorphism of a neighborhood of P+ to a small disk 

in the complex plane. Choose the branch of logQ -1 with a cut along Q - l  (C_),  and 

define an integral E of dE in a neighborhood of P+ in/'cut by requiring that 

E = Nclog Q + log2 -4- O(Q-1) .  (2.5) 

The Abelian integral E can then uniquely defined o n  Fcu t by integrating along paths. 
It determines in turn a coordinate system z near each of the poles P+, P_, and Pj, 

l < , j ~ N f ,  e.g., 

z = e N~E near P+. (2.6) 

It is easily seen that z is holomorphic around P+, and that z = 2 ~ Q  -1 + O(Q-2) .  The 
next few terms of the expansion of z in terms of Q-1 are actually quite important, but 

~ 1  E 
we shall evaluate them later. Similarly, we set z = e Nc-NI near P_, and z = e -E near 

Pj, I<.j<~Ns. 
The same choices above allow us to define at the same time a single-valued branch 

of the Abelian integral A in Four. Specifically, ~ is defined near P+ by the normalization 

)t(z)  = -Rese+ (z da) 1 + O(z)  (2.7) 
Z 

with z the above holomorphic coordinate (2.6). As before, ,t is then extended to the 

whole of/ 'cut by analytic continuation. Evidently, near P_, a can be expressed as 

/ l(z)  = -Resp_ (z dA) 1 + A(P_) + O(z ) (2.8) 
Z 

in the corresponding coordinate z near P_, for a suitable constant a (P_) .  Similarly, 
near Pj, A can be expressed as 

h (z )  = - m f l o g z  + a(Pj)  + O(z)  (2.9) 

for suitable constants Pj. The expression (2.4) for the prepotential 5 r can now be given 
a precise meaning by regularizing as follows the divergent integrals appearing there 

P~ 

i d a  = - A(P_).  (2.10) A( Pi) 
P _  

This method of regularization has the advantage of commuting with differentiation under 
the integral sign with respect to connections which keep the values of z constant. 

2.3. The derivatives of the prepotential 

The main properties of f" are the following: 
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O~ 1 f Oa~ - 2zri dA, (2.11) 
Bk 

5 I~ / )J / 1 .-(3) _ 3) 
a.,v 1 da  + mi clJl i dO} (2.12) 
cgm j - -  2 ~ i  - -2 ' ' 

p_ i=1 p_  p_ 

where df2~ 3) are Abelian differentials of the third kind with simple poles and residues +1 
and - 1  at P_ and/9, respectively, normalized to have vanishing A j-periods. We observe 
that the Wilson effective action of the gauge theory is insensitive to modifications of 
5 c by a~-independent terms. Eq. (2.12) can be viewed as an additional criterion for 
selecting f ' ,  motivated by the fact that the mass parameter - m / o f  dA can be viewed as 
a contour integral of d,~ around a cycle surrounding the pole Pj.  In analogy with (2.4), 
the derivatives with respect to mj  of a natural choice for ".U should then reproduce the 
integral of dA around a dual cycle. This is the origin of the first term on the right-hand 
side of (2.12), if we view the path from P_ to Pj as such a dual "cycle". The second 
term on the right-hand side of (2.12) is a harmless correction due to regularization. The 
expression between parentheses is actually always a multiple of 7ri, although we do not 

need this fact. 
We now establish (2.11) and (2.12). We need to consider the derivatives of dA with 

respect to both ak and mj .  We use the connection ~7e = V of [4], which differentiates 
along subvarieties where the value of the Abelian integral E (equivalently the coordinate 
z) is kept constant. Then simply by inspecting the derivatives of the singular parts of 
dA in a Laurent expansion in the z-coordinate near each pole, we find that 

xTak dA = 2¢ri dO)k, Vm; dA = df2~ 3) , (2.13) 

where dwk is the basis of Abelian differentials of the first kind dual to the Ak cycles. 
Next, we recall from (2.2) that the residues Resp+ (z dA) and Rese_ (z dA) are constant. 

