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Abstract: The standard objects of quantum integrable systems are identified with el-
ements of classical nonlinear integrable difference equations. The functional relation
for commuting quantum transfer matrices of quantum integrable models is shown to
coincide with classical Hirota’s bilinear difference equation. This equation is equivalent
to the completely discretized classical 2D Toda lattice with open boundaries. Elliptic
solutions of Hirota’s equation give a complete set of eigenvalues of the quantum transfer
matrices. Eigenvalues of Baxter’sQ-operator are solutions to the auxiliary linear prob-
lems for classical Hirota’s equation. The elliptic solutions relevant to the Bethe ansatz
are studied. The nested Bethe ansatz equations forAk−1-type models appear as discrete
time equations of motions for zeros of classicalτ -functions and Baker-Akhiezer func-
tions. Determinant representations of the general solution to bilinear discrete Hirota’s
equation are analysed and a new determinant formula for eigenvalues of the quantum
transfer matrices is obtained. Difference equations for eigenvalues of theQ-operators
which generalize Baxter’s three-termT -Q-relation are derived.

1. Introduction

In spite of the diversity of solvable models of quantum field theory and the vast variety
of methods, the final results display dramatic unification: the spectrum of an integrable
theory with a local interaction is given by a sum of elementary energies

E =
∑

i

ε(ui) , (1.1)

whereui obey a system of algebraic or transcendental equations known asBethe equa-
tions[4, 16]. The major ingredients of Bethe equations are determined by the algebraic
structure of the problem. A typical example of a system of Bethe equations (related to
A1-type models with an ellipticR-matrix) is
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e−4ην φ(uj)
φ(uj − 2)

= −
∏
k

σ(η(uj − uk + 2))
σ(η(uj − uk − 2))

, (1.2)

whereσ(x) is the Weierstrassσ-function and

φ(u) =
N∏

k=1

σ(η(u − yk)) . (1.3)

Entries of these equations which encode information of the model are the functionε(u)
(entering throughφ(u)), quasiperiodsω1, ω2 of theσ-function, parametersη, ν, yk and
size of the systemN . Different solutions of the Bethe equations correspond to different
quantum states of the model.

In this paper we show that these equations, which are usually considered as a tool
inherent to the quantum integrability, arise naturally as a result of the solution of entirely
classicalnon-lineardiscrete timeintegrable equations. This suggests an intriguing in-
terrelation (if not equivalence) betweenintegrable quantum field theoriesandclassical
soliton equations in discrete time. In forthcoming papers we will show that the Bethe
equations themselves may be considered as a discrete integrable dynamical system.

R. Hirota proposed [20] a difference equation which unifies the majority of known
continuous soliton equations, including their hierarchies [42, 12]. A particular case of
the Hirota equation is a bilinear difference equation for a functionτ (n, l, m) of three
discrete variables:

ατ (n, l + 1, m)τ (n, l, m + 1) +βτ (n, l, m)τ (n, l + 1, m + 1)

+γτ (n + 1, l + 1, m)τ (n − 1, l, m + 1) = 0, (1.4)

where it is assumed thatα +β +γ = 0. Different continuum limits at different boundary
conditions then reproduce continuous soliton equations (KP, Toda lattice, etc). On the
other hand,τ (n, l, m) can be identified [42] with theτ -function of a continuous hierarchy
expressed through special independent variables.

The same equation (with a particular boundary condition) has quite unexpectedly
appeared in the theory ofquantumintegrable systems as a fusion relation for the transfer
matrix (trace of the quantum monodromy matrix).

The transfer matrix is one of the key objects in the theory of quantum integrable
systems [13]. Transfer matrices form a commutative family of operators acting in the
Hilbert space of a quantum problem. LetRi,A(u) be theR-matrix acting in the tensor
product of Hilbert spacesVi ⊗ VA. Then the transfer matrix is a trace over the auxiliary
spaceVA of the monodromy matrix. The latter being the matrix product ofN R-matrices
with a common auxiliary space:

T̂A(u|yi) = RN,A(u − yN ) . . . R2,A(u − y2)R1,A(u − y1) ,

TA(u) = trAT̂A(u|yi) . (1.5)

The transfer matrices commute for all values of the spectral parameteru and different
auxiliary spaces:

[TA(u), TA′ (u′)] = 0. (1.6)

They can be diagonalized simultaneously. The family of eigenvalues of the transfer
matrix is an object of primary interest in an integrable system, since the spectrum of the
quantum problem can be expressed in terms of eigenvalues of the transfer matrix.
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The transfer matrix corresponding to a given representation in the auxiliary space
can be constructed out of transfer matrices for some elementary space by means of
the fusion procedure[35, 36, 26]. The fusion procedure is based on the fact that at
certain values of the spectral parameteru theR-matrix becomes essentially a projector
onto an irreducible representation space. The fusion rules are especially simple in the
A1-case. For example, theR1,1(u)-matrix for two spin-1/2 representations in a certain
normalization of the spectral parameter is proportional to the projector onto the singlet
(spin-0 state) atu = +2 and onto the triplet (spin-1 subspace) atu = −2, in accordance
with the decomposition [1/2] + [1/2] = [0] + [1]. Then the transfer matrixT 1

2 (u) with
spin-1 auxiliary space is obtained from the product of two spin-1/2 monodromy matrices
T̂ 1

1 (u) with arguments shifted by 2:

T 1
2 (u) = tr[1]

(
R1,1(−2)T̂ 1

1 (u + 1)T̂ 1
1 (u − 1)R1,1(−2)

)
.

A combination of the fusion procedure and the Yang-Baxter equation results in numerous
functional relations (fusion rules) for the transfer matrix [35, 47]. They were recently
combined into a universal bilinear form [30, 37]. The bilinear functional relations have
the most simple closed form for the models of theAk−1-series and representations
corresponding torectangularYoung diagrams.

Let T a
s (u) be the transfer matrix for the rectangular Young diagram of lengtha and

heights. If η can not be represented in the formη = r1ω1 + r2ω2 with rationalr1, r2
(below we always assume that this is the case; for models with trigonometricR-matrices
this means that the quantum deformation parameterq would not be a root of unity), they
obey the following bilinear functional relation:

T a
s (u + 1)T a

s (u − 1) − T a
s+1(u)T a

s−1(u) = T a+1
s (u)T a−1

s (u) . (1.7)

SinceT a
s (u) commute at differentu, a, s, the same equation holds for eigenvalues

of the transfer matrices, so we can (and will) treatT a
s (u) in Eq. (1.7) as number-valued

functions. The bilinear fusion relations for models related to other Dynkin graphs were
suggested in ref. [37].

Remarkably, the bilinear fusion relations (1.7) appear to be identical to the Hirota
equation (1.4). Indeed, one can eliminate the constantsα, β, γ by the transformation

τ (n, l, m) =
(−α/γ)n

2/2

(1 +γ/α)lm
τn(l, m),

so that

τn(l + 1, m)τn(l, m + 1)− τn(l, m)τn(l + 1, m + 1) = τn+1(l + 1, m)τn−1(l, m + 1) = 0,
(1.8)

and then change variables fromlight-conecoordinatesn, l, m to the“direct" variables

a = n, s = l + m, u = l − m − n,

τn(l, m) ≡ T a
l+m(l − m − n). (1.9)

At least at a formal level, this transformation provides the equivalence between Eqs. (1.7),
(1.4) and (1.8). In what follows we call Eq. (1.8) (or (1.7)) Hirota’s bilinear difference
equation (HBDE).

Leaving aside more fundamental aspects of this “coincidence," we exploit, as a first
step, some technical advantages it offers. Specifically, we treat the functional relation
(1.7) not as an identity but as afundamental equationwhich (together with particular
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boundary and analytical conditions) completely determines all the eigenvalues of the
transfer matrix. The solution to HBDE then appears in the form of the Bethe equations.
We anticipate that this approach makes it possible to use some specific tools of classical
integrability and, in particular, the finite gap integration technique.

The origin ofT a
s (u) as an eigenvalue of the transfer matrix (1.5) imposes specific

boundary conditions and, what is perhaps even more important, requires certain analytic
properties of the solutions. As a general consequence of the Yang-Baxter equation, the
transfer matrices may always be normalized to beelliptic polynomialsin the spectral
parameter, i.e. finite products of Weierstrassσ-functions (as in (1.3)). The problem
therefore is stated as finding elliptic solutions of HBDE.

A similar problem appeared in the theory of continuous soliton equations since the
works [1, 11], wherein a remarkable connection between the motion of poles of the
elliptic solutions to the KdV equation and the Calogero-Moser dynamical system was
revealed. Elliptic solutions to Kadomtsev-Petviashvili (KP), matrix KP equations and
the matrix 2D Toda lattice (2DTL) were analyzed in Refs. [31, 32, 33], respectively.
It was shown, in particular, that poles of elliptic solutions to the abelian 2DTL (i.e.
zeros of correspondingτ -functions and Baker-Akhiezer functions) move according to
the equations of motion for the Ruijsenaars-Schneider (RS) system of particles [48].

Analytic properties of solutions to HBDE relevant to the Bethe ansatz suggest a
similar interpretation of Bethe ansatz equations. We will show that the nested Bethe
ansatz forAk−1-type models is equivalent to a chain of Bäcklund transformations of
HBDE. The nested Bethe ansatz equations arise as equations of motion for zeros of the
Baker-Akhiezer functions in discrete time (discrete time RS system1). The discrete time
variable is identified with the level of the nested Bethe ansatz.

The paper is organized as follows. In Sect. 2 we review general properties and
boundary conditions of solutions to HBDE that yield eigenvalues of quantum transfer
matrices. In Sect. 3 the zero curvature representation of HBDE and the auxiliary linear
problems are presented. We also discuss the duality relation between “wave functions"
and “potentials" and define Bäcklund flows on the set of wave functions. These flows
are important ingredients of the nested Bethe ansatz scheme. For illustrative purposes,
in Sect. 4, we give a self-contained treatment of theA1-case, where the major part
of the construction contains familiar objects from the usual Bethe ansatz. Section 5 is
devoted to the generalAk−1-case. We give a general solution to HBDE with the required
boundary conditions. This leads to a new type of determinant formulas for eigenvalues
of quantum transfer matrices. A sketch of proof of this result is presented in the appendix
to Sect. 5. Generalized Baxter’s relations (difference equations forQt(u)) are written in
the explicit form. They are used for examining the equivalence to the standard Bethe
ansatz results. In Sect. 6 a part of the general theory of elliptic solutions to HBDE is
given. Section 7 contains a discussion of the results.

2. General Properties of Solutions to Hirota’s Equation Relevant to Bethe Ansatz

2.1. Boundary conditions and analytic properties.HBDE has many different solutions.
Not all of them give eigenvalues of the transfer matrix (1.5). There are certain boundary
and analytic conditions imposed on the transfer matrix (1.5).

1 It should be noted that equations of motion for the discrete time RS system were already written down in
the paper [43]. However, the relation to elliptic solutions of discrete soliton equations and their nested Bethe
ansatz interpretation were not discussed there.
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(i) It is known thatT k
s (u), the transfer matrix in the most antisymmetrical repre-

sentation in the auxiliary space, is a scalar, i.e. it has only one eigenvalue (sometimes
called the quantum determinant detq T̂s(u) of the monodromy matrix). It depends on the
representation in the quantum space of the model and is known explicitly. In the simplest
case of the vector representation (one-box Young diagram) in the quantum space it is
[34]:

T k
s (u) = φ(u − s − k)

k−1∏
l=0

s−1∏
p=1

φ(u + s + k − 2l − 2p − 2)
k−1∏
l=1

φ(u + s + k − 2l), (2.1)

T 0
s (u) = 1. (2.2)

These values ofT 0
s (u) andT k

s (u) should be considered as boundary conditions. Let us
note that they obey the discrete Laplace equation:

T k
s (u + 1)T k

s (u − 1) = T k
s+1(u)T k

s−1(u). (2.3)

This leads to the boundary condition (b.c.)

T a
s (u) = 0 as a < 0 and a > k (2.4)

(with this b.c. Eq. (1.8) is known as the discrete two-dimensional Toda molecule equation
[22], an integrable discretization of the conformal Toda field theory [8]).

(ii) The second important condition (which follows, eventually, from the Yang-Baxter
equation) is thatT a

s (u) has to be an elliptic polynomial in the spectral parameteru. By
elliptic polynomial we mean essentially a finite product of Weierstrassσ-functions. For
models with a rationalR-matrix it degenerates to a usual polynomial inu.

To give a more precise formulation of this property, let us note that Eq. (1.7) has the
gauge invariance under a transformation parametrized by four arbitrary functionsχi of
one variable:

T a
s (u) → χ1(a + u + s)χ2(a − u + s)χ3(a + u − s)χ4(a − u − s)T a

s (u) . (2.5)

These transformations can remove all zeros from the characteristicsa ± s ± u = const.
We require that the remaining part of allT a

s (u) should be an elliptic (trigonometric,
rational) polynomial of one and the same degreeN , whereN is the number of sites on
the lattice (see (1.3)).

