Russian Math. Surveys 50:6 1101-1150 ©1995 BL Board and LMS
Uspekhi Mat. Nauk 50:6 3-56 UDC 512

Spin generalization of the Ruijsenaars—Schneider
model, the non-Abelian 2D Toda chain, and
representations of the Sklyanin algebra

I. Krichever and A. Zabrodin

Contents
§1. Introduction 1101
§2. The generating linear problem 1107
§3. The direct problem 1113
§4. Finite-gap solutions of the non-Abelian Toda chain 1122
§5. Difference analogues of Lamé operators 1132
§6. Representations of the Sklyanin algebra 1138
§7. Concluding remarks 1147
Bibliography 1149

§1. Introduction

In some sense the results presented in this paper are a by-product of our attempt
to analyse representations of the Sklyanin algebra, that is, the algebra generated by
four elements Sp, Sy, a =1,2,3, that satisfy the following homogeneous quadratic
relations:

[So0, Sal- = 1Jp[Sp, Syl+, (1.1)
[Sas Sg)- = i[So, Sql+, (12)

where [A,B]+ = AB + BA, and a triple of Greek indices a, 8, v in (1.1), (1.2)
stands for any cyclic permutation of (1,2,3). The structure constants J,g of the
algebra are given by

Jop = Jﬂ__J__Jg_’ (1.3)
Y
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where J, are arbitrary constants. Therefore, (1.1)—(1.3) define a two-parameter
family of quadratic algebras. These relations (1.3) were introduced in [1] as the
minimal set of conditions under which the operators

3
L(u) =) Wa(u)Ss ® 0o (1.4)
a=0
satisfy the equation

R®B(u — v) LB (u)L?*(v) = L (v) L3 (w) R® (u — v). (1.5)
Here 0, are Pauli matrices, oy is the unit matrix, the functions W, (u) =W, (u|n, 7),

a=0,...,3, depend on parameters n and 7 in a such way that

Bo+1(u)

Wo(u) = ————, 1.6
) = el (9

where 8,(z) = ,(z | 7) are standard Jacobi theta-functions with characteristics
and the modular parameter 7, and the function

3
R(u) = ZW,, (u + %n)aa ® 0, (1.7)
a=0

is an elliptic solution of the quantum Yang-Baxter equation
R®B(u — v)R¥ ()R (v) = RV (v)R¥ (u)R?®(u — v), (1.8)

corresponding to the so-called 8-vertex model. (Note that the R-matrix of the
6-vertex model is obtained at the limit 7 — 0.)

In relations (1.5), (1.8) we use the following standard notation of the theory of
the Yang-Baxter equation. For a module M over the Sklyanin algebra, equation
(1.4) defines an operator in the tensor product M ® C2. We denote by L!3(u)
(L'?(u)) the operator in the tensor product M ® C? ® C? that acts as L(u) on
the first and third (second) spaces, and acts as the identity operator on the second
(third) one. Similarly, R??® acts identically on M and coincides with the operator
(1.7) on the second and third spaces.

It is well known (see, for example, the surveys [2]-[4]) that the classification
of discrete quantum systems soluble by the quantum inverse scattering method
reduces to solving (1.5) for the case when R(u) is a fixed solution of the Yang-
Baxter equation (1.8). Generalizations of the Sklyanin algebra, corresponding to
more general elliptic solutions of (1.8) obtained in [5], were introduced in [6], [7].
At present only the simplest finite-dimensional representations of the generalized
Sklyanin algebras are known. It is of great interest to construct representations of
these algebras in terms of difference operators similar to the representations of the
original Sklyanin algebra (1.1)-(1.3) described in [8].

As was shown in [8], the operators S,, a = 0,...,3, admit representations in
the form of second-order difference operators acting in the space of meromorphic
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functions f(x) of one complex variable z. One of the series of such representations
has the form

N6z
(Saf)(z) = (—’)——Z%xl)(”@(oamﬂc—eﬂ)f(x+n> s (—z— ) flz—n)). (1.9)

By a straightforward but tedious computation one can check that for any 7, 7, ¢

the operators (1.9) satisfy the commutation relations (1.1)-(1.3) if the values of the
structure constants are given by

Ba+1(1)0a+1(0)
0c2!+1 (n/2)

Therefore, the quantities 7, 7 parametrize the structure constants, and £ is the
parameter of the representation. Note that Sklyanin’s original parameter 7 intro-
duced in [8] corresponds to the parameter 7 in (1.6), (1.7), (1.9) and (1.10).

Let us put f, = f(nn + zo) and assign to the operators (1.9) the following
difference Schrédinger operators with quasiperiodic coefficients:

Jo = (1.10)

Safn = Aglfn-{—l + B;fn—l- (1'11)

The spectrum of a generic operator of this form in the space 12(Z) of square inte-
grable sequences f, has a structure of Cantor set type. If 5 is a rational number,
n = p/q, then the coefficients of the operator (1.11) are g-periodic. In general,
g-periodic difference Schrodinger operators have ¢ unstable bands in the spectrum.

In §5 we show that the operator Sy defined by (1.9) possesses the following
extremely unusual spectral property.

Theorem 1.1. Given a positive integer ‘spin’ £ and an arbitrary 7, the operator
So defined by (1.9) has 2 unstable bands in the spectrum. Its Bloch functions are
parametrized by points of the hyperelliptic curve of genus 2¢ defined by the equation

2£+1

v =RE) = [[ (- &), (112

i=1

The Bloch eigenfunctions ¥(z, te;) of the operator Sp at the edges of bands span
a functional subspace that is invariant for all the operators S,. The corresponding
(4 + 2)-dimensional representation of the Sklyanin algebra is a direct sum of two
equivalent (2¢ + 1)-dimensional representations of the Sklyanin algebra.

Remark. In §5 we show that there is a unique choice of signs for ¢; such that the
Bloch eigenfunctions i(z,e;) induce an irreducible representation of the Sklyanin
algebra. Unfortunately, at present we cannot point out an explicit and construc-
tive procedure for splitting the edges into two parts. We conjecture that if the
structure constants (and therefore the parameters ¢;) are real, then the irreducible
representation is induced when all the edges of bands are positive, that is, ¢; > 0.

This theorem indicates a connection between representations of the Sklyanin
algebra and the theory of finite-gap integration of soliton equations. (The theory of
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finite-gap difference Schrédinger operators [9]-[12] was developed in the context of
solving the Toda chain and difference KdV equations.) Furthermore, the assertion
of the theorem implies that Sp is the proper difference analogue of the classical

Lamé operator
2

L= —dﬁi; + (0 + 1) p(z), (1.13)

which is obtained from Sy as n — 0. Finite-gap properties of higher Lamé operators
for arbitrary integer values of £ are well known (see [13] and the references therein).

In § 6 we propose a relatively simple procedure for deriving the functional realiza-
tion (1.9) of the Sklyanin algebra by difference operators. This approach partially
explains the origin of these operators. The basic tool is the key property of the
elementary R-matrix (1.7), which was used by Baxter [14] in solving the eight-
vertex model and which he called a ‘pair-propagation through a vertex’. A suitable
generalization of this property for an arbitrary spin L-operator (1.4) leads to for-
mulae (1.9). This approach needs much less amount of computation than the direct
substitution of the operators (1.9) in the commutation relations (1.1), (1.2). Note
that this method gives automatically all the three representation series obtained by
Sklyanin and an extra one unknown before.

In [15] the remarkable connection between the motion of poles of the elliptic
solutions of the KdV equation (which are isospectral deformations of the higher
Lamé potentials) and the Calogero-Moser dynamical system was revealed. As
was shown in [16}, [17], this connection becomes an isomorphism if we consider
the elliptic solutions of the Kadomtsev—Petviashvili {(KP) equation. In [18] the
methods of finite-gap integration of the KP equation were applied to integrate the
motion equations of the elliptic Calogero-Moser system in terms of Riemann theta-
functions. In [19] these results have been extended to spin generalizations of the
Calogero—Moser system.

