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Abstract 

We study the asymptotic solutions of the Schr~dinger equation for the color-singlet reggeon 
compound states in multi-color QCD. We show that in the leading order of asymptotic expansion, 
quasiclassical reggeon trajectories have the form of soliton waves propagating on the 2-dimensional 
plane of transverse coordinates. Applying the methods of the finite-gap theory we construct their 
explicit form in terms of Riemann 0-functions and examine their properties. (~) 1997 Elsevier 
Science B.V. 
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1. Introduct ion 

It is widely believed that the Regge asymptotics of  hadronic scattering amplitudes in 

high-energy QCD should be described by an effective Regge theory. In this effective the- 

ory reggeized gluons, or reggeons, play the role of  new collective degrees of  freedom. 

Reggeons form color-singlet  compound states, QCD pomerons and odderons, which 

propagate in the t-channel between scattering hadrons and contribute to a power rise 

with energy o f  the physical  cross sections [ I ]. In the Bar te ls -Kwiecinski -Praszalowicz  

approach (BKP)  [2] ,  the color-singlet  reggeon compound states are built from a con- 

served number N = 2, 3 . . . .  o f  reggeons. For a given number of  reggeons, N, the 
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wave function of  these states X~v depends only on the transverse reggeon coordinates 

b±.j = ( x ~ , y j )  ( j  = 1 . . . . .  N) and it satisfies the BKP equation 

7-t~,IxN) = ~NIXN),  ( 1 . 1 )  

where 7-/N is an effective QCD Hamiitonian acting on the transverse coordinates of  N 

interacting reggeons. QCD pomerons and odderons appear as the states in the spectrum 

of 7-/N with the maximal energy eN. 

The BKP equation has a number of  remarkable properties in multi-color limit of  

QCD, Nc ~ e~ and asNc = fixed. Firstly, introducing holomorphic and antiholomorphic 

coordinates on the 2-dimensional plane of  transverse reggeon coordinates, zi = xj  + iyj 

and ~i = x j  - iyj ,  respectively, one can find that the wave function XN splits into a 

product of  holomorphic and antiholomorphic parts [3] ,  

X N ( X l ,  Yl . . . . .  XtV, YH; X0, Y0) 

= , p N ( z ~  - z0 . . . . .  zN - z 0 )  • ~ N ( ~  - go . . . . .  ZN - g o ) ,  

where (x0, Y0) is the coordinate of  the center-of-mass of  the N reggeon compound state. 

The effective Hamiltonian ~ u  is invariant under SL2 transformations 

azi  + b ?l~) + b 
z i --~ czj  + d ' zJ cz) + d (1 .2)  

with ad - bc = ad - b? = 1 and j = 0, 1 . . . . .  N, while the wave function is transformed 

as 

/~N ~ ( CZo @ d)2h(cgo -4- d ) 2 h X N .  ( 1 . 3 )  

The conformal weights take the values h = ~ - iu and h = l ~,._....a, _ i~, with m = Z, u = 

R corresponding to the principal value representation of  the SL(2, C) group. Secondly, 

the QCD effective Hamiltonian 7-/jr is closely related to the Hamiltonian of  the XXX 

Heisenberg magnet of  non-compact S L ( 2 , C )  spin s = 0 and, as a consequence, the 

system of  N interacting reggeons possesses a large enough family of  conserved charges 

qk in order for the Schr6dinger equation ( ! .1 )  to be completely integrable [4,5]. This 

implies that instead of  solving the BKP equation one can define the holomorphic wave 

function ~ou as a common eigenfunction of  the family of  N - 1 mutually commuting 

operators [ qk, qn ] = O, 

qk = Z Zjl j2 Z j 2 J 3  " " " Z.hjl P jr Pj2 ' • • Pj~ , k = 2 . . . . .  N ( 1 .4 ) 
I ~<.j)<j2 <...<jk ~N 

= - i  °-- There are also additional constraints on ~oN, with z,b = za - zb and pj  Ozj" 

( L 3 + h ) ~ O N ( Z  1 . . . . .  ZN) = 0 ,  L~_qgN(Z I . . . . .  ZN) = 0 ,  (1.5)  

which follow from the transformation properties of  the wave function (1.3). Here, the 
notation was introduced for the SL2 generators 
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N N N 

L3 = i ~'~ Zkpk , L+ = i Z z~pk , L -  = - i  Z pk 
k=l k=l k=l 

with pk = -iegk. The conserved charges qk defined in (1.4) have the meaning of higher 
Casimir operators of the SL(2 ,C)  group whose eigenvalues determine the quantum 
numbers of  the N reggeon compound states. In particular, 

2 1 
q2 = - ~ zjkPjPk = -L3L3  - "~(L_L+ + L+L_)  

j>k 

is a quadratic Casimir operator and its eigenvalue corresponding to the wave function 

~o,v is given by q2 = - h ( h -  1) provided that conditions (1.5) are fulfilled. 

To find the holomorphic reggeon wave function ~,v one has to diagonalize simul- 
taneously the remaining N - 2 commuting Hamiltonians q3 . . . . .  qN on the space of 

functions satisfying (1.5). This leads to a system of N coupled partial differential equa- 

tions on the wave function q~u. The same system can be also interpreted [6] as a set of 

Schr6dinger equations, in which the conformal weight h plays the role of the effective 
Planck constant, h = l /h .  This suggests us to consider the quasiclassical limit of large 
h and develop the WKB expansion for the hoiomorphic reggeon wave function 

q~u (z; . . . . .  ZN) = exp(iS0 + iSi + . . . ) ,  (1.6) 

where So = O ( h ) ,  Sl = O ( h  °) . . . .  at large h and Sk = Sk(Zl . . . . .  zN) = O ( h l - k ) .  

In complete analogy with quantum mechanics, the leading term, So, defines the action 

function for the system of N reggeons. For a given set of quantum numbers qk, it 

satisfies the system of Hamilton-Jacobi equations 

eSo N  aSo ( e S o )  
~-~Zk--~Zk = i h ,  ~ Z k ~ z k  = 0 ,  ~,~ \ Z ' - ~ z J = q ' ~ '  or=3  . . . . .  N ,  (1.7) 
k=l k=l 

where z = (zl . . . . .  ZN) and q',,(Z,p) stands for the symbol of the operator (1.4). 

For the N = 2 reggeon state, the BFKL pomeron, the Hamilton-Jacobi equations 
(1.7) can be easily solved, 

[l +o(h-')] So( z l , z z )  = - i h l n  1 1 ~2(zl z2) = \ z l z 2 /  
Zl Z2 

The last expression defines the holomorphic wave function in the leading order of the 
WKB expansion. Comparing it with the well-known expression for the wave function 

of the BFKL pomeron [7] we find that it is exact to all orders in l /h .  
For N ~> 3 reggeon states, the Hamiiton-Jacobi equations ( i .7)  can be solved in the 

separated variables [8]. Their solutions describe the compound N reggeon states as a 
system of N classical particles moving along quasiperiodic trajectories. The correspond- 
ing action-angle variables were constructed in [8], where the close relation between 
classical reggeon trajectories and finite-gap soliton solutions [9] was established. The 
main goal of the present paper is to apply algebro-geometrical methods [ I0] in order 
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to obtain the explicit form of the reggeon trajectories on the 2-dimensional plane of 
transverse coordinates in terms of Riemann 0-functions [ 11 ]. 