One can formulate this condition in a gauge invariant form by introducing the gauge
invariant combination

Y a
s (u) =

T a
s+1(u)T a

s−1(u)

T a+1
s (u)T a−1

s (u)
. (2.6)

We requireY a
s (u) to be an elliptic function having 2N zeros and 2N poles in the

fundamental domain. This implies thatT a
s (u) has the general form2

T a
s (u) = Aa

seµ(a,s)u
N∏
j=1

σ(η(u − z(a,s)
j )) , (2.7)

wherez(a,s)
j , Aa

s , µ(a, s) do not depend onu and the following constraints hold:

2 This differs from a more traditional expression in terms of Jacobiθ-functions by a simple normalization
factor.
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N∑
j=1

(z(a,s+1)
j + z(a,s−1)

j ) =
N∑
j=1

(z(a+1,s)
j + z(a−1,s)

j ) , (2.8)

µ(a, s + 1) +µ(a, s − 1) = µ(a + 1, s) + µ(a − 1, s) . (2.9)

Another gauge invariant combination,

Xa
s (u) = −T a

s (u + 1)T a
s (u − 1)

T a+1
s (u)T a−1

s (u)
= −1 − Y a

s (u) , (2.10)

is also convenient.
As a reference, we point out gauge invariant forms of HBDE [37]:

Y a
s (u + 1)Y a

s (u − 1) =
(1 +Y a

s+1(u))(1 +Y a
s−1(u))

(1 + (Y a+1
s (u))−1)(1 + (Y a−1

s (u))−1)
, (2.11)

Xa
s+1(u)Xa

s−1(u) =
(1 +Xa

s (u + 1))(1 +Xa
s (u − 1))

(1 + (Xa+1
s (u))−1)(1 + (Xa−1

s (u))−1)
. (2.12)

It can be shown that the minimal polynomial appears in the gauge

T a
s (u) → T a

s (u)

a−1∏
l=0

s−1∏
p=1

φ(u + s + a − 2l − 2p − 2)
a−1∏
l=1

φ(u + s + a − 2l)

−1

,

(2.13)
where all the “trivial" zeros (common for all the eigenvalues) of the transfer matrix are
removed (see e.g. [54]). The boundary values ata = 0, k then become:

T 0
s (u) = φ(u + s),

T k
s (u) = φ(u − s − k) . (2.14)

From now on we adopt this normalization.
(iii) The analyticity conditions and b.c. (2.14) lead to a particular “initial condition"

in s. It is convenient, however, to take advantage of it before the actual derivation. The
condition reads

T a
s (u) = 0 for any − k < s < 0, 0 < a < k . (2.15)

This is consistent with (1.7), (2.14) and implies

T a
0 (u) = φ(u − a) (2.16)

for 0 ≤ a ≤ k.
Under the analyticity conditions (i) and the b.c. (2.14) (and their consequences (2.15),

(2.16)) each solution to HBDE (1.7) corresponds to an eigenstate of theAk−1-transfer
matrix.

The same conditions are valid for higher representations of the quantum space.
However, in that case there are certain constraints on zeros ofφ(u) (they should form
“strings"), whenceT a

s (u) acquires extra “trivial" zeros. Here we do not address this
question.

2.2. Pl̈ucker relations and determinant representations of solutions.Classical integrable
equations in Hirota’s bilinear form are known to be naturally connected [50, 25, 51],
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with geometry of Grassmann’s manifolds (grassmannians) (see [24, 23, 19]), in general
of an infinite dimension. Type of the grassmannian is specified by boundary conditions.
Remarkably, the b.c. (2.4) required for Bethe ansatz solutions corresponds tofinite
dimensionalgrassmannians. This connection suggests a simple way to write down a
general solution in terms of determinants and to transmit the problem to the boundary
conditions. Numerous determinant formulas may be obtained in this way.

The grassmannianGr+1
n+1 is a collection of all (r + 1)-dimensional linear subspaces of

the complex (n + 1)-dimensional vector spaceCn+1. In particular,G1
n+1 is the complex

projective spacePn. Let X ∈ Gr+1
n+1 be such a (r + 1)-dimensional subspace spanned

by vectorsx(j) =
∑n

i=0 x(j)
i ei, j = 1, . . . , r + 1, whereei are basis vectors inCn+1. The

collection of their coordinates form a rectangular (n + 1) × (r + 1)-matrixx(j)
i . Let us

consider its (r + 1)× (r + 1) minors

det
pq

(x(q)
ip

) ≡ (i0, i1, . . . , ir), p, q = 0, 1, . . . , r , (2.17)

obtained by choosingr + 1 linesi0, i1, . . . , ir. TheseCr+1
n+1 minors are calledPlücker

coordinatesof X. They are defined up to a common scalar factor and provide thePlücker
embeddingof the grassmannianGr+1

n+1 into the projective spacePd, whered = Cr+1
n+1 − 1

(Cr+1
n+1 is the bimomial coefficient).
The image ofGr+1

n+1 in Pd is realized as an intersection of quadrics. This means that the
coordinates (i0, i1, . . . , ir) are not independent but obey thePlücker relations[23, 19]:

(i0, i1, ..., ir)(j0, j1, ..., jr) =
r∑

p=0

(jp, i1, ..., ir)(j0, ...jp−1, i0, jp+1..., jr) (2.18)

for all ip, jp,p = 0, 1, . . . , r. Here it is implied that the symbol (i0, i1, . . . , ir) is antysym-
metric in all the indices, i.e., (i0, . . . , ip−1, ip, . . . , ir) = −(i0, . . . , ip, ip−1, . . . , ir) and
it equals zero if any two indices coincide. If one treats these relations as equations rather
than identities, then determinants (2.17) would give a solution to Hirota’s equations.

The Pl̈ucker relations in their general form (2.18) describe fusion rules for transfer
matrices corresponding to arbitrary Young diagrams. At the same time these general
fusion rules can be recast [40] into the form of higher equations of the discrete KP
hierarchy. These aren-term bilinear equations for functions ofn variables [12, 44]. In
this paper we restrict ourselves to the three-term Hirota equation.

In order to reduce general Plücker relations to 3-term HBDE, one should takeip = jp

for p 6= 0, 1. Then all terms but the first two in the r.h.s. of (2.18) vanish and one is left
with the 3-term relation

(i0, i1, . . . , ir)(j0, j1, i2, . . . , ir) = (j0, i1, i2, . . . , ir)(i0, j1, i2, . . . ir)

+(j1, i1, i2, . . . , ir)(j0, i0, i2, . . . ir). (2.19)

After substitution of (2.17) these elementary Plücker relations turn into certain deter-
minant identities. For example, choosingx(j)

i0
= δpj , x(j)

j0
= δqj , q 6= p, one can recast

Eq. (2.19) into the form of the Jacobi identity:

D[p|p] · D[q|q] − D[p|q] · D[q|p] = D[p, q|p, q] · D , (2.20)

whereD is the determinant of a (r + 1)× (r + 1)-matrix andD[p1, p2|q1, q2] denotes the
determinant of the same matrix withp1,2-th rows andq1,2-th columns removed. Another
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useful identity contained in Eq. (2.19) connects minorsD[l1, l2] of a (r + 3) × (r + 1)
rectangular matrix, where the two rowsl1, l2 are removed:

D[l1, l3] · D[l2, l4] − D[l1, l2] · D[l3, l4] = D[l1, l4] · D[l2, l3] , l1 < l2 < l3 < l4 .
(2.21)

Identifying terms in Eq. (2.19) with terms in HBDE (1.8), one obtains various de-
terminant representations of solutions to HBDE. Two of them follow from the Jacobi
identity (2.20):

τa(l, m) = det
(
τ1(l + i − a, m − j + a)

)
, i, j = 1, . . . , a, τ0(l, m) = 1 (2.22)

or, in “direct" variables

T a
s (u) = det

(
T 1

s+i−j(u + i + j − a − 1)
)
, i, j = 1, . . . , a, T 0

s (u) = 1 . (2.23)

This representation determines an evolution ina from the initial values ata = 1. The
size of the determinant grows witha. A similar formula exists for the evolution ins:

T a
s (u) = det

(
T a+i−j

1 (u + i + j − s − 1)
)
, i, j = 1, . . . , s , T a

0 (u) = 1 . (2.24)

The size of this determinant grows withs. Determinant formulas of this type have been
known in the literature on quantum integrable models (see e.g. [6]). They allow one to
expressT a

s (u) throughT a
1 (u) or T 1

s (u).
A different kind of determinant representation follows from (2.21):

T a
s (u) = detMij ,

Mji =

{
hi(u + s + a + 2j) if j = 1, ..., k − a; i = 1, ..., k
h̄i(u − s + a + 2j) if j = k − a + 1, ..., k; i = 1, ..., k

, (2.25)

wherehi(x) andh̄i(x) are 2k arbitrary functions of one variable. The size of this deter-
minant is equal tok for all 0 ≤ a ≤ k. This determinant formula plays an essential role
in what follows.

The determinant representations give a solution to discrete nonlinear equations and
expose the essence of the integrability. Let us note that they are simpler and more
convenient than their continuous counterparts.

2.3. Examples of difference and continuousA1-type equations.For illustrative purposes
we specialize the Hirota equation to theA1-case and later study it separately. Atk = 2
Eq. (1.7) is

Ts(u + 1)Ts(u − 1) − Ts+1(u)Ts−1(u) = φ(u + s)φ(u − s − 2) (2.26)

with the conditionT−1(u) = 0 (here we setTs(u) ≡ T 1
s (u)).

This equation is known as a discrete version of the Liouville equation [22] written
in terms of theτ -function. It can be recast to a somewhat more universal form in terms
of the discrete Liouville field

Y 1
s (u) ≡ Ys(u) =

Ts+1(u)Ts−1(u)
φ(u + s)φ(u − s − 2)

(2.27)

(see (2.6)), which hides the functionφ(u) in the r.h.s. of (2.26). The equation becomes

Ys(u − 1)Ys(u + 1) = (Ys+1(u) + 1)(Ys−1(u) + 1) . (2.28)
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(Let us note that the same functional equation but with different analytic properties of
the solutions appears in the thermodynamic Bethe ansatz [53, 46].)

In the continuum limit one should putYs(u) = δ−2 exp(−ϕ(x, t)), u = δ−1x, s =
δ−1t. An expansion inδ → 0 then gives the continuous Liouville equation

∂2
sϕ − ∂2

uϕ = 2 exp(ϕ) . (2.29)

To stress the specifics of the b.c. (2.15) and for further reference let us compare it
with the quasiperiodic b.c. Then theA1-case corresponds to the discrete sine-Gordon
(SG) equation [21]:

T a+1
s (u) = eαλ2aT a−1

s (u − 2), (2.30)

whereα andλ are parameters. Substituting this condition into (1.7), we get:

T 1
s (u + 1)T 1

s (u − 1) − T 1
s+1(u)T 1

s−1(u) = eαλ2T 0
s (u)T 0

s (u − 2), (2.31)

T 0
s (u + 1)T 0

s (u − 1) − T 0
s+1(u)T 0

s−1(u) = e−αT 1
s (u)T 1

s (u + 2). (2.32)

Let us introduce two fieldsρs,u andϕs,u on the square (s, u) lattice

T 0
s (u) = exp(ρs,u + ϕs,u), (2.33)

T 1
s (u + 1) = λ1/2 exp(ρs,u − ϕs,u), (2.34)

and substitute them into (2.31), (2.32). Finally, eliminatingρs,u, one gets the discrete
SG equation:

sinh(ϕs+1,u +ϕs−1,u −ϕs,u+1−ϕs,u−1) = λsinh(ϕs+1,u +ϕs−1,u +ϕs,u+1+ϕs,u−1 +α) .
(2.35)

The constantα can be removed by the redefinitionϕs,u → ϕs,u − 1
4α.

Another useful form of the discrete SG equation appears in variablesXa
s (u) (2.10).