Consequently, 

N~ ' N.f PJ 

20J-"- I / dA q-~-:~ai/ do)~ Oak 2~ui ~-~rnj/do)k 
Bk i=1 Bi 1=1 p_ 

+Resp+ (z dA)Resp+ ( z  -1 do)h) + Resp_ (z dA)Resp_ (z -1 dwk). (2.14) 

However, we also have the following Riemann bilinear relations, valid even in presence 

of regularizations: 

Pj 
1 

Bi Bk Bk P-  

P~ 
J  es,.(z-1 / 

2 ~ ' i  ' " 
Bk P -  

(2.15) 
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Here dO(~ ) are Abelian differentials of the second kind, with a double pole at P:k, 
vanishing A-cycles, and normalization 

dg2(~ ) = z-2dz -I- O(z). (2.16) 

The relations (2.15) follow from the usual Riemann bilinear arguments, by considering 
respectively the (vanishing) integrals on the cut surface/'cut of the 2-forms d((.oi deok), 
d(~213) d~ok), d(s2(~ ) dw~), d(O} 3) dd2m). Applying (2.15) to (2.14), we obtain 

Oak ~ dAq-~ai do)iq--~i~m.j d ~  3) 
Bk i=1 Bk j=l Bk 

1 / 1 / 
+ ~ / R e s e +  (z d.~) dE2(+ 2) + Rese_ (z da) d~'2(_ 2). (2.17) 

Bk Bk 

However, the expression 

Nc N f 

dA = 27ri ~ ai dwi + Resp+ (z da) dO(+ 2) + Resp_ (z dA) dd2(__ 2) + ~ m i d ~  3) 
i=1 j=l 

(2.18) 

is just the expansion of dA in terms of Abelian differentials of first, second, and third 
kind! Eq. (2.11) follows. Eq. (2.12) can be established in the same way. First we write 

Oral 2~ri ai dg2} 3) - dA -- ~ mj dg2} 3) 
--  B i  p _  j = l  p _  

(z d,~) Resp+ (z -1 ds2}3)) + Resp_ (z d,~)Resp_ (z -1 d/2}3))]. +Resp+ 
J 

(2.19) 

Substituting in the bilinear relations gives 

23"T'~m-t- 1 [--2~i~-~ai f d°)l-- f dA- mj dg2) 3) 
_ _  2~'i i=1 p _  p _  . '= p _  

Pz Pt 

-Resp+(zdA)/dg2(+2)-Rese_(zdA)/dg2(__2) l 
P_ P _  

1 
mj d~O 3) -- d . (2.20) 

27ri j=l p_ e_ 

Again, the Abelian differentials recombine to produce dA, and the relation (2.12) 
follows. 
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3. The renormalization group equation 

3.1. The renormalization group equation in terms of  residues 

Combining Eqs. (2.4), (2.11), and (2.12) gives a first version of  the renormalization 
group equation for .T', valid in presence of  arbitrary masses m i 

3 y  N; 3 y  1 I + ~ m j - -  2.?-= -- Resp+ (z dA)Resp+ (z -1 dA) a k c~ a---~k j=l Omi 2zri 

+Rese_ (z dA)Resp_ (z -1 dA)] .  (3.1) 

3.2. The renormalization group equation in terms of invariant polynomials 

We can evaluate the right-hand side of  (3.1) explicitly, in terms of  the masses m j, 
and the moduli parameters fi~ and A of  the spectral curve (2.3). For this, we need the 
first three leading coefficients in the expansion of  Q in terms of  z at P+ and P_.  Now 
recall that at P+, Q ~ c,o, y = v/A 2 - B, and 

z = (y + A)-I/N~ (3.2) 

For Nf  < 2Nc, we may expand v/A 2 - B in powers o f B / A  2 and write, up to O(Q N~-3 ) 

[ 1 B  1 B 2  ] 
y ÷ A = 2  A 4 A  16~- ~ . (3.3) 

We consider first the terms in (3.3) of  order up to O(QNr-1). Then for Nf <~ 2Nc - 2, 
only the top two terms in A contribute, while for Nf  = 2Nc - 1, we must also incorporate 
the term A2xNI-uc = A2xNc-1 from B/A. Thus 