In this paper we extend this theory to construct elliptic solutions of the two-
dimensional (2D) Toda chain and its non-Abelian analogues. The equations of the
2D Toda chain have the form

0

DLO_py = PnTPn-1 _ gfnt1Pn Oy = — .
Oty

(1.14)

We consider solutions which are elliptic with respect to the discrete variable n, that
is, solutions of the form

‘Pn(t+7t—) = ()O(nn+x0at+7t—) (115)

such that the function

c(z,t4,t-) = exp(p(e, t4,t-) — p(x —n,t4,t-)) (1.16)
is elliptic with respect to the variable z. We show that in this case the function
exp(yp) is given by the representation

n

€Xp ‘P(-’U,t+,t—) = H

i=1

U(:l:—l‘i +T])

@ —3) z; = zi(ty, 1) (1.17)
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(o(z|w,ws) is the standard Weierstrass o-function), and the dynamics of its
poles z; with respect to the time flows t4,¢_ is given by the motion equations
for the Ruijsenaars-Schneider system [20]:

& = Z i385 (V(zs — T) = V(zs — 33)), (1.18)
8#1
where ,
V) = (@) ¢+, (o) = (1.19)

This system is the relativistic analogue of the Calogero-Moser model. Hamiltonians
generating the commuting (¢4 )-flows have the form

n n 1/2
He :Zeipj H(a(zj -z, +n)o(z; —ws—n)) (1.20)

2 . —
P o*(@; o)

with canonical Poisson brackets {p;,zx} = dix.

The method used in the proof of this assertion also enables us to construct
the action-angle variables for the system (1.18) and to integrate the system
explicitly in terms of theta-functions. Applied to the non-Abelian analogue of
the 2D Toda chain, this approach leads to spin generalization of the Ruijsenaars—
Schneider model.

This generalized model is a system of N particles on the line with coordinates z;,
and its internal degrees of freedom are described by [-dimensional vectors a; = (a;,q)

and covectors bf = (), a = 1,...,l. The motion equations have the following
form:
Bi= Y (bfa;)(bFas) (V(z:i — z;) = V(z; — 1)), (1.21)
J#i
dl- = Zaj(b;ai)v(mi - ll?j), (122)
J#i
b= =) bl (bFa;)V(z; — x). (1.23)
J#i

The potential V{z) is given by (1.19) or by its trigonometric or rational degenera-
tions V(z) = (cothz)~! —(coth(z+7))~! and V(z) = =} — (z —n) !, respectively.
To develop a Hamiltonian formalism for this system needs special consideration; this
is beyond the scope of this paper.

Let us count the number of non-trivial degrees of freedom. The original system
has 2N + 2NI[ dynamical variables z;, T;, a;q4, b¥. The motion equations are
invariant under the rescaling

a; — )\,-ai, b; — /\lb, (124)
1
The corresponding integrals of motion have the form I; = @; — (bf a;); in order to
fix their zero value we put
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The reduced system is defined by the additional N extra constraints ). b% = 1,
which destroy the symmetry (1.24). Therefore, the phase space of the reduced
system has dimension 2N{. Moreover, the system is invariant under the transfor-
mations

a; - Wla;, b — bW, (1.26)

apart from the symmetry (1.24). Here a matrix W € GL(r,R) is restricted only
by the condition that W preserves the above-mentioned additional conditions on
the b;; in other words, W leaves the vector v = (1,...,1) invariant. Taking into
account (1.26), we see that the dimension of the completely reduced phase space
M is equal to

dimM = 2{1\71— UG ; 1)}. (1.27)

In 8§§2-4 we derive explicit representations for general solutions of the system
(1.21)-(1.23) in terms of theta-functions. It should be emphasized that the corre-
sponding formulae are identical to those obtained in [19] for spin generalizations of
the Calogero-Moser model. The only change is that the class of auxiliary spectral
algebraic curves (in terms of which the theta-functions are constructed) is different.
These curves can be described purely in terms of algebraic geometry.

With each smooth algebraic curve I" of genus N we associate an N-dimensional
complex torus J(T') (Jacobian of the curve). A pair of points P* € T defines a
vector U in the Jacobian. Let us consider a class of curves that have the following
property: there exists a pair of points on the curve such that the complex linear
subspace generated by the corresponding vector U is compact, that is, it is an ellip-
tic curve &. This means that there exist two complex numbers 2wy, Imwsy /wy > 0,
such that 2w, U belongs to the lattice of periods of holomorphic differentials on T'.
From a purely algebraic-geometrical point of view the problem of describing such
curves is transcendental. It turns out that this problem has an explicit solution;
moreover, the algebraic equations defining such curves can be written as charac-
teristic equations for the Lax operator of the Ruijsenaars—Schneider system. In
the case of general position &, intersects the theta-divisor at N points z;, and if
we move &p in the direction defined by the vector V* (V) tangent to I € J(I)
at the point Pt (P~), then the intersections of & with the theta-divisor move
according to the Ruijsenaars—Schneider dynamics. There is an analogous descrip-
tion of spin generalizations of this system. The corresponding curves have two sets
of points Pii, i=1,...,1, such that in the linear subspace spanned by the vectors
corresponding to each pair there exists a vector U with the same property as above.

Note that the geometric interpretation of integrable many-body systems of
Calogero—Moser—Sutherland type resides in the representation of these models as
reductions of geodesic flows on symmetric spaces [21]. Equivalently, the models
can be obtained by means of the Hamiltonian reduction [22] from free dynamics
in a larger phase space possessing a rich symmetry. A generalization to infinite-
dimensional phase spaces (cotangent bundles to current algebras and groups) was
suggested in [23], [24]. The infinite-dimensional gauge symmetry enables us to make
a reduction to a system with finitely many degrees of freedom. The Ruijsenaars—
Schneider type models and the elliptic Calogero-Moser model are contained in the
class of systems described by this procedure.



Representations of the Sklyanin algebra 1107

A further generalization of this approach consists in considering dynamical sys-
tems on cotangent bundles to moduli spaces of stable holomorphic vector bundles
on Riemann surfaces. Such systems were introduced by Hitchin in the paper [25],
where their integrability was proved. An attempt to identify the known many-
body integrable systems in terms of the abstract formalism developed by Hitchin
was recently made in [26]. To do this, it is necessary to consider vector bundles
on algebraic curves with singular points. It turns out that the class of integrable
systems corresponding to the Riemann sphere with marked points includes spin
generalizations of the Calogero-Moser model and integrable Gaudin magnets [27]
as well (see also [28]).

Notwithstanding the fact that Hitchin’s approach is of a general nature and
offers a clear geometric interpretation, it cannot be used directly to obtain explicit
formulae for solutions of the motion equations. Furthermore, in general an explicit
form of the motion equations is unknown. We hope that an alternative approach to
Hitchin’s systems may be based on the approach first suggested in [18] for the elliptic
Calogero—Moser system and developed in more detail in this paper. This approach
seems to be less invariant but yields more explicit formulae. In our opinion this
approach has not yet been used in its full strength. Conjecturally, to each Hitchin
system one can assign a linear problem having solutions of a special form (called
double-Bloch solutions in this paper), in terms of which one may construct explicit
formulae for solutions of the motion equations.

This paper as a whole can be divided into three relatively independent parts.
The structure of the first part (§§2-4) is very close to that of the paper [19].
Furthermore, to make this paper self-contained and to stress the universal character
of the approach suggested in [18], we sometimes use the literal citation of [19]. At
the same time we skip some technical details common for both cases and try to
stress the specifics of difference equations. In the second part (§5) we introduce
and study discrete analogues of Lamé operators. Finally, in the third part (§6) we
use the concept of the vacuum vectors of L-operators to give a simple derivation
of difference operators representing the Sklyanin algebra. Actually, we expect a
deeper connection between the three main topics of this paper, for which reason we
have combined these topics within a single paper; a short discussion on this point
is given in § 7.

§ 2. The generating linear problem
The equations of the non-Abelian 2D Toda chain have the form
84 ((0-gn)g") = 9ngnts — gnrr97 " (2.1)

These equations are equivalent to the compatibility condition for the overdeter-
mined system of linear problems

Opthn(t4,t-) = Y (b, t=) +vnlty, t-)Pn(t4, t-), (2.2)
8—wn(t+7t—) = Cn(tﬁ-at—)wn—l(t%—vt—)ﬂ (23)

where
Cp = gng;ip Un = (a+gn)gn_1 (2'4)
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(g9n is an (I x l)-matrix). As in the case of the Calogero-Moser model and its
spin generalizations [18], [19], the statement that the system (1.21)-(1.23) and
the pole system defined by elliptic solutions of the non-Abelian 2D Toda chain
are isomorphic is based on the fact that the auxiliary linear problem with elliptic
coeflicients has infinitely many double-Bloch solutions.

We call a meromorphic vector-valued function f(z) a double-Bloch function if it
has the following monodromy properties:

f(z + 2wq) = Bo f(z), a=1,2 (2.5)

here w, are periods of an elliptic curve. The complex numbers B, are called Bloch
multipliers. In other words, f is a meromorphic cross-section of a vector bundle
over an elliptic curve. Any double-Bloch function can be represented as a linear
combination of elementary functions as follows.