Under condition (2.30) one has

Xa+1
s (u) = Xa−1

s (u − 2), λ2Xa+1
s (u + 1)Xa

s (u) = 1 , (2.36)

so there is only one independent function

X1
s (u) ≡ xs(u) = −e−αλ−1 exp

(
− 2ϕs,u − 2ϕs,u−2

)
. (2.37)

The discrete SG equation becomes [21, 14, 9]:

xs+1(u)xs−1(u) =
(λ + xs(u + 1))(λ + xs(u − 1))

(1 +λxs(u + 1))(1 +λxs(u − 1))
. (2.38)

In the limit λ → 0 Eq. (2.38) turns into the discrete Liouville equation (2.28) for
Ys(u) = −1 − λ−1xs(u).
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3. Linear Problems and B̈acklund Transformations

3.1. Zero curvature condition.Consider the square lattice in two light cone variablesl
andm and a vector functionψa(l, m) on this lattice. LetLa,a′ (l, m) andMa,a′ (l, m) be
two shift operators in directionsl andm:∑

a′
La,a′ (l, m)ψa′ (l + 1, m) = ψa(l, m),∑

a"

Ma,a′ (l, m)ψa′ (l, m + 1) = ψa(l, m). (3.1)

The zero curvature condition states that the result of subsequent shifts from an initial
point to a fixed final point does not depend on the path:

L(l, m) · M (l + 1, m) = M (l, m) · L(l, m + 1). (3.2)

HBDE (1.7) possesses [20, 49] a zero-curvature representation by means of the following
two-diagonal infinite matrices:

La,a′ = δa,a′−1 + δa,a′V a
l ,

Ma,a′ = δa,a′ + δa,a′+1W
a
m , (3.3)

where

V a
l =

τa(l + 1, m)τa+1(l, m)
τa(l, m)τa+1(l + 1, m)

,

W a
m =

τa−1(l, m + 1)τa+1(l, m)
τa(l, m)τa(l, m + 1)

. (3.4)

More precisely, the compatibility condition of the two linear problems

ψa(l, m) − ψa+1(l + 1, m) = V a
l ψa(l + 1, m) ,

ψa(l, m) − ψa(l, m + 1) = W a
mψa−1(l, m + 1), (3.5)

combined with the b.c. (2.14) yields HBDE (1.8). Introducing an unnormalized “wave
function"

fa(l, m) = ψa(l, m)τa(l, m) , (3.6)

we can write the linear problems in the form

τa+1(l + 1, m)fa(l, m) − τa+1(l, m)fa(l + 1, m) = τa(l, m)fa+1(l + 1, m) ,

τa(l, m + 1)fa(l, m) − τa(l, m)fa(l, m + 1) = τa+1(l, m)fa−1(l, m + 1) , (3.7)

or in “direct" variables

T a+1
s+1 (u)F a(s, u) − T a+1

s (u − 1)F a(s + 1, u + 1) = T a
s (u)F a+1(s + 1, u) ,

T a
s+1(u − 1)F a(s, u) − T a

s (u)F a(s + 1, u − 1) = T a+1
s (u − 1)F a−1(s + 1, u) ,

(3.8)

whereF a(l + m, l − m − a) ≡ fa(l, m).
An advantage of the light cone coordinates is that they are separated in the linear

problems (there are shifts only ofl (m) in the first (second) Eq. (3.7)).
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The wave function and potential possess a redundant gauge freedom:

V a
l → χ(a − l + 1)

χ(a − l)
V a

l , W a
m → χ(a − l)

χ(a − l − 1)
W a

m, ψa(l, m) → χ(a−l+1)ψa (3.9)

with an arbitrary functionχ.
The b.c. (2.4) implies a similar condition for the object of the linear problems

F a(s, u) = 0 as a < 0 and a > k − 1 (3.10)

so that the number of functionsF is one less than the number ofT ’s. Then from the
second equation of the pair (3.8) ata = 0 and from the first one ata = k−1 it follows that
F 0(s, u) (F k−1(s, u)) depends on one cone variableu + s (resp.,u − s). We introduce
a special notation for them:

F 0(s, u) = Qk−1(u + s), F k−1(s, u) = Q̄k−1(u − s). (3.11)

Furthermore, it can be shown that the important condition (2.15) relates the functionsQ
andQ̄:

Q̄k−1(u) = Qk−1(u − k + 1). (3.12)

The special form of the functionsF a at the ends of the Dynkin graph (a = 0, k − 1)
reflects the specifics of the “Liouville-type" boundary conditions. This is to be compared
with nonlinear equations with the quasiperiodic boundary condition (2.30): in this case
all the functionsF depend on two variables and obey the quasiperiodic b.c.

3.2. Continuum limit.In the continuum limitl = −δt+, m = −δt−, τa → δa2
τa, fa →

δa2+afa, δ → 0, we recover the auxiliary linear problems for the 2D Toda lattice [52]
(∂± ≡ ∂/∂t±):

∂+ψa = ψa+1 + ∂+(log
τa+1

τa
)ψa,

∂−ψa =
τa+1τa−1

τ2
a

ψa−1 , (3.13)

or, in terms offa,

τa+1∂+fa − (∂+τa+1)fa = τafa+1 ,

τa∂−fa − (∂−τa)fa = τa+1fa−1 . (3.14)

The compatibility condition of these equations yields the first non-trivial equation of the
2D Toda lattice hierarchy:

∂+τa∂−τa − τa∂+∂−τa = τa+1τa−1. (3.15)

In terms of

ϕa(t+, t−) = log
τa+1(t+, t−)
τa(t+, t−)

it has the familiar form

∂+∂−ϕa = eϕa−ϕa−1 − eϕa+1−ϕa . (3.16)

3.3. B̈acklund flow.The discrete nonlinear equation has a remarkable duality between
“potentials"T a and “wave functions"F a first noticed in [49]. In the continuum version
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it is not so transparent. Equations (3.8) are symmetric under the interchange ofF and
T . Then one may treat (3.8) as linear problems for a nonlinear equation onF ’s. It is not
surprising that one again obtains HBDE (1.7):

F a(s, u + 1)F a(s, u − 1)− F a(s + 1, u)F a(s − 1, u) = F a+1(s, u)F a−1(s, u) . (3.17)

Moreover, conditions (3.10)-(3.12) mean that even the b.c. forF a(s, u) are the same
as forT a

s (u) under a substitutionφ(u) by Qk−1(u). The only change is a reduction of
the Dynkin graph:k → k − 1. Using this property, one can successively reduce the
Ak−1-problem up toA1. Below we use this trick to deriveAk−1 (“nested") Bethe ansatz
equations.

To elaborate the chain of these transformations, let us introduce a new variable
t = 0, 1, . . . , k to mark a level of the flowAk−1 → A1 and letF a

t+1(s, u) be a solution to
the linear problem at (k − t)th level. In this notation,F a

k (s, u) = T a
s (u) andF a

k−1(s, u) =
F a(s, u) is the corresponding wave function. The wave function itself obeys the nonlinear
equation (3.17), soF a

k−2(s, u) denotes its wave function and so on. For each levelt the
functionF a

t (s, u) obeys HBDE of the form (3.17) with the b.c.

F a
t (s, u) = 0 as a < 0 and a > t . (3.18)

As a consequence of (3.18), the first and the last components of the vectorF a
t (s, u) obey

the discrete Laplace equation (2.3) and under the condition (3.11) are functions of only
one of the light-cone variables (u+s andu−s respectively). We denote them as follows:

F 0
t (s, u) ≡ Qt(u + s) , F t

t (s, u) ≡ Q̄t(u − s) , (3.19)

where it is implied thatQk(u) = φ(u). It can be shown that ellipticity requirement (ii)
and condition (2.14) impose the relation̄Qt(u) = Qt(u − t).

In this notation the linear problems (3.8) at levelt,

F a+1
t+1 (s + 1, u)F a

t (s, u) − F a+1
t+1 (s, u − 1)F a

t (s + 1, u + 1) = F a
t+1(s, u)F a+1

t (s + 1, u) ,
(3.20)

F a
t+1(s + 1, u − 1)F a

t (s, u) − F a
t+1(s, u)F a

t (s + 1, u − 1) = F a+1
t+1 (s, u − 1)F a−1

t (s + 1, u)
(3.21)

look like bilinear equations for a function of 4 variables. However, Eq. (3.20) (resp., Eq.
(3.21)) leaves the hyperplaneu − s + a = const (resp.,u + s + a = const) invariant, and
actually depends on three variables.

Restricting the variables in Eq. (3.20) to the hyperplaneu − s + a = v (wherev is a
constant), by setting

τu(t, a) ≡ F a
k−t(u + a − v, u), (3.22)

we reduce Eq. (3.20) to the form of the same HBDE (1.8) in cone coordinatest anda.
The b.c. is

τu(t, 0) = Qk−t(2u − v), τu(t, k − t) = Q̄k−t(v + t − k) = const. (3.23)

Similar equations can be obtained from the second linear problem (3.21) by setting

τ̄u(b, t) = F k−t−b
k−t (v̄ + b − u, u + t − k) (3.24)

(v̄ is a constant). This function obeys Eq. (1.8),

τ̄u(b + 1, t)τ̄u(b, t + 1)− τ̄u(b, t)τ̄u(b + 1, t + 1) = τ̄u+1(b + 1, t)τ̄u−1(b, t + 1) , (3.25)
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wheret now plays the role of the light cone coordinatem. The b.c. is

τ̄u(0, t) = Q̄k−t(2u + t − k − v̄), τ̄u(k − t, t) = Qk−t(v) = const. (3.26)

It is convenient to visualize this array ofτ -functions on a diagram; here is an example
for theA3-case (k = 4):

0 1 0

0 Q1(u + s) Q̄1(u − s) 0

0 Q2(u + s) F 1
2 (s, u) Q̄2(u − s) 0

0 Q3(u + s) F 1
3 (s, u) F 2

3 (s, u) Q̄3(u − s) 0

0 φ(u + s) T 1
s (u) T 2

s (u) T 3
s (u) φ̄(u − s) 0

(3.27)

Functions in each horizontal (constantt) slice satisfy HBDE (3.17), whereas functions
on theu − s + a = const slice satisfy HBDE (1.8) witht, a being light cone variablesl,
m respectively.

A general solution of the bilinear discrete equation (1.7) with the b.c. (2.14) is
determined by 2k arbitrary functions of one variableQt(u) andQ̄t(u), t = 1, ..., k. The
additional requirement (ii) of ellipticity determines these functions through the Bethe
ansatz.

3.4. Nested Bethe ansatz scheme.Here we elaborate the nested scheme of solving
HBDE based on the chain of successive Bäcklund transformations (Sect. 3.4). This is
an alternative (and actually the shortest) way to obtain nested Bethe ansatz equations
(3.31). Recall that the functionτu(t, a) = F a

k−t(u + a, u) (3.22) (where we putv = 0 for
simplicity) obeys HBDE in light cone variables:

τu(t + 1, a)τu(t, a + 1)− τu(t, a)τu(t + 1, a + 1) = τu+1(t + 1, a)τu−1(t, a + 1) . (3.28)

Sinceτu(t, 0) = Qk−t(2u), nested Bethe ansatz equations can be understood as “equa-
tions of motions" for zeros ofQt(u) in discrete timet (level of the Bethe ansatz). The
simplest way to derive them is to consider the auxiliary linear problems for Eq. (3.28).
Here we present an example of this derivation in the simplest possible form.

Let us assume thatQt(u) has the form

Qt(u) = eνtηu
Mt∏
j=1

σ(η(u − ut
j)) (3.29)

(note that we allow the number of rootsMt to depend ont). Since we are interested in
dynamics int at a fixeda, it is sufficient to consider only the first linear equation of the
pair (3.7):

τu+1(t + 1, a)fu(t, a) − τu+1(t, a)fu(t + 1, a) = τu(t, a)fu+1(t + 1, a) . (3.30)

An elementary way to derive equations of motion for roots ofτu(t, 0) is to putu equal to
the roots offu(t+1, 0),fu(t, 0) andfu+1(t+1, 0), so that only two terms in (3.30) would
survive. Combining relations obtained in this way, one can eliminatef ’s and obtain the
system of equations
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Qt−1(ut
j + 2)Qt(ut

j − 2)Qt+1(ut
j)

Qt−1(ut
j)Qt(ut

j + 2)Qt+1(ut
j − 2)

= −1 (3.31)

as the necessary conditions for solutions of the form (3.29) to exist. In the more detailed
notation they look as follows:

Mt−1∏
k=1

σ(η(ut
j − ut−1

k + 2))

σ(η(ut
j − ut−1

k ))

Mt∏
k=1

σ(η(ut
j − ut

k − 2))

σ(η(ut
j − ut

k + 2))

Mt+1∏
k=1

σ(η(ut
j − ut+1

k ))

σ(η(ut
j − ut+1

k − 2))

= −e2η(2νt−νt+1−νt−1) . (3.32)

With the “boundary conditions”

Q0(u) = 1, Qk(u) = φ(u), (3.33)

this system ofM1 + M2 + . . . + Mk−1 equations is equivalent to the nested Bethe ansatz
equations forAk−1-type quantum integrable models with Belavin’s ellipticR-matrix.
The same equations can be obtained for the right edge of the diagram (3.27) from the
second linear equation in (3.7). In Sect. 5 we explicitly identify ourQ’s with similar
objects known from the Bethe ansatz solution.

Let us remark that the origin of Eq. (3.32) suggests to consider them as equations
of motion for the elliptic Ruijsenaars-Schneider model in discrete time. Taking the
continuum limit int (providedMt = M does not depend ont), one can check that Eqs.
(3.32) do yield the equations of motion for the elliptic RS model [48] withM particles.
The additional limiting procedureη → 0 with finite ηuj = xj yields the well known
equations of motion for the elliptic Calogero-Moser system of particles.

However, integrable systems of particles in discrete time seem to have a richer
structure than their continuous time counterparts. In particular, the total number of
particles in the system may depend on (discrete) time. Such a phenomenon is possible in
continuous time models only for singular solutions, when particles can move to infinity
or merge to another within a finite period of time.

Remarkably, this appears to be the case for the solutions to Eqs. (3.32) corresponding
to eigenstates of the quantum model. It is known that the number of excitationsMt at
thetth level of the Bethe ansatz solution does depend ont. In other words, the number
of “particles" in the corresponding discrete time RS model is not conserved, though the
numbersMt may not be arbitrary.