A + y =  2QNc[1-- (~I + SNr,2Nc-lfl---4 )Q-1]  + O(QNc-2), 

where we have introduced the notation 

Si -~ ( --  1 ) i  ~ ~ l k l . . .  ~tk i, ti = ~ i n k 1 . . ,  mk  i. 

kl <... <ki kl <... <ki 

This leads to the first two coefficients of  z in terms of  Q, or equivalently, the first two 

coefficients o f  Q in terms of  z 

Q=2-1/N~ z-1 l ÷ Nc JI +6Nf,2N¢--IT Z . 

Comparing with (2.2),  we see that this confirms the value of  Rese+(z da) required 
there, while the condition Resp+ (dA) = 0 is equivalent to 
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~2 
S1 -+- t3NI,2N~--I ~ = 0. (3.4) 

Similarly, in the expansion of  A + y to order O(QN~-2), we must consider separately 

the cases Ny < 2Nc - 2, Nf = 2N~ -- 2, and NU = 2Nc - 1, depending on whether the 
terms B/A and BZ/A 3 contribute to this order. Taking into account (3.4), we find 

22/N ~ \ 
O = 2 - 1 / N ~ z - 1  1 -- --~-c S+z 2 )  --}-O(z 2) 

with S + defined to be 

(3.5) 

4 2 4 2 
S~ ~- $2 -- (~Nf,2N2-2 T -- aNf,2Nc--1--~-tl. 

Near P_,  we have instead 

(3.6) 

B "~ 1/2 1 B 1 B 2 1 B 3 
A+y=A-A 1-~)  =~+~) -5+1-7A-  7.  

Again, considering separately the cases Nf < 2Nc - 2, Nf = 2Nc - 2, Nf = 2Nc - 1, 
we can derive the leading three terms of  the expansion of  z = E -1/(u*-uc) = (A + 
y)--1/(U;--U~) in terms of  Q. Written in terms of  an expansion of  Q in terms of  z, the 

result is 

Q= (~_~)-l/(gf-NC)[Z -1 1 Nf-Nctl (~_~_~)I/(Ns-NC)z 

+(NT -Nc) 2 ( S ~ ( N f - N c ) +  +Nf  

(3.7) 

with S 2 given by 

e{ 2 4 2 
S 2 = $2 -- t2 -- aNy,2N2-2 T -- aNf,2Nc--1 7 t l .  

Since d,~ = -NcQ-~- near P+ and d/l = - ( N f  - Nc)Q-~ near P_,  we obtain 

(3.8) 

Resp+ (z -1 d,~) = 21/Ncs~, 

Rese ( z - i d A ) =  - ( S 2 q - l ( 1  N f - N c ) t  2) (3.9) 

Substituting in the values of  Resp+ (z dA) and Rese_ (z dA) given in (2.2), and rewriting 
the result in terms of  g2 and the operator 79 of  (1.2), we can rewrite the renormalization 
group equation (3.1) as 

171 2 
2rriDf=-(Nf--2Nc)l~2--~Nf,2Nc_2- ~ - - ~ N f , 2 N c _ l T t l l  
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1 
+ ( N f  - Uc)t2 - ~(NT - Nc - 1)t 2. (3.10) 

Before proceeding further, we would like to note a few features of the renormalization 

group equation and of our choice of prepotential. 
(1) The RG equations (3.1) and (3.10) are actually invariant under a change of cuts. 

Indeed, a change of cuts would shift the values of the regularized integrals (2.4) 

by a linear expression, and hence 5 c by a quadratic expression in the masses rnj, 
independent of the ak. In view of Euler's relation, such terms cancel in the left- 

hand side of (3.1) and (3.10). Thus the right-hand side of the RG only transforms 
under a change of homology basis, and is a modular form. 