2. Hamiltonian flows 

In the leading order of the WKB expansion, we replace in (1.4) the momentum 

operators Pk by the corresponding classical functions to get the family of N -  1 classical 
Hamiltonians q2 . . . .  , qN. For the system of N reggeons with the coordinates zk, momenta 

Pk and the only non-trivial Poisson bracket {xk,pn} = 8kn, these Hamiitonians generate 
the hierarchy of the evolution equations 

Oz, 3q,  3pn {pn, q~, } = Oq,~ 
Ot---~ = {z . ,q~}  = 3p. ' 3t---~ = Oz. ' (2.1) 

with t,~ ( a  = 2 . . . . .  N) the corresponding evolution times and O,.q. = {q . ,q~}  = 
0. Their solutions define the reggeon trajectories zk = Zk(t2 . . . . .  tu)  subject to the 
periodicity condition 

Zk+N(t) = Zk(t) , pk+N(t) = pk( t )  • (2.2) 

The system of evolution equations (2.1) has a sufficient number of the integrals of 
motion qk tO be completely integrable. It admits the Lax pair representation, which can 
be found using the equivalence of the system of N reggeons and the XXX Heisenberg 
magnet of SL2 spin 0 [4,5]. Namely, for each reggeon we define the Lax operator as 

(, ) ) = = ® (--Zk, l ) p k ,  (2.3) 
Lk --Ez~pk 1 + EZkPk Zk 

with E being an arbitrary complex spectral parameter. Then, the evolution equations 
(2.1) are equivalent to the matrix relation 

8t,,Lk = {Lk,q~}  = a ( a ) ,  LkA~a~ (2.4) I l k+ 1 Z"k -- 

where A~'~)(E) is a 2 × 2 matrix depending on the choice of the Hamiltonian. As an 
example, for the Hamiltonian qu one can obtain 

a ( N ) = E  ON ( 1 ) ® ( z k - i , - - l )  (2.5) 
• "k Z k - l , k  Zk 

and the corresponding evolution equations look like 

O,~,Zk = -N Ot~,pk = q U (  1 i ) 1 
Pk  Z k -  1 ,k Zk,k+ I 

The explicit form of A~ '~) for the remaining Hamiltonians can be deduced from the 
Yang-Baxter equation for the Lax operator Lk and it will not be important in the sequel. 
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The integration of the evolution equations (2.1) and (2.4) is based on the Baker- 

Akhiezer function ~k (E; t2 . . . . .  tN). It is defined as a solution of the following system 

of matrix relations: 

Lk(E) ~'k = qtk+l, O, ,~k=A~ ' ° (E)~k ,  ~ ' k = {  ~bk } / \  , (2.6) 
\ / Yk 

where ~bk and X~ are scalar components. We construct the monodromy matrix 

( A( E) B( E) ) 
T(E)  = L u ( E ) . . . L 2 ( E ) L ~ ( E )  = \ C ( E )  D(E)  (2.7) 

and verify using (2.4) that its eigenvalues are integrals of motion due to O,oT(E) = 
A~I'~)T - TA~I '~. The monodromy matrix generates the shift T ( E ) ~ I  = ~'u+l and we 

impose the periodicity condition on the Baker-Akhiezer functions by requiring ~k (E)  

to be the Bioch-Floquet function 

~k+u(E) = e P~E) g 'k(E) • (2.8) 

Here, P(E)  is an eigenvalue of the monodromy matrix (2.7) and it satisfies the char- 

acteristic equation 

de t (T(E)  - e P~E~) = e 2e~') - A ( E )  e e<F') +1 = 0, (2.9) 

whcre A(E)  = t rT(E)  can be calculated using (2.7) and (2.3) to be a polynomial of 
degree N in the spectral parameter with the coefficients given by the integrals of motion 

A( E) = 2 + q2E 2 + q3E 3 + . . . + qNE N. 

Introducing the complex function y(E)  = (c P<F') - e - t ' ~ E ) ) / E  one rewrites (2.9) in the 

form of algebraic complex curve 2 

/ ' iv:  y2=E-2(A2(E)  - 4 )  

=(q2+q3E + . . .  +qNE N-2) (4+q2E 2 +q3E 3 + . . .  +qNE N). (2.10) 

For any complcx E in general position Eq. (2.9) has two solutions for P ( E ) ,  or 
equivalently, y (E)  in (2.10). Under appropriate boundary conditions on ~k(E)  (to be 
discussed later) each of them defines a branch of the Baker-Akhiezer function, 9tff (E) .  
Then, being a double-valued function on the complex E-plane, gtk(E) becomes a single- 

valued function on the Riemann surface corresponding to the complex curve FN. This 

surface is constructed by gluing together two copies of the complex E-plane along the 
cuts [e2, e3] . . . . .  [e2N-2,  el i  running between the branching points e) of the curve (see 
for details Fig. ! ), defined as simple roots of the equation 

A2(ej) = 4 ,  j =  1 . . . . .  2 N - 2 .  (2.11) 

2 To make a correspondence with the notations of Ref. [ 8 ], one ha.~ to redefine the local parameter on the 
curve as E = I/x. 
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C~ 1 

e l  I I ~  

Fig. 1. The definition of the canonical basis of cycles on the Riemann surface I'N. The dotted line represents 
the part of the B-cycles belonging to the lower sheet. The cross denotes a projection of the points Qo ~ E I'N 

on the complex plane. The path TO0-~2ff does not cross the canonical cycles and goes from the point Qo on 

the lower sheet to the point Q~- on the upper sheet. 

Their posi t ions on the complex plane depend on the quantum numbers q2,q3 . . . . .  qN 

of  the reggeon compound state. In general, thus defined Riemann surface has a genus 

g = N - 2 and it depends on the number of  reggeons, e.g. it is a sphere for the N = 2 

state, or BFKL pomeron,  and a torus for the N = 3 state known as QCD odderon. 

To dist inguish points Q = Q ( E )  on the Riemann surface lying above E on the upper 

and the lower sheets we give them a sign Q+ = ( + , E ) ,  where the upper ( + )  sheet 

corresponds to the asymptotics y ,.~ q u E  N-] as E ~ 2 .  In particular, one finds from 

(2.9) the behaviour o f  the Bloch mult ipl ier  on different sheets of  FN for E ~ co as 

e+P('~) = q N E  u x (1 + O ( I / E ) ) ,  (2.12) 

where + corresponds to the choice of  the sheet. 

2.1. Boundary  condit ions 

Being written in components,  the first condition (2.6) on the Baker -Akhiezer  function 

looks like 

X,+l  - Xn = zn( ~P,+l - ~on) = E z ,  p , ( x n  - z,q~n), (2.13) 

where ~p, and Xn are single-valued functions of  Q ( E )  on the Riemann surface FN. We 

notice that for E = 0 the solutions to this equation do not depend on the reggeon number 

n. Moreover, using (2.3) and (2.5) one can show that Lk( E = O) = 1, A~a) ( E = O) = 0 

and, therefore, there exist two special points on the Riemann surface Q0 i = ( + ,  E = 0) ,  

at which the Baker -Akhiezer  function takes constant values, ~ k ( Q ~ ;  {t}) = const. The 

choice of  the constants implies the normalization of  the Baker -Akhiezer  function. 

Let us show that the values ~k(Q0 ~ ) are fixed by the constraints (1.5) .  At the vicinity 

of  E = 0 on one of  the sheets of  FN the Baker -Akhiezer  function can be expanded as 

,e.(Q; {t}) = ~ 0 )  + E q . ~ ( { t } )  + O(E2), 

where the coefficients depend on the choice of  sheet and the leading term gt(o) is a 

constant. Let us substitute this identity into relation ~ l + N  = T ( E ) q q  = e x p ( P ( E ) ) q q  
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and expand both sides in powers of E. Taking into account the small-E expansion of 
the monodromy matrix (2.7), 

/E( L_) 
T ( E )  = 1 +  \ L _  - L  3 + ( 'Q(E2) ' (2.14) 

one obtains that ~(0) is an eigenvector of the following matrix: 

0 h tP'(°) = - i P ' ( O ) ~ ( ° ) "  

where conditions (1.5) were imposed. We find two solutions for ~(0) corresponding to 

P ' ( O )  = +ih ,  which fix (up to an overall constant) the value of the Baker-Akhiezer 
functions at the points Q~ as 

• N Here, h is the conformal weight of holomorphic wave function and L_ = - t  ~-]k=l Pk. In 

the quantum case, the operator L_ commutes with the Hamiltonians qk, but it does not 

take any definite value on the subspace (1.5), since [L_, L3] = 2 iL_  and [L_,  L-t] = 

iL3. In the quasiclassical limit, L_ has a zero Poisson bracket with qk and it does not 
depend on the evolution times t k. Its value is fixed by the initial conditions as 

N 

L_ = - - i Z p k ( O )  =--- -iPtot , 
k=l 

with Ptot being the total holomorphic momentum of N reggeons. 3 

We notice, however, that the relations (2.6) and (2.13) are invariant under SL2 

transformations 

with the coordinates zk transformed as in (1.2). Since this transformation changes the 
value of L_, one can choose its parameters in such a way that one puts L_ = 0 and 
keeps the relations L3 = - h  and L+ = 0 unchanged. 4 The relation between original and 
transformed reggeon coordinates looks as follows: 

1 _ .Ptot l ( Ptot 0 )  2. 
z,, t - ~  + z,,'°---7, Pn = p~O, I - t'--2h z,," (2.16) 

It allows us to integrate the evolution equations (2.1) for L_ = 0 to get expressions for 
zff ~ and p~,°' and then restore the physical solutions using (2.16). 

3 In hadronic scattering amplitudes, Ptot is defined as a holomorphic component of the total momentum 
transferred in the t-channel. 