In the elliptic case degrees of the elliptic polynomialsQt(u) are equal toMt = (N/k)t
(providedη is incommensurable with the lattice spanned byω1, ω2 andN is divisible by
k). This fact follows directly from Bethe equations (3.31). Indeed, the elliptic polynomial
form (3.29) implies that ifut

j is a zero ofQt(u), i.e.,Qt(ut
j) = 0, thenut

j +2n1ω1+2n2ω2
for all integersn1, n2 are its zeros too. Taking into account the well known monodromy
properties of theσ-function, one concludes that this is possible if and only if

Mt+1 + Mt−1 = 2Mt , (3.34)

which has a unique solution

Mt =
N

k
t (3.35)

satisfying b.c. (3.33). This means that the nested scheme for ellipticAk−1-type models
is consistent only ifN is divisible byk.
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In trigonometric and rational cases the conditions on degrees ofQt’s become less
restrictive since some of the roots can be located at infinity. The equality in (3.35)
becomes an inequality:Mt ≤ (N/k)t. A more detailed analysis [28] shows that the
following inequalities also hold: 2M1 ≤ M2, 2M2 ≤ M1+M3, . . ., 2Mt ≤ Mt−1+Mt+1,
. . ., N = Mk ≥ 2Mk−1 − Mk−2.

4. TheA1-Case: Discrete Liouville Equation

In this section we consider theA1-case separately. Although in this case the general
nested scheme is missing, the construction is more explicit and contains familiar objects
from the Bethe ansatz literature.

4.1. General solution.Let us consider a more general functional relation:

Ts(u + 1)Ts(u − 1) − Ts+1(u)Ts−1(u) = φ(u + s)φ̄(u − s), (4.1)

where the functionsφ, φ̄ are independent andTs(u) ≡ T 1
s (u). The auxiliary linear

problems (3.8) acquire the form

Ts+1(u)Q(u + s) − Ts(u − 1)Q(u + s + 2) = φ(u + s)Q̄(u − s − 1), (4.2)

Ts+1(u)Q̄(u − s + 1)− Ts(u + 1)Q̄(u − s − 1) = φ̄(u − s)Q(u + s + 2) . (4.3)

Here we setQ(u) ≡ Q1(u) andφ(u) = Q2(u). Rearranging these equations, we obtain

φ(u − 2)Q(u + 2) +φ(u)Q(u − 2) = A(u)Q(u), (4.4)

φ̄(u)Q̄(u + 3) + φ̄(u + 2)Q̄(u − 1) = Ā(u)Q̄(u + 1) (4.5)

with the constraint

T1(u)Q(u) − T0(u − 1)Q(u + 2) = φ(u)Q̄(u − 1), (4.6)

which follows from Eq. (4.2) ats = 0. In these equations,

A(u) =
φ(u − 2)Ts+1(u − s) + φ(u)Ts−1(u − s − 2)

Ts(u − s − 1)
, (4.7)

Ā(u) =
φ̄(u + 2)Ts+1(u + s) + φ̄(u)Ts−1(u + s + 2)

Ts(u + s + 1)
. (4.8)

Due to consistency condition (4.1)A(u) andĀ(u) are functions of one variable and do
not depend ons. The symmetry betweenu ands allows one to construct similar objects
which in turn do not depend onu. FunctionsA(u) andĀ(u), in the r.h.s. of (4.4), (4.5)
are the conservation laws of thes-dynamics.

Let us note that the connection betweenφ andφ̄, φ̄(u) = φ(u−2), and its consequence
T−1(u) = 0 (see (2.15)), simplifies Eqs. (4.4)-(4.8). Puttings = 0 and using the b.c.
T−1(u) = 0, we find

A(u) = Ā(u) = T1(u) . (4.9)

Therefore, the following holds

Ts(u − 1)T1(u + s) = φ(u + s − 2)Ts+1(u) + φ(u + s)Ts−1(u − 2), (4.10)
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Ts(u + 1)T1(u − s) = φ(u − s)Ts+1(u) + φ(u − s − 2)Ts−1(u + 2), (4.11)

φ(u − 2)Q(u + 2) +φ(u)Q(u − 2) = T1(u)Q(u) . (4.12)

The first two equalities are known as fusion relations [35, 29, 5] while Eq. (4.12) is
Baxter’sT -Q-relation [4, 3]. So Baxter’sQ function and theT -Q-relation naturally
appear in the context of the auxiliary linear problems for HBDE.

A general solution of the discrete Liouville equation (for arbitraryφ andφ̄) may be
expressed through two independent functionsQ(u) andQ̄(u). One may follow the same
lines developed for solving the continuous classical Liouville equation (see e.g. [17, 27]
and references therein). Let us consider Eq. (4.4) (resp., (4.5)) as a second order linear
difference equation, where the functionA(u) (Ā(u)) is determined from the initial data.
Let R(u) (resp.,R̄(u)) be a second (linearly independent) solution of Eq. (4.4) (resp.,
(4.5)) normalized so that the wronskians are

W (u) =

∣∣∣∣ R(u) Q(u)
R(u + 2) Q(u + 2)

∣∣∣∣ = φ(u), (4.13)

W̄ (u) =

∣∣∣∣ R̄(u) Q̄(u)
R̄(u + 2) Q̄(u + 2)

∣∣∣∣ = φ̄(u + 1), (4.14)

and the constraint similar to (4.6) is imposed:

T1(u)R(u) − T0(u − 1)R(u + 2) = φ(u)R̄(u − 1). (4.15)

Then the general solution of Eq. (4.1) is given in terms ofQ andR:

Ts(u) =

∣∣∣∣ Q(u + s + 1) R(u + s + 1)
Q̄(u − s) R̄(u − s)

∣∣∣∣ . (4.16)

This formula is a particular case of the general determinant representation (2.25).
Like in the continuous case, this expression is invariant with respect to changing the

basis of linearly independent solutions with the given wronskians. The transformation
of the basis vectors is described by an element ofSL(2). Due to relations (4.6), (4.15)
Q̄, R̄ transform in the same way asQ, R and the invariance of Eq. (4.16) is evident.

For any givenQ(u) andQ̄(u) the second solutionR(u) andR̄(u) (defined modulo
a linear transformationR(u) → R(u) + αQ(u) ) can be explicitly found from the first
order recurrence relations (4.13), (4.14), if necessary. LetQ(u0) andR(u0) be initial
values atu = u0. Then, say, for evenr ≥ 0,

R(u0 + r) = Q(u0 + r)

−
r/2∑
j=1

φ(u0 + 2j − 2)
Q(u0 + 2j)Q(u0 + 2j − 2)

+
R(u0)
Q(u0)

 , (4.17)

and so on for otherr’s andR̄(u).
Finally, one can express the solution to Eq. (4.1) through two independent functions

Q(u) andQ̄(u):

Ts(u+s−1) = Q(u+2s)Q̄(u−1)

 T0(u − 1)

Q(u)Q̄(u − 1)
+

s∑
j=1

φ(u + 2j − 2)
Q(u + 2j)Q(u + 2j − 2)

 ,

(4.18)
whereT0(u) can be found from (4.18) by puttings = 0:
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− T0(u − 1)

Q(u)Q̄(u − 1)
+

T0(u + 1)

Q(u + 2)Q̄(u + 1)
=

φ(u)
Q(u)Q(u + 2)

− φ̄(u)

Q̄(u − 1)Q̄(u + 1)
. (4.19)

Note also the following useful representations:

A(u) = Q(u + 2)R(u − 2) − R(u + 2)Q(u − 2), (4.20)

Ā(u) = R̄(u + 3)Q̄(u − 1) − Q̄(u + 3)R̄(u − 1), (4.21)

which are direct corollaries of (4.4), (4.5).

4.2. Equivalent forms of Baxter’s equation.The key ingredient of the construction is
Baxter’s relation (4.12) and its “chiral" versions (4.4), (4.5). For completeness, we gather
some other useful forms of them.

Consider first “chiral" linear equations (4.4), (4.5) (thus not implying any specific
b.c. ins). Assuming thatTs(u) obeys HBDE (4.1), one can represent Eqs. (4.4), (4.5) in
the form

∣∣∣∣∣∣∣∣∣
Ts(u) Ts+1(u − 1) Q(u + s + 1)

Ts+1(u + 1) Ts+2(u) Q(u + s + 3)

Ts+2(u + 2) Ts+3(u + 1) Q(u + s + 5)

∣∣∣∣∣∣∣∣∣ = 0 , (4.22)

∣∣∣∣∣∣∣∣∣
Ts(u) Ts+1(u + 1) Q̄(u − s)

Ts+1(u − 1) Ts+2(u) Q̄(u − s − 2)

Ts+2(u − 2) Ts+3(u − 1) Q̄(u − s − 4)

∣∣∣∣∣∣∣∣∣ = 0 , (4.23)

respectively. This representation can be straightforwardly extended to theAk−1-case
(see Eqs. (5.37), (5.38)).

A factorized form of these difference equations is(
e2∂u − φ(u)Q(u − 2)

φ(u − 2)Q(u)

) (
e2∂u − Q(u)

Q(u − 2)

)
X(u − 2) = 0, (4.24)

(
e2∂u − φ̄(u + 2)Q̄(u − 1)

φ̄(u)Q̄(u + 1)

) (
e2∂u − Q̄(u + 1)

Q̄(u − 1)

)
X̄(u − 1) = 0. (4.25)

Heree∂u acts as the shift operator,e∂uf (u) = f (u + 1), andX(u) (X̄(u)) stands for any
linear combination ofQ(u), R(u) (Q̄(u), R̄(u)).

Specifying Eqs. (4.22), (4.23) to the b.c.T−1(u) = 0 (see (4.9)), we see that both of
them turn into the equation

2∑
a=0

(−1)aT a
1 (u + a − 1)X(u + 2a − 2) = 0, (4.26)

that is Baxter’s relation (4.12). Furthermore, the difference operator in (4.26) admits a
factorization of the form (4.24):
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2∑
a=0

(−1)a
T a

1 (u + a − 1)
φ(u − 2)

e2a∂u =

(
e2∂u − φ(u)Q(u − 2)

φ(u − 2)Q(u)

) (
e2∂u − Q(u)

Q(u − 2)

)
,

(4.27)
which is equivalent to the well known formula forT1(u) in terms ofQ(u).

4.3. Double-Bloch solutions to Baxter’s equation.In this section we formulate the
analytic properties of solutions to Baxter’s functional relation (4.4) that are relevant to
models on finite lattices.

First let us transform Baxter’s relation to a difference equation withelliptic (i.e.
double-periodic with periods 2ω1/η, 2ω2/η) coefficients.

The formal substitution

9̃(u) =
Q(u)P (u)
φ(u − 2)

(4.28)

with a (as yet not specified ) functionP (u) yields

9̃(u + 2) +
P (u + 2)φ(u − 4)
P (u − 2)φ(u − 2)

9̃(u − 2) =
A(u)P (u + 2)

φ(u)P (u)
9̃(u) . (4.29)

Below we restrict ourselves to the case when the degreeN of the elliptic polynomial
φ(u) (1.3) iseven. Then for anyP (u) of the form

P (u) =
N/2∏
j=1

σ(η(u − pj)) (4.30)

with arbitrarypj the coefficients in (4.29) are elliptic functions. Indeed, for the coefficient
in front of 9̃(u−2) this is obvious. As for the coefficient in the r.h.s. of (4.29), its double-
periodicity follows from the “sum rule" (2.8).

Let us representφ(u) in the form

φ(u) = φ0(u)φ1(u) , (4.31)

whereφ0(u), φ1(u) are elliptic polynomials of degreeN/2 (of course forN > 2 there
are many ways to do that). SpecifyingP (u) as

P (u) = φ1(u − 2) , (4.32)

we rewrite (4.29) in the form

9(u + 2) +
φ0(u − 4)φ1(u)

φ0(u − 2)φ1(u − 2)
9(u − 2) =

A(u)
φ0(u)φ1(u − 2)

9(u) , (4.33)

where

9(u) =
Q(u)

φ0(u − 2)
. (4.34)

Now, the coefficients in Eq. (4.33) being double-periodic, it is natural to consider its
double-Bloch solutions. A meromorphic functionf (x) is said to bedouble-Blochif it
obeys the following monodromy properties:

f (x + 2ωα) = Bαf (x), α = 1, 2. (4.35)
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The complex numbersBα are calledBloch multipliers. It is easy to see that any double-
Bloch function can be represented as a linear combination of elementary ones:

f (x) =
M∑
i=1

ci8(x − xi, z)κx/η, (4.36)

where [33]

8(x, z) =
σ(z + x + η)
σ(z + η)σ(x)

[
σ(z − η)
σ(z + η)

]x/(2η)

, (4.37)

and complex parametersz andκ are related by

Bα = κ2ωα/η exp(2ζ(ωα)(z + η))

(
σ(z − η)
σ(z + η)

)ωα/η

(4.38)

(ζ(x) = σ′(x)/σ(x) is the Weierstrassζ-function). Considered as a function ofz, 8(x, z)
is double-periodic:

8(x, z + 2ωα) = 8(x, z).

For general values ofx one can define a single-valued branch of8(x, z) by cutting
the elliptic curve between the pointsz = ±η. In the fundamental domain of the lattice
defined by 2ωα the function8(x, z) has a unique pole at the pointx = 0:

8(x, z) =
1
x

+ O(1) .