We put

&(z,z) = o(z+z+1n) [U(z _ 72)] /(2n) -

" o(z+n)a(z) lo(z+n)

Using the addition theorems for the Weierstrass o-function, it is easy to check that
®(x, 2) satisfies the difference analogue of the Lamé equation

@(III +1, Z) + C(QI)‘I)(.'L' - T),Z) = E(Z)@(Z‘,Z), (27)

where

a(z —n)o(z + 2n)

o(z+n)o(z)
Here z plays the role of a spectral parameter, which parametrizes the eigenvalues
E(z) of the difference Lamé operator

e(z) = (2.8)

o(2n) o(2)
& =50 e —meGin)i 29)

The Riemann surface f‘o of the function E(z) is a two-fold covering of the initial
elliptic curve T'y with periods 2w,, a = 1, 2; its genus is equal to 2.
The function &(z, z) is a doubly-periodic function of z, that is,

®(x,z + 2ws) = ¥(z, 2), (2.10)

If £/2n is an integer, then ® is a well-defined meromorphic function on I'g. If z/2n
is a half-integer, then ® becomes a single-valued function on To. In the general case
when z is an arbitrary number one can define a single-valued branch of ®(z, z) by
cutting the elliptic curve I'y between the points z = £5.

As a function of z, the function ®(z, z) is a double-Bloch function, that is,

D(z + 2wa,2) = To(2)®(z, 2), (2.11)

where the Bloch multipliers are given by

z — wWa /N
Ta(2) = exp(2¢(un)(e + ) () (2.12)
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In the fundamental parallelogram defined by the sides 2w, the function &(z, z) has
a unique pole at the point z = 0:

<I>(w,z)=%+A+0(m), A:C(z+n)+—2%ln%. (2.13)

This implies that if a double-Bloch function f(z) has simple poles at points z; of
the fundamental parallelogram and has Bloch multipliers B, such that at least one
of them is different from 1, then it can be represented in the form

N
fl@) = Z 5:®(x — 3, 2)k*/", (2.14)
i=1

where the variable z and the complex number & are connected by the relation
B, = T (2)k?=/". (2.15)

(Note that any pair of Bloch multipliers can be represented in the form (2.15) with
an appropriate choice of z and k.)

Indeed, let z;, i = 1,... ,m, be poles of f(z) lying in the fundamental domain of
the lattice with periods 2w;, 2w2. Then there exist vectors s; such that the function

F(z) = f(z) - in: 5;®(x — ZL',',Z)kz/"

=1

is holomorphic in z in the fundamental domain and it is a double-Bloch function
with the same Bloch multipliers as f. Moreover, any non-trivial double-Bloch
function, having at least one Bloch multiplier different from 1, has at least one pole
in the fundamental domain, whence F' = 0.

The gauge transformation

f(z) = f(z) = f(z)e®, (2.16)

where a is an arbitrary constant, does not change the poles of any functions and
transforms a double-Bloch function into another double-Bloch function. If B, are
the Bloch multipliers for f, then the Bloch multipliers for f are equal to

El = Ble2aw1’ EQ = 32€2aw2_ (217)

We say that two pairs of Bloch multipliers are equivalent if for some a they are
connected by (2.17). Note that for all equivalent pairs of Bloch multipliers the
product

B*B;“* =B (2.18)

is a constant depending only on the equivalence class.
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Theorem 2.1. The equations

N
0¥ (z,t) = U(z +1,8) + »_ as(t)b} (1)V (z — z:(t)) ¥(z, 1), (2.19)
=1 .
~0, 0" (z,8) = UF(z —n,1) + TH(2,8) Y ai()bF ())V (z — 2a(t))  (2.20)
i=1

have N pairs of linear independent double-Bloch solutions ¥, (z,t) and \IIE:)(z,t)
such that they have simple poles at the points z;(t) and (z;(t) —n), respectively,

Vo) (2 + 2w, t) = Ba,s ¥(4) (2, 1), \Il(t) (T — 2wa,t) = Ba s ¥(5)(z,t), (2.21)
and have equivalent Bloch multipliers (that is, the quantity
BY3B;;' =B (2.22)

is independent of s) if and only if z,(t) satisfy equations (1.21), and the vectors
a;, b} satisfy the constraints (1.25) and the system of equations

ai =Y a;(b7a:)V(z: — z;) — Niai, (2.23)
J#i
bj— = - Z bj(bfa])V(mJ - (L‘i) + Aib?_, (2.24)
J#

where \; = X\;(t) are scalar functions.
Remark. The system (1.21), (2.23), (2.24) is ‘gauge equivalent’ to the system

(1.21)—(1.23). This means that if (z;,a;,b]) satisfy equations (1.21), (2.23), (2.24),
then z; and the vector-valued functions

¢
@ =aiqi, b =big;', g =exp (/ /\i(t')dt’) (2.25)

are solutions of the system (1.21)-(1.23).
Theorem 2.2. Suppose that equations (2.19), (2.20) have N linear independent

double-Bloch solutions with Bloch multipliers satisfying (2.22). Then there are infin-
itely many such solutions, all of which can be represented in the form

N
=" sit,k,2)®(z — zi(t), 2) k*/7, (2.26)
i=1

N
ot = Z s7(t, k, 2)®(—2 + zi(t) — n,2)k™%/", (2.27)
i=1
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where s; is an l-dimensional vector, s; = (8;,), and si+ 1s an l-dimensional covector,

s:r = (s¥). The set of corresponding pairs (z,k) is parametrized by points of the

algebraic curve defined by the equation

N
R(k,2) =k + ) ri(2)kN " =0.

=1

Proof of Theorem 2.1. As we have mentioned, ¥4 (z,t) (like any double-Bloch
function) may be written in the form (2.26) with some values of the parameters
zs, ks. From (2.22) it follows that the parameters z, can be chosen as follows:

Zs = 2, s=1,...,N.

For this value of z we substitute a function ¥(z,t, z, k) of the form (2.26) in equa-
tion {2.19). Since any function with such monodromy properties has at least one
pole, it follows that (2.26), (2.23) are satisfied if and only if the right- and left-hand
sides of these equalities have the same singular parts at the points z = z; and
T =z;—1.

Comparing the coefficients in front of (z — z;)~2 in (2.19), we obtain

£is; = ai(b] si), (2.28)
whence the vector s; is proportional to a;,
Si,a(t’k7 Z) = Ci(t,k,z)ai,a(t), (229)

and the vectors a;, b; satisfy the constraints (1.25). Cancellation of the coefficients
in front of (z — z; +n)~! gives the conditions

—ks; + Z a;ibf s;®(z; —z; —n,2) = 0. (2.30)
i#i

Taking into account (1.25) and (2.29), we can write (2.30) as the matrix equation
for the vector C' = (¢;),
(L(t,z) — kKI)C =0, (2.31)

where I is the unit matrix, and the Lax matrix L(¢, z) is defined as follows:
Li;(t,2) = (b} a;)®(z; — z; — 0, 2). (2.32)
Finally, cancellation of the poles (x — z;)~! gives the conditions
$i— (Z ajb;‘V(zi—:L'j)-k (A—C(n))a,-bf) $;—a; Z(bjsj)d)(z,-——zj, z) =0, (2.33)
i #i
Taking into account (2.29), we arrive at the motion equations (2.23), where

)\i(t) = % + (C(T)) - A).’E,, - Z(bfa])é(a:, — Ty, Z)z—] . (234)
#i ’

1
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We can write (2.31) in the matrix form
(8 + M(t,2))C =0, (2.35)
where the second operator of the Lax pair is given by
Mii(t,z) = (=X + (C(n) — A)&:)6ij — (1 — 6i;)bF a;®(z; — x4, 2). (2.36)

Analogously, substituting the vector ¥+ of the form (2.27) in (2.20), we obtain the
relations

sf(t,k, 2) = cf (t,k, 2)b3 (1), (2.37)
where the covector C+ = (c]) satisfies the conditions

CH(L(t,2) — kI) =0, (2.38)
—8,Ct +CtMM)(¢t,2) =0, (2.39)

the operator L is given by (2.32), and the operator M{*) is obtained from (2.36)
by changing A;(t) to

&t o+
M) = -2+ (C) — A)gi — Y _(bF ai)®(x; — 34, 2) L. (2.40)
’ J#i G
Moreover, the covector b} satisfies the motion equation
=D b (b a5V (25 — i) + AF o] (241)

J#i

The assumption of the theorem implies that equations (2.31), (2.35) and (2.38),
(2.39) have N linear independent solutions corresponding to different values of k.
The compatibility conditions for these equations have the form of the Lax equations

L+[M,L}=0, L+[M% L]=0, (2.42)

from which it follows that A; = Af.
The function ®(z, z) satisfies the following functional relations:

®(z —1,2)8(y, z) — ¥(z,2)B(y —n,2) = ¥z +y —n,2)(V(-z) - V(-y)),
(2.43)

'(z—n,2) = —8(z —n,2)(V(-z) + ({(n) — A) - (-1,2)®(z,2), (244)

where the constant A is defined in (2.13). The first relation is equivalent to the
three-term functional equation for the Weierstrass o-function, and the second rela-
tion follows from the first one as y — 0.

