
IMRN International Mathematics Research Notices
1996, No. 10

Multidimensional Vector Addition Theorems

and the Riemann Theta Functions

V. Buchstaber and I. Krichever

This work is a continuation of the previous paper [5] by the authors. In [5] it

was shown that the Baker-Akhiezer functions that are the main object in the algebraic-

geometrical construction of exact solutions [6], [7] of solitonic equations define solutions

of the following functional equation:

N∑
k=0

ck(x + y)ψk(x)ψk(y) = 1, (1)

where ck(x), ψk(x) are unknown functions of the scalar variable x. They have been called

the vector analogs of the Cauchy equation. Note that the classic Cauchy equation is

a particular case of (1) corresponding to N = 0, and in this case all solutions of (1)

are exponential functions. It was proved that for N = 1 and N = 2 all the solutions

of this equation are the Baker-Akhiezer functions corresponding to algebraic curves of

genus 1 and 2, respectively. A starting point for the consideration of (1) in [5] was close

connections of this equation with the theory of one-dimensional integrable systems of

the Calogero-Moser system type.

The main goal of this note is to show that the multivariable Baker-Akhiezer func-

tions give solutions of the following multivariable generalization of (1):

N∑
k=0

ck(x + y)ψ1
k(x)ψ2

k(y) = 1, (2)

where ck, ψ
1
k, ψ

2
k are unknown functions of the vector variable x = (x1, . . . , xg). The authors

believe that Theorem 2 gives all analytical solutions of this equation.

We would like to emphasize that even in the case of a scalar argument, the equa-

tion (2) is a highly nontrivial generalization of (1). For N = 0 all the solutions of this
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equation are again exponential functions. A general analytic solution of (2) for N = 1 was

constructed in [4]. Note that the particular case of (2) with a scalar argument and with

ck = const, k > 0, was considered in [1], [2], where it was shown that the theory of such

functional equations is equivalent to the theory of ordinary differential equations with

constant coefficients.

The problem of constructing general solutions to the equation (2) with the vector

argument is considered by the authors as a background for the realization of a project

that includes

(a) construction of multidimensional analogs of the Moser-Calogero system;

(b) construction of integrable partial differential equations;

(c) characterization of the Baker-Akhiezer functions in terms of the functional

equations;

(d) characterization of the Jacobians of the algebraic curves (Riemann-Schottky

problem) in terms of the addition-type theorems for the theta-functions).

The Riemann-Schottky problem was solved in [8] in terms of the Kadomtsev-

Petviashvilii (KP) equation. This approach was proposed by S. P. Novikov. In [5] the authors

conjectured that Jacobians of algebraic curves can be characterized with the help of

equation (1). This conjecture was inspired by the following result that was proved in [5].

The theta-function corresponding to the generic g-dimensional Abelian variety satisfies

the equation (1) with N = 2g. It turns out that for the Jacobian varieties, the number of

terms in the sum (1) becomes much less, N = g.

Let Γ be a nonsingular algebraic curve of genus g with a fixed point P0 on it and

with a fixed basis ai, bi of cycles on Γ with the canonical matrix of intersections, i.e.,

aiaj = bibj = 0, aibj = δi j. The basis of normalized holomorphic differentials ωi on Γ is

defined with the help of the conditions∮
ai

ωi = δi j. (3)

The matrix

Bi j =
∮
bi

ωj (4)

is called a matrix of b-periods of the curve Γ . It is symmetrical and has positively defined

imaginary part. Each of these matrices defines an entire function of g variables (which

is called the Riemann theta-function) with the help of the formula

θ(z1, . . . , zg) =
∑

m∈Zg

exp(2πi(z, m) + πi(Bm, m)). (5)
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(Here m = (m1, . . . , mg) is an integer vector.) The Riemann theta-function has the following

monodromy properties:

θ(z + ek) = θ(z), θ(z + Bk) = θ(z) exp(−πiBkk − 2πizk) (6)

(ek and Bk are vectors with the coordinates (δki) and (Bki), respectively). The vectors ek,

Bk generate a lattice in the linear complex space Cg. The corresponding factor-space is a

g-dimensional torus J(Γ ) that is called the Jacobian variety of the algebraic curve Γ . The

Abel map

A : Γ 7−→ J(Γ ) (7)

is defined by the formula

Ak(Q) =
∫Q

Q0

ωk. (8)

If vector Z equals

Z = K −
g∑

s=1

A(γs), (9)

where K is a vector of the Riemann constants (it depends on the basis of cycles and

initial point P0 but does not depend on the points γs), then the function θ(A(Q) + Z) is

either identically zero, or has exactly g zeros on Γ that coincide with γs, i.e.,

θ(A(γs) + Z) = 0. (10)

It is to be mentioned that the function θ(A(Q) + Z) is multivalued on Γ but, as it follows

from (6), its zeros are well defined. It is single-valued on Γ ∗, that is, obtained from Γ with

the help of cuts along a-cycles.

