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Algebraic-Geometric n-Orthogonal Curvilinear Coordinate Systems 
and Solutions of the Associativity Equations 

I. M. K r i c h e v e r  UDC 517.9 

w I n t r o d u c t i o n  

The problem of constructing n-orthogonal curvilinear coordinate systems, or flat diagonal metrics 
n 

ds 2 = ~ H~(u)(dui) 2, u = (ul ,  . . .  , u"),  (1.1) 
i=I  

for more than a century since the famous work of Dupin and Binet published in 1810 was one of the most 
important problems of differential geometry. Treated as a classification problem, it was mainly solved in 
the beginning of the 20th century. The crucial contribution here was due to G. Darboux [1]. 

In the beginning of the 1980s, it was found that this classical problem has deep connections wit.h the 
modern theory of integrable quasilinear hydrodynamic type systems in (1 + 1)-dimensions [2-4]. This 
theory was proposed by B. Dubrovin and S. Novikov as a Hamiltonian theory of the averaged (Whitham) 
equations for periodic solutions of integrable soliton equations in (1 + 1)-dimensions. Later, it was noticed 
[5] that the classification of Egoroff metrics, i.e., flat diagonal metrics such that 

OjH~ =oig~, Oi --~O/OU i, (1.2) 

is equivalent to the classification problem for massive topological field theories. Note that (1.2) implies that 
there exists a function ~(u) ,  called a potential of the corresponding metric, such that H~ (u) = 0i if(u). We 
must point out that the "classical" results in the theory of n-orthogonal curvilinear systems are mainly of 
classification nature. It was shown that locally the general solution of the Lain4 equations 

0k~ii = ~k~kj ,  i # j # k, (1.3) 

C~it~ij "~ Ojt~ji q- ~ t~mit~rnj ~- O, i # j ,  (1.4) 
rn#i ,j 

for the rotation coefficients 

13ij = OiHj /Hi ,  i • j ,  (1.5) 

depends on n ( n - 1 ) / 2  arbitrary functions of two variables. System (1.3), (1.4) is equivalent to the vanishing 
of all a priori nontrivial components of the curvature tensor. (Equations (1.3) imply that Rij,ik = O, and 
Eqs. (1.4) imply Rij, i j  = 0 for all other coefficients.) 

If we know a solution of (1.3), (1.4), then the Lain6 coefficients Hi can be found from the linear 
equations (1.5), whose consistency is equivalent to (1.3). The Lam6 coefficients depend on n functions of 
one variable, namely, on the Cauchy data 

f i(u ~) = H I ( 0 , . . . ,  0, u i , 0, . . . ,  0) (1.6) 

for system (1.5). Then we can find flat coordinates xk(u) by solving the linear system 

J k o~ix k = r~ jo ix  k + r i i o , ~  , (1.7) 
I1 

2 k Oiix ~ j k = riiOjx , (1.8) 
j = l  
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where the l"~j are the Christoffel coefficients of the metric (1.1), 

qk  = a~tt , /ni ,  r~, = -HiOiHi/H~, i # j .  (1.9) 

This scheme is not very effective in constructing n-orthogonal coordinate systems explicitly, and so 
the list of known exact examples had been relatively short until a number of new examples were recently 
obtained from the Whitham theory. In particular, the author [6] showed that the moduli spaces of algebraic 
curves with given jets of locM coordinates at the punctures generate fiat diagonal metrics. 

Quite recently, solutions of (1.3) and (1.4) have been constructed by V. Zakharov [7] with the help of the 
"dressing procedure" within the framework of the inverse problem method. Equations (1.3) axe equivalent 
to the consistency conditions for the auxiliary linear system Oiqj = t~ij~i ,  i # k. Therefore, any inverse 
method scheme can be relatively easily adapted to the construction of various classes of exact solutions of 
Eq. (1.3). For example, one can use the dressing scheme or the algebraic-geometric constructions of the 
theory of finite-gap solutions of nonlinear equations. The crucial step is to select solutions that satisfy the 
constraints (1.4). As was shown in [8], the differential reduction proposed in [7] for solving this problem 
in the case of the dressing scheme admits a natural interpretation in terms of the so-called 0-problem. 

The main goal of this paper is not merely constructing finite-gap or algebraic-geometric solutions of 
the Lain6 equations (1.3), (1.4) but proposing a scheme that simultaneously solves the complete system 
(1.3)-(1.9), i.e., gives both the Lain6 coefficients Hi and the flat coordinates xi(u). 

At first glance, it seems that our approach is completely different from that proposed in [7, 8]. We 
consider the basic multi-point Baker-Akhiezer functions r  Q), which are uniquely determined by their 
analytic properties on auxifiary Riemann surfaces F, Q E F, and directly prove (without any use of 
differential equations!) that under certain constraints on the corresponding set of algebraic-geometric 
data, the values xk(u) = r Qk) of r on the set of punctures on F satisfy the equations 

= (1 .1o )  

k,! 

where ~kl is a constant matrix. Therefore, the x k (u) are fiat coordinates for the diagonal metric (1.1) with 
coefficients H~(u). It turns out that, up to constant factors, the Lam~ coefficients Hi(u) are equal to the 
leading terms of the expansion of the same function r at the points Pi on F where ~b has exponential type 
singularities. We must point out that our constraints on the algebraic-geometric data that lead to (1.10) 
are a generalization of the conditions proposed in [15] for the description of potential two-dimensional 
SchrSdinger operators (see also [16]). 