Using (2.43) and (2.44) it is easy to prove by direct computation the following
lemma, which completes the proof of the theorem.
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Lemma 2.1. Let the matrices L and M be defined by (2.32) and (2.36), respec-
tively, where a; and b} satisfy (2.23) and (1.25). Then the Laz equations (2.42)
are valid if and only if the z;(t) satisfy (1.21).

Proof of Theorem 2.2. As we proved above, equations (2.19), (2.20) have N linear
independent solutions provided that the equations (2.23), (2.24), the constraints
(3.9) and the Lax equations (2.42) are satisfied for some value of the spectral
parameter z. Therefore, by Lemma 2.1, the Lax equations are satisfied for all values
of the spectral parameter z. Thus, for each value of z the double-Bloch solutions
of equation (2.19) are defined by (2.26) and (2.29), where the ¢; are components of
the common solution of equations (2.31), (2.35).

It follows from (2.31) that all admissible pairs of the spectral parameters z and k&
satisfy the characteristic equation

R(k,z) = det(kI — L(t,2)) =0.

At the beginning of § 3 we show that this equation defines an algebraic curve T of
finite genus. This completes the proof of the theorem.

Remark 1. In the Abelian case (I = 1) one can use the ‘gauge’ transformation with
matrix U;; = a;6;; to represent the operators of the Lax pair in the form

LY = 4;9(z; — 25— n, 2), (2.45)
Mi(;ZI) = ((C(n)—A):i)i~ZV(:B,'—.’Es)i:s)(sij—(1—(5ij):iiq)(.’ci—.’Ej,z).(2.46)
s#i

These operators are equivalent to the Lax pair derived in [29], [30].

Remark 2. In the Abelian case it is sufficient to require that only one of the equa-
tions (2.19), (2.20) has N linear independent double-Bloch solutions with Bloch
multipliers satisfying condition (2.22).

§ 3. The direct problem

It follows from the Lax equation (2.42) that the coefficients of the characteristic

equation
R(k,z) = det(kI — L(t,z)) = 0. (3.1)

are independent of time. Note that they are invariant with respect to the symme-
tries (1.24) and (1.26).

Theorem 3.1. The coefficients r;(z) of the characteristic equation (3.1)

N
R(k,z) = kN +) ri(z)k"N (3.2)

i=1

are independent of t and are given by

ri(z) = ¢z(z) (Ii,O + (1 - (5[11)11‘,1’.;,'(2) + 2 Ii,saj”go(z + T])) 5 (33)

§s=2
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where

m;=41—1fori=1,...,1, m;=10l-1fori=1+1,...,N, (3.4)
() = 0T ez — (- )
7= o 07 /
o(z —m)o(z - (i — 3)n)
o(z+mo(z—(i-1)n)

(3.5)

5i(2) = (3.6)

In a neighbourhood of the point z = —n the function R(k,z) can be represented in
the form

! N
R(k,2) = H(k +(z+m) 7 2hi(z + 1)) H (k+(z+n)2hi(z + 1), (3.7
i=1 i=l+1

where the functions h;(z) are regular in a neighbourhood of zero.

Proof. Tt follows from (2.10) that the matrix elements L;; are doubly-periodic func-
tions of z. Therefore, one can consider them as single-valued functions on the orig-
inal elliptic curve [y with a branch cut between the points z = 4. First we show
that the coefficients 7;(z) of the characteristic polynomial (3.1) are meromorphic
functions on the Riemann surface I'g of the function E(z) defined by (2.9). (This
means that 7;(z) are two-valued functions of z with square root branching at the
points z = +n.)

This assertion follows from the fact that L(¢,z) can be written in the ‘gauge
equivalent’ form

zi(t)/(2m)
] , (3.8)

L(t, 2) = G(t, 2)L(t, 2)G~1(t, 2), Gij = i [Zg ; :77;

where the matrix elements of L(t,z) have square root branching at the points
z = 1. Moreover, using the explicit formulae

(bF a;) o(z + z; — ;)
[0(z —no(z +m]/? oz — x5 —n)’

Lij(t, Z) = (39)
one can conclude that ro;(2) are single-valued meromorphic functions of z, that is,
elliptic functions. Further, rg;,1(2) are meromorphlc functions on Fo, which are
odd with respect to the involution 7 : I‘O — I‘O interchanging sheets of the covering
To — T (this involution corresponds to the change of sign E(z) - —E(z) of the
square root). Thus, the curve [ is invariant with respect to the involution

o~ o~

7:T—T, 7k E)r (—k,—E), (3.10)

which covers the involution 7.
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We denote by I' the factor-curve
r:={T/7}. (3.11)

This curve is an N-fold ramified covering of the initial elliptic curve

T~ T (3.12)
and is defined by the equation
N
R(K,z) = KN + Y Ri(z)KN ' =, (3.13)
=1
where 12 2
K=k [%E—i%nn—%] , Ri(2) =ri(2) [Z—Ej—ig—;] . (3.14)

We now dwell on the sense of this assertion in more detail. The coefficients R;(z) of
(3.13) are meromorphic functions of z having the following monodromy properties:

R;(z + 2wa) = R;(2)e” ¢ (wa)n, (3.15)

The Riemann surface T' defined by (3.13) is an N-fold covering of the complex
plane. It follows from (3.15) that this surface is invariant with respect to the
transformations

20 2+ 2w, K Ke%Waln, (3.16)

The corresponding factor-surface of I' over the transformations (3.16) is an algebraic
curve I'; which is the covering of some elliptic curve with periods 2w,,.

We now prove equality (3.7). The proof is based on the fact that for the expansion
of L(t, z) in a neighbourhood of the point z = —7,

(bf aj)
[o(=2n)(z + n)]*/?

Lij(t,2) = +0((z +m)?), (3.17)

the rank of the lcading term is equal to I. The corresponding (N — I)-dimensional
subspace of eigenvectors C = (c1,... ,en) with zero eigenvalue is defined by the
equations

N
D ciaja =0, a=1,.,L (3.18)
Jj=1

We now go back to the determination of the coefficients in the characteristic equa-
tion (3.1). Since the matrix elements of L(t, z) have simple poles at the point z = 7,
we see that in the case of general position the function r;(z) has a pole of order i
at this point. It follows from (3.7) that at the point 2 = —# the function r; has a
pole of order i for i = 1,...,[, a pole of order (2l — i) fori =1+1,...,2l, and a
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pole of order 1 — 2l for i =2l +1,... , N, that is,

ri(2) = (2 +0) "2 pi(z + 1), i=1,...,1, (3.19)
ri(z) = (z+0)"*lpi(z+1n), i=1+1,...,N, (3.20)

where p;(z) are regular functions. Using these properties of the functions r;(z), as
well as their evenness properties, we arrive at the representation (3.3). (Note that
the function ¢;(2) defined by (3.5) has a pole of order ¢ at the point z = 1 and a
zero of order ¢ — 2 at the point z = —7.)

Important remark. It should be emphasized that the representation (3.7) implies
that the characteristic equation (3.1) defines a singular algebraic curve. Indeed,
(3.7) implies that (N — ) sheets of the corresponding ramified covering intersect
at the point (z = —5, k = 0). In what follows we keep the same notation I for an
algebraic curve with the resolved singularity at this point.

The coefficients I; , in (3.3) are integrals of motion for the system considered.
The total number of integrals is equal to NI — [(l — 1)/2, which is exactly half the
dimension of the reduced phase space. (It follows from the results of § 4 that these
integrals are independent.)

Lemma 3.1. In the case of general position the genus g of the spectral curve T’
defined by (3.13) is equal to NI - I(I+1)/2+ 1.