4 These three conditions form a set of second-class constraints for the N reggeon system. Their quantization 
leads to the Baxter equation for the wave function of the N reggcon compound state [ 121. 
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Therefore, in what follows we put L_ = 0 and obtain the normalization conditions 

(2.15) for the Baker-Akhiezer function in the canonical form (up to overall constant 

factor) 

It easy to see that for L_ = L+ = 0 the solutions of  the evolution equations (2.1) and 

(1.5) are invariant under rescaling of  the coordinates 

z,O, ~ p z,~O,, p~0, ~ p -  t p~0,. (2.18) 

For the Baker-Akhiezer function, this corresponds to a freedom in choosing overall 

normalization factors in (2.17). One can further simplify the analysis of  the evolution 

equations (2.1) for z,~ °' and p~c,, by noticing that q2 = -L3L3 = - h  2 and the dependence 
on the "lowest" time t2 is given by O,2z, ~°' = -2L3~. ~L = 2i" ,0, - op,, nz, , and similarly for p~0,, 

leading to 

z~,"' (t2, t3 . . . . .  tN) = z,~ °' (0, t3 . . . . .  tN) e 2 i h t 2  , 

,o, tu ) e-2ih t2 (2 .19)  P, (t2, t3 . . . .  t N ) -  ' ° ' (0 ,  t~,. . - - p ,  . . . ,  . 

Thus, one can forget for a moment about the t2 dependence of  the reggeon coordinates 

and restore it in the final expressions using (2.19). 

2.2. Singularities of  the Baker-Akhiezer function 

Let us show that the components of  the Baker-Akhiezer function 9"n(Q) are mero- 

morphic functions on the Riemann surface FN having g + 1 = N - 1 poles, the same 

number of  zeros and essential singularities at two infinities Q ~  = ( + ,  c~) situated on 

the upper and lower sheets of  FN. Let us take the B-component of  the monodromy 

matrix (2.7) and observe that B ( E ) / E  is a polynomial of  degree N -  1 in the spectral 

parameter E and B(E)  = iL_E + O ( E  2) as E ~ 0 according to (2.14). Then, one 

defines the points El . . . . .  EN_I as roots of  this polynomial, 

B ( E k ) / E k = O ,  k = l  . . . . .  N - I  

and considers the relation T (E)qq  = e x p ( P ( E ) ) ~ l  at the points Qk = (-t-,Ek) on the 

Riemann surface situated above Ek 

a(Et:) 0 ) ( ~ p l ( Q k ) )  =epCe,) (~Ol(Qk)"  ~ (2.20) 
C(Ek)  D(Ek)  x l ( Q k )  x l ( Q k ) ] "  

Solving it one obtains the values of  P(Ek)  on two sheets of  FN. If  the point Q(Ek) 
belongs to the same sheet of  FN on which D(Ek) = e I'(E*), then one gets from (2.20) 
that ~Pl (Qk) = 0. Thus, the upper component of  the Baker-Akhiezer function ~ ' l (Q)  
has g +  1 zeros on l',v above the points Ek defined as roots of  the polynomial B ( E ) / E .  
In a similar way, g + 1 zeros of  the lower component of  ~ l  (Q)  are related to the zeros 
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of the polynomial C ( E ) / E  defined by the C-component of the monodromy matrix. 

In general, two components of the Baker-Akhiezer function, g'~(Q; {t}) (a  = 1,2), 

have different sets of g + I zeros on FN and their positions on FN depend both on 
the reggeon number, n, and the evolution times, {t}. Relation (2.17) implies that one 

of the roots should be at the points Q0 i .  Indeed, it follows from (2.14) and (2.7) 

that the polynomials B ( E ) / E  and C ( E ) / E  vanish at E = 0 for L_ = 0 and Lf = 0, 

respectively, and therefore the components of the Baker-Akhiezer function vanish at the 

points Q0 ~ = ( + , 0 ) ,  in agreement with (2.13). 

The remarkable property of the roots Ek = Ek(ZI(°),PI°), • • •, ,-u'c°),vN"c°)) and the 

corresponding values of P(Ek)  is that they form a set of separated coordinates for the 

system ot" N reggeons [ 13]. Namely, they belong to the spectral curve 

ePtE*)+e-mEk)=A(Ek)  = 2 + q 2 E ~ + . . . + q N E ~ ,  k = l  . . . . .  N -  1 (2.21 

and have the following Poisson brackets: 

{ E k , E , } =  { P ( E k ) , P ( E , ) } = O ,  {E~I ,P(En)}  =6,n. 

Inverting the relations (2.21) one can express q~ in terms of Ek and then obtain 

the equations of motion for zeros Ek of the Baker-Akhiezer function generated by 

Hamiltonians qk in the following differential form [8]: 

N-, dEj E~ -2 
k = 2 . 3 , . .  N. (2.22) dtt = - Z ~¢/A2(Ej) - 4 '  "' 

)=1 

These equations can be integrated by the Abel map and their solutions describe linear 

reggeon trajectories on the Jacobian variety of the Riemann surface/ 'u  [8]. As we will 

show in Section 3, using the Baker-Akhiezer function one can perform the inverse Abel 

transformation and construct the explicit expressions for the reggeon trajectories on the 

2-dimensional plane of transverse coordinates in terms of Riemann 0-functions. 

For the Baker-Akhiezer function to be a well-defined meromorphic function on the 

Riemann surface the number of its zeros, g + 1 = N - 1, should match the number of 

simple poles, which we choose to be at the points Yl . . . . .  Yg~l in a general position 
on l 'u.  Moreover, considering the relations (2.6) and (2.13) at the points Q = (+ ,  E) 

close to Yk on Fu one finds that the components of ~,~(Q; {t}) share a common set 

of poles and the positions of y~ . . . . .  Y~I on FN do not depend either on n, or on the 

times t. This set can be considered as part of the initial data for the evolution equations 

(2.1). 

Finally, let us examine the relation (2.13) in the neighborhood of punctures Q~ = 
(-2:.~c) on two sheets of /',v. Taking the limit E ~ ~ one obtains from (2.13) 

that the solutions have the following asymptotics on, say, the ( - )  sheet: ~o,(Q ---, 

Q~,) = (.9(E") and x , ( Q  ---' Q~)  = O(E") .  Let us require that the solutions to (2.13) 
should have a similar behaviour on the upper sheet, ~o,,(Q ~ Q+)  = (.9(E-") and 

x , ( Q  ~ Q+) = O ( E - " ) .  This behaviour is consistent with (2.13) provided that the 
r.h.s, of (2.13) scales as E ° at large E, or equivalently x , ( Q  +)  - z,~o,(Q~) = O, 
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leading to the expression for the reggeon coordinates as a ratio of the components of the 
Baker-Akhiezer function at the point Q+.  Thus, having constructed the Baker-Akhiezer 
function satisfying the desired asymptotic behaviour one will be able to determine the 
reggeon coordinates. 

3 .  C o n s t r u c t i o n  o f  t h e  B a k e r - A k h i e z e r  f u n c t i o n  

The existence of the Baker-Akhiezer function with the properties established in the 
previous section can be deduced from the following well-known fact in the theory 
of finite-gap soliton solutions [ 10]. For a smooth hyperelliptic algebraic curve FN of 
genus g = N - 2 with two punctures at Q~  = ( + , o c )  and a given set of g +  1 points 
(yt,3~2 . . . . .  ~ + l )  in general position there exists a unique function ~ ( Q ;  {r}) such 
that 
- g'n is a meromorphic outside the punctures Q~  and has simple poles at the points 

~l . . . . .  ~g+l ; 

- ~'n satisfies the normalization conditions (2.13) at the points Q0 ~ = (+ ,  E = 0); 
- At the vicinity of two punctures on the upper and lower sheets the components g'~ 

( a  = 1,2) have the following asymptotics: 

g r ~ ( Q - - - ~ Q ~ ; { , , ) = E ~ n e a : ~ = ] 2 r J e J  [ q b ~ a ( n , { ~ ' } ) + o ( l ) ]  , (3.1, 

where ~b~ is some E-independent function. 
The following comments are in order. In this definition, the Baker-Akhiezer function 
depends on the set of parameters {r} = rm . . . . .  r~-2,  which are different, in general, 
from the evolution times {t} entering (2.1). However, as a function of {r}, ~ ' ( Q ;  {r}) 
satisfies the system of first-order linear matrix equations similar to (2.6) and, as we will 
show in Section 4.1, the evolution times {t} corresponding to the Hamiltonian flows are 
related to auxiliary parameters {~-} by a linear transformation, tj~ 2 = ~ k  A j : k .  