In w we relate our results to the approach of [7, 8] and show that r is a generating function, 

Oi~b(tt, Q) = hi(u)ffd0(u, O ) ,  H i  = ~ihi(u) ,  ~i = c o n s t ,  

for the solutions of the system 

1 0 Oiff~ 0 -~- ~jiffl O, Oiffl} -~- ~ijff2], Ojffl 0 --~ fflj -- E #mJfflm" (1.11) 
m~j 

Note that the consistency conditions for this extended linear system are equivalent to (1.3) and (1.4). 
In w we specify the algebraic-geometric data corresponding to Egoroff metrics and obtain an exact 

formula in terms of Riemann theta functions for the potentials ~(u) of such metrics. 
As was mentioned above, the relationship between the classification problem for Egoroff metrics and 

that for topological field theories was found in [5]. The latter problem for a theory with n primary fields 
Cx, . . . ,  r  can be stated in terms of the associativity equations for the partition function F(xl ,  . . . ,  x ,)  
of the deformed theory [9, 10]. These equations are the conditions that the commutative algebra with 
generators r and structure constants defined by the third derivatives of F ,  

03F(z) 
ck tm(z)-  OxkOxtOx m , (1.12) 

r162 = C ~ ( X ) r  C~ -~- Cklir] :m, rlkirl,m .= (~n, (1.13) 
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is an associative algebra, that  is, satisfies 

ckj(x)c tkm(x)  k , = c j m ( x ) c i k ( x  ) . (1.14) 

In addition, it is required that there exist constants r m such that the entries of the constant matrix q in 
(1.13) are equal to 

= ( 1 . 1 5 )  

Conditions (1.14) form an overdetermined nonlinear system for the unknown function F .  It turns out 
that for any solution of system (1.14), (1.15) for the case in which the algebra (1.13) is semisimple, there 
exists an Egoroff metric such that  the third derivatives of the partit ion function have the form 

n Oui c3ui Oui (1.16) 
aT., 

i : 1  

The converse is also true. Namely, for any set of rotation coefficients #ij = #ji satisfying (1.3), (1.4), 
there exists an n-parameter  family of Egoroff metrics such that the functions defined by (1.16) are the 
third derivatives of some function F .  (Recall that for any given rotation coefficients there are infinitely 
many corresponding flat diagonal metrics.) 

In the last section, for each algebraic-geometric Egoroff metric we define a function F such that its 
third derivatives have the form (1.16) and satisfy (1.14). Equations (1.14) are a truncated set of the 
associativity conditions. At the next stage, we select metrics that  additionally satisfy (1.15). 

w Bilinear Relations for the Baker-Akhiezer  Functions and Flat Diagonal Metrics 

First, let us present some facts from the general algebraic-geometric integration scheme proposed by the 
author [11, 12]. This scheme is based on the notion of the B a k e r - A k h i e z e r  functions, which are determined 
by their analytic properties on auxiliary Pdemann surfaces. 

Let F be a smooth genus g algebraic curve with fixed local coordinates wi(Q) in neighborhoods of 
n punctures P i ,  i = 1 , . . . , n ,  on  F, w i ( P i )  = 0 .  Then for any set R of l points R~, a = 1 , . . . , I ,  
and for any set D of g + l - 1 points 71, . - . ,  7g+t-1 in general position there exists a unique function 
r  O l D ,  R),  u = ( u l , . . . , u , , ) ,  O E F, such that: 

(1 ~ r  Q ID, R) treated as a function of the variable Q E F is meromorphic outside the punctures 
Pj  and has at most simple poles at the points 7, (if they all are distinct); 

(2 ~ in a neighborhood of each P j ,  the function r has the form 

' , ( 2 . 1 )  

s-~O 

(3 ~ ~b satisfies the normalization conditions 

~b(u, R~) = 1. (2.2) 

In the following we often denote the Baker-Akhiezer function by r  Q) without explicitly indicating 
the divisors D = 71 + "'" + 7g+i-1 and R = R1 + " "  + Rz. 

Explicit expressions of the Baker-Akhiezer functions via the Pdemann theta  functions were proposed 
in [12] as a generalization of the formula found in [13] for the Bloch solutions of ordinary finite-gap 
Schr/Sdinger operators. 

The Riemann theta  function corresponding to an algebraic genus g curve I" is the entire function of g 
complex variables z = ( z l , . . . ,  zg) defined by the Fourier series 

0 ( z l , . . . ,  zg)  = e 
mEZ~ 
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where B = (Bij) is the matr ix  of b-periods of the normalized holomorphic differentials wj(P) on F,  

Bij = fb wj, ~ wi -= 50. 