Proof. First we determine the genus g of the curve T defined by (3.1). By the
Riemann—Hurwitz formula we have 2g — 2 = 2N + v, where v is the number of
branch points of T over fo, that is, the number of points z at which the equation
R(k,z) = 0 has a double root. This number is equal to the number of zeros of
the function 8y R(k, z) on the surface R(k,z) = O outside preimages of the point
z = —n (due to the above-mentioned singularity of the initial curve). The function
Ox R(k, 2) has poles of order N —1 at preimages of the point z = n; moreover, it also
has poles of the same order at [ preimages of the point z = —n, which correspond
to the first [ factors in (3.7). At the other N — I preimages of the point z = —7 this
function has zeros of order (N —[)(N - 21 —1). Therefore, v = 4IN — 2{(l+1). The
curve T is a two-fold branched covering of the spectral curve I', and the number of
branch points at preimages of the points z = %7 is equal to 2N. In this case the
Riemann-Hurwitz formula leads to the relation 2g — 2 = 2(2g — 2) + 2N, which
proves the lemma.

Not only does the characteristic equation (3.1) define the spectral curve (3.13),
but it also defines two sets of distinguished points on the spectral curve. Namely,
using the factorization (3.7) of R(k,z) we see that the function k has poles at !
points of the set of preimages of the point z = —n (these poles correspond to the
first ! factors in (3.7)); we denote them by P;t, i = 1,...,l. Since a meromorphic
function has as many zeros as poles, it follows from (3.14) and (3.7) that on the
unreduced spectral curve T the function k has 2! zeros outside preimages of the
point z = —15. These zeros correspond to ! points P, ¢ = 1,...,l, lying on the
spectral curve T,

k(P7)=0. (3.21)
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In the case of general position there is such a point P,” above each zero 2 of the

function ry(z), different from its apparent zero z = —7, so that

rn(z) = Ino UN/z(z_n)n)Ha(z—z . (3.22)

(For | = 1 the second marked point P;~ lies above the point z = (N — 1)7.)

Theorem 3.2. Let ¥(z,t, P) be a solution of equation {2.19). Then its components
U,(z,t,P) are defined on an N-fold covering I' of the initial elliptic curve cut
between the points Pi+ and P, ¢ = 1,...,1, and they are meromorphic outside
these branch cuts. In the case when the initial conditions are of general position the
curve I' is stnooth, its genus is equal to g = N[ — l—@ +1, and the function ¥, has
g— 1 poles v, ... ,v9—1, whose position is independent of z,t. In a neighbourhood

of the points Pi+, 1=1,...,1, the function ¥, has the form

Uo(z,t,P) = (xg" + 3 X @, t)(z +n)“") (sei(z +n)™1)* e+ g, (0,0, P),

(3.23)
where x§* are constants independent of x, t, and 3; are non-zero eigenvalues of the
matriz (b} a;). In a neighbourhood of the points P, the function ¥, has the form

‘I’a(.’li,t,P) = (z - zi—)z/" (Z igi(z’t)(z - Z;)s) ‘P1(0707P)a (324)
5=0

where z are projections of the points P, onto the initial elliptic curve; these

projections are defined by (3.22). The boundary values \Ilg.i) of the function ¥,
on opposite sides of the cuts are connected by the relation

TP = g()eriz/n, (3.25)

Proof. First we study analytic properties of the eigenvectors of the Lax matrix
defined by (2.31), (2 35).

We denote by T* the curve T' with cuts between the preimages PJr of the point
z = —n and the preimages ¢, of the point z=15,i=1,... ,N. Let Pbea generic
point of the curve T, that is, a pair (k, z) = P that satisfies (3.1); then there exists
a unique eigenvector C/(0, P) of the matrix L(0,2) normalized by the condition
c1(0, P) = 1. Al other components ¢;(0, P) are equal to A;(0, P)/A (0, P), where
A;(0, P) are suitable minors of the matrix kI — L(0, z), and therefore they are

meromorphic on T*. The poles of ¢;(0, 13) are zeros of the first principal minor
A1 (0, P) = det(kdij — Lij(0,2)) =0,  i,j > 1, (3.26)

on T*. Therefore, the position of these poles depends only on the initial data of
the Cauchy problem considered.
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Lemma 3.2. The coordinates c;(0, 13) of the eigenvector C(0, 13) are meromorphic

functions on T*. The boundary values c;-t of the functions cj(0,13) on opposite sides
of the cuts satisfy the relation

¢t = c; emilas@-a0)/n, (3.27)

In a neighbourhood of the points P;' the functions c;(0, 13) have the form

¢i(0,P) = (S (0) + Oz +m)) (2 + 7)1 O =2:(0)/C2m) (3.28)
where cg.i‘+)(t) are eigenvectors of the residue of the matriz L(0,z) at z = —7,
that is,
N . .
S (b a)e T (1) = —sac P (). (3.29)
=1

In a neighbourhood of the points Q the functions cj(0,13) have the form

¢;(0,P) = ({"7)(0) + Oz ~ m)) (2 — )i @ =21(O)/Cm) (3.30)

where cgi’_)(t) are eigenvectors of the residue of the matriz L(0,2) at z = 7.

The proof is based on the following representation (see (3.8)):
C(0,P) = G(0,2)C(0, P), (3.31)

where G(t, 2) is defined in (3.8), and C(0, P) is an eigenvector of the matrix L(0, z).
The matrix elements of L(0,z) are analytic on the cuts between z = +7, and
therefore C'(0, P) has no discontinuity on the cuts. This proves the relation (3.27).
The representations (3.28) and (3.30) are direct consequences of the fact that L(0, 2)
has simple poles at the points z = +1.

Remark. The vector C(0, P) is invariant under the involution (3.10). That is why
its argument is a point P of the spectral curve T' rather than a point P of the
covering L. However, this notation is somewhat misleading, since both factors in
(3.31) are multivalued on T, and only their product is well defined.

Lemma 3.3. The poles of C(O,ﬁ) are invariant under the involution 7. The
number of them is equal to 2NI —1(l +1).

The proof of the lemma is based on standard arguments of finite-gap integration
theory. Namely, let us consider the following function of z:

F(2) = (Det |ci(0, M;)|)?,

where M;, j = 1,..., N, are preimages of z. Since this function does not depehd
on the ordering of the preimages, it is well defined as a function of z. Using the
analytic properties of c;, we see that F'(z) can be represented in the form

_ _ 11 S(@i(0)—21(0))
F(z) = F(2) [%TZ;] , (3.32)
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where F is a meromorphic function. This means that F(z) has as many zeros as

poles. The number of its poles is twice the number of zeros of the vector C(0, f’),
whereas the number of zeros of F(z) is equal to the number v of branch points
of the covering T over [y defined by (3.1). In the proof of Lemma 3.1 we showed
that v = 4N — 2l(l + 1). The invariance of poles of C(0, }3) under the involution 7
follows from the T-invariance of equation (3.26), which determines the positions of
the poles. This completes the proof.

Let v1,... ,74—1 be points of the spectral curve I" such that their preimages are
poles of C(0, P). (Note that if T is smooth, then the number g = NI —1(1+1)/2+1
is its genus.)

We now consider the vector C(t, P) obtained from C (0, P) by the time evolution
given by (2.35).

Lemma 3.4. The coordinates c; (t, P) of the vector C(t, P) are meromorphic onT*.
Their poles are preimages of the points vy,... ,vg-1 and do not depend on t. The

boundary values cji of ¢;(t, 13) on opposite sides of the cuts satisfy the relation
cj = cj*ewi(z,-(t)—zl(o))/n. (3.33)

In a neighbourhood of the points P;* the functions c; (t, P) have the form

-~

¢;(0,P) = (c§i’+)(t) + O(z + 1)) (z +n) =1 O~V exp (56,(2 + )7 't), (3.34)

where »; and cgvi’ﬂ(t) are defined in (3.29). In a neighbourhood of the points Q]
the functions c;(t, ﬁ) have the form

¢i(t, P) = (%7 (t) + O(z — ) (z ~ p) (@5 O =m0/ 2m), (3.35)

Proof. The fundamental matrix S(t, z) of solutions of the equation

(0 + M(t,2))S(t,2) =0, S(0,z) =1, (3.36)
is a holomorphic function of z outside the cut connecting the points 2 = +#. By
the Lax equation we have L(t,z) = S(¢,2)L(0,2)S~1(¢,z). Therefore, the vector

C(t, z) is equal to C(t, z) = S(t,2)C(0, 2}, whence it has the same poles as C(0, P).
We consider the vector C{(¢, P) defined by the relation