(2) From the point of view of gauge theories alone, we can in practice ignore on the 
right-hand side of (3.1) and (3.10) terms which do not depend on the ak. Such 
terms can always be cancelled by a suitable ak-independent correction to 5". These 

corrections do not affect the Wilson effective action since it depends only on the 
derivatives of 5" with respect to ak. 

(3) Some caution may be necessary in interpreting g2, in terms of the classical order 
parameters ak- In particular, when NU >~ No, there are several natural ways of 

parametrizing the curve (2.3), in which the ak get shifted in different ways to 
a~ v a ak [3,4]. As noted in [6], the prepotential 5- is independent from such 
redefinitions of the ~ .  However, this would of course not be the case for $2 ~ 

~-~kN~.j akhj ,  which argues for a distinct interpretation for $2 = ~ j < k  (lk~lj" 

3.3. Other classical gauge groups 

As noted in [6], the effective prepotentials 5-G;N s for theories with other classical 
gauge groups G and arbitrary number of flavors Nf  (and at least two massless hyper- 
multiplets in the case of Sp(2r),  which we assume henceforth) can all be obtained 

by suitable restrictions of the SU(Nc) prepotentials. The spectral curves are then all 
SU(Nc) curves (2.3), with Nc = 2r, where r denotes the rank of G. The zeroes of 

A(Q)  in (2.3) are of the form - I - a  1 . . . . .  ztza r .  The masses of the SU(Nc) theories are 
similarly given by ± the masses of the G theories, with possible adjunction or deletion 

of some vanishing masses. Set in each case 

r 3 Nf m 3 
D=~--~ak-~a k + ~ J~mj 2, 

k=l j= l  

r 

k=l 

N± 

t 2 = -  ~ m ~  

and let al . . . . .  ar be the renormalized order parameters of each theory. Then the precise 
mass correspondences and renormalization group equations are as follows: 
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~ SU(Nc) ~rSU(Nc) = 2 N f  + 2, m.~ U(Nc) --H~j+ r = m j, 1 <~ j <~ N f ,  • S O ( 2 r  + 1) theories: , , f  = 
tr/SU(N~) ..  SU(N~) 
2 N f + l  ---- Ht2Nf+2 ~- O, 

 A4r4:  ) 
q-(2Nf -k-2 -- 2r) t2.  

• S p ( 2 r )  theories with two massless hypermult iplets  ruNs_ 1 = mars = 0: /~fU(N~) = 
2 N f  - -  4 ,  . .  SU(N~) . . .SU(Nc) mj = - m  j+ r = m  j, 1 <~ j <~ N f  - 2, 

. . . .  4 ( , A4r4Nf+4 ) 
2~i  Z)f'Sp(2r);N f -- (2Nu 4 r )  \ $ 2  ~2Nf-4 4 r - 2 '  - -  

+ ( 2 N / -  4 - 2r )  t2. 

. .  SU(N~) • S O ( 2 r )  theories: N )  U(N~) = 2 N f  + 4, m.~ U(N~) = -m.i+r  = mj,  1 <~ j <~ N f ,  
mSU(Nc)  ,~SU(Nc) = 0 ,  

2 N f + i  = • " " = H~2Nf+4 

2q'l ' i 'D~so(2r);Nf=--(2Nf-~-4--4r)(~2--t~2Nf+4,4r_2A4r--~ Nf-4 ) 

+ ( 2 N f  + 4  - 2r) t2.  

3.4. The renormalization group equation in terms of  O-functions 

As noted above, the r ight-hand side of  the RG equation (3.1) is in general a modular  

form. For  NU = 0 (and arbitrary No), we can exploit  the symmetry between the branch 

+ given by y2 ( a  - A) ( a  + A) = ~I~1 (Q - x~- ) (Q - x~- ) and known formulae points  x k = 

for their cross ratios to write it  explici t ly in terms of  O-functions. More precisely, we 

observe that 

Nc Nc Nc 

k=l k=l k=l 

(3.11) 

Let the canonical homology  basis be given by Ak cycles surrounding the cut from x~- 

to x +, 1 <. k <~ Nc - 1 on one sheet, and by Bk cycles going from Xuc to X k on one 

sheet, and coming back from x k to XNc on the opposi te  sheet. Then for the dual basis 

of  Abel ian  differentials do) = ( do)k)k=l,...,Nc_l, w e  introduce the basis vectors e (k) and 
~.(k) of  the Jacobian latt ice by 

f do) = e (k) , J do) = T (k). 