Here ai ,  bi is a basis of cycles on F with canonical matr ix  of intersections given by a~ �9 aj = bi �9 bj -= 0, 

a i .  bi = 5i~. 

vector A(P)  with coordinates a (Q) = f Qo defines the Abel map. The 
By the R iemann-Roch  theorem, for any divisors D = ")'1 + ' "  "+~'g+t-1 and R = R1 + - - . + R l  in general 

position there exists a unique meromorphic function ra(Q) such that  the divisor of its poles coincides with 
D and r~(R#) = 6~,#. This function can be represented in the form (see [14] for details) 

f"(Q) f,~(Q) = O(A(Q) + Z,~) [ I # ~  O(A(Q) + Fa) (2.3) t o ( Q ) -  t , 
l-I~,=l O(A(Q) + S,,) 

where 

y--1 w 
F# = -..)if'- A ( R # ) -  E A('~s), Sm ---- --.;~-- A ( " / , - i + m ) -  E A(~/s)' 

s = l  $ = I  

g+l--1 1 
Z,~ = Zo - A(R,~), Zo = -3g ' -  E A(%) + E A(R,~), 

s : l  ~=1 

and ~ is the vector of the Riemann constants. 
Let dflj  be the unique normalized meromorphic differential that  is holomorphic on F outside Pj and 

has the form d~ i = d(wT ~ + O(wi) ) in a neighborhood of P j .  This differential specifies the vector V 0) 

with coordinates V(k j) ---- 1---2,~i ~bh dflj. 

T h e o r e m  2.1. The Baker-Akhiezer function r Q[D, R) has the form 
' 

r = E ra(Q) O(A(Q) + E?=l(Uiv(i))o n dl- Za)O(Zo) exp u i d~'~i �9 
a=x O(A(Q) + Z,)  (~f'Ji=l(UiV(O) + Zo) i=1 - 

A d m i s s i b l e  c u r v e s .  We shall show that  algebraic-geometric flat diagonal metrics can be constructed 
with the help of the Baker-Akhiezer  functions corresponding to algebraic-geometric da ta  of a special class, 
which will be referred to as admissible. 

An admissible algebraic curve I' must be a curve with a holomorphic involution a:  F --> F that has 
2m >_ n fixed points PI ,  . . . ,  P,,, Q 1 , . . . ,  Q2, , , - , ,  m < n.  The local coordinates wj(Q) in neighborhoods 
of P1, . . . ,  P -  must  be odd with respect to a ,  

wAQ) = 

The factor curve F0 = F/a is a smooth algebraic curve. The projection 7r: F -> I'0 = F/a represents F 
as a two-sheet covering of F0 with 2m branching points P i ,  Q, -  In this representation, the involution a 
is the permuta t ion  of the sheets. For Q E F,  we write a(Q) = Q#. 

It follows from the Riemann-I-Iurwitz formula that  g = 2g0 - 1 + m ,  where go is the genus of F0. 

A d m i s s i b l e  d iv i so r s .  Let us choose n - m  additional punctures ~ ) 1 , . . . ,  ~ ) , - - ,  on r0 .  A pair (D, R) 
of divisors on F is said to be admissible if there exists a meromorphic differential dfl0 on F0 such that  

(a) dfio(P), P E ro, has m + l simple poles at the points Q 1 , . . . ,  Q2, , - , , ,  ~ ) 1 , . . . ,  Q,,-,,, and at the 

points R~ = 7r(R,~); 
(b) dfl0 is zero at the projection ~ of the points of D ,  
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The differential df~0 can be treated as an even (with respect to a) meromorphic differential on F,  
where it has n + 21 simple poles at the branching points Q1, . . . ,  Q 2 m - ,  and at the preimages of the 
other poles of dQ0 on F0. Let us denote the preimages of the points ~)k by Q2m-r,+1, . . . ,  Q2m, 

r r ( Q 2 m _ n + i )  = 7 r ( Q n _ i + i )  = O i ,  i = 1 , . . .  , n  - -  r n .  

The involution a induces an involution a(k )  on the set of indices numbering the punctures Qk so that 
a(Qk) = Qo(k). We have 

a ( k ) = k ,  k = l ,  . . . , 2rn - n ,  a(  k ) = 2rn - k + l ,  k = 2rn - n + l ,  . . . , n . 

In terms of equivalence classes, admissible pairs (D, R) of divisors can be described as those satisfying 

the condition 
I t l  

D + D ~ -  R -  R~ = K + E ( Q j  - P j ) .  
j = l  

E x a m p l e .  Hyperelliptic curves. The simplest example of an admissible curve is the hyperelliptic curve 
F defined by the equation 

v l 2 m - n  ( E n - - m  ' ' j = l  ' - Q J ) H k = I  ( E - O k )  
YIi=I(E" - Pi) , rn _< n .  (2.4) 

Here the Pi ,  Q j ,  and ~)k are complex numbers. The genus of F is g = r n - 1 .  Any set o f r n + l - 2  
points % 5s %, and any set of l points form an admissible pair of divisors. The corresponding differential 

is equal to 

]"[ ra + l -- 2 ( l~" - -  ")Is) 
dQo = t IS=l k~ d E .  

2 m - - n  n - - m  

As we shall see in the following, the fiat diagonal metrics corresponding to hyperelliptic curves are Egoroff 
metrics. Moreover, it will be shown in the last section that  hyperelliptic curves correspond to the simplest 

solutions of the associativity equations. 

I m p o r t a n t  r e m a r k .  Unless otherwise specified, in the following main part  of the paper, we assume 
for simplicity of the formulas that  the divisors R and {Q j} are in general position and do not intersect 
each other. We consider the special case R = {Qj} at the end of the last section. 