C(t, P) = G(t,2)C(t, P), (3.37)

where G(t, z) is the same diagonal matrix as in (3.8). This vector is an eigenvector
of the matrix L(t, z) and satisfies the equation

(8 + M(t,2))C(t,P) =0, M =G"'8,G+G 'MG. (3.38)

The matrix elements of M are analytic at the cut between the points z = £7. There-
fore, C(t, P) is analytic at the cuts on I'. Thus, the multivaluedness of C(t, P) is
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completely caused by the multivaluedness of G(t, z), which proves (3.33). Equality
(3.35) follows from the analyticity of M at the point z = 5. In a neighbourhood of
z = —n we have
V7 (b a5)
M;;(t, z) =
S P

Therefore, in a neighbourhood of the points Pi+ the following relation holds:

+0((z +n)°). (3.39)

8:C(t, P) = (mi(t, 2) + O(2°))C(t, P),

where
pi(t, 2) = s(z + 1)~ + 0(1) (3.40)

are eigenvalues of the matrix M. This proves (3.34).
Now we proceed directly to the proof of the theorem. From the initial definition

N
U(z,t,P) =Y s;(t, P)®(z — z;(t), 2)k*/",  s;(t,P) = ¢;(t, P)a(1),

=1

it follows that the solutions ¥ of the generating linear problem (2.19) are defined
on the curve I'. To show that ¥ is well defined on the spectral curve I', we use the
equality

ci(t. P — 2 (D). 2 =, o(z+xz—zj+n) o(z —n) 1/272/n
(6 PYR( = 20, 2k J(t’p)a(z+77)a(alc—:tj) [k(a(z+77)> }(3 ;11)

We recall that the components of the vector C' are even with respect to the
involution 7 given by (3.10). The factor

olz — 112
K(P)=k [H] (3.42)

is T-invariant too. Thus, ¥(x,t, P) is well defined as a vector-valued function on
the spectral curve I'. At the same time we see that the poles of ¥(z,t, P) coincide
with the poles of C(0, P), that is, they are located at the points 7, . .. » Yg—1-
Note that K(P) is a multivalued meromorphic function on I' with zeros and
poles (which are nevertheless well defined) at the points P,” and PY, i =1,...,1,
respectively. Therefore, by cutting I' between the points Pf:, 1=1,...,1, we
can choose the branch of the third factor in (3.42) in such a way that ¥ becomes
single-valued outside these cuts, and its boundary values at the sides of the cuts
satisfy (3.25). We consider the behaviour of ¥ in neighbourhoods of the points P;L.

In a neighbourhood of z = —7n we have

olz+z+n) 1
o(z+n)o(z)  z+7

+0(1). (3.43)
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Therefore, in a neighbourhood of the points P;' the following relation holds:

N

v =3 (420 o) fua (Z250) T s

where k;(z) is the branch of k(P) defined by the i-th factor of the representa-
tion (3.7). For ¢ > [ the product of the second and third factors in (3.44) is regular
in a neighbourhood of P}. Since the eigenvalues s; in (3.29) are equal to zero
for i > I, it follows that the first factor is also regular in a neighbourhood of Pi+,
1 > [. Therefore, the functions ¥, are regular at these points. Similar arguments
for i = 1,...,1 prove (3.23). Note also that ¥;(0,0, P) in (3.23) has simple poles
at the points Pt, i =1,... L

We consider the term x§* in (3.23). By the construction, it does not depend on z.
Substituting the series (3.23) in (2.19), we see that this term does not depend on ¢
either.

The following theorem can be proved by the same arguments.

Theorem 3.3. Let Ut (xr,t, P) be a solution of equation (2.20). Then its
components ¥ (z t P) are defined on an N-fold covering T' of the initial
elliptic curve with branch cuts between the points Pi+, P, i=1,...,1, and are
meromorphic outside these cuts. In the case of general position the curve T is
a smooth algebraic curve, its genus is equal to g = NI — w;—ll + 1, and ¥H°
has (g — 1) poles ’Y1+’ e ,'y;_l, which do not depend on z,t. In a neighbourhood

of the points P}, i =1,... 1, the function ¥ has the form

(gt P) = ( +m+2x+‘”zt(z+n)> (3.45)
x (s6(z +m)71) Mz gt (0,0, P),

where x§* are constants independent of x,t. In a neighbourhood of the points p-
the function ¥T* has the form

o0}
UH(z,t, P) = (2 — 27 )"%/" (Z Xz, t)(z - z;)S) o+1(0,0,P).  (3.46)

s=0
The boundary values ¥H*E) of the function ¥H* on opposite sides of the cuts

are connected by the relation

gHa(+) = gei(-)g—2miz/n (3.47)
Remark. From Theorem 3.2 it follows, in particular, that the solution ¥ of equation
(2.19) is a Baker—Akhiezer function to within normalization. In §4 we show that

this function is uniquely defined by the curve I', the poles «y;, the matrix xq, and
the value z;(0). All these quantities are defined by the initial Cauchy data and are
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independent of t. However, it is necessary to emphasize that some of them depend
on the choice of the normalization point ¢y, chosen above as ¢ = 0. Given a set
{z;, &, 05,7 |(bF,a;) = ;) of initial data, the matrix L is defined by (2.32), the
curve I' is defined by the characteristic equation (3.1), and equation (3.26) defines
a set of g — 1 points «vs; on I'. Therefore, the following map is well defined:

{zi, &i,ai, b7 | (bF,a:) =3} — {T, D € J(I)}, (3.48)
g—1

D= ZA(%) + 2, U9, (3.49)
s=1

where A : I' = J(T') is the Abel map and U™ is a vector depending only on T
(see (4.13)). The coeflicients of (3.1) are integrals of the system (1.21)-(1.23). In
§4 we show that the second part of the data (3.48) defines angle-type variables,
that is, the vector D(t) evolves linearly, D(t) = D(to) + (t — to)UH) if the point of
the phase space evolves according to equations (1.21)-(1.23). The motion equations
for the system considered have the following obvious symmetries:

a;, b;" - q;a;, q[lbf, a;, bj’ - Wla;, b;"W, (3.50)

where ¢; are constants and W is an arbitrary constant matrix. In § 4 we prove that
the data I', D uniquely define a point of the phase space to within the symmetry
transformations (3.50).

§4. Finite-gap solutions of the non-Abelian Toda chain

Finite-gap solutions of the non-Abelian Toda chain were constructed in [31] by
one of the authors. Preparatory to constructing the inverse spectral transformation
for the spin generalization of the Ruijsenaars-Schneider model, we recall the main
points of this theory. Since we are working with a continuous variable z rather
than with the discrete variable n, some minor modifications of the construction are
introduced.

Theorem 4.1. Let ' be a smooth algebraic curve of genus g with fized local coordi-
nates wj + (P) in neighbourhoods of 2l points Pji, ’U)j,:t(Pji) =0,7=1,...,1, and
with fized cuts between the points Pji. Let v1,... ,%+i—1 be a set of g+1~1 points
in general position. Then there ezists a unique function Y, (z,T,P), a =1,...,1,
T={tiji+, t=1,...,00; j=1,...,1}, such that
1%. the function v, as a function of P € T, is meromorphic outside the cuts
and has at most simple poles at the points v, (if all of them are distinct);
20, the boundary values 1/1,(11) of this function on opposite sides of the cuts satisfy
the relation

$H (z, T, P) = {7 (=, T, P)e*™ =/, (4.1)
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3% in a neighbourhood of the point Pji the function v, has the form

(4.2)
o0 ) o0 )
Yoz, T, P) = wfi/" (Z £95E (g, T)w]s-’i) exp (Z wj_,:lbti’j;i>, wj+ = wj+(P),
s=0 i=1
7 (2, T) = b4y (4.3)

The proof of theorems of this kind, as well as the explicit formula for 1), in terms
of Riemann theta-functions, are standard in finite-gap integration theory. To give
the corresponding formulae we use the notation of [19].

By the Riemann-Roch theorem, if D = y; + -+ - 4 744,_1 is a divisor in general
position, then there is a unique meromorphic function h,(P) such that the divisor
of its poles coincides with D and

ha(P}F) = 6aj. (4.4)

If we fix the basis of cycles af, b} on I' with canonical intersection matrix, then
this function may be written as follows:

fo(P) [1;2 0(A(P) + R;)
ho(P) = ; (P) = 8(A(P) + Za, , 45
P) fa(PT) falP) = 0(A(P) + )Hﬁzle(A(P)+S,-) 4.5)
where the Riemann theta-function §(z1, ... ,2,) = 8(z1,... , 24| B) is defined by the

matrix B = (Bj) of periods of holomorphic differentials on I, A(P) is the Abel
map, A: Pel = J(T), and

9—1
Rj=-X - AP - ZA% j=1,...1, (4.6)
=1
g—1
Si = =K — A(vg—1+4:) — ZA(’Ys), (4.7)
s=1
g+i—-1
Zo = Zo — A(P]), =K - Z A7) Z AP, (4.8)
=1 j=1

where X is the vector of Riemann constants. (The derivation of these formulae can
be found in [19].)