Finally, substituting expression (3.1) into (2.13) and comparing the asymptotic be- 
haviour of different sides of the relation (2.13) for Q ~ Q ~  we obtain the following 
consistency conditions: 

4,J(,,,{,}, 4,;(,,+ 
z,~"' = - (3.2, 

4,;-(n+ 

and 

l { , ) )  l 4 , ? ( . +  
p~"' - = (3.3) 

Zn.n+l(O, ~ - ( n + l , { r } ,  Z•C;,,n ~b~-(n,{r)) 

Together with (2.16) these relations provide the solution to the hierarchy of the evolution 
equations for reggeon coordinates and momenta, (2.1), in terms of the Baker-Akhiezer 
function. 
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3.1. Basis of differentials 

To write down the expression for the Baker-Akhiezer function satisfying the above 
conditions one defines the canonical basis of cycles on FN as shown in Fig. 1 and 
constructs the basis of normalized differentials as follows [ I I ]. 

The unique set of  holomorphic differentials on FN, or differentials of the first kind. 
dwk ( k = 1 . . . . .  N - 2), is defined as 

N-2 dEEJ_ t N-2 dEE~ 
dwk = Z Ukj = Z Ukj v/A2(E ) _ 4 (3.4) j=l y (E)  j=l 

The coefficients Ukj are fixed by the normalization conditions 

dwk= k =  1 N - 2  3.5 2¢r6gk j ,  ( ) 

% 

and they can be calculated as an inverse to the following matrix: 

I q( dEEJ 
(U-') /k  = ~ S v/A2(E) - 4 "  

(3.6) 

Otk 

The unique set of meromorphic differentials on FN of the second kind, d[2 (j) ( j />  1 ), 

with the j th order pole at the punctures Q ~  is defined as 

d{2(j) = dE [jqNEN+J_ 1 + jqN_IEN+J_ z + . . .  + O(E)  l . 
x/, t2( E) - 4 

The coefficients in front of  the remaining powers of E in the numerator are fixed by the 
normalization conditions 

+(jE j-' + (9( I/E2))dE. (3.7) dO (j) = O, d12(J) Q---*QL E ~  

The unique dipole differentials on FN, or differentials of the third kind, df2~ and d.Oo, 
having simple poles at the points Q ~  and Q0 a:, respectively, and normalized by the 
conditions 

/ f d~oo e-oo dE d,2o E--°zk dE d.Ooo = d1-2o = O, = T = 

are defined as 

d,.(~oo = 

(3.8) 

1 dEA ' (E)  dE 

N x/Ae(E) _ 4 v/A2(E) - 4 
[--qNE N-j + . . .  + O(E) ]  (3.9) 

and 
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2ihdE Jr-2 dE E: 
= + i Z ( U ° ) J  ~/A2(E) - 4"  (3.10) dOo ~/A2( E) - 4 j=l 

To satisfy the normalization conditions (3.8) the coefficients (Uo)i have to be equal to 

N-2 a( dE 
(Uo)k = _ h  Z Ujt, y v/A2(E) - 4  (3.11) 

J=[ a; 

with the matrix Ujk defined in (3.4) and (3.6). 
Let us also define the following (N -2)-dimensional  vectors V, WO) and A(Q):  

Q 

" = - i / d 1 2 o c ,  w ~ J ) = - i / d 1 2  'j) A k ( Q ) = / d O ~ k  

B~ 3* yo 

(3.12) 

where k = 1 . . . . .  N - 2, Yo is an arbitrary reference point on FN and integration in 
A(Q) goes along some path on FN between the points Q and Yo. 

3.2. Baker-Akhiezer function 

The components of the Baker-Akhiezer function, q'~(Q; {r}) (or = 1,2), satisfying 
the conditions formulated in the beginning of Section 3 can be expressed in terms of 
the O-function defined by the Riemann surface Fu (for definition see Appendix A) as 

follows [ 14]: 

~ff(Q; { r } ) -  - -  
ha(Q)  O(A(Q) + Vn + ~-~=l 2 wtJ)rj + Z~)O(Zo) 

h~(Q.~) O( A(Q)  + Z~)O(Vn + ~--~.~¢=~2 W(J)rj + Zo) 

x exp  n d[l~ + Z 7"j d$"2 (j) . 
j=l 

a, Q, 

(3.13) 

Here, Ql = Q~- and Q2 = Qo are normalization points, the ( N -  2)-dimensional constant 
vectors Z,, and Z0 are given by 

zo = Z o -  a ( O o ) ,  
g+l 

Zo = a(O_l) + A(O.2) - Z A(Yn) - 
n=l 

with K~ being the vector of Riemann constants. The function h~(Q) is defined as 

ha(Q) = 
O(A(Q) + Za)O(A(Q) - T~) 
O( A(Q)  - T+ )O( A(Q) - T_) ' 

together with the constants 
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g-I g-I 

T+=ZA(ys )+a(y t¢ )+ l ( . ,  T_= y~A(ys)+A(yg+I)+K. ,  
s=l ,~=1 

g--I  

Ta= Z A(O_.j) + ~'~ A(ys )  + ]C. 
/ = 1 .2  ,~-~-- l 

The following comments are in order. According to (3.12), the definition of the vectors 
A(~},,) and A(y,) implies a certain choice of the integration contours connecting the 
points Q,, and y,, with the reference point Y0. The same contours should enter into the 
definition of the contour integrals of meromorphic differentials in the exponent of (3.13), 

fg_ dO (j) = .f~) dO (j) - fQ" d a  (j). Only under this condition the Baker-Akhiezer func- 

tion (3.13) does not depend either on the choice of the integration contours, or on the 
reference point Y0. Indeed, deforming the integration contour between, say, points Q and 
Q,~ as 7Q~,, --' )'Q~, + ~ )  Njaj + y]j Mjflj, and using the transformation properties 
(A.3) of the Riemann 0-function one gets that the variations ot" the exponent and the 
prefactor in (3.13) compensate each other, while the function h,-,(Q) stays invariant. 

Let us show that the thus defined Baker-Akhiezer function (3.13) satisfies the nec- 
essary normalization conditions. Considering the expression for hr(Q) and using the 

properties of the zeros of the 0-functions, (A.4), we notice that two 0-functions in 
the denominator of h l (Q) vanish at the points yl . . . . .  7g- i, Ye and Yl . . . . .  Y.~- i, Yg f i, 
respectively, while the numerator vanishes at the points Yl . . . . .  Yg-1, Q2 plus additional 
g points coming from the first 0-function. In the expression for the Baker-Akhiezer 
function, (3.13), the latter cancels, however, against the same factor in the denominator 
of (3.13) and its zeros are replaced by zeros of the first 0-function in the numerator 
of (3.13). Therefore, the component ~nt (Q; {r}) has simple poles at the g + 1 points 

Yt . . . . .  yx,i  and it vanishes at the point Q2 = Qo plus additional g points Qi . . . . .  Qg. 
Being solutions of the equation O(A(Q~) + Vn + ~/=~2 W~j)rj + Z[ ) = 0 they satisfy 
the relation (A.4), or 

N - 2  N - I  N - 2  

Z a(Qs) + A(Q o) - Z a(ys)= - l , h -  Z w'J)7"J" (3.14) 
.~= I s =  1 ) = 1 

One checks that for Q ---, ~)l =- Q0 ~ different factors in (3.13) cancel against each 
other leaving us with i + ~'n(Q0 ) = 1. As to asymptotic behaviour of ~ ( Q )  for Q ---, 
Q~,  it is controlled by the exponent in (3.13) and it is in agreement with (3.1) due 

to normalization conditions (3.7) and (3.8) for the meromorphic differentials. The 
generalization of this analysis to the component ~'~(Q) is straightforward. We conclude 
that (3.13) gives a unique expression for the Baker-Akhiezer function corresponding to 
the N reggeon system. 
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4. Explicit solutions 

We examine the asymptotics of the Baker-Akhiezer function (3.13) in the vicinity of 
intinity Q+ and compare it with (3.1) to find the explicit expression for the function 
~b +. Substituting it into (3.2) and (3.3) we obtain the solution to the hierarchy of the 
evolution equations for the reggeon coordinates and momenta in the following form: 

z~,"~=p Ot, Vn+ y~jNTZW~j)rj+Z+, ~ exp iV°n+iZW{°Y'rJj=l (4.1) 

and 

(4.2) 

Here, the constant p is given by a ratio of 0-functions and its value can be made arbitrary 
using the symmetry (2.18). The ( N -  2)-dimensional constant vector (Z+)k is equal to 

Q;: 

Z+ + f = A ( Q ~ )  + Z1 = A ( Q  + )  - A ( Q ~ )  + 7-o = dw  + Zo. 