T h e o r e m  2.2. Let r  Q I D ,  R)  be the B ak e r -A k h i e ze r  func t ion  corresponding to an admissible alge- 

braic curve and  an admissible pair ( D ,  R)  of  divisors. Then  the func t ions  z J ( u )  = r  QJ) ,  J = 1 , . . . ,  n ,  

satisfy the equations 

where the hi = ~io(u ) 
2 defined by the expansion c o n s t a n t s  ~i are 

df~o 1 2 o o O(w~) )  dwi  = + o(w  )) dw, = + 

of dI2o at P i ,  and the constants  71kt are given by 

rlkt = qk(~k,~(t), qk = resdf~o. 
Qk 

rlktOixkO zl 2 2 (2.5) = ~ i h i S i j ,  

k , i  

are the f irst  coefficients in the ezpansions  (2.1) of  r at the punctures  Pi; the 

P r o o f .  Let us consider the differential 

(1) 
dgtij (u,  Q) = O:k(u ,  Q ) O i r  a ( Q ) ) d ~ o ( r c ( Q ) ) .  

(2.6) 

(2.7) 
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It follows from the definition of the admissible data that  this differential for i # j is a meromorphic 
differential with poles only at the points Q1, . . . ,  Q--  Indeed, the poles of the first two factors Oir Q) 
and OjO(u, a(Q)) at the points % and a(7,)  are canceled by zeros of df~0. The essential singularities 
of these factors at Pk cancel each other. The simple poles of the product  of these factors at Pi and PJ 
are canceled by zeros of d~0 treated as a differential on F (see (2.6)). Finally, d~ (1) has no poles at 
the points R~ and R~ by virtue of the normalization conditions (2.2). The sum of all the residues of a 
meromorphic differential on a compact Pdemann surface is equal to zero. Therefore, 

n 

Z res dl2~ ) = O, i r j .  
k = l  Q~ 

The left-hand side of this equation coincides with the left-hand side of (2.5). 

In the case i = j ,  the differential dal~ ) has an additional pole at Pi with residue resp~ df~l~ } = -r 2. . 
That implies (2.5) for i = j and completes the proof of the theorem. 

Corollary 2.1. Let {F, Pi, Q j , D, R} be a set of admissible data. Then the formula 

l n O(A(Pi) + En=l(Uiy (i,) ~- Za)~(Zo) (~-~  .~ 
H~(u) cr=l~-~ ra(Pi) O(A(Pi) 21- Zcx)O(En=l(UiV (i)) 71" So) exp \ ~'-" w~u J / ,  (2.8) 

-- j=l 

 here r.(Q) i, the functio  defined i ,  (2.3) and 

/: ( / ; )  w~ = o df~i, i # j ,  w~i = q~p~lim . dl2i _ wi-1 (Q) , 

defines the coefficients of a flat diagonal metric. The corresponding flat coordinates are given by the 
formulas 

! 

�9 ' ( u )  = 
of----1 

z~(u) = O(A(Q~) + ~7=,(uiV (i)) + Z.)O(Zo) / ~ .Oh ) 
O(A(Ok) + Z.)O(E$=,(uiV(i)) + Zo) exp ( ~ - ' ~ u i /  dfli . 

\ i=1  J R<, 

C o n d i t i o n s  for  t h e  m e t r i c  coeff icients  to  be  r ea l -va lued .  In the general case, the above-con- 
structed flat diagonal metrics Hi(u) and their fiat coordinates are complex meromorphic functions of 
the variables u i . Let us find conditions on the algebraic-geometric data such that  the coefficients of the 
corresponding metrics axe real functions of the real variables u i . 

Let F0 be a real algebraic curve, i.e., a curve with an antiholomorphic involution r0 : F0 --+ F0, and let 
the punctures { P 1 , . . . ,  P,,} and { Q x , . . . ,  Q2m-n} be fixed points of r0. Then r0 induces an antiholo- 
morphic involution r on F.  We assume that the local coordinates w i at P1 satisfy wj(r(Q)) = wi(Q). 
Let us assume that  the set {Q,} and the divisors D and R are invariant with respect to r ,  i.e., 

where the tq( .  ) are the corresponding permutations of indices. 

T h e o r e m  2.3. Let the set of admissible data be real. Then the Baker-Akhiezer function satisfies the 
relation 

r  QID, R) =- r  r ( O ) I D ,  R), 

and formula (2.8) defines a real flat diagonal metric. 

The signature of the corresponding metric depends on the involutions to(j) and sq Ca). By varying the 
initial data, one can obtain fiat diagonal metrics in any pseudo-Euclidean spaces R p,q. In general, these 
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metrics are singular for some values of the variables u i. To obtain smooth metrics for all u,  we have to 
impose additional constraints on the initial data. This procedure is quite standard in the finite-gap theory 
and will be considered elsewhere. 

w Di f fe ren t ia l  E q u a t i o n s  for t h e  B a k e r - A k h i e z e r  F u n c t i o n  

In this section, we are going to clarify the meaning of our constraints on the algebraic-geometric data 
in terms of differential equations for the Baker-Akhiezer functions. 

The following statement is a simple generalization of the results of [17], where it was shown in the 
case n = 2 that the corresponding Baker-Akhiezer function satisfies a two-dimensional Schrhdingertype 
equation. 

L e m m a  3.1. The Baker-Akhiezer function r  Q [ D, R) satisfies the equation 

~i~j~ i ~jOj~, i = ciiOi r + 7 s j ,  (3.1) 

where 

clj(u) = Ojhi/hi, ~i(u)  = O~h~/h,, 

and the hi(u) = ~io(U ) are the first coefficients in the ezpansion (2.1). 