Coming back to the variableu = x/η, one can formulate the double-Bloch property
of the function9(u) (4.34) in terms of its numeratorQ(u). It follows from (4.36) that
the general form ofQ(u) is

Q(u) = Q(u; ν) = eνηu
M∏
j=1

σ(η(u − uj)) , (4.39)

whereM = N/2 andν determines Bloch multipliers.
For the trigonometric and rational degeneration of Eqs. (4.4), (4.33), (4.39) the

meaning ofν is quite clear: it plays the role of the “boundary phase" for twisted b.c. in
the horizontal (auxiliary) direction. For eachν Eq. (4.12) has a solution of the form (4.39).
The corresponding value ofT1(u) = A(u) depends onν as a parameter:T1(u) = T1(u; ν).
If there existν 6= ν′ such thatT1(u; ν) = T1(u; ν′), one may putQ(u) = Q(u, ν),
R(u) = Q(u; ν′). In the elliptic case the boundary phase in general is not compatible
with integrability and soν should have a different physical sense which is still unclear.

4.4. Bethe equations.It can be shown that for double-Bloch solutions the relation
betweenφ andφ̄, φ̄(u) = φ(u − 2), implies

Q̄(u) = Q(u − 1), R̄(u) = R(u − 1) , (4.40)

so that (see (4.16)

Ts(u) =

∣∣∣∣ Q(u + s + 1) R(u + s + 1)
Q(u − s − 1) R(u − s − 1)

∣∣∣∣ . (4.41)
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It is clear that ifQ(u) andR(u) are elliptic polynomials of degreeN/2 multiplied by an
exponential function (as in (4.39)),Ts(u) has the desired general form (2.7).

Under condition (4.40) Eq. (4.18) yields the familiar result:

Ts(u) = Q(u + s + 1)Q(u − s − 1)
s∑

j=0

φ(u − s + 2j − 1)
Q(u − s + 2j + 1)Q(u − s + 2j − 1)

. (4.42)

This formula was obtained in [29, 5] by direct solution of the fusion recurrence relations
(4.10), (4.11).

Let uj andvj , j = 1, . . . , M , be zeros ofQ(u) andR(u), respectively. Then, evalu-
ating (4.13) atu = uj , u = uj − 2 andu = vj , u = vj − 2 we obtain the relations

φ(uj) = Q(uj + 2)R(uj) , φ(uj − 2) = −Q(uj − 2)R(uj) , (4.43)

whence it holds
φ(uj)

φ(uj − 2)
= − Q(uj + 2)

Q(uj − 2)
, (4.44)

φ(vj)
φ(vj − 2)

= − R(vj + 2)
R(vj − 2)

. (4.45)

Equation (4.44) are exactly the standard Bethe equations (1.2). We refer to Eqs.
(4.45) ascomplementary Bethe equations. It is easy to check that Eq. (4.44) ensure
cancellation of poles in (4.42). A more standard way to derive Bethe equations (4.44),
(4.45) is to substitute zeros ofQ(u) (or R(u)) directly into Baxter’s relation (4.12).
However, the wronskian relation (4.13) is somewhat more informative: in addition to
Bethe equations foruj , vj it provides the connection (4.43) between them. In the next
section we derive the system of nested Bethe ansatz equations starting from a proper
generalization of Eq. (4.13).

In the elliptic case degrees of the elliptic polynomialsQ(u), R(u) (for evenN ) are
equal toM = N/2 (providedη is incommensurable with the lattice spanned byω1, ω2).
This fact follows directly from Bethe equations (4.44), (4.45) by the same argument as
in Sect. 3.5.

In trigonometric and rational cases there are no such strong restrictions on degreesM
andM̃ of Q andR respectively. This is because a part of their zeros may tend to infinity
thus reducing the degree. WhenceM andM̃ can be arbitrary integers not exceeding
N . However, they must be complementary to each other:M + M̃ = N . The traditional
choice isM ≤ N/2. In particular, the solutionQ(u) = 1 (M = 0) corresponds to the
simplest reference state (“bare vacuum") of the model.

We already pointed out that the functionQ(u) originally introduced by Baxter (see
e.g. [4] and references therein) emerged naturally in the context of the auxiliary linear
problems. Let us mention that for models with the rationalR-matrix this function can
be treated as a limiting value ofTs(u) ass → ∞ [35]. Rational degeneration of Eqs.
(2.7), (4.39) gives

Ts(u) = As

N∏
j=1

(u − z(s)
j ) , (4.46)

Q(u) = eνηu
M∏
j=1

(u − uj) , (4.47)
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where

As =
sinh(2νη(s + 1))

sinh(2νη)
. (4.48)

(The last expression follows from (4.42) by extracting the leading term asu → ∞.) If
the “boundary phase"−iνη is real andν 6= 0, one has from (4.41):

Q(u) = ±2 sinh(2νη)eνηu lim
s→∓∞ e2νηs T∓s−1(u + s)

(2s)N−M
. (4.49)

For each finites ≥ 0 Ts(u) hasN zeros but in the limit some of them tend to infinity.
The degenerate caseν = 0 needs special analysis since the limitsν → 0 ands → ∞ do
not commute.

Another remark on the rational case is in order. Fusion relations (4.10), (4.11) give
“Bethe ansatz like" equations for zeros ofTs(u) (4.46). Substituting zeros ofTs(u ± 1)
into (4.10), (4.11) and using (4.48) one finds:

sinh(2νη(s + 2))
sinh(2νηs)

φ(z(s)
j + s − 1)

φ(z(s)
j + s + 1)

= −
N∏

k=1

z(s)
j − z(s−1)

k − 1

z(s)
j − z(s+1)

k + 1
, (4.50)

sinh(2νη(s + 2))
sinh(2νηs)

φ(z(s)
j − s − 1)

φ(z(s)
j − s − 3)

= −
N∏

k=1

z(s)
j − z(s−1)

k + 1

z(s)
j − z(s+1)

k − 1
. (4.51)

These equations give the discrete dynamics of zeros ins. They are to be compared with
dynamics of zeros of rational solutions of classical nonlinear equations [1, 32]. It is an
interesting open problem to find elliptic analogues of Eqs. (4.49)-(4.51).

5. TheAk−1-Case: Discrete Time 2D Toda Lattice

5.1. General solution.The family of bilinear equations arising as a result of the Bäcklund
flow (Sect. 3.4),

F a
t (s, u + 1)F a

t (s, u − 1) − F a
t (s + 1, u)F a

t (s − 1, u) = F a+1
t (s, u)F a−1

t (s, u) , (5.1)

and the corresponding linear problems,

F a+1
t+1 (s+1, u)F a

t (s, u)−F a+1
t+1 (s, u−1)F a

t (s+1, u+1) = F a
t+1(s, u)F a+1

t (s+1, u) , (5.2)

F a
t+1(s+ 1, u−1)F a

t (s, u)−F a
t+1(s, u)F a

t (s+ 1, u−1) = F a+1
t+1 (s, u−1)F a−1

t (s+ 1, u) ,
(5.3)

subject to the b.c.

F a
t (s, u) = 0 as a < 0 and a > t. (5.4)

They may be solved simultaneously by using the determinant representation (2.25). The
set of functionsF a

t (s, u) entering these equations as illustrated by the following diagram:
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0 1 0

0 F 0
1 F 1

1 0

0 F 0
2 F 1

2 F 2
2 0

· · · · · · · · · · · · · · ·

0 F 0
t F 1

t F 2
t · · · F t

t 0

(5.5)

(cf. (3.27)). Functions in each horizontal slice satisfy HBDE (5.1). Bylevelof Eq. (5.1)
we understand the numbert. Level 0 is introduced for later convenience. At the moment
we do not assume any relations between solutions at different levels.

Determinant formula (2.25) gives the solution to these equations for each levelt in
terms oft arbitrary holomorphic3 functionsh(j)

t (u + s) andt arbitrary antiholomorphic
functionsh̄(j)

t (u − s). This is illustrated by the diagrams:

1

h(1)
1 h(2)

1

h(1)
2 h(2)

2 h(3)
2

· · · · · · · · ·

h(1)
t h(2)

t · · · h(t+1)
t

1

h̄(2)
1 h̄(1)

1

h̄(3)
2 h̄(2)

2 h̄(1)
2

· · · · · · · · ·

h̄(t+1)
t h̄(t)

t · · · h̄(1)
t

(5.6)

Then, according to (2.25), the general solution to Eq. (5.1) is

F a
t+1(s, u) =

= χa
t (u + s)χ̄a

t (u − s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h(t+1)
t (u+s−a+2) · · · h(1)

t (u+s−a+2)

h(t+1)
t (u+s−a+4) · · · h(1)

t (u+s−a+4)

· · · · · · · · ·

h(t+1)
t (u+s+a) · · · h(1)

t (u+s+a)

h̄(t+1)
t (u−s+a−t) · · · h̄(1)

t (u−s+a−t)

h̄(t+1)
t (u−s+a−t+2) · · · h̄(1)

t (u−s+a−t+2)

· · · · · · · · ·

h̄(t+1)
t (u−s−a+t) · · · h̄(1)

t (u−s−a+t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(5.7)

3 Here we callholomorphic(antiholomorphic) a function ofu + s (resp.,u − s).
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where 0≤ a ≤ t+1 and the gauge functionsχa
t (u), χ̄a

t (u) (introduced for normalization)
satisfy the following equations:

χa
t (u + 1)χa

t (u − 1) = χa+1
t (u)χa−1

t (u) ,

χ̄a
t (u + 1)χ̄a

t (u − 1) = χ̄a+1
t (u)χ̄a−1

t (u) (5.8)

(cf. (2.5)). The size of the determinant ist + 1. The firsta rows contain functionsh(j)
i ,

the remainingt − a + 1 rows contain̄h(j)
i . The arguments ofh(j)

i , h̄(j)
i increase by 2,

going down a column. Note that the determinant in (5.7) (without the prefactors) is a
solution itself. Ata = 0 (a = t+ 1) it is an antiholomorphic (holomorphic) function. The
required b.c. (3.19) can be satisfied by choosing appropriate gauge functionsχa

t , χ̄a
t .

5.2. Canonical solution.The general solution (5.7) gives the functionT a
s (u) ≡ F a

k (s, u)
in terms of 2k functions of one variablehi

k−1 andh̄i
k−1. However, we need to represent the

solution in terms of another set of 2k functionsQt(u) andQ̄t(u) by virtue of conditions
(5.4) in such a way that Eqs. (5.2), (5.3) connecting two adjacent levels are fulfilled. We
refer to this specification as thecanonical solution.

To find it let us notice that ata = 0 Eq. (5.2) consists of the holomorphic function
Qt(u + s) and a functionF 1. According to Eq. (5.7),F 1 is given by the determinant
of the matrix with the holomorphic entriesh(i)

t (u + s + 1) in the first row. Other rows
contain antiholomorphic functions only, soF 1

t (u, s) =
∑

i h(i)
t (u+s+1)ηi(u−s), where

ηi(u − s) are corresponding minors of the matrix (5.7) ata = 1. Substituting this into
Eq. (5.2) ata = 0 and separating holomorphic and antiholomorphic functions one gets
relations connectingh(i)

t , h(i)
t−1 andQt(u), Qt+1(u). Similar arguments can be applied to

Eq. (5.3) at another boundarya = t + 1. The general proof is outlined in the appendix to
this section. Here we present the result:

h(1)
t (u + s) = Qt(u + s) , h̄(1)

t (u − s) = Q̄t(u − s) (5.9)

and

Qt+1(u − 2)h(i)
t−1(u) =

∣∣∣∣ h(i+1)
t (u − 2) Qt(u − 2)

h(i+1)
t (u) Qt(u)

∣∣∣∣ , (5.10)

Q̄t+1(u + 1)h̄(i)
t−1(u + 1) =

∣∣∣∣ h̄(i+1)
t (u) Q̄t(u)

h̄(i+1)
t (u + 2) Q̄t(u + 2)

∣∣∣∣ , (5.11)

where 1≤ i ≤ t. Functionsχ, χ̄ in front of the determinant (5.7) are then fixed as
follows:

χa
t (u) = (−1)at

a−1∏
j=1

Qt+1(u − a + 2j)

−1

, a ≥ 2 ,

χ0
t (u) = Qt+1(u) , χ1

t(u) = (−1)t , (5.12)

χ̄a
t (u) =

t−a∏
j=1

Q̄t+1(u + a − t + 2j − 1)

−1

, a ≤ t − 1 ,

χ̄t
t(u) = 1 , χ̄t+1

t (u) = Q̄t+1(u) . (5.13)
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It is easy to check that they do satisfy Eq. (5.8). The recursive relations (5.10), (5.11)

allow one to determine functionsh(i)
t and ¯h(i)

t starting from a given set ofQt(u). These
formulas generalize wronskian relations (4.13), (4.14) to theAk−1-case.

Let us also note that this construction resembles the Leznov-Saveliev solution [39]
to the continuous 2DTL with open boundaries.

5.3. The Bethe ansatz and canonical solution.The canonical solution of the previous
section immediately leads to the nested Bethe ansatz for elliptic solutions.