Ak Bk 

We have then the fol lowing relations between points in the Jacobian lattice: 
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x+ k Xk+l 

/ d m = l e  (k), f d m = l ( 7 - ( k + l ) + ~ - ( k ) ) .  

Let qS(Q) denote the Abel map 

Q Q 

~b(Q) = ( j "  awl . . . . .  f dWN~-l) 

Q0 Q0 

I f  we choose Q0 so that ~b(x~-) = ½~.(1), it follows from (3.12) that 

! e (1) + . + e (k- l ) )  l'r(k) 1 <<. k <<. Nc - 1, 
~b(x~-) = 2 ( ..  ÷ 2 ' 

q S ( x ~ ) = 2 ( e ( 1 ) + . . . + e ( k ) ) + 1 7 " ( k ) ,  l < ~ k < ~ N c - 1 ,  

q~(XNc ) = l ( e ( 1 )  + . . . - + -  e(Nc--1)), 

+ 
Q~( XNc ) = 0 .  

I f  we introduce the functions F[ (Q) by 

(3.12) 

(3.13) 

+ Q) [7-) 2 F f ( Q )  = O(q~(xl  +xk  + 
+ O(qb(XNc + Xk + Q)IT)2 (3.14) 

an inspection of the zeroes shows that we have the following relation between F f  and 
cross ratios 

F f ( Q ' )  _ Q '  - x~- O - XNc (3.15) 
F~(Q) Q -  x~- Q' - -  XUc-- " 

For the Riemann surface (2.2) ,  we also have for all Q 

Nc Nc 

~ I ( Q  - x~) = A ( Q )  - A = 1- I (  Q - x]-) - 2A. (3.16) 
l=l /=1 

+ gives the relation Setting Q = x k 

Nc 
]--[(x + -- x]-)  = 2A. (3.17) 
/=1 

Combining with products of  expressions of  the form (3.15) evaluated at branch points, 
we can actually identify the branch points, 

+ - = AGk, X k - -  XNc 

+ x k -- x~ =A(Gg - G1), 
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Nc 
A + G1 + AGA, (3.18) Xk =--~c-c 

1=1 

where Gk is defined to be 

, (Xk,) ] c 
Gk=2~ k~J LFy~A (3.19) 

_ k ~ = l  

Since F[ (x~)  is independent of k, this expression may be simplified, 

G~ = 2~ I-[ I-[ LF?' (xy,)J (3.20) 
/=1 k~=l 

The evaluation of the functions Ft k on the branch points is particularly simple, and we 
have 

F[(Xm) = O(~b(x?) + qS(Xm) + ~(x+)lT) 2 (3.21) 
o(4,(x;~ c) + 4~(Xm ) + O(x~;)It) 2' 

where the values of ~b(x +) can be read off from (3.13). This leads to the following 
expression for the right-hand side of (3.10): 

D~=A 2 ~ G ~ - N c c  ~ G ~  , (3.22) 
k=l k=l k=l 

which is a modular form. 

4. T h e  w e a k - c o u p l i n g  l i m i t  

It is instructive to verify the renormalization group equation (3.10) in the weak- 
coupling limit analyzed in [6] to 2-instanton order. 