Equations (3.1) have the form of Eqs. (1.7), which axe part of the equations defining the fiat coordinates 
for the diagonal metric with coefficients Hi(u) = eihi(u), where the ei are constants. Let us now present 
additional equations that  are satisfied by the Baker-Akhiezer functions and are reduced to (1.8) in the 
case of admissible algebraic-geometric data. 

Let {F, Pj, wi ,  7~, R~} be the set of data that defines a Saker-Akhiezer function r  Q ID, R).  Let 
us fix a set of n additional points Q1, . . . ,  Q,,. Then in the generic case there exists a unique function 
r = r  ' Q[D, R) such that 

(11) r  Q), treated as a function of Q E F, is meromorphic outside the punctures P i ,  has at most 
simple poles at the points "y~, and is zero at the punctures Q1, . . - ,  Qn, 

r  qk)  = 0; 

(21) in a neighborhood of P i ,  the function r has the form 

(.50 r - e'JWJ -' (3.2) =wj  1 ~ , , (u)w , w i=wi (Q) ;  

(31 ) r  ) = 1. 

L e m m a  3.2.  The functions ~b(u, Q [D, R) and r Q ID, R) satisfy the equations 
n 

0~r 1 1 - c, Oir + ~ viiOir = o, (3.3) 
j----1 

where 

1 hi Oih~ Oihi g~ gi (3.4) 
ci = h-[i, v i i -  2 + 1 , h~ -Vii hi h, 

h, O,h I 
i 7~ j (3.5) vii  = h i  h~ ' 

and the functions hi = ~io, h~ = ~ ,o ,  gi = ~ ,  and g~ = ~.1 are the first coefficients in the expansions 
(2.1) and (3.2). 

The proof is standard. Consider the function defined by the left-hand side of (3.3). Equations (3.4) 
and (3.5) imply that  this function satisfies the first two conditions in the definition of ~b and is zero at 
each R~. Therefore, it is equal to zero. 
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Now consider the case of admissible algebraic-geometric dafa: (In that case, the set of the punctures 
in the definition of 01 is the same set as in the definitiori of the admissible curves and divisors; i.e., 
Q1 , . . . ,  Q2m-,  are the branching points and Q2,n-,+l,  . . . ,  Q2, are the preimages of the Ok -) 

T h e o r e m  3.1. The Baker-Akhiezer functions r Q'ID, R) and r Q[D, R) corresponding to an 
admissible set of algebraic-geometric data satisfy Eqs. (3.i) and the equations 

= ciOi r + FiiOjr (3.6) 
j= l  

Here the F{i are the Christoffel symbols (1.9) of the metric Hi(u) = eihi(u). 

Proof .  The differential 

df~l~ ) = O,~b~(u, Q)Ojr Q")dflo(rr(Q)) 

is holomorphic everywhere outside Pi and Pi. The residues of df~l~ ) at these points axe given by 

res df~i2.) 2 , i~ =eihiOjhi  , df~ ) 2 1 

Therefore, 2 1 . . 2 . 1 ~ihiOjh, . The last formula implies that the coefficients vii = ejh~Oihj defined in (3.5) are 

equal to F{i for i r j .  
The differential d~!i has the only pole at Pi. Therefore, its residue at this point is zero, 

res df~i = h~(gi + aihi) - hi(gl + Oih~) = 0. (3.7) 
P~ 

It follows from (3.7) that the vii given by (3.4) is equal to F~i. 

Note that Eqs. (3.6) coincide with (1.8) at the points Qj.  

Corol la ry  3.1. The functions 

1 1 
ff2?(U, Q) = hi(u) Oi~)(u, O), ff2~(u, Q) - h](u-----) Oi~)l(u' Q) (3.8) 

satisfy Eqs. (1.11), where the /3ij(u) are the rotation coefficients (1.5) of the metric Hi(u). 

The proof of the corollary follows by straightforward substitution of (3.8) into (3.1) and (3.6). 
Consider the analytical properties of g~ Q) and ~ ( u ,  Q) viewed as functions on the algebraic 

curve F. It follows from the definition of Baker-Akhiezer functions that 
( 1 2 )  the ffzN(u, Q), N = 0, 1, are meromorphic outside the punctures Pj and have at most simple 

poles at the points ~/1, . . - ,  3'~+t-1  ; 
(22) in a neighborhood of Pj,  the function ~/N has the form 

ff~N =wTN-leu iwr t  ~ij~ t- Er  , wj =wj (Q);  (3.9) 

(3 2) the functions ~/N vanish at the punctures R,~, and the functions ff2~ vanish also at the punc- 
tures Q I , 

�9 , N ( u , n ~ ) = o ,  ~ ( u ,  Qi) = 0 .  

L e m m a  3.3. Let F be a smooth genus g algebraic curve with 2n punctures Pj,  Qj and with given 
local coordinates wj(Q) in neighborhoods of the punctures Pj.  Then for any set of g + l - 1 points 7s in 
general position there exist unique functions ff~~ Q) and ~](u,  Q) satisfying conditions (12)-(32). 