In this case all functionsh(i)
t , h̄(i)

t are elliptic polynomials multiplied by an exponen-
tial function:

h(i)
t (u) = a(i)

t eν(i)
t ηu

M (i)
t∏

j=0

σ(η(u − ut,i
j )) , (5.14)

h̄(i)
t (u) = ā(i)

t eν̄(i)
t ηu

M̄ (i)
t∏

j=0

σ(η(u − ūt,i
j )) . (5.15)

This implies a number of constraints on their zeros.
The determinant in (5.10) should be divisible byQt+1(u − 2) andh(i)

t−1(u), whence

h(i+1)
t (ut+1

j )

h(i+1)
t (ut+1

j + 2)
=

Qt(ut+1
j )

Qt(ut+1
j + 2)

, (5.16)

h(i+1)
t (ut−1,i

j )

h(i+1)
t (ut−1,i

j − 2)
=

Qt(u
t−1,i
j )

Qt(u
t−1,i
j − 2)

, (5.17)

whereut
j ≡ ut,1

j . Furthermore, it is possible to get a closed system of constraints for the
roots ofQt(u) only. Indeed, choosingu = ut

j , u = ut
j + 2 in (5.10), we get

Qt+1(u
t
j − 2)Qt−1(ut

j) = −Qt(u
t
j − 2)h(2)

t (ut
j) , (5.18)

Qt+1(u
t
j)Qt−1(ut

j + 2) = Qt(u
t
j + 2)h(2)

t (ut
j) . (5.19)

Dividing Eq. (5.18) by Eq. (5.19) we obtain the system of nested Bethe equations:

Qt−1(ut
j + 2)Qt(ut

j − 2)Qt+1(ut
j)

Qt−1(ut
j)Qt(ut

j + 2)Qt+1(ut
j − 2)

= −1 , (5.20)

which coincides with (3.31) from Sect. 3.5.
Similar relations hold true for thēh-diagram:

h̄(i+1)
t (ūt+1

j + 1)

h̄(i+1)
t (ūt+1

j − 1)
=

Q̄t(ūt+1
j + 1)

Q̄t(ūt+1
j − 1)

, (5.21)

h̄(i+1)
t (ūt−1,i

j + 1)

h̄(i+1)
t (ūt−1,i

j − 1)
=

Q̄t(ū
t−1,i
j + 1)

Q̄t(ū
t−1,i
j − 1)

, (5.22)

Q̄t+1(ū
t
j + 1)Q̄t−1(ūt

j + 1) = Q̄t(ū
t
j + 2)h̄(2)

t (ūt
j) , (5.23)
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Q̄t+1(ū
t
j − 1)Q̄t−1(ūt

j − 1) = −Q̄t(ū
t
j − 2)h̄(2)

t (ūt
j) , (5.24)

Q̄t−1(ūt
j + 1)Q̄t(ūt

j − 2)Q̄t+1(ūt
j + 1)

Q̄t−1(ūt
j − 1)Q̄t(ūt

j + 2)Q̄t+1(ūt
j − 1)

= −1 . (5.25)

These conditions are sufficient to ensure that the canonical solution forT a
s (u) (i.e.,

for F a
k (s, u)) has the required general form (2.7). To see this, take a genericQ-factor

from the product (5.12), (Qt+1(u−a + 2j))−1. It follows from (5.16) that at its poles the
jth andj + 1th rows of the determinant (5.7) become proportional. The same argument
repeated forQ̄-factors shows thatF a

t+1(s, u) has no poles.
Finally, it is straightforward to see from (5.7) that the constraintQ̄t(u) = Qt(u − t)

leads to condition (2.15) (for−t ≤ s ≤ −1 two rows of the determinant become equal).
To summarize, the solution goes as follows. First, one should find a solution to

Bethe equations (3.31) thus getting a set of elliptic polynomialsQt(u), t = 1, . . . , k −1,
Q0(u) = 1,Qk(u) = φ(u) being a given function. To make the chain of equations finite,
it is convenient to use the formal conventionQ−1(u) = Qk+1(u) = 0. Second, one should
solve step by step relations (5.10), (5.11) and find the functionsh(i)

t (u), h̄(i)
t (u). All these

relations are of the same type as the wronskian relation (4.13) in theA1-case: each of
them is a linear inhomogeneous first order difference equation.

5.4. Conservation laws.The solution described in Sects. 5.2 and 5.3 provides compact
determinant formulas for eigenvalues of quantum transfer matrices. It also provides
determinant representations for conservation laws of thes-dynamics which generalize
Eqs. (4.7), (4.8) to theAk−1-case. The generalization comes up in the form of Eqs. (4.22),
(4.23) and (4.26). The conservation laws (i.e., integrals of thes-dynamics) follow from
the determinant representation (5.7) of the general solution to HBDE.

Let us consider (Ca
k + 1)× (Ca

k + 1)-matrices

T a
B,B′ (s, u) ≡ T a

s+B+B′ (u − s + B − B′), B, B′ = 1, . . . , Ca
k + 1 , (5.26)

T̄ a
B,B′ (s, u) = T a

s−B−B′ (u + s + B − B′), B, B′ = 1, . . . , Ca
k + 1 , (5.27)

whereCa
k is the binomial coefficient. LetT a[P |R](s, u) be minors of the matrix (5.26)

with row P and columnR removed (similarly for (5.27)).

Theorem 5.1. LetT a
s (u) be the general solution to HBDE given by Eq. (5.7). Then any

ratio of the form

Aa,R
P,P ′ (s, u) ≡ T a[P |R](s, u)

T a[P ′|R](s, u)
(5.28)

does not depend ons. These quantities are integrals of thes-dynamics:Aa,R
P,P ′ (s, u) =

Aa,R
P,P ′ (u). Similarly, minors of the matrix (5.27) give in the same way a complimentary

set of conservation laws4.

A sketch of proof is as follows.
Consider the Laplace expansion of the determinant solution (5.7) with respect to the

first a (holomorphic) rows:

T a
s (u) =

Ca
k∑

P =1

ψa
P (u + s)ψ̄a

P (u − s). (5.29)

4 Compare with (4.7), (4.8).
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HereP numbers (in an arbitrary order) sets of indices (p1, p2, . . . , pa) such thatk ≥
p1 > p2 > . . . > pa ≥ 1, ψa

P (u + s) is minor of the matrix in Eq. (5.7) constructed
from firsta rows and columnsp1, . . . , pa (multiplied byχa

k−1(u + s)), ψ̄a
P (u − s) is the

complimentary minor (multiplied by ¯χa
k−1(u − s)).

SubstituteRth column of the matrix (5.26) by the column vector with components
ψa

P (u+2B),B = 1, . . . , Ca
k +1. The matrix obtained this way (let us call it (T a;R,P )B,B′ )

depends onR = 1, . . . , Ca
k + 1,P = 1, . . . , Ca

k anda = 1, . . . , k − 1. The “complemen-
tary" matrix (T̄ a;R,P )B,B′ is defined by the similar substitution of the column vector
ψ̄a

P (u + 2B), B = 1, . . . , Ca
k + 1, into the matrix (5.27).

Lemma 5.1. Determinants of all the four matrices introduced above vanish:

det(T a) = det(T̄ a) = det(T a;R,P ) = det(T̄ a;R,P ) = 0 . (5.30)

The proof follows from the Laplace expansion (5.29). From this representation it
is obvious thatCa

k + 1 columns of the matrices in (5.30) are linearly dependent. This
identity is valid for arbitrary functionsh(i)

t (u + s), h̄(i)
t (u − s) in Eq. (5.7).

The conservation laws immediately follow from these identities. Indeed, let us rewrite
the determinant of the matrixT a;R,P as a linear combination of entries of theRth column:

det(T a;R,P ) =
Ca

k +1∑
B′=1

(−1)B
′+Rψa

P (u + 2B′)T a[B′|R](s, u) = 0 . (5.31)

Dividing by T a[P ′|R](s, u), we get, using the notation (5.28):

Ca
k +1∑

B′=1,B′ 6=P ′
(−1)B

′
ψa

P (u + 2B′)Aa,R
B′,P ′ (s, u) = (−1)P

′+1ψa
P (u + 2P ′) . (5.32)

The latter identity is a system ofCa
k linear equations forCa

k quantitiesAa,R
1,P ′ (s, u),

Aa,R
2,P ′ (s, u), . . . , Aa,R

P ′−1,P ′ (s, u), Aa,R
P ′+1,P ′ (s, u), . . ., Aa,R

Ca
k

+1,P ′ (s, u). In the case of the
general position the wronskian of the functionsψa

P (u) is nonzero, whence system (5.32)
has a unique solution forAa,R

P,P ′ (s, u). The coefficients of the system do not depend ons.

Therefore,Aa,R
P,P ′ (s, u) ares-independent too. Similar arguments areapplied to minors

of the matrix (5.27).
Another form of Eq. (5.31) may be obtained by multiplication its l.h.s. byψ̄a

P (u−2s)
and summation overP . This yields

Ca
k +1∑

B=1

(−1)BT a
s+B(u − s + B)T a[B|R](s, u) = 0 , (5.33)

which is a difference equation forT a
s (u) as a function of the “holomorphic" variable

u + s with fixedu − s.

5.5. Generalized Baxter’s relations.Equation (5.31) can be considered as a linear differ-
ence equation for a functionψa(u) havingCa

k linearly independent solutionsψa
P (u). It

provides theAk−1-generalization of Baxter’s relations (4.4), (4.5). This generalization
comes up in the form of Eqs. (4.22), (4.23) and (4.26).
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The simplest cases area = 1 anda = k − 1. Then there arek + 1 terms in the sum
(5.31). Furthermore, it is obvious that

ψ1
i (u) = h(i)

k−1(u + 1), ψ̄k−1
i (u) = h̄(i)

k−1(u) . (5.34)

Then Eq. (5.31) and a similar equation for antiholomorphic parts read:

k+1∑
j=1

(−1)jh(i)
k−1(u + 2j + 1)T 1[j|k + 1](s, u) = 0 , (5.35)

k+1∑
j=1

(−1)j h̄(i)
k−1(u + 2j)T̄ k−1[j|k + 1](s, u) = 0 , (5.36)

where we putR = k + 1 for simplicity. These formulas may be understood as linear
difference equations of orderk. Indeed, Eq. (5.35) can be rewritten as the following
equation for a functionX(u):

∣∣∣∣∣∣∣∣∣∣∣∣∣

T 1
s (u) T 1

s+1(u−1) . . . T 1
s+k−1(u−k+1) X(u+s+1)

T 1
s+1(u+1) T 1

s+2(u) . . . T 1
s+k(u−k+2) X(u+s+3)

. . . . . . . . . . . . . . .

T 1
s+k(u+k) T 1

s+k+1(u+k−1) . . . T 1
s+2k−1(u+1) X(u+s +2k+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 . (5.37)

This equation hask solutionsh(i)
k−1(u), i = 1, . . . , k. One of them isQk−1 ≡ h(1)

k−1(u)
(see Eq.(5.9)). Similarly Eq. (5.36) for the antiholomorphic parts,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T k−1
s (u) T k−1

s−1 (u−1) . . . T k−1
s−k+1(u−k+1) X̄(u−s)

T k−1
s−1 (u+1) T k−1

s−2 (u) . . . T k−1
s−k (u−k+2) X̄(u−s+2)

. . . . . . . . . . . . . . .

T k−1
s−k (u+k) T k−1

s−k−1(u+k−1) . . . T k−1
s−2k+1(u+1) X̄(u−s+2k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 , (5.38)

hask solutionsh̄(i)
k−1(u), i = 1, . . . , k. One of them isQ̄k−1 ≡ h̄(1)

k−1(u).
Difference equations (5.37), (5.38) can be rewritten in the factorized form. This fact

follows from a more general statement. Fix an arbitrary levelk and setT a
s (u) = F a

k (s, u),
F a(s, u) = F a

k−1(s, u) (as in Sect. 3).

Proposition 5.1. For eachj = 0, 1, . . . , k − 1 it holds:(
e∂s+∂u −R(j)

j+1(s, u)
)(

e∂s+∂u −R(j)
j (s, u)

)
. . .

(
e∂s+∂u −R(j)

1 (s, u)
)
F k−1−j(s, u) = 0 ,

(5.39)(
e∂s−∂u − R̄(j)

j+1(s, u)
)(

e∂s−∂u − R̄(j)
j (s, u)

)
. . .

(
e∂s−∂u − R̄(j)

1 (s, u)
)
F j(s, u) = 0 ,

(5.40)
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where

R(k−1−j)
i (s, u) =

T j
s+i−1(u + i − 1)T j+i−1

s+i−2 (u − 1)T j+i
s+i (u)

T j
s+i−2(u + i − 2)T j+i−1

s+i−1 (u)T j+i
s+i−1(u − 1)

, (5.41)

R̄(j)
i (s, u) =

T j+1
s+i−1(u − l)T j−i+1

s+l (u − 1)T j−i+2
s+i−2 (u)

T j+1
s+i−2(u − i + 1)T j−i+1

s+i−1 (u)T j−i+2
s+i−1 (u − 1)

. (5.42)

Proof.The proof is by induction. Atj = 0 Eq. (5.39) turns into(
e∂s+∂u − T k

s+1(u)
T k

s (u − 1)

)
F k−1(s, u) = 0 .

This means thatF k−1(s, u) does not depend onu + s. Further,

F a(s + 1, u) = −T a
s (u − 1)

T a−1
s (u)

(
e∂s+∂u − T a

s+1(u)
T a

s (u − 1)

)
F a−1(s, u) , (5.43)

(see (3.8)). The inductive step is then straightforward. The proof of (5.40) is absolutely
identical.

Now, puttingj = k − 1 we get the following difference equations in one variable:(
e2∂u+∂s − R(k−1)

k (s, u − s)
)(

e2∂u+∂s − R(k−1)
k−1 (s, u − s)

)
. . .