Q~ 
The phase shift A and the oscillator frequencies are defined as 

o~ Q,I Q(; 

A k = - i f d w ~ ,  V o = - i f d I L ~ ,  WCo'}=-ifdgl {j) , (4.3) 

Ql? QI? Oo 

where the normalized differentials are integrated along the path on FN connecting 
the points Q0 ~ and going through the reference point Y0. Although T0 enters into the 
definition (3.12) of the vector A(Q), neither the Baker-Akhiezer function (3.13), nor 

I/N the reggeon coordinates (4.1) and (4.2) depend on its particular choice. Prefactor, qN , 
in (4.2) originates from the following expansion: 

1 dA(E) =Eq~W(1 +o(I /E) )  exp Q--'---0" exp ~ 

0 

and it is consistent with the definition (1.4) of the Hamiltonian qu, i.e. l"I~_l p~O, ,o, = Zn,n+l 
qu. The expressions (4.1) and (4.2) involve N -  1 free parameters - the prefactor p 
and the ( N -  2)-dimensional vector Z+ (or equivalently Zo). 

Let us show that solutions (4.1) and (4.2) satisfy the periodicity conditions (2.2). 
Using the transformation properties of the 0-function, (A.3), the same conditions can 
be expressed as 
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QJ 

f ..ink f ..m Vk = - i  d12~o = 27r-~-, Vo = - i  ds2~ = 2~r-~ , 

13~ Qo 

with mk and m being integers. To verify them we take into account the relation between 

the eigenvalues of the monodromy matrix, (2.9), and the dipole differential (3.9) 

dP( E) = -Nd[2~o , (4.4) 

and calculate from (2.9) and (2.11) the multi-valued function P(E)  at the branching 

points ej of the curve FN as e p('k) = +1 and at the points Q0 i above E = 0 as e p(°) = 1. 

4.1. Evolution times 

We recall that the parameters rt, entering (4.1) and (4.2) do not coincide with the 
evolution times tk in (2.1). To find the relation between them we notice that g + I 

points Qi . . . . .  Qt:, Qg+l -~ Qo obey (3.14) being zeros of the component ~ ( Q )  of 
the Baker-Akhiezer function. Moreover, the same points correspond to zeros of the 

B-component of  the monodromy matrix and their t-evolution is described by (2.22). 

Comparing the relations (3.14) and (2.22) and using the definition (3.12) of the vector 
A ( Q 0  together with (3.4), one obtains that up to a unessential additive constant 

N - 2  N - 2  

Z W~J'ri = ~ U, jtj+2. (4.5) 
j =  I j=  I 

where the matrix U was defined in (3.4) and (3.6). Let us also consider the r-dependent 

part of the exponent in (4.1) and take into account the relations (B.3) and (4.5) to get 

N - 2  N - 2  
_ _ _  w(J ) . r ,  r[ dE ih N - 2  f dE i ~-~ W~oJ)rj = ih ~--£~ , , j .  - Z ukj tie2. 

x/A2(E) - 4 rr v/A2(E) - 4 j,k=l j=l  i,k=l at: at, 

Comparing this identity with (3.11) and (4.3) one obtains 

N - 2  N - 2  

W(o'),'j =  _,(Vo)jtj+2. (4.6) 
i=1 j=l  

Substituting the transition formulas (4.5) and (4.6) into (4.1) and (3.13) we restore 

the dependence of the reggeon coordinates and the Baker-Akhiezer function on the 
evolution times tk. Finally, combining (4.1), (4.5), (4.6) and (2.19) we obtain the 
expressions for the holomorphic reggeon coordinates as 

O(Vn + U. t +  Z= + iA) 
z,', °' ( t)  = pexp ( 2ih te + iVo n + iUo • t) , (4.7) 

O(Vn + U. t + Z+) 

where the following notations were introduced: 
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N-2 N-2 

Uo" t = Z ( U o ) j t ) + 2 ,  Uk" t : y ~  Ukjtj+2. 
j=l j=l 

The ratio of the 0-functions in (4.7) describes linear trajectories on the Jacobian ,7"(l 'u) 
of the curve (2.10). Relation (4.7) implies that the motion of reggeons becomes an 

image of these trajectories on the complex z-plane modulated by U ( I )  rotations with 

the basic frequencies (U0)k. 

4.2. Curves with real branching points 

In the above consideration, the conserved charges qk as well as the branching points 

ek of the curve FN were assumed to have arbitrary complex values. Let us consider the 
situation when all 2 N - 2  branching points (2.11 ) of the algebraic curve FN are distinct 

and real, 

el < . . .  < e2N-2. (4.8) 

The branching points were defined in (2.11) as roots of the polynomial A2(E) - 4  

and in order for ek to be real the values of charges qk should also be real and, most 

importantly, they have to satisfy certain additional conditions. In particular, q2 should 
be negative 

q2 < 0,  (4.9) 

while the explicit form of the conditions on q3 . . . . .  qN depends on the number of 

reggeons N [6,8]. For example, for N = 3 states, they can be expressed as 

I 
0 ~< u23 ~< 2--7' (4.10) 

and for N = 4 states as 

2 8 u 4 ( ~ +  1 - 2 )  2 (4.11) 
- 4u4~<u  3~< 9 ~ + 1 - 1  ' 

where u3 = q3 / ( -q2 )  3/2 and u4 = qa/q 2. Let us identify the moduli of the hyperelliptic 

curve FN as (N - 2)-dimensional vector with the components uk = qk/(--q2) k/2 (k = 
3 . . . . .  N). The relations (4.10) and (4.11) define the regions on the moduli space, 
M ( F N ) ,  corresponding to curves FN with real branching points. At the boundary of 
these regions two of the branching points merge and the curve FN becomes singular. 

There is a special interest in considering soliton solutions for curves with real branch- 
ing points. We recall that the reggeon trajectories (4.1) appear as solutions of the 
evolution equations generated by the leading term So of the WKB expansion of the 
wave function of N reggeon state (1.6). A natural question arises as to whether the 
WKB expansion gives a meaningful approximation to solutions of the Schr6dinger equa- 
tion (1.1). It turns out that for the quantum numbers qk satisfying (4.10) and (4.11) 
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one can construct the exact  solutions to (I .1) within the Bethe ansatz approach [4,15]• 
A thorough analysis shows [6] that the WKB expansion is in a good agreement with 
the exact solutions. Thus, similar to electron orbits in the Bohr model of the hydrogen 
atom, the reggeon trajectory, corresponding to curves FN with real branching points, 
describes the quasiclassical limit of the quantum states constructed in [4,15]. 

Let us consider the properties of solitons (4.1) under the additional condition (4•8). 
According to our definition of the canonical set of cycles shown in Fig. 1, the cycle aj  
lies on FN above the interval [e2j, e2j+t ], called forbidden zones, on which A 2 ( E )  > 4. 

The Riemann surface defined by the curve I'N is constructed by gluing two copies of 
the complex E-plane along 2N - 2 finite intervals [e2j, e2j+l] and one infinite interval 
[e2N-2,ell  going through infinity. On the intervals [ e 2 j - l , e 2 j ]  ( j  = 1 . . . . .  N -  1), 
called allowed zones, one has A2(E) - 4 ~< 0 and the eigenvalue of the monodromy 
matrix, P ( E ) ,  has pure imaginary values with -~ Im P ( E )  being a quasimomentum. In 
particular, since A(0) = 2, the point E = 0 belongs to one of the allowed zones, which 

we denote as [ e2K-I, e2r  ], 

ej < . . .  < e2K-1 < 0 < e2x < . . .  < e2,v-2. (4.12) 

The values of e 2 x - i  and e2x can be defined as roots of (2.11 ) closest to the origin• The 
points Q0 i belong to the different sheets of FN and one has to specify the integration 
path on FN between the points Q~ and Qo entering (4.3). We would like to stress that 
although its choice in (4.3) can be arbitrary, in order to apply the relations (4.5) and 
(4.6) one has to require that the path should not cross the canonical cycles aj  and/3/. 

The latter condition fixes it uniquely as shown in Fig. 1. The path is trapped between 
the cycles f i x - i  and flK and its orientation on FN is opposite to that of the fl-cycles. 