For a given admissible curve F with punctures Pi, Qi and local coordinates wi, the Baker-Akhiezer 
functions and the coefficients Hi(ulD , R) of the corresponding diagonal fiat metric depend on the admis- 
sible pair (D, R) of divisors. Two pairs (D, R) and (D',  R') of divisors are said to be equivalent if the 
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differences D - R and D'  - R' are linearly equivalent, i.e., if there exists a meromorphic function f(Q) 
on F such the divisor (f)o~ of its poles and the divisor (f)0 of its zeros satisfy 

( f ) ~  = D + n ' ,  (f)0 = D'  + n .  (3.10) 

Lemma 3.3 implies that  the following statement is valid. 

C o r o l l a r y  3.2. The rotation coefficients flij(ulD , R) and ~ij(ulD', R') corresponding to equivalent 
pairs of the divisors satisfy the relation 

f(Pi)flij(u ]D, R) = f(P.i)flij(u ID', R'),  

where f (Q)  is a function satisfying (3.10). 

Let us express the rotat ion coefficients in terms of the functions q21 (u, Q I D,  R) alone. 

T h e o r e m  3.2. The rotation coefficients flij(u) of the algebraic-geometric flat diagonal metric with 
coefficients Hi (u lD,  R) are equal to 

flq(u l D, R ) = (jI, (u I D, R), (3.11) 

where the (~11 are the first coefficients in the expansions (3.9) of the functions ~ ( u ,  Q[D, R). The Lam~ 
coefficients Hi(u ID , R,  r') are equal to 

Hi(u l D, R) = - ~ d,, C21(u , R~, I D,  R), (3.12) 
o t  

where 

d~ = res df~0. (3.13) 
Ro 

P r o o f .  It follows from (1.11) that  the functions ~ satisfy the equation 

OiqJ} = f l i j ~ ,  i # j .  (3.14) 

Equation (3.11) readily follows from (3.9) and (3.14). To prove (3.12), let us consider the differential 

Q) = Q )d 0. 

This differential is meromorphic with poles at the points Pi and R~, and 

res 3) = H i ( u ) .  
Pi 

The residues of this differential at the points R~ are equal to the corresponding terms in the sum on the 
r ight-hand side of (3.12). The sum of all these residues is zero, which completes the proof of theorem. 

w E g o r o f f  M e t r i c s  

In this section we describe the algebraic-geometric da ta  corresponding to Egoroff metrics, i.e., metrics 
with symmetr ic  rotat ion coefficients flij = ~ji. 

Let E(P)  be a meromorphic function on a smooth genus go algebraic curve F0 with n simple poles 
at the points Pi, 2m - n simple zeros at the points Q1, . . . ,  Q2 ,n - , ,  and n - m double zeros at the 
points ~)1, . . .  , ~),,--m �9 The Riemann surface F of the function A = ~ is an admissible curve in the 
sense of the definitions in w The function A. = )~(Q) is an odd function with respect to the involution 
of F. Viewed as a function on F,  it has simple poles at the points Pi and simple zeros at the points 
Qj, j = 1 , . . . ,  n. The function ~- I  defines local coordinates wj(Q) = A-x (Q) in neighborhoods of the 
punctures Pi. 
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T h e o r e m  4.1. Let (D, R) be an admissible pair of divisors on the Riemann surface F of the func- 
tion A(Q). Then 

flij(U [D, R) = flji(u I D, R).  (4.1) 

The potential of the Egoroff metric Hi(u [D, R) is given by 

~(u I D, R) = ~ )~(Ro)d,~C(u, R ~ ) ,  (4.2) 

where the da are the residues of df~o at Ra (3.13). 

Proof.  To obtain (4.1), it suffices to consider the differential ,~(Q ) ~,0 (u, 0 ) ~0 (u, a ( 0  )) df~0, which has 
poles only at the points Pi and Pj. The residues at these points are equal to ~ji and - ~ i i ,  respectively. 
To prove (4.2), consider the differential 

d ~  ~) = ~(O)~(u, Q)0~r ~(O)) d~0. 

This differential has poles at the points Pi and Ra with residues 

res d~ ') = - H i ,  res d~l ~) = d ~ ( n ~ ) 0 , r  R~). 
P~ Ro 

The sum of these residues is zero, which proves (4.2). 

w Solutions to the Associativity Equations 

The equivalence [5] of the classification problem for the rotation coefficients of Egoroff metrics and the 
classification problem for massive topological fields does not provide explicit solutions of the associativ- 
ity equations. In this section, we obtain explicit expressions for the partition functions of the models 
corresponding to the above-constructed symmetric rotation coefficients. 

T h e o r e m  5.1. Let r  QID, R) be the Baker-Akhiezer function defined on the Riemann surface r 
of the function A(Q) and corresponding to an admissible pair (O, R) of divisors. Then the function 
F(x) = F(u(x)) defined by the formula 

F(u) = ~ rlktxk(u)yt(u)- ,~(Rr 
x 4,1=1 

r R : ) ) ,  

where (rlkt) is the constant matriz defined in (2.7), the constants da are defined in (3.13), and 

z~(u) = r Q~), u s = de(u, O,~)/d~, 

satisfies the equation 

Moreover, the functions 

0SF(z) " 0u i  0u i  0u i  (5.1) 

i=1 

satisfy the associativity equations (1.14). 