(
e2∂u+∂s − R(k−1)

1 (s, u − s)
)
Qk−1(u) = 0 , (5.44)

(e−2∂u+∂s − R̄(k−1)
k (s, u + s))(e−2∂u+∂s − R̄(k−1)

k−1 (s, u + s))

. . . (e−2∂u+∂s − R̄(k−1)
1 (s, u + s))Q̄k−1(u) = 0 . (5.45)

Note that operatorse±∂s act only on the coefficient functions in (5.44), (5.45). These
equations provide a version of the discrete Miura transformation of generalized Baxter’s
operators, which is different from the one discussed in Ref. [15] (see also below).

Coming back to Eq. (5.31) and using relations (5.10), (5.11), one finds:

ψk−1
k (u) = h(1)

1 (u + k − 1) = Q1(u + k − 1) , (5.46)

ψ̄1
k(u) = h̄(1)

1 (u) = Q̄1(u) (5.47)

(for the proof see Lemma 5.2 in the appendix to this section).
Then, in complete analogy with Eqs. (5.37), (5.38), one obtains from (5.31) the

following difference equations:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T k−1
s (u) T k−1

s+1 (u−1) . . . T k−1
s+k−1(u−k+1) X(u+s+k−1)

T k−1
s+1 (u+1) T k−1

s+2 (u) . . . T k−1
s+k (u−k+2) X(u+s+k+1)

. . . . . . . . . . . . . . .

T k−1
s+k (u+k) T k−1

s+k+1(u+k−1) . . . T k−1
s+2k−1(u+1) X(u+s+3k−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 , (5.48)
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∣∣∣∣∣∣∣∣∣∣∣∣∣

T 1
s (u) T 1

s−1(u−1) . . . T 1
s−k+1(u−k+1) X̄(u−s)

T 1
s−1(u+1) T 1

s−2(u) . . . T 1
s−k(u−k+2) X̄(u−s+2)

. . . . . . . . . . . . . . .

T 1
s−k(u+k) T 1

s−k−1(u+k−1) . . . T 1
s−2k+1(u+1) X̄(u−s+2k)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (5.49)

to whichQ1(u) (resp.,Q̄1(u)) is a solution. The otherk−1 linearly independent solutions
to Eq. (5.48) (resp., (5.49)) are other algebraic complements of the last (first) line of the
matrix in Eq. (5.7) ata = k − 1 (a = 1) multiplied byχk−1

k−1 (χ̄1
k−1).

Further specification follows from imposing constraints (3.12) which ensure condi-
tions (2.4) forced by the usual Bethe ansatz. One can see that under these conditions
Eqs. (5.48) and (5.49) become the same. Further, substituting a particular value ofs,
s = −k, into, say, Eqs. (5.48), (5.37), one gets the following difference equations:

k∑
a=0

(−1)aT a
1 (u + a − 1)Q1(u + 2a − 2) = 0, (5.50)

k∑
a=0

(−1)a
T a

1 (u − a − 1)
φ(u − 2a − 2)

Qk−1(u − 2a)
φ(u − 2a)

= 0 (5.51)

(we remind the reader thatφ(u) ≡ Qk(u)). The latter equation can be obtained directly
from the determinant formula (5.7): notice that under conditions (2.4) the determinants
in Eq. (5.7) become minors of the matrixh(i)

k−1(u − 2k + 2j), wherei numbers columns
running from 1 tok, j numbers lines and runs from 0 tok skipping the valuek − a.
Taking care of the prefactors in Eq. (5.7) and recalling thath(1)

k−1(u) = Qk−1(u), one gets
Eq. (5.51). These formulas give a generalization of the Baxter equations (4.4), (4.5),
(4.12).

At last, we are to identify ourQt’s with Qt’s from the usual nested Bethe ansatz
solution. This is achieved by factorization of the difference operators in (5.50) and (5.51)
in terms ofQt(u). Using the technique developed in the appendix to this section, one
can prove the following factorization formulas:

k∑
a=0

(−1)a−k T a
1 (u + a − 1)
φ(u − 2)

e2a∂u =

(
e2∂u − Qk(u)Qk−1(u − 2)

Qk(u − 2)Qk−1(u)

)

. . .

(
e2∂u − Q2(u)Q1(u − 2)

Q2(u − 2)Q1(u)

) (
e2∂u − Q1(u)

Q1(u − 2)

)
, (5.52)

k∑
a=0

(−1)a−k T a
1 (u − a − 1)

φ(u − 2a − 2)
e−2a∂u =

(
e−2∂u − Q1(u)

Q1(u − 2)

)
(

e−2∂u − Q2(u)Q1(u − 2)
Q2(u − 2)Q1(u)

)
. . .

(
e−2∂u − Qk(u)Qk−1(u − 2)

Qk(u − 2)Qk−1(u)

)
. (5.53)
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Note that these operators are adjoint to each other. The l.h.s. of Eq. (5.52) or (5.53)
is known as the generating function forT a

1 (u); T a
s (u) for s > 1 can be found with the

help of determinant formula (2.24). These formulas for the generating function coincide
with the ones known in the literature (see e.g. [5, 38]). They yieldT a

1 (u) in terms of
elliptic polynomialsQt with roots constrained by the nested Bethe ansatz equations
which ensure cancellation of poles inT a

1 (u).

5.6. Appendix to Section 5.Here we outline the proof of the result of Sect. 5. It is enough
to prove that the canonical solution does satisfy Eqs. (5.2), (5.3) connecting adjacent
levels. The idea is to show that they are equivalent to the elementary Plücker relation
(2.21). We proceed in steps.
First step: Preliminaries. We need the determinant identity

det
1≤m,n≤k

∣∣∣∣∣∣
am,n am,k+1

am+1,n am+1,k+1

∣∣∣∣∣∣
 =

 k∏
j=2

aj,k+1

 det
1≤m,n≤k+1

(am,n) (5.54)

valid for an arbitrary (k + 1)× (k + 1)-matrixam,n, 1 ≤ m, n ≤ k + 1. It can be easily
proved by induction.

Let us consider minors of the matricesh(j)
t (u + 2i), h̄(j)

t (u + 2i), 1 ≤ i, j ≤ t + 1 of
sizea × a:

H (i1,i2,...,ia)
t (u) = det

1≤α,β≤a

(
h

(iβ )
t (u + 2α − 2)

)
(5.55)

and the same expression for̄Ht’s throughh̄t’s. The following technical lemma follows
directly from Eq. (5.54):

Lemma 5.2. If relations (5.9)-(5.11) hold, then

H (i1,i2,...,ia)
t−1 (u + 1)∏a−1

j=1 Qt(u + 2j − 1)
=

H (i1+1,i2+1,...,ia+1,1)
t (u − 1)∏a

j=1 Qt+1(u + 2j − 3)
, (5.56)

H̄ (i1,i2,...,ia)
t−1 (u + 1)∏a−1
j=1 Q̄t(u + 2j)

=
H̄ (i1+1,i2+1,...,ia+1,1)

t (u)∏a
j=1 Q̄t+1(u + 2j − 1)

. (5.57)

Relations (5.46), (5.47) are direct corollaries of the lemma.
Second step: Fromh(i)

t ’s to qi’s. Let us fix a levelk and define the quantities

qi(u) =
H (k,k−1,...,k̂−i+1,...,1)

k−1 (u − 2k + 4)∏k−2
j=1 Qk(u − 2k + 2j + 2)

, (5.58)

q̄i(u) =
H̄ (k,k−1,...,k̂−i+1,...,1)

k−1 (u − k + 2)∏k−2
j=1 Q̄k(u − k + 2j + 1)

(5.59)

for 1 ≤ i ≤ k. The hat means that the corresponding index is skipped. Due to Lemma 5.2
these quantities actually do not depend on the particular value ofk used in the definition.
More precisely, defineqi(u), q̄i(u) with respect to any levelk′ > k, then they coincide
with those previously defined for 1≤ i ≤ k.

With this definition, one can prove
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Lemma 5.3. Fix an arbitrary levelk > 1. Letmα, α = 1, 2, . . . , r, be a set of integers
such thatk ≥ m1 > m2 > . . . > mr ≥ 1 and letm̃α, α = 1, 2, . . . , k − r, be its
complement to the set1, 2, . . . , k ordered in the same way:k ≥ m̃1 > m̃2 > . . . >
m̃k−r ≥ 1. Then the following identities hold:

det
1≤α,β≤r

(qmβ
(u + 2α − 2)) =

det1≤α,β≤k−r(h(m̃β )
k−1 (u + 2r − 2k + 2α))∏k−r−1

j=1 Qk(u + 2r − 2k + 2j)
, (5.60)

det
1≤α,β≤r

(q̄mβ
(u + 2α − 2)) =

det1≤α,β≤k−r(h̄(m̃β )
k−1 (u + 2r − k + 2α − 2))∏k−r−1

j=1 Q̄k(u + 2r − k + 2j − 1)
. (5.61)

Let us outline the proof. Atr = 1, these identities coincide with the definitions ofqi,
q̄i. At r = 2, they follow from the Jacobi identity (2.20). The inductive step consists in
expanding the determinant in the left hand side in the first row and then making use of
determinant identities equivalent to ther + 1-term Pl̈ucker relation.

The identities from Lemma 5.3 allow one to express the canonical solution in terms of
qi, q̄i. The Laplace expansion of the determinant in Eq. (5.7) combined with Eqs. (5.60),
(5.61) yields:

F a
t (s, u) = (−1)a(t−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qt(u+s+a) · · · q1(u+s+a)

qt(u+s+a+2) · · · q1(u+s+a+2)

· · · · · · · · ·

qt(u+s+2t−a−2) · · · q1(u+s+2t−a−2)

q̄t(u−s−a+1) · · · q̄1(u−s−a+1)

q̄t(u−s−a+3) · · · q̄1(u−s−a+3)

· · · · · · · · ·

q̄t(u−s+a−1) · · · q̄1(u−s+a−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.62)

In particular, we have:

F 0
t (s, u) = Qt(u + s) = det

1≤i,j≤t
qt+1−j(u + s + 2i − 2) , (5.63)

F t
t (s, u) = Q̄t(u − s) = det

1≤i,j≤t
q̄t+1−j(u − s − t + 2i − 1) . (5.64)

Third step: The Pl̈ucker relation. Consider the rectangular (t + 3) × (t + 1)-matrixSij ,
i = 1, 2, . . . , t + 3, i = 1, 2, . . . , t + 1, given explicitly by

S1j = δ1j ,

Sij = qt+2−j(u + s + a + 2i − 4) , 2 ≤ i ≤ t − a + 2 ,

Sij = q̄t+2−j(u − s + a + 2j − 2t − 7) , t − a + 3 ≤ i ≤ t + 3 . (5.65)

Applying the determinant identity (2.21) (the elementary Plücker relation) to minors of
this matrix, one gets Eq. (5.2) forl1 = 1, l2 = 2, l3 = t−a+2, l4 = t−a+3 and Eq. (5.3)
for l1 = 1, l2 = t − a + 2, l3 = t − a + 3, l4 = t + 1. This completes the proof.
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Remark.Functionsqi(u), q̄i(u), i = 1, 2 . . . , k, are linearly independent solutions to
generalized Baxter’s equations (5.48), (5.49) respectively. To construct an elliptic poly-
nomial solution forT a

s (u), it is sufficient to take them to be arbitrary elliptic polynomials
of one and the same degreed,

qi(u) = eζiηu
d∏

l=1

σ(η(u − v(i)
l )), q̄i(u) = eζ̄iηu

d∏
l=1

σ(η(u − v̄(i)
l )),

with the only conditions thatζi − ζ̄i,
∑d

l=1(v
(i)
l − v̄(i)

l ) do not depend oni = 1, 2, . . . , k.
It is easy to check that in this case general conditions (2.8), (2.9) are fulfilled.

6. Regular Elliptic Solutions of the HBDE and RS System in Discrete Time

In this section we study the class of elliptic solutions to HBDE for which the number of
zerosMt of theτ -function does not depend ont. We call themelliptic solutions of the
regular type(or simply regular elliptic solutions) since they have a smooth continuum
limit. Although it has been argued in the previous section that the situation of interest
for the Bethe ansatz is quite opposite, we find it useful to briefly discuss this class of
solutions.

It is convenient to slightly change the notation:τ l,m(x) ≡ τu(−m, −l), x ≡ uη.
HBDE (1.8) acquires the form

τ l+1,m(x)τ l,m+1(x) − τ l+1,m+1(x)τ l,m(x) = τ l+1,m(x + η)τ l,m+1(x − η) . (6.1)

We are interested in solutions that are elliptic polynomials inx,

τ l,m(x) =
M∏
j=1

σ(x − xl,m
j ) . (6.2)

The main goal of this section is to describe this class of solutions in a systematic way
and, in particular, to prove thatall the elliptic solutions of regular type are finite-gap.

The auxiliary linear problems (3.5) look as follows:

9l,m+1(x) = 9l,m(x + η) +
τ l,m(x)τ l,m+1(x + η)
τ l,m+1(x)τ l,m(x + η)

9l,m(x) , (6.3)

9l+1,m(x) = 9l,m(x) +
τ l,m(x − η)τ l+1,m(x + η)

τ l+1,m(x)τ l,m(x)
9l,m(x − η) . (6.4)

(The notation is correspondingly changed:9l,m(uη) ≡ ψu(−m, −l).) The coefficients
are elliptic functions ofx. Similarly to the case of the Calogero-Moser model and its
spin generalizations [31, 32] the dynamics of their poles is determined by the fact that
Eqs. (6.3), (6.4) have infinite number of double-Bloch solutions (Sect. 4).