Proposition 1. For a generic set of points γ1, . . . , γg the formula

Φ(x, Q) = θ(A(Q) + x + Z)θ(A(P0) + Z)

θ(A(Q) + Z)θ(A(P0) + x + Z)
, (11)

where Z is given by (9), defines a unique function Φ(x, Q), x = (x1, . . . , xg), Q ∈ Γ , such that

(1) Φ is a meromorphic single-valued function of the variable Q on Γ ∗ with at

most simple poles at the points γs (if all of them are distinct);
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(2) its boundary values Φ±
j (x, Q), Q ∈ aj on different sides of cuts satisfy the

relation

Φ+
j (x, Q) = e−2πixjΦ−

j (x, Q), Q ∈ aj; (12)

(3) Φ is normalized by the condition

Φ(x, P0) = 1. (13)

Remark. These types of functions were called “factorial functions” in [3]. They are very

closely related to the Baker-Akhiezer functions. Namely, the Baker-Akhiezer function that

is a single-valued function on Γ , depending on parameters t = {ta}, may be represented

in the form

ψ(t, Q) = exp(
∑

a

ta

∫Q

Q0

dΩa)Φ(x, Q), (14)

where dΩa are the normalized meromorphic differentials on Γ and the coordinates xk of

the vector x are equal to

xk =
∑

a

1

2πi
ta

∮
bk

dΩa. (15)

Proposition 2. For a generic set of points γ1, . . . , γg the formula

Ck(x, Q) = θ(A(Q) + Z + A(γk) − A(P0))θ(A(Q) + x + Z − A(γk) + A(P0))

θ2(A(Q) + Z)θ(A(P0) + x + Z)θ(2A(γk) − A(P0) + Z)
, (16)

where Z is given by (9), defines a unique function Ck(x, Q), x = (x1, . . . , xg), Q ∈ Γ , such that

(1) Ck is a meromorphic single-valued function of the variable Q on Γ ∗ with at

most simple poles at the points γs, s 6= k, and has second-order pole of

the form

Ck(x, Q) = θ−2(A(Q) + Z) + O(θ−1(A(Q) + Z)) (17)

at the point γk;

(2) its boundary values C±
k, j(x, Q), Q ∈ aj, on different sides of cuts satisfy the

relation

C+
k, j(x, Q) = e−2πixjC−

k, j(x, Q), Q ∈ aj; (18)
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(3) we have

Ck(x, P0) = 0. (19)

Note that θ(A(Q) + Z) equals zero at the point γk, and therefore the equality (16)

means that Ck has the pole of second order with a normalized leading coefficient. The

proof of the proposition is straightforward and uses the identity (9) and monodromy

properties of the theta-function, only. From (9) it follows that the first factor in the nu-

merator has zeros at the point P0 and at the points γs, s 6= k. At the same time the first

factor in the denominator has poles of second order at all the points γs. Therefore, Ck has

poles of first order at γs, s 6= k, and a pole of second order at the point γk. The difference

of arguments of the theta-functions in factors containing A(Q) in the numerator and the

denominator is equal to x. That implies (18).

Theorem 1. Let φk(x) be a set of functions that are defined by the formula

φk(x) = θ(A(γk) + x + Z)θ(A(P0) + Z)

θ(A(P0) + x + Z)
. (20)

Then the equality

Φ(x + y,Q) = Φ(x, Q)Φ(y,Q) −
g∑

k=1

Ck(x + y,Q)φk(x)φk(y) (21)

is valid.

Remark. Note that

Φ(0, Q) = 1, φk(0) = 0, k = 1, . . . , g. (22)

In order to prove the statement of the theorem, it is enough to check if the right-

hand side has the same analytical properties (as a function of Q) that uniquely define the

function Ψ(x + y,Q).

First of all, all the terms in the right-hand side satisfy the boundary conditions

on cuts that should be fulfilled for Φ(x+y,Q). From the definition of Ck and φk it follows

that the right-hand side has no poles of second order at the points γs (though the first

term has poles of second order at all these points). The equality (19) implies that the

normalization condition (13) is fulfilled.
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Note that after dividing of (21) on Φ(x+y,Q) we come to the equation of the form

(2) with N = g and ψ1
k = ψ2

k. The generalization which is necessary to make in order to

have the solutions of (2) is more or less obvious.