Proof .  Consider the functions 

-~ Oui Oui Ozm (5.2) 
c~ = Oz k Oz ~ Ou i 

i=1 

0 r  0 2 r  
Ck = Oz k , Ckl = OxkOzl �9 
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In a neighborhood of Pi, they have the form 

Ou~ ,~d"' (h~ + 0(~-~)), Ct, t = cOx~ cOui ~ cOui A2eX"' (hi + 0 ( / ~ - 1 ) )  

Therefore, 

i=1  

dOo 
d~k;~., = r  O)Ct~(u. O')  ~(O)" 

By the definition of x k , we have Ck(u, Qm) = 5k,,,, Csa(u, Q,,,) = 0. Therefore, the differential df~k;l,~ 
outside the punctures Pi has a pole only at Qk. Hence, 

c/am = - res d~k; tm= - res Ctm(u, a(Qk)) df~o 
Q, q, ~(Q) 

Near Qk, we have 

and 

Therefore, 

O 2 / \ dfio 
- - -  { ~ s ~ ( u ,  ~(Q~//J (5.3) 

c o x t 0 ~  - . .  ~ ,  ~ ( O )  �9 

r ~(Q)) = x ~(k) - y~(k)~ + o ( ~ )  

df~0 = ~ (r/k + r/~A + O(A2)). 

~ r  ~(Qk)) dao 
~ = ~ z ~ ( ~ )  _ 7?ky~(k). 

It follows from the definition of F that 

(5.4) 

cO ~ cOy~(t) d~, cOr R,~) 
2 ~x k F = ~?ky ~(k) + rltxt cOx k A(R~) cOx k 

Z 

Consider the differential 

da(~) _ cOO(u, Q) d~0 
- cO~k r  

It has poles at Qt and R~ with residues 

res dftl 5) 
Q, 

Therefore, 

Finally, 

0y t 
= ?~z~(O Oz k + 5t,~(k)(~?~z ~(k) - ~ k f ( k ) ) ,  

d~ COr R~) 
r~ ~a(:)= ~(Ro) o~ 

" cOy,,(o d,~ c9r R~,) 
~-'rl'Z' Ozk ~" ~(Ro'---"-~ Oz" 
/m l  

= r/ky~'(k) _ r/]~x~(k). 

cO 1 rl~x~,(k). 
cOx----- s F = rlky "(k) - 

The latter equality and Eqs. (5.3) and (5.4) imply (5.1). 

L e m m a  5.1. The Baker-Akhiezer function r  Q [D, R) defined on the Riemann surface r of the 
function X(Q) and corresponding to an admissible pair (D, R) of divisors satisfies the equations 

02 n a 

0xk0x, ~ - A ~ c~ 0--;- z ~m = 0. (5.51 
rn-----1 
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P r o o f .  Consider the function ~ defined by the left-hand side of (5.5). Outside of the punctures Pj 
it has poles only at the points of the divisor D and is equal to zero at the points Qi- It follows from 

the definition of c~ that  in the expansion of t~ at the points Pi ,  the meromorphic factor is O(A-I).  

Therefore, it follows from the uniqueness of the Baker-Akhiezer function that  r = 0. 

The associativity equations (1.14) for the functions c~ are the consistency conditions for the sys- 
tem (5.5). The proof of the theorem is complete. 

R e m a r k .  Equations (5.5) can be rewritten in the vector form: 

l l  

= c k t @ , , , ,  - (5.6) 
O z  k O z  k �9 

m----I 

System (5.6) with symmetric  coefficients c~t = c~ was introduced in [5] as an auxiliary linear system for 
the associativity equations (1.14). 

Now we shall consider the special case of our construction in which the divisor R coincides with the 
divisor .~ of the punctures Qj .  It was mentioned in the remark preceding Theorem 2.2 that  the assumption 
that R does not intersect ~ was adopted only for simplicity of the formulas. 

For the case in which R = .~, admissible divisors D are defined as follows. A divisor D = 71 + "'" + 
7g+,,-1 is said to be admissible if there exists a meromorphic differential df~0 on P0 with poles of the 
order 2 at the points Q1, . . - ,  Q2,~-,, and poles of the order 3 at the double zeros of E(P)  such that 
dl20(rr(Ts)) = 0. The differential dr/0 treated as an odd differential on F has the form 

dr4  = Aa(p ) (r/k + O(A)) 

at the punctures Qk, k = 1 , . . . ,  n (where A(Qt) = 0). In our special case, the flat coordinates are no 
longer defined by the values r  (which are all equal to 1). Instead, we must  use the subsequent terms 
of the expansion. 

T h e o r e m  5.2. Let r  Q ID,-~) be the Baker-Akhiezer function defined by an admissible divisor D 
on the Riemann surface of A(Q). Then the function F(x)  = f f(u(x)) ,  where 

1 ~ r/kxk(u) y.(k)(u), -~(u) = 
k=l 

r/k = resQk ~2 df~o, and the xk(u) and yk(u) are defined from the ezpansion 

r = 1 + zk(u)$ + yk(u).~2 n t- 0(.~3), 

is a solution of the associativity equations (1.12)-(1.15), i.e., satisfies Eqs. (5.1); the functions c~ defined 
in (5.2) satisfy (1.14) and the additional relation 

7l 

= (5.7) 
rn=l 

P r o o f .  The proof of the fact that  the functions z k are flat coordinates for the diagonal metric with 
Lain6 coefficients Hi = eihi(u), where hi(u) is the leading term in the expansion of the corresponding 
Baker-Akhiezer function at the puncture Pi, is just the same as in the general case. The proof of the other 
statements of the theorem but the last one is also almost identical to that  in Theorem 5.1. Equation (5.7) 
is a consequence of the following statement. 
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L e m m a  5.2. The Baker-Akhiezer function ~b corresponding to the data specified by the assumptions 
of Theorem 4.3 satisfies the equation 

" A r  (5.8) 
0ue 

s = l  

The two sides of (5.8) are regular outside the punctures Pk and have the same leading terms in their 
expansions at Pk. Therefore, they are identically equal to each other  by virtue of the uniqueness of the 
Baker-Akhiezer function. Equation (5 .8)a t  Q,~ gives 

~ 0z m 

Ou �9 

Hence, 

= 1 .  