The “gauge transformation"f (x) → f̃ (x) = f (x)eax (a is an arbitrary constant) does
not change poles of any function and transforms a double-Bloch function into another
double-Bloch function. IfBα are Bloch multipliers forf , then the Bloch multipliers for
f̃ areB̃1 = B1e

2aω1, B̃2 = B2e
2aω2, whereω1, ω2 are quasiperiods of theσ-function.

Two pairs of Bloch multipliers are said to beequivalentif they are connected by this
relation with somea (or by the equivalent condition that the productBω2

1 B−ω1
2 is the

same for both pairs).
Consider first Eq. (6.3). Sincel enters as a parameter, not a variable, we omit it for

simplicity of the notation (e.g.xl,m
j → xm

j ).
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Theorem 6.1. Equation (6.3) has an infinite number of linearly independent double-
Bloch solutions with simple poles at the pointsxm

i and equivalent Bloch multipliers if
and only ifxm

i satisfy the system of equations

M∏
j=1

σ(xm
i − xm+1

j )σ(xm
i − xm

j − η)σ(xm
i − xm−1

j + η)

σ(xm
i − xm+1

j − η)σ(xm
i − xm

j + η)σ(xm
i − xm−1

j )
= −1 . (6.5)

All these solutions can be represented in the form

9m(x) =
M∑
i=1

ci(m, z, κ)8(x − xm
i , z)κx/η (6.6)

(8(x, z) is defined in (4.37)). The set of corresponding pairs(z, κ) are parametrized by
points of an algebraic curve defined by the equation of the form

R(κ, z) = κM +
M∑
i=1

ri(z)κM−i = 0 . (6.7)

Sketch of proof.We omit the detailed proof since it is almost identical to the proof of the
corresponding theorem in [33] and only present the part of it which provides the Lax
representation for Eq. (6.5).

Let us substitute the function9m(x) of the form (6.6) into Eq. (6.3). The cancellation
of poles atx = xm

i − η andx = xm+1
i gives the conditions

κci(m, z, κ) + λi(m)
M∑
j=1

cj(m, z, κ)8(xm
i − xm

j − η, z) = 0 , (6.8)

ci(m + 1, z, κ) = µi(m)
M∑
j=1

cj(m, z, κ)8(xm+1
i − xm

j , z) , (6.9)

where

λi(m) =

∏M
s=1 σ(xm

i − xm
s − η)σ(xm

i − xm+1
s )∏M

s=1,6=i σ(xm
i − xm

s )
∏M

s=1 σ(xm
i − xm+1

s − η)
, (6.10)

µi(m) =

∏M
s=1 σ(xm+1

i − xm+1
s + η)σ(xm+1

i − xm
s )∏M

s=1,6=i σ(xm+1
i − xm+1

s )
∏M

s=1 σ(xm+1
i − xm

s + η)
. (6.11)

Introducing a vectorC(m) with componentsci(m, z, κ) we can rewrite these con-
ditions in the form

(L(m) + κI)C(m) = 0 , (6.12)

C(m + 1) = M(m)C(m) , (6.13)

whereI is the unit matrix. Entries of the matricesL(m) andM(m) are:

Lij(m) = λi(m)8(xm
i − xm

j − η, z), (6.14)

Mij(m) = µi(m)8(xm+1
i − xm

j , z). (6.15)

The compatibility condition of (6.12) and (6.13),
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L(m + 1)M(m) = M(m)L(m) (6.16)

is the discrete Lax equation.
By the direct commutation of the matricesL, M (making use of some non-trivial

identities for the function8(x, z) which are omitted) it can be shown that for the matrices
L andM defined by Eqs. (6.14), (6.10) and (6.15), (6.11) respectively, the discrete Lax
equation (6.16) holds if and only if thexm

i satisfy Eqs. (6.5). It is worthwhile to remark
that in terms ofλi(m), µi(m) Eqs. (6.5) take the form

λi(m + 1) = −µi(m), i = 1, . . . , M . (6.17)

Equation (6.12) implies that

R(κ, z) ≡ det(L(m) + κI) = 0 . (6.18)

The coefficients ofR(κ, z) do not depend onm due to (6.16). This equation defines an
algebraic curve (6.7) realized as a ramified covering of the elliptic curve.

Solutions to Eq. (6.5) are implicitly given by the equation

Θ(~Uxl,m
i + ~U+l + ~U−m + ~Z) = 0 , (6.19)

where the Riemann theta-functionΘ( ~X) corresponds to the spectral curve (6.7), (6.18),
components of the vectors~U , ~U+, ~U− are periods of certain dipole differentials on
the curve,~Z is an arbitrary vector. Elliptic solutions are characterized by the following
property: 2ωi

~U , i = 1, 2, belongs to the lattice of periods of holomorphic differentials on
the curve. The matrixL(m) = L(l, m) is defined by fixingxl0,m0

j ,xl0,m0+1
j , i = 1, . . . , M .

These Cauchy data uniquely define the curve and the vectors~U , ~U+, ~U− and ~Z in Eq.
(6.19). The curve and vectors~U , ~U+, ~U− do not depend on the choice ofl0, m0. According
to Eq. (6.19), the vector~Z depends linearly on this choice and its components are thus
angle-type variables.

The same analysis can be repeated for the second linear problem (6.4). Nowm enters
as a parameter and we setxl,m → x̂l

i for simplicity. The theorem is literally the same,
the equations of motion for the poles being

M∏
j=1

σ(x̂l
i − x̂l+1

j + η)σ(x̂l
i − x̂l

j − η)σ(x̂l
i − x̂l−1

j )

σ(x̂l
i − x̂l+1

j )σ(x̂l
i − x̂l

j + η)σ(x̂l
i − x̂l−1

j − η)
= −1 . (6.20)

The corresponding discrete Lax equation is

L̂(l + 1)M̂(l) = M̂(l)L̂(l) , (6.21)

where5

L̂ij(l) = λ̂i(l)8(x̂l
i − x̂l

j − η, z), (6.22)

M̂ij(l) = µ̂i(l)8(x̂l+1
i − x̂l

j − η, z), (6.23)

and

λ̂i(l) =

∏M
s=1 σ(x̂l

i − x̂l
s − η)σ(x̂l

i − x̂l+1
s + η)∏M

s=1,6=i σ(x̂l
i − x̂l

s)
∏M

s=1 σ(x̂l
i − x̂l+1

s )
, (6.24)

5 A very close version of the discreteL-M pair appeared first in the Ref.[43] as an a priori ansatz.
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µ̂i(l) =

∏M
s=1 σ(x̂l+1

i − x̂l+1
s + η)σ(x̂l+1

i − x̂l
s − η)∏M

s=1,6=i σ(x̂l+1
i − x̂l+1

s )
∏M

s=1 σ(x̂l+1
i − x̂l

s)
. (6.25)

All these formulas can be obtained from (6.5), (6.10)-(6.15) by the formal substitutions
xm

i → x̂l
i, xm±1

i → x̂l±1
i ∓ η. According to the comment after Eq. (6.19), the Cauchy

data for thel-flow xl0,m0
j , xl0+1,m0

j are uniquely determined by fixing the Cauchy data

xl0,m0
j , xl0,m0+1

j for them-flow and vice versa.

7. Conclusion and Outlook

It turned out that classical and quantum integrable models have a deeper connection than
the common assertion that the former are obtained as a “classical limit" of the latter. In
this paper we have tried to elaborate perhaps the simplest example of this phenomenon:
the fusion rules for quantum transfer matrices coincide with Hirota’s bilinear difference
equation (HBDE).

We have identified the bilinear fusion relations in Hirota’s classical difference equa-
tion with particular boundary conditions and elliptic solutions of the Hirota equation,
with eigenvalues of the quantum transfer matrix. Eigenvalues of the quantum transfer
matrix play the role of theτ -function. Positions of zeros of the solution are determined
by the Bethe ansatz equations. The latter have been derived from an entirely classical
set-up.

We have shown that nested Bethe ansatz equations can be considered as a natural
discrete time analogue of the Ruijsenaars-Schneider system of particles. The discrete
time t runs over vertices of the Dynkin graph ofAk−1-type and numbers levels of the
nested Bethe ansatz. The continuum limit int gives the continuous time RS system [48].
This is our motivation to search for classical integrability properties of the nested Bethe
ansatz equations.

In addition we constructed the general solution of the Hirota equation with a certain
boundary conditions and obtained new determinant representations for eigenvalues of
the quantum transfer matrix. The approach suggested in Sect. 5 resembles the Leznov-
Saveliev solution [39] to the 2D Toda lattice with open boundaries. It can be considered
as an integrable discretization of the classicalW -geometry [18].

We hope that this work gives enough evidence to support the assertion that all spec-
tral characteristics of quantum integrable systems on finite 1D lattices can be obtained
starting from classical discrete soliton equations, not implying a quantization. The Bethe
ansatz technique, which has been thought of as a specific tool of quantum integrability is
shown to exist in classical discrete nonlinear integrable equations. The main new lesson
is that solving classical discrete soliton equations one recovers a lot of information about
a quantum integrable system.

Soliton equations usually have a huge number of solutions with very different prop-
erties. To extract the information about a quantum model, one should restrict the class
of solutions by imposing certain boundary and analytic conditions. In particular, elliptic
solutions to HBDE give spectral properties of quantum models with ellipticR-matrices.

The difference bilinear equation of the same form, though with different analytical
requirements, has appeared in quantum integrable systems in another context. Spin-spin
correlation functions of the Ising model obey a bilinear difference equation that can
be recast into the form of HBDE [41, 45, 2]. More recently, nonlinear equations for
correlation functions have been derived for a more general class of quantum integrable
models, by virtue of the new approach of Ref. [10].
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Thermodynamic Bethe ansatz equations written in the form of functional relations
[53, 46] (see e.g., [7]) appeared to be identical to HBDE with different analytic properties.

All these suggest that HBDE may play the role of a master equation for both classical
and quantum integrable systems simultaneously, such that the “equivalence" between
quantum systems and discrete classical dynamics might be extended beyond the spectral
properties discussed in this paper. In particular, it will be very interesting to identify the
quantum group structures and matrix elements of quantumL-operators andR-matrices
with objects of classical hierarchies. We do not doubt that such a relation exists.
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40. Lipan, O., Wiegmann, P., Zabrodin, A.: Fusion Rules for Quanatum Transfer Matrices as a Dynamical
System on Grassmann Manifolds. Mod. Phys. Lett. A,12 (19), 1369–1378 (1997)

41. McCoy, B., Wu, T.T.: Nonlinear partial difference equations for the two-dimensional Ising model. Phys.
Rev. Lett.45, 675–678 (1980); Nonlinear partial difference equations for the two-spin correlation func-
tion of the two-dimensional Ising model. Nucl. Phys.B180, 89–115 (1981); McCoy, B., Perk, J.H.H.,
Wu, T.: Ising field theory: quadratic difference equations for then-point Green’s functions on the lattice.
Phys. Rev. Lett.46, 757–760 (1981)

42. Miwa, T.: On Hirota’s difference equations. Proc. Japan Acad.58, 9–12 (1982)
43. Nijhof, F., Ragnisco, O., Kuznetsov, V.: Integrable time-discretization of the Ruijsenaars-Schneider

model. Commun. Math. Phys.176, 681–700 (1996)
44. Ohta, Y., Hirota, R., Tsujimoto, S., Imai, T.: Casorati and discrete Gram type determinant representations

of solutions to the discrete KP hierarchy. J. Phys. Soc. Japan62, 1872–1886 (1993)



304 I. Krichever, O. Lipan, P. Wiegmann, A. Zabrodin

45. Perk, J.H.H.: Quadratic identities for Ising model correlations. Phys. Lett.A79, 3–5 (1980)
46. Ravanini, F., Valleriani, A., Tateo, R.: Dynkin TBA’s. Int. J. Mod. Phys.A8, 1707–1727 (1993)
47. Reshetikhin, N.Yu.: The functional equation method in the theory of exactly soluble quantum systems.

Sov. Phys. JETP57, 691–696 (1983)
48. Ruijsenaars, S.N.M., Schneider, H.: A new class of integrable systems and its relation to solitons. Ann.

Phys. (NY)170, 370–405 (1986)
49. Saito, S., Saitoh, N.: Linearization of bilinear difference equations. Phys. Lett.A120, 322–326 (1987);

Gauge and dual symmetries and linearization of Hirota’s bilinear equations. J. Math. Phys.28, 1052–
1055 (1987)

50. Sato, M.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds. RIMS
Kokyuroku439, 30–46 (1981)

51. Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. IHES61, 5–65 (1985)
52. Ueno, K., Takasaki, K.: Toda lattice hierarchy. Adv. Studies in Pure Math.4, 1–95 (1984)
53. Zamolodchikov, A.B.: On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering

theories. Phys. Lett.B253, 391–394 (1991)
54. Zhou, Y., Pearce, P.: Solution of functional equations of restrictedA(1)

n−1 fused lattice models. Preprint
hep-th/9502067 (1995)

Communicated by Ya. G. Sinai