We recall the expression obtained in [6] for the prepotential 5 c to 2-instanton order 
in the regime of A ---+ 0. Let the functions S(x) and Sk(x) be defined by 

IIjN~ (x + m i) Sk(x) 
S(x) (4.1) 

" ~  N c  - -  _ _  . I-[/=l (X al) 2 (x -- ak) 2 

Then the prepotential 5 c is given by 

.~ = .~-(0) + j7(1) + .~-(2) -t- O(ZI 6) 

with the terms 5 c<°), U(1), .7-(2) corresponding respectively to the one-loop perturbative 
contribution, the 1-instanton contribution, and the 2-instanton contribution 



102 E. D'Hoker et al./Nuclear Physics B 494 (1997) 89-104 

1 
2rri.T'(°l = - ~  Z ( a k  - al)elog (a~ - a l )  2 q- 1 E ( a k  + m.i)21og (ak + mj) 2 

A 2 '~ A2 
j,k 

N~ 
27ri'T'(1} = 1A-2 Z &(ak),  

4 
/c=l 

27ri'U(2) = ZZ1416 ( ~  Sk(ak)Sl(al)(ak - -  a l )  2 l ksk(al~)e2kSk(ak) ) • (4.2) 

Here we have ignored quadratic terms in ak, since they are automatically annihilated 
by the operator 7). We also note that the arguments of [6] only determine U up 
to ak-independent terms, and thus we shall drop all such terms in the subsequent 
considerations. The formulae (4.2) imply 

~-~akc)a--7 + ~--~rnj--  - 2.Y'= (Nf  - 2Nc) ~i~i ~_a2 +.T "(1~ +2.T "(21 , 
k=l j=l cgmj k=l 

(4.3) 

where all 116 terms have been ignored. 
On the other hand, up to ak-independent terms, the renormalization group equation 

(3.10) reads 

Nc NI Nc 

~ m J  ornj3"T" - 2 f '=  4@i(Nf - 2Nc) / , k _ _  K"  gt2, 
ak Oak j=l k=l 

(4.4) 

where we have rewritten g2 as 

1 Nr / i  2 
- 2  

$2 = --~ E ak ~- -~Nf,2Nc--1. 
k=l 

(4.5) 

To compare (4.3) with (4.4) we need first to evaluate ~Nr ~=1 a2 in terms of the renormal- 
ized order parameters ak. Using the formula (3.11) of [6], this can be done routinely 

/~2 ~ ~ /~4 
a~ = ~k + --~-akSk({tk) + 7-75~Sk(?tk)O4 + O(/16)' (4.6) 

where we have set 0k = a/aYtk, and defined functions S(x),  Sk(x) in analogy with 
(4.1), but with ak replaced by ak. Inverting ~tk in terms of ak, and rewriting the result 
in terms of the derivatives Ok = ,9/aak with respect to the renormalized parameters ak, 
we find 

/~2 "/1403 S / ",2 /~4 Nc 
?t~ = a k -  ~-OkSk(a~) -- --~ k ktak) + --~ ~~  &Sl(al)OkOtSk(at) -~ O(/16)  

l=l 

(4.7) 
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and hence 

Ne Uc ~2 N~ ,~4 Nc 
~ 2 = ~ a 2 a 2  -- T E a k e k S k ( a k )  -- - ~ Z a k O 2 S k (  ak)2 
k=l k=l k=l k=l 

~4 N~ •4 
-}---~- ~ akcglSl(al)CgkOlSk(ak) q- ~-~ ~_~(Okgk(ak) )2 + O ( A 6 ) .  (4 .8 )  

k,l=l k=l 

Next, we need a number of identities which can be established by contour integrals, in 
analogy with the identities in Appendix B of [6] ,  

Nc Arc 

E akOkSk (ak) = -- ~ & (ak) + {ak-independent terms}, 
k=l k=l 

Nc Nc 
~., akO2Sk(ak) 2 --3 ~ 2 2 = a~&(ak)  , 

k=l k=l 

N~ 

~_j ak&Si( at)OkOtSk( ak) = --2 Z ( &&( at) )2 + 2 E S~( ak) &( at) 
k,l /=1 k*l (ak - al) 2 

- Z &(ak)O2&(ak)" (4.9) 
kval 

Using (4.9) we can indeed recas t  ~kN__~l a 2 as 

Nc Nc Nc 

= + T Sk ak ) 
k=l k=l k=l 

+-4 &(a~)Sl(al) 
( a~ - a t )  2 k=~ 

The equality of the two right-hand sides in (4.3) and (4.4) follows. 

1No ) 
(4 .10)  
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