Theorem 2. Let Φ1(x, Q) be a function that is defined by the formula (11) in which the

vector Z is replaced by the vector

Z1 = K −
g∑

k=1

A(γ1
k), (23)

where γ1
1, . . . , γ

1
g is a set of points in general position. Then the equation

Φ1(x + y,Q) = Φ(x, Q)Φ1(y,Q) −
g∑

k=1

C̃k(x + y,Q)φk(x)φ1
k(y), (24)

where φ1
k(y) = Φ1(y, γk) and the functions C̃k are given by the formulas

C̃k = H(x)
θ(A(Q) + Z1 + A(γ1

k) − A(P0))θ(A(Q) + x + Z1 − A(γk) + A(P0))

θ(A(Q) + Z1 + A(γ1
k) − A(γk))θ(A(Q) + Z1)

, (25)

H(x) = h
θ(A(γk) + Z1)

θ(A(γk) + A(γ1
k) + Z − A(P0))θ(A(P0) + x + Z1)

, (26)

h = lim
Q→γk

θ(A(Q) + Z1 + A(γ1
k) − A(γk))

θ(A(Q) + Z)
, (27)

is fulfilled.

Again, the proof is standard. First of all, let us note that the first factors in the

denominator and numerator of (25) have zeros at the points γ1
s , s 6= k that cancel each

other. Besides these zeros, the factor in the numerator has zero at the point P0 and

the factor in the denominator equals zero at the point γk. Therefore, the function C̃k

as a function of Q satisfies the same boundary conditions on a-cycles as all the other

functions. It has g + 1 poles at the points γ1
1, . . . , γ

1
g and at the point γk. It equals zero

at the point P0. These analytical properties define C̃k uniquely up to a constant (in Q)

factor. The normalization (26) provides that the right-hand side in (25) has no poles at

the points γs.

Remark 1. We would like to mention that (24) implies, in particular, the well-known

formula for a sum of squares of eigenfunctions of Hill’s equation. Indeed, let Qi, i =
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1, . . . , g+1 be a set of g+1 points of Γ and let si be the solution of a system of g+1 linear

equations

g+1∑
i=1

Φ1(0, Qi)si = 1,

g+1∑
i=1

C̃k(0, Qi)si = 0, k = 1, . . . , g. (28)

Then (24) implies

g+1∑
i=1

siΦ(x, Qi)Φ1(−x, Qi) = 1, (29)

if Γ is a hyperelliptic curve given by the equation

y2 =
2g+1∏
i=1

(E − Ej) (30)

and the corresponding Baker-Akhiezer function (14) is a solution to Hill’s equation. (The

theta-functional formula for the Baker-Akhiezer function corresponding to finite-gap

Hill’s operators was proposed by Matveev and Its.) Let the vector Z1 (23) be chosen such

that Z1 = −Z; then

Φ(x, Ej) = Φ1(−x, Ej). (31)

Therefore, if the set of points Qi is a subset of branching points Ej of the hyperelliptic

curve (30), then (29) implies

g+1∑
i=1

siψ
2(x, Qi) = 1. (32)

Remark 2. Note that the techniques used for the proof of Theorem 2 allow us to prove

that the functions Φi(x, Q), i = 1, . . . , m given by the formula (11) for a set of vectors

Z = Zi give solutions to the functional equations containing products of m functions. In

particular, for m = 3 this generalized functional equation has the form

Φ1(x + y + z, Q) = Φ1(x, Q)Φ2(y,Q)Φ3(z, Q) (33)

−
2g∑

k=1

Ĉk(x + y + z, Q)φ1
k(x)φ2

k(y)φ3
k(z).

Theorems 1 and 2 are fulfilled for all the values of x and y. It turns out that they are

simplified drastically for special values of x and y.
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Corollary 1. Let x and y be vectors of the form

x =
n∑

i=1

(A(γi) − A(Qi)), y =
g∑

i=n+1

(A(γi) − A(Qi), (34)

where Qi, i = 1, . . . , g is a set of arbitrary points on Γ ; then

Φ(x + y,Q) = Φ(x, Q)Φ(y,Q). (35)

From (34) it follows that θ(A(Q) + x + Z) is equal to zero at the points γn+1, . . . , γg.

At the same time, θ(A(Q) + y + Z) is equal to zero at the points γ1, . . . , γn. Therefore, for

such values of x and y,

φk(x)φk(y) = 0, k = 1, . . . , g. (36)

In that case, the equality (21) becomes (35).

Important remark. The equality (35) has the form of a classical Cauchy functional equa-

tion and it is well known that all the solutions of this equation are exponential functions.

We would like to emphasize that this is true if and only if the variables x and y belong to

some linear space. In our case they belong to nonlinear submanifolds in Cg that are the

symmetric powers of the curve.

Corollary 2. Let x be an arbitrary vector and y be a vector of the form

y = A(γ1
1) − A(P), P ∈ Γ ; (37)

then

Φ(x + y,Q) = Φ(x)Φ1(y) + C̃1(x + y)φ1(x)φ1
1(y). (38)
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