Under these definitions it is easy to see from (3•6), and (3.1 1 ) that the parameters Uj,, 
(U0)k, V, V0 and A are real. Moreover, according to (4.4) and (3.12), the components 
of the vector Vn are given by the difference of the values of the quasimomentum at the 

branching points e2u-2 and e2,+l, that is 

V,,= - - - ~ - ( N - n ) ,  I ~ < n ~ < K -  1 

2~- 
----~- (N n - l ) ,  K < ~ n < ~ N - 2  

where the integer K is defined by configuration of the branching points. In a similar 
way, the parameter V0 can be calculated as 

e2K 

0 B~ 

For the vector zl. we get 

?2K 
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where rtc. is an element of  Riemann matrix (A . I )  and a~ °' = 2 E ; = / 2  Unj fo "2~ dEe' 

4.3. Solitons for N = 3 reggeon states 

Let us consider in more detail the properties of  the soliton waves for N = 3 reggeon 

states with the quantum numbers q2 = - h  2 and q3 satisfying the conditions (4.9) and 

(4.10).  Choosing in (4.10) the branch 0 ~< q3/h 3 <<, ~27 one matches the branching 
points of  F3 into (4.12) to get K = 1. The soliton solution (4.7) takes the form 

( 4i7r ) O ( - 2 ~ n + U t 3 + Z + + i A )  
- " 2 , ,  , ( 4 . 1 3 )  z~°'(t2, t 3 )=pexp  2iht24----~--n+iUot~ O(-~3n4-Ut34-Z+) 

where p and Z+ are arbitrary complex parameters defined by the initial conditions. 
The values of  U0, U and A can be calculated from (3.6) ,  (3.11) and (4.3) as elliptic 
integrals 

I7" f ~  d E  o 
V'A~-4 f dEE 

U - f~3 ~ d e e  ' U0 = - 2 h  .]e2~e~ ~d"Tk-T- ' A = 2U e, ~ -  A2 (4.14) 

with A(E) = 2 - h2E 2 + q3E 3 and A(el) = A(e2) = A(e3) = - 2 .  The modular 

parameter r entering the definition of the Riemann 0-function takes pure imaginary 

values, Im ~" >~ 0, 

f;? dEE 

• ~ (4.15) 1"--if f3 dEE 

For q3 inside the region (4.10),  the expression (4.13) defines quasiperiodic reggeon 

trajectories on the (x,  y)  plane of transverse coordinates, z = x 4- iy. An example of  

such trajectory corresponding to the quantum numbers q2 = - 1  and q3 = ! / 7  is shown 
in Fig. 2. An interesting property of  the trajectories (4.13) is that at any moment of  

time t2 and t3 the reggeon coordinates satisfy the condition 

Zl - -  Z2 Z2 - -  Z3 Z3 - -  Zl ( Z l  - -  Z 2 ) ( Z 2  - -  Z 3 ) ( Z 3  - -  Z l )  .h 3 
- -  + - -  + - -  - = t - - .  ( 4 . 1 6 )  
Zl 4 - Z 2  Z2 "t'- Z3 Z34-Zl (Z24-Z3)(Z24-Z3)(Z34-Zl )  q3 

It follows from the expression (1.4),  q3 = ZI2Z23Z31plP2P3, after one excludes the 
momenta  using L3 = - h  and L+ = L_ = 0. 

For q3 = 0 and q3 = h3/v ~ the branching points of  the curve 1"3 merge leading to 
r --- 0 and r = ioo, respectively. The curve F3 becomes singular and the properties of  
the soliton solutions are changed. 

4.3.1. Singularity at q3 = h3 /x/~-ff 
In this case, the branching points are located at el = -x /3 /h ,  e 2  = e 3  = 2v~/h ,  

e4 = 3x/3/h and the a-cycle  on if3 is shrinking into a point. Applying relations (4.14) 
and (4.15) one gets 
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1 
ilI 

-'2 -'1 6 i 
x 

Fig. 2. The trajectory of the reggeon on the ( x , y )  plane described by Eq. (4.13) for t2 = 0 and n = 1. The 
parameters have the following values: p = I, h = 1 and Z+ = 3 - i. The dot denotes the initial position of the 
reggeon at t~ = 0. 

h 2 
U o = - U -  v / ~ ,  A = - 2 1 n 2 ,  7 " ~ i c ~ .  (4 .17)  

We notice that in the l imit  1" ~ io~ and Z+ = O ( r  °)  the 0-funct ions  in (4 .13)  are 

replaced by I, s ince on ly  one  term with m = 0 survives in the infinite sum (A.2) .  
47ri '~3 The cor responding  solut ion,  zl, °' (t2,1'3 ) = , o e x p ( 2 i h t 2  + - T n  - t t 3 ) ,  describes three 

reggeons located in the vertices of  equilateral tr iangle and rotating around the origin 

as a whole. In order to avoid such rigid reggeon configurations,  one has to adjust the 

constant  Z,_ as 

Z~ = r r ~ ' + Z ~ + O ( r  - I )  

and use the asymptot ic  behaviour  of  the 0-funct ion (A.2)  

O (u  + 7rr; 7") = I + c - i "  , as 7" ~ i~c .  

Finally,  the soli ton solut ion for q3 = h 3 / v / ~  becomes 

. ( t n ( t ~ , t ~  ) = pe2iht2+g~2 n 4 + e  i'~ 27r h 2 
4(1 + e  -i 'p) ' 4 ' =  - f - n -  ~ t 3  - Z ~  (4 .18)  

with p and Zoo being arbitrary constants.  This  relation defines periodic reggeon trajec- 

tories on the plane and example of  such a trajectory is shown in Fig. 3. 

4.3.2.  S i n g u l a r i t y  a t  q3 = 0 

In this case, ej = - e 2  = - 2 / h  and two remaining  branching points merge at infinity, 

e3 = e4 = CO(I/q3) .  Integrat ion in (4 .14)  and (4 .15)  yields 

U = - iT"h  2 A = irTr I" ---* 0 
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Fig. 3. The reggeon trajectories on the (x, y) plane described by Eq. (4.18) for t2 = 0. The parameters have 
the following values: p = 1, h = I and Zoo = I + i. Dots denote the initial positions of the reggeons at t3 = 0. 

To analyze (4.13) at small r one uses the duality property of  the 0-function [ l  l ]  

O(z;r) = ( - i r ) -1 /2exp  \ 4rrrJ \ r  r J  ' (4.19) 

which maps r --+ 0 limit into asymptotic behaviour at r --+ ion. Taking the constant Z.~ 

in the form Z+ = Z0 + rZl with Z0 and Z1 arbitrary one gets from (4.19) and (4.13) 

that in the limit r --+ 0 the solution (4.13) becomes t3-independent, z~°'(t2, t3) = 
( - )"pexp(2hi t2  + ~Zo). To get a non-trivial solution one has to adjust the constant Z ,  

as  

77- 
Z+ = -5 + rZl + (-9(r 2) . 

The resulting expression for reggeon coordinates looks like 

Z~ 0 ) ( t 2 ,  t3) = --Z~ 0 ) ( t 2 ,  t3) = pe2iht2, 

z~°)(t2, t3) = z(3°)(t2,0) tanh -~-t3 - ~Zi . (4.20) 

Here, the positions of  the reggeons with the numbers n = l and n = 3 are frozen in 
time t3 and the n = 2nd reggeon moves between them, z~°)(t2,-oc) = z~°)(t2,0) and 

z~°~(t2, oc)  = z(3°)(t2,0), It is easy to see that the trajectory (4.20) is consistent with 
(4.16).  

5. Muiti-soliton solutions 

As we have seen in the previous section, the soliton solutions corresponding to the 
degenerate singular spectral curve FN can be written for N = 3 in terms of  trigonometric 

functions. In the finite-gap theory they are called multi-soliton solutions [9] .  Let us 
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show that the same property holds for any N. Although muhi-soliton solutions can 

be obtained as limits of  general periodic solutions (4.7) for the degenerate curve FN, 

there is a simpler way to write them directly without going through a complicated 
degeneration procedure. 

The multi-soliton solutions correspond to a degenerate case, when all but two roots 

of  Eq. (2.11 ) are double, that is 

N-2 
A2(E)  - 4  = q~ ( E -  e _ ) ( E -  e+)E  2 1 - I ( E -  ei)  2, 

j=l 
(5.1) 

with e_ :~ e+. In this limit, the branching points of  the curve FN merge and the 

definition (2.10) of  FN takes the form 

N-2 
,sing I ' I  N : y 2 = ( E - e - ) ( E - e + ) ,  y = . v x q u  ( E - e j ) .  (5.2) 

j=l 

/-,sing Here, ~" is a rational curve and the Riemann surface corresponding t o ,  N has a genus 

g = 0, a sphere. It is constructed by gluing together two sheets along the cuts (c~, e_ ] 

and [e+, o~). One can introduce a global complex parameter x on FN and parameterize 

the solutions to (5.2) as 

with fl = ~ (e ~ - e_ )  and ot = ½ (e_ + e_ ). In this parameterization, the points X = OC 

and K = 0 correspond to the punctures Q ~  on the upper and lower sheets, respectively. 