~ Oui Ou i 
cktm(u) = H? ~ ~ = 7k,. 

m = l  i = l  

The proof of the theorem is complete. 

Exact theta  function formulas for the partit ion function F can be obtained by substituting the corre- 
sponding expressions for the Baker-Akhiezer function. 

E x a m p l e .  Elliptic solutions. Let us consider the simplest elliptic curvilinear coordinates and solutions 
of the associativity equations that  correspond to n = l = 3, m = 2 in the example of w 

Consider the elliptic curve F with periods 2w and 2w', Im w'/w > 0. In this representation, we identify 
the punctures Pi with the half-periods wi ; i.e., 

P1 --~ r ~ o J ,  P2  ~--0.~2 "~'Cdt Odt- , P3  = ~  = - - o 3 -  

The punctures Qi are the points of the fundamental  parallelogram Q1 = 0 ,  Q2 = zo,  Q3 = - z o .  In the 
case g = 1, any divisors D and R form an admissible pair. The corresponding differential df~0 has the 
form 

a (z  - ~ ) a ( z  - ~' )  a (z  + ~ + ~ ' )  12I a (~  - re) a (z  + re) 
d~o = 7o : , ~  u zo)a(z - zo) ~- ~ : ~ + Re) dz, 

where a(z) = a(z [w, w') is the classical Weierstrass a-function. The residues 

res df~0 = 71, res df~0 = 72 
z=0 z=+zo 

are the coefficients of  the fiat metric ds 2 = rh(dz~) 2 + 72(dx2)(dx3). The Baker-Akhiezer function has 
the form 

' a ( z - R , ) [ ~ = l  a ( z + U - R ~ ) e x p ( f l ( u , z ) - f ~ ( u , R ~ ) ) ]  (5.9) 
r  z) = 1-[ a(z - re) ~~ a ( z  - R ~ ) a ( V )  

s = l  

where 

u = u l  + ~ + u3,  ~ ( u ,  z) = u l ( r  - ~ )  + 7) + u~(r  - J )  + 7') + u3(r  + ~ + ~ ' )  - 7 - 7') ,  

a'(z) 7' 1-I'e=, a(R~ - r ,)  
( ( z )  = a ( z )  ' 7 = ( ( w ) ,  = r  r~ = 1 - Ie~aa(R~  - R e ) "  

In the general case, where R~ r Qi, the values of r at Qi give an expression of the flat coordinates: 

x 1 = r  o),  x 2 -- r  :o) ,  x3 = r  - z o ) .  
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The corresponding Lain6 coefficients are given by 

Hi(u) =El  

H2(u) = e2 

vt~ l 

" ~(u  - Ro) c U r l ,  

" a (~ '  + U - R , , )  eU,, ' 

~ ~~ ~(~,- R~l~(ts) r 

" a ( ~  + ~ '  + U - R a )  e(_U, l_u, f ) .  
~(~ + ~, - R~,) ,,(tr) 

The elliptic solutions of the associativity equations correspond to the Baker-Ald'fiezer function given by 
(5.9) with I = 3 and R1 = 0, R2 = z0, Rs = -z0 .  Let us give the corresponding formulas for the simplest 
Baker-Akhiezer function 

a(z + s) e~(.,~). 
r ~) = ~(z)~(~) 

The coefficients of the expansions 

r = 1/z + ~l(u) + ~1(~,)~ + O(z2), 

r = 2 + y~(u)(z - zo) + o((~ - zo)~), r = ~ + y~(u)(~ + ~o) + o((~ + zo) ~) 

define the solution 

F = x l y  I - ! ( x 2 y 3  2 ~ + xsY 2) 

of the associativity equations. We have 

(5.~0) 

x 1 = r - ~(~)~1 _ ~(~,)u2 _ ~(~ + ~ , ) ~ ,  

~(U - zo) 
x~ - ~(z0)~(u)~Cz~ + u) exp ~(~,  z0), ~" = ~ T : - 7 0 7 ~ )  exp ~ ( ~ , - z 0 )  

and 

i = 1  i = 1  

3 

i----1 

y~ = ~ (~ , ) ( r  + v)  + r - ~ ~(~o - ~ ) , ~  �9 
i = l  

The function F F - -  1 1 )2 = ~(x has the same third derivatives as F .  Therefore, on substituting the 
expressions for x i and  yi into (5.10), we obtain the following formula for the simplest elliptic solution of 
the associativity equations: 

.~= - ~  ~ ( v ) -  ~ ( ~ ( v ) -  ~(z0)) r - u ) - r  + u ) -  ~--~ ~(zo - ~/1~/ 
i = 1  

A c k n o w l e d g e m e n t s .  The author thanks V. E. Zakharov and S. V. Manakov for their explanation of 
the ideas of their remarkable works that were an inspiration for this paper. 
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