Let dQ(7%) be the unique meromorphic differential that is holomorphic on T
outside the points Pji, Jj=1,...,1, and has the following form in a neighbourhood
of these points:

dQdE) — d(w;; +O(wj.+)) (4.9)

with the normalization condition

]f dQUdit) = ¢ (4.10)
aD
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This differential defines the vector U(43i%) with coordinates

U(z,] +) 27m dQ(',Jvi) (4.11)

Also let d2(9) be the differential with zero a-periods that is holomorphic outside
the points Pji and has the following form in a neighbourhood of these points:

dwj,i
nw; +

dQ© = + + 0(1) dw; 4. (4.12)

This differential defines the vector U{® with coordinates

Ul = d®. (4.13)
2 bU

By the bilinear Riemann relations for periods of differentials of the third kind we
have

l ,
U© =7t N (AP7) - A(F})). (4.14)
j=1

Theorem 4.2. The components v, of the Baker-Akhiezer function ¢ (z, T, P) are
gtven by the formula

HAP) +UOz + ¥, UL, + Za)B(ZO)e(zQ(O)(P)+2A tAQ(A)(P))’

= el PV GAP) + 20T + 3, UMta + Z0) w15

P
QAP = / dOA A= (). (4.16)

qo

Remark. Note that a single-valued branch of ¢ can be defined only after cutting
the curve I" between the points Pji, since the Abelian integral Q(%) has logarithmic
singularities at the marked points.

We now define the dual Baker—Akhiezer function. For each set of g +1— 1 points
in general position there exists a unique differential d§2 such that it is holomor-
phic outside the points de: and has simple poles at these points with residues +1,
that is,

d0 = + 3£ | 0(1) du; 4. (4.17)
wj +
As well as being zero at the points ,,
dQ(v,) = 0, (4.18)

this differential is also zero at the other g + 1 — 1 points denoted by ;.
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The function ¢ (z,T, P) is the dual Baker—Akhiezer function if its components
Yt(z,t, P) satisfy the following conditions.

19, The function ¥%**, as a function of the variable P € I, is meromorphic
outside the cuts and has at most simple poles at the points v (if all of
them are distinct).

20. The boundary values ¥*:®(%) of this function on opposite sides of the cuts
satisfy the relation

pHa®(g, T, P) =+ (2, T, P)e~?m/m. (4.19)

3%, In a neighbourhood of the points Pji the function ¥*“ has the form

ot 1, P) = w3 6 @ Tugs ) exp (- S wiktes ) (420

5=0 i=1

£ (2, T) = b4y (4.21)

Let hf(P) be a function having poles at the points of the dual divisor
Y, .+ Y4411 and normalized by the condition h}(P}") = dn;. This function
can be written in the form (4.5), where «, are replaced by ;. By the definition of
dual divisors we have

g+l—1 g+i~1 !
ST A() + Y A(Y) =Ko+ Y (AP]) + AP))), (4.22)
s=1 s=1 j=1

where K| is the canonical class, that is, the equivalence class of the divisor of zeros
of a holomorphic differential. Consequently, the vector Z7 in the formulae for h}
is connected with Zy by the relation

{
Zo+ 23 = 2K - Ko+ Y (APF) - A(Py)) = 2K — Ko — U, (4.23)

=1

Theorem 4.3. The components ¢ (z,T, P) of the dual Baker-Akhiezer function
are given by

9(A(P)-U Oz~ ZAU(A)tA+Z+)0(Z+)e—(z(2(°)(P +5 4 ta2 M (P))

¢+;“=hi( ) F A ¥
BAP)+ 250U z+5 , UA,—Z7)

(4.24)
where
Zi = -2y —2K - Ko - Uy,  ZF =2zF - AP). (4.25)

The above-mentioned results are valid for any algebraic curve having two sets of
marked points. We now consider the class of special curves corresponding to the
spin generalizations of the Ruijsenaars-Schneider model.
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Theorem 4.4. Let T’ be a smooth algebraic curve defined by the equation

N
R(K,2) =K" + Y Ri(2)K" "' =0, (4.26)

=1

and suppose that the coefficients R;(z) are meromorphic functions of z, satisfy the
condition .
R;(z 4 2w,) = Rj(2z)e” ¥ wen, (4.27)

and are holomorphic in the fundamental domain of the lattice with periods 2w,
outside the point z = —n. Suppose also that in a neighbourhood of z = —n the
polynomial R has the following factorization:

1 N
RK,2)=[[(K+@+n"Hz+n) [[ (K+E+nHi(z+n), (428)
i=1 i=I+1

where the functions Hi(z) are regular in a neighbourhood of z = —n. Let 1 be the
Baker—Akhiezer function corresponding to: (i) the curve T', which is the factor of
T with respect to the transformation group

2 24 2wa, K Ke%Won (4.29)

(ii) the local coordinates wj+ = (z + n)H{l(O) near the poles Pj+,j =1,...,1, of
the multivalued function K = K(P), and erbitrary local coordinates w;j,— near the
zeros P, of K = K(P). Then the function v satisfies the following relation:

Y(z + 2wa, T, P) = @a(P)Y(z, T, P), (4.30)

where
@a(P) = K(P)2e/nelwa)z, (4.31)

The proof is based on the following evident facts. By the monodromy properties
(4.29), the values of ¢, (P) do not change under shifts of = by periods of the elliptic
curve, that is, pa(P) is well defined on T'. Relation (4.30) follows from the fact
that its left- and right-hand sides have the same analytic properties.

Corollary 4.1. Let ¥,(z,T, P) be components of the Baker-Akhiezer function
Y(z,T, P) defined in Theorem 4.4. Then the following representation is valid:

m / O'(Z + 77) 1/2
= : — 2/n =g(22T
(z, T, P) ; 5i(T, P)®((z — z:(T)), 2)k°/", & K[U o n)] . (4.32)
Moreover, the dual Baker—Akhiezer function has the form
Yt (z,T,P) =Y _ s (T, P)®((—z + z:(T) — ), z)k~*/". (4.33)

i=1
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The proof of the corollary is identical to the proof of the corresponding assertion
in [19]; in point of fact, this proof has already been presented at the beginning
of §2, because Theorem 4.4 implies that 1) and ¥+ are double-Bloch functions.
(Note that from (4.23), (4.24) it follows that ¢+ has poles at the points x; — 7.)

So far it has been assumed that t; 4,4+ are arbitrary parameters, and v depends
on these parameters through the form of essential singularity at the points Pai. We
now fix the values of these parameters for i > 1 as t; 4,4+ = 17 ., whereas for i = 1
we put

tlat =tx +19 4. (4.34)
The corresponding Baker—-Akhiezer function now depends on the variables
(z,t4,t_). For brevity, we denote it by ¢(z,t,,t_, P), skipping the dependence on
the constants 7°°.

Theorem 4.5. For any choice of the constants T°, the Baker-Akhiezer function
Y(x,ty,t_, P) satisfies the equations
3+1/1($,t+7t—»P) = 1/’(-’17 + n:t+1t—1p) +’U($,t+,t_)’lﬂ($,t+,t_,P),
(4.35)
8_1,11(.'13,t+,t_,P) = C(fﬂ,t+7t—)1/)(-73 - ﬂ,t+,t_,P), a:t = a/atiy
(4.36)

where

U(.’L‘,t+,t—) = 3+g(z,t+,t,)g_1(a:, t+7t—) = ér(z)t-l-’t—) - {I}_(-’If + n7t+7tz)’
4.37)

(@ by to) = g(x, by, 0 )97 (T =y by, 02) = O-& (2,14, 1), (4.38)
and the matrices g and & are defined by the coefficients of expansion (4.2)
97 (2t 1) = T (@t t), & (it t) = {677F) (4.39)
Proof. Equation (4.35) follows from the fact that the function
O+va(z, 4,1, P) —Yalz +n,t4,t, P)

has the same analytic properties as 1, except for the normalization condition (4.3).
Therefore, we can write it as a linear combination of the basis functions ¢z with
coefficients v®?. These coefficients are determined by comparing the coefficients in
the left- and right-hand sides of (4.35) at the points P; . Hence we arrive at the
first equality in (4.37). On the other hand, expanding v near the points Pj+ we
arrive at the second equality in (4.37). Equalities (4.36) and (4.38) are obtained in
a similar way.