The permutation of  sheets of  I'N corresponds to involution in the K-plane, K ~ IlK, 

which does not change the value of  E, 

E(K)  = E ( l / x ) .  (5.4) 

All meromorphic functions (and differentials) o n  FN introduced before can be now 

rewritten as functions of  the parameter r only. In particular, consider the function w = 

e p(E~, the BIoch multiplier, defined in (2.8). According to (2.12), it has a pole of  order 

N at Q ~  and a zero of  degree N at Q ~ .  Therefore, as a function of  x it has a unique 

form w = aK N. At the vicinity of  the punctures Q ~  one substitutes X ",~ f i l E  ~ 0 and 

x ~ E / f l  --, oc into w(K)  and matches the asymptotics of  w ( E )  with (2.12) to get the 

values of  the constants, a = 1 and fl = q ~ l / u  leading to 

W = e P iE)  = K N . 

Fsing To find the positions o f  the branching points o f ,  ;v we substitute this relation into 
(2.9),  

A(E)  = K N + K -N = 2 + q2EZ(K) + . . .  + q,vEN(K) , (5.5) 
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and notice that, according to (5.1),  A2(E) - 4 at the branching points and A(E)  = 2 
for E = 0. Thus, K 2u = 1 at the branching points e+ and e j, while r u = 1 at two points 

F , s i n g  Q0 i on - u  above E = 0. These conditions define 2N points on the complex K-plane 

K j = e ~ J  ( j = l  . . . . .  2 N -  1) (5.6) 

and we identify the corresponding values E(Kj) = 2qu cos t iv ) + a as 2N roots of  

A 2 - 4  in (5.1).  Since I /Kj = K2u-j, it follows from (5.4) that, in agreement with 

(5.1),  2N - 2 roots are degenerate, E(Kj) = E(K2u-j )  and j 4: 0, N. The remaining 

two roots, j = 0, N, correspond to the branching points e~ = E(K0) and e_ = E(KN). 

Among N - 1 pairs K j, K2N-j of  the double roots one has to specify the pair that 
/-,sing 

corresponds to two points Q~ on , u above E = O. Let j = j0 be the corresponding 

index. Since e+ 4= E(Kio) = 0 and K~' = 1 the values of  j0 are constrained to be positive 
• Jo 

even 

0 < jo < N ,  jo/2 = Z .  (5 .7)  

This index parameterizes different multi-soliton solutions• For given j0 one solves the 

equation E(tcjo) = 0 to find the constant cr = -2q~l /Ncos(Trjo/N)  and obtain the 
branching points of  r~in~ ~ N  a s  

e j = 2 q ~  I/N [ c o s ( - - - ~ - ) - c o s ( - ~ ) ]  , e + = 2 q N l / N [ + l - - C O S ( - ~ ) ]  

• . , psing and with j = 1,. N - 1 and j 4= j0. The branching points fix uniquely the curve -iv 

allow us to evaluate the corresponding values of  the quantum numbers qk. Substituting 

the first relation (5.3) into (5.5) and comparing the coefficients in front of  the various 

powers of  K in both sides of  (5.5) one obtains the system of  equations on qk and, in 

particular, 

q2qs "~' = • qN- iqs  '~' = 2Ncos  
4 sin 2 ( ~ )  . . . .  

For N = 3 and N = 4 the solution to (5.7) is j0 = 2 leading to q2q3 2/3 = - 3  and 

(q2q41/2 = - 4 ,  q3 = 0),  respectively. 
a r s ing  Its properties formulated Let us consider the Baker-Akhiezer function ~n on -N  • 

in Section 3 imply that being functions of  complex t< it can be written in the form 

X-'~'-2~, t~, q~slu Ra(K;n, {7"}) 
~ ' ( t < ;  {7"}) = K - " e ~ ' :  ~, it - '<- ' )  x R0(K) ' (5.8) 

where R0 and R,~ (or = 1,2) are polynomials of  degree N - 1 in K. The zeros of  

R0(K) become poles of  ~ '  and in what follows can be considered as parameters of  
the multi-soliton solutions, R0(K) = 1-I~TI ( x -  y.,.). To verify the asymptotic behaviour 
(3.1) one has to take into account the relation 

( ,  E(K) =qN j/u K + ----  2COS (5.9) 
K 



G.P. Korchem.~ky. LM. Krichever/Nuclear Physics B 505 (1997) 387-414 409 

and perform the limits K ---+ 0 and K ~ c~z. The so far unknown polynomials R,, are 

uniquely defined by the normalization conditions (2.17), 

~,.~(l/~j,,) = 1, ~'~ (~jo) = o ,  (5.1o) 

~,7(~/,,,0) =o, v,~(,,;,,) = 

and the additional N - 2 linear relations 

t I - t n ( I / K / ) = q t ~ ( K j ) ,  j = l  . . . . .  N - l ,  j d : j o , .  (5.11) 

The meaning of the last condition is that the parameters Kj and i/Kj define the same 
using point on the curve. It belongs simultaneously to both sheets of - u  and the value of 

the functions ~ "  should be the same. Let us choose the polynomial R2(x; n{r}) in the 

following form: 

[ N - I  N - 3  

: A × 

L," o /=O 

with A and a! ( l  = 0 . . . . .  N -  3) being some functions of n and r. One verifies that ~F~ 
satisfies the normalization conditions (5.10) provided that A is given by 

Ro(~jo) - Z " ;  -2,,(Kj`,-K;,) q;,,. A(n, {r}) = 
(Kj,,-  l/~jo) [IU,~(~jo - ~j) Ki°e 

J * S(I 

=const. x exp |m--if-  - 2i Z "rs sin q~S/,v . 
.~=-1 

The conditions (5.11 ) lead to the linear system of equations for at that can be expressed 

a s  

N-3 1@ i , 1-I/v=/' (1 - KjK,) j = I , .  N - 2 (5.12) 
Z assin 2 . , = o  j +  s = T e  -~'~' (1--KjKjo) 2 . . . . .  

Here, the parameters Kj are given by (5.6) and the phases are defined as 

N - 2  

~ i (n ,  {r}) = n - ~  - 4 Z r s s i n  q ~ v q N + Z j  (5.13) 
.~= I 

with Zj being some constants depending on zeros yj . . . . .  yN-I .  The solution to (5.12) 

can be written explicitly as a ratio of  determinants. Comparing (3.1) with (5.8) in the 
limit K --, oo we get 

~b~'(n,{r}) = A  x (1 + a 0 )  =const  × e ~ %  [1 + a 0 ( e  ~ '  . . . . .  e~'N ')]  , (5.14) 

where a0 is rational function of all phases except ei%. Repeating a similar analysis for 
the polynomial R~ one arrives at the relation 
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~b~'(n, {~-}) = A  - l  x (1 + a o )  = const.e-~*Jo [1 + ~ o ( e  -i~'  . . . . .  e - ' *N- ' ) ]  , 

(5.15) 

with a0 being a function complex conjugated to ao. 

To finish the description o f  the multi-soliton solutions one has to turn to the evolution 

times tk using the transition formulas (4.5) and (4.6). Let us consider the meromorphic 

differential of  the second kind entering the definitions (3.12) and (4.3). It follows from 
/-.sing the differential dO (j) has an Nth (5.9) and (3.7),  that on the degenerate curve --N 

order pole at the points K = 0 and K = co. Therefore it can be written as 

dO(J) = qNY/N d (h  "j -- K-J) 

with the prefactor fixed by the asymptotics (3.7). Substituting this identity into (3.12) 

and (4.3) one gets 

W ~ J ) = 4 q N J / N s i n ( ~ )  , W ( o J ) = 4 q N J / N s i n ( ~ ) ,  ( 5 . 1 6 )  

where k = 1 . . . . .  N - 1 and k 4= j0. To evaluate the r.h.s, of  (4.5) and (4.6) one has 
/,sing to examine the E-expansion of  the differentials dwk and dO0 on - u  and identify the 

coefficients Ukj and (Uo)k. We observe that due to (5.1) and (3.4) the differential dwk 
has N - 2 additional poles on F~, "g located at the points E = ej. The normalization 

condition (3.5) implies that it has a vanishing residue at all points except of  E = ek, 

where its residue is equal to i. This gives the following system of  equations on Ukj: 

N - I  

Z UkjE) = ZqN Sm (E  - ei) , (5.17) 
.i= I 

t ~ l  0 

valid for any E. The analysis of  the differential dO0 can be performed in a similar way 

with the only difference that, according to (3.8), the residue of  dOo vanishes at all 

points E = ej ( j  4= jo) and its residue at E = ej, = 0 is equal to 1, 

N - 2  N-1 

= 2qN sin (E  - ei) • (5.18) 

j=l ,,to 

The relations (5.17) and (5.18) allow us to calculate the coefficients U~ i and (Uo)k in 

terms of  the branching points ej and, in particular, 

( Uo),v-2 = 2 sin q,v , Uk.N-2 = 2 sin qN • 

One checks that for N = 3, leading to J0 = 2, these expressions are in agreement with 

(4.17). Observing the relation Ujo.k = (U0)k, we substitute (5.16) into the transition 
formulas (4.5) and (4.6) to obtain the phases (5.13) in the following form: 

N - 2  
2~k 

• k(n, {/}) = n--~-  - ~ Ukjtj+2 + Zk,  1 <~ k <~ N - 1, 
3=1 
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with the coefficients Ukj calculated from (5.17). Finally, substitution of (5.14) and 
(5.15) into (3.2) yields the multi-soliton solutions for the reggeon coordinates, 

..... ( t )  = p e  2iht'+i%o 1 + ao(e  i*t . . . . .  e i* ' - '  ) 
"" 1 + a o ( e  -i'~t . . . . .  e - i ~ - ~ )  

(5.19) 

with /9 being a constant. For N = 3 this expression coincides with (4.18). Solving 
(5.12) for arbitrary N one obtains the multi-soliton solutions (5.19) in the form of 
rational functions of N exponentials, e i'tS. 

6. C o n c l u s i o n s  

In the present paper we studied the asymptotic solutions of the Schr6dinger equation 
( 1.1 ) for the color-singlet reggeon compound states in multi-color QCD. In the Regge 
limit, a non-trivial QCD dynamics affects only transversal reggeon degrees of freedom 
and the N reggeon compound states look like a system of N interacting particles on the 
2-dimensional plane of transverse reggeon coordinates. This system possesses a large 
enough family of conserved charges qk for the Schr6dinger equation to be completely 
integrable. We identified the eigenvalue of the "lowest" charge q2 as a parameter of the 
asymptotic expansion playing the role of the effective Planck constant. 

in the leading order of the asymptotic expansion, quantum fluctuations are frozen and 
quantum mechanical motion of reggeons is restricted to the classical trajectories driven 

by the "action" function So. The conserved charges qg are replaced by classical functions 
on the phase space of N reggeons. They have a mutually vanishing Poisson brackets and 
generate the hierarchy of the evolution equations for the reggeon coordinates. For N = 2 
reggeon states, the solution to the evolution equations describes two reggeons rotating 
around the center-of-mass with the angular velocity given by the conformal weight h. 
For N >/ 3, integrals of motion q3 . . . . .  qu generate new modes of the classical reggeon 
motion which we identified as soliton waves propagating on the chain of N particles 
with periodic boundary conditions. Applying the methods of the finite-gap theory we 
constructed the explicit form of the reggeon trajectories in terms of Riemann 0-functions 
and studied their properties. 

The orbits of the classical reggeon motion are parameterized by the eigenvalues of 
the conserved charges qk (k/> 3). They define the moduli of the hyperelliptic curve l ' u  

and appear as parameters of the soliton solutions. In the leading order of the asymptotic 
expansion the eigenvalues of qk could take arbitrary complex values. Quantization of 
q3 . . . . .  qN appears as a result of imposing the Bohr-Sommerfeld quantization conditions 
on the classical orbits of reggeon motion. It was shown [6] that for N = 3 reggeon 
compound states the results of the WKB expansion for eigenvalue of q3 are in a good 
agreement with the exact expressions [4,15] obtained by means of the algebraic Bethe 
ansatz [ 16] for integer positive h. Solutions to the Bohr-Sommerfeld conditions 16] givc 
the quantized values of qk as functions of the conformal weight h and some additional 
set of integers {l} = (ll . . . . .  lt,,-2) parameterizing different families of curves on the 



412 G.P Korchemsky LM. Krichever/Nuclear Physics B 505 (1997) 387-414 

moduli space, qk = qk(h; {l}) (k = 3 . . . . .  N). These curves can be found as solutions 
of  the Whitham equations [8] describing the adiabatic perturbation [ 17] of  the reggeon 

soliton waves. 
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Appendix A 

Let us recall the definition of  the Riemann P-function and some of  its properties [ 11 ]. 

We choose the basis of  cycles a j ,  flj on the Riemann surface FN with the canonical 

matrix of  intersections as shown in Fig. I. Then, we construct the basis of  normalized 

holomorphic differentials (3.4) and evaluate the g x g Riemann matrix of  their fl-periods, 

J ' /  1 dwk = 7~ik dw~ ~jk (A. 1 ) 
2 ¢ r  ' 

The r-matrix is symmetric and it has a positive definite imaginary part. The basic g- 

dimensional vectors (ej)~ = 2rrajk and (bj)k = 2rrri~ generate the lattice 12 and allow 

us to construct the torus f f ( F N )  = C e / ~  called the Jacobian of  the Riemann surface 
FN. 

One defines the g-dimensional Riemann P-function as 

O(u; r )  = ~ exp (irr(rm, m) ÷ i{u, m)),  (A.2) 
mEZ* 

where u = (ul . . . . .  ug) is a complex vector on the Jacobian ,7(F,v) ,  m = (ml . . . . .  m R) 
is a vector with integer components, (rm, m) e = Y'~j,k=I rjkmjmk and (u, m) = Y'~jg--I ujmj. 

The 0-function has the following periodicity properties. For any integer l C Z e and 

complex u E C e one has 

O(u + 2rr/) = 0 ( u ) ,  O(u + 2rrrl) = exp (- irr(r l ,  1) - i(u, l } )O(u) .  (A.3) 

The zeros of  the 0-function satisfy the following condition. Let us fix a reference 

point "Y0 on I'N and define the vector Ak(Q)  = f Q d w k  for any Q E Fu. Then, for an 
arbitrary complex Z = (ZI . . . . .  Z e) E C*, the function O(A(Q)  - Z)  either vanishes 

identically or it has exactly g zeros at the points QI . . . . .  Qg such that 

A ( Q I )  + . . .  + A(Qg) = Z - IC (A.4) 

with/(7 = IC(FN,7o) being the vector of  Riemann constants. 
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Appendix B 

Let us establish some useful relations between the parameters Ak and W~o j) defined in 
(4.3) and the periods of the normalized differentials on FN. Their derivation is based 
on the following identity (Stokes theorem) valid for any two unnormalized differentials 

dw and dw' o n  I'N, 

Q Q g 

j=l = f f f a (o) f (B.1) 

C ~[) C ~'o 

Here, aj = f , ,  dw, bj = ~ ,  dw and similarly for doY are the periods of the differentials, 
3'0 is a point on FN in a general position, C is an oriented closed contour on l 'u which 
encircles all singularities of differentials. The contour C should not cross the cycles o~,. 
and /3,. (s = 1 . . . . .  g). The same condition is imposed on the integration path between 

points Y0 and Q in (B.I) .  
Applying the identity (B.I)  to a pair of the normalized differentials dock and d/-10 

defined in (3.4) and (3.10) one uses the normalization condition on the 1.h.s., calculates 

the r.h.s, by taking the residue at the poles Q0 ~ and gets the well-known relation I 11 ] 

Q,I 

0,~ /sk 

Let us consider the following unnormalized dipole differential: 

d~o = 2ih dE _ 2ih dE 
Ey( E) ~/A2( E) - 4 '  

which appears as a leading term in the expansion (3.10) of the normalized dipole 

differential dDo. It has simple poles at the points Q0 ~ with the residue + l ,  respectively, 
and its asymptotics at the vicinity of puncture Q~  on the upper sheet is 

d~'2o e-~oc 2ihdE E_U ( 1 + (.9( l / E ) ) .  (B.2) 
qN 

Applying the identity (B.I)  to a pair of d~'2o and normalized meromorphic differential 
of the second kind, dO (j), taking into account the normalization condition (3.8), calcu- 
lating the r.h.s, by taking the residue at the simple poles Q0 :t: of the differential d~'10 and 
jth order poles Q~  of the meromorphic differential dO (j), one arrives at the following 
relation: 

N - 9  , Qo 

d dO Cj) = -27ri d~2 (j) + 2.2o'r i( j  
z = ] / L ' ~ { }  .= 

"' ~' Qo 

We notice that the derivative in the last term vanishes for j = I . . . . .  N -  2 due to (B.2) 
and one gets the identity 
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Q° N-2 

/.o<,,:/,.<,,: ;'v.:,, I ,. 7r ~1 v /  A2( E)  - 4 
{20 a, 

1 < ~ j < ~ N - 2 ,  (B.3) 

wi th  the  vec to r  W t j) def ined  in ( 3 . 1 2 ) .  
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