Corollary 4.2. The matriz function g,(ty,t_) = g(nn+xo,ty,t_) corresponding
(according to the definition of the Baker--Akhiezer functions) to the curve T’
with fized local coordinates near the marked points Pji and to the set of points
Yy -- s Yg+i-1, 18 @ solution of the 2D Toda chain equations (2.1).

Remark. The dependence of g, on the variables t;;, ¢ = 1,... ,00, 7 = 1,...,1,
corresponds to higher flows of the 2D Toda chain hierarchy.
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Theorem 4.6. The dual Baker-Akhiezer function satisfies the equations

—0u it (z,ty, t-, P) =9 (z —mte,t_, P) + o (z,t4,t_, P)o(z, ty,t_),
(4.40)

—a_¢+($,t+,t_,P) = 'l/)+(:L' + 77,t+,t—,P)C(93 + nat+’t—)) (441)
where ¢(z,ty,t-), v(z,t4,t-) are the same as in (4.35), (4.36).

Proof. The same arguments as in the proof of Theorem 4.5 show that 1 satisfies
equations of form (4.40), (4.41) with the coefficients ¢*, v+ given by

ct (IL‘,t+, t—) = [&O ;—(.’L' +n, t+’t-)]—1£0 ;—(:L',t+,t_), (4'42)
U+(:L',t+,t_) = —[63_;—(zvt+at—)]—la+§0 ;_(:L',t+,t_), (443)
where the matrix elements &'~ = {¢77*"} are determined from (4.20). The

coincidence of the coefficients of equations for v and ™ is a consequence of the
relation

[E;’;_]-l = f()_(.'l),t+,t_) = g(z’t+vt—)’ (4.44)

which follows from the definition of the dual Baker—Akhiezer function. To prove
(4.44), we consider the differential 1, T?dQ}, where dQ is the same as in the
definition of the dual divisor v}. It is a meromorphic differential on I’ with the
only poles at Pji, and its residue at the point Pj+ is given by

res Yot dQ = 8,,30p,;. (4.45)

Further, the residue of this differential at P;” is given by

res oy dQ = -5 g0 (4.46)
P;

3

For a meromorphic differential the sum of the residues should be zero; therefore,
relation (4.44) follows from (4.45) and (4.46).

Theorem 4.7. Let the curve I', the marked points Pj:E and the local coordinates
in their neighbourhoods be the same as in Theorem 4.4. Then the corresponding
algebraic-geometrical ‘potentials’ v and c in equations (4.35), (4.36) are elliptic
functions of z. In the case of general position they have the form

N

v(z,T) = Y al(T)o} (T)V (z — z4(T)), (4.47)
i=1 N

(1) =0 (ST + LB D)), (4d)

i=1

where a; and b} are vectors, and Sy is ¢ matriz-valued function independent of x.
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Proof. By (4.30) the potentials in (4.35) and (4.36) are elliptic functions. It follows
from (4.15) that the poles z = z;(T') of the Baker—Akhiezer function correspond to
solutions of the equation

9 (U(% +3 UMty + zo) =0. (4.49)
A

Further, it follows from (4.8) that for the corresponding solutions (z;(T), T) the
first factor in the numerator of (4.15) is equal to zero for P = P}. On the other
hand, the function h,(P) vanishes at the points P}, 8 # a. Therefore, the residues
oi(T, P) of the function 9, (z, T, P) at the points = z;(T) have the following
analytic properties as functions of P:
1°. they are meromorphic functions on I' outside the cuts between the points
Pji and have the same poles as

29, their boundary values ng‘ff)(T, P) on opposite sides of the cuts satisfy the
relation

,(/)g?’gf) (T, P) — wgi(j“) (T, P)627rz':t]- (T)/n; (450)
3% in a neighbourhood of the points Pji
o o]

W P) =2 e (Y u bt | Fhatwie) (451)
s=1

where Fi,ij o are regular functions and

Ff ,(0)=0. (4.52)
This means that z/)g,i has the same analytic properties as the Baker—-Akhiezer func-
tion, except the following one. The regular factor in the expansion of this function
near all the points Pj+ has vanishing leading term. For general z,t4 there is no
such function, and for the special values (z = z;(T),T) such a function (7, P)
does exist and is unique to within a constant (with respect to P) factor; moreover,
this function is uniquely defined in the general case when z;(T") is a simple root
of (4.49). Thus, we can represent v, in the form
9a(T) $io(T, P) 0
T P)= ———"—"+4+0((z —z:(T))°). 4.5
Ya(z, T, P) z — z:(T) + ((z zi(T)) ) (4.53)
It follows from (4.53) that for the matrix £, (z, T) with matrix elements £ (z, T')
the residues p;(T) of & (x,T), which are defined by the formula

pi(T)

i O((z — z:(t))°), (4.54)

& (z,T) =

have rank 1. Therefore, there exist vectors a;(T) and covectors b} (T') such that
pi = a;(T)bF (T). Then it follows from (4.30) that the matrix £ has the following
monodromy properties:

& (z + 2w) = & (2, T) + 2¢(wi)r, (4.55)
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where r is a constant. Thus, by (4.54) and (4.55) we see that & can be written in
the form

N
& = So(T) + Y ai(T)bF (T)¢(z — z:(T)). (4.56)

Taking into account the second equalities in (4.37) and (4.38), we arrive at the
conclusion of the theorem.

Remark. In the Abelian case (I = 1) there is an equivalent representation for ¢(x)
in the form of the product of pole factors (see also (1.17))

N
o(z — i(T) + n)o(x — z(T) —n)
T)= . .
ez, T) 1;[1 2~ 2:T)) (4.57)
Comparing the coefficients of the pole terms in (4.48) and (4.57), we obtain the
relations

(TY — _ 2 o(zi — zk +n)o(xi — Tk — 1)
a‘i‘a—z’l(T) =0 ("7) kI#II 0'2(1:i _ -'L'k) ’ (458)
040-3i(T) = =0:2i(T)0-2i(T) Y (V(mi — zk) = V(ok —23)).  (4.59)
k#i

It is easy to check that if the dynamics with respect to ¢, is given by the
Hamiltonians o(+n)H., where Hy are defined by (1.20), then these relations follow
from the motion equations.

For equations (4.35) and (4.36) the connection between algebraic-geometrical
potentials corresponding to equivalent divisors is well known in the theory of finite-
gap integration. Let D =y, + -+ 4+ ¥441-1 and D) = ’yfl) + -+ 7;2,_1 be two
equivalent divisors, that is, there exists a meromorphic function A(P) on I' such
that D is the divisor of its poles, and DU is the divisor of its zeros.

Corollary 4.3. The algebraic-geometrical potentials v(z,T), c(z,T) and
v (z,T), ¢V (z,T) corresponding to the set {T, P, w;+(P)} and to the equiv-
alent divisors D and D) are gauge equivalent, that is,

v (z,T) = Hu(z, T)H™', W(2,T) = He(z, T)H™', H* = h(P})6*.
(4.60)

Corollary 4.4. In the case of general position the curve I satisfies the conditions
of Theorem 4.4 if and only if it is the spectral curve (3.13) of the Laxz matriz L
defined by (2.32), for which x;, ©; are arbitrary constants, and the vectors a;, b}
satisfy conditions (1.25).

By Theorem 3.2, the Baker—Akhiezer function ¥,(z,¢, P)/¥%1(0,0,P) is con-
nected with the normalized Baker—Akhiezer function ¥4 (x,t, P) by the relation

V,(z,t,P) _ of
¥,(0,0,P) %:Xo ¥s(@,t, P), (4.61)
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where (z,t, P) is the Baker-Akhiezer function defined at the beginning of this
section, which corresponds to the following values of the parameters T' = {t; ;.4 }:

tipr =t tije=0, (5,5,%)# (Lj,+). (4.62)
Equality (4.61) yields the following corollary.

Corollary 4.5. Let a;(t), bi(t), z;(t) be solutions of the motion equations
(1.21)-(1.23). Then

N
Y a b OV (z - 2:(8) = xov(=, t)x5 ", (4.63)
i=1

where v(z,t) = v(z,ty = t,t_- = 0) is the algebraic-geometrical potential

corresponding (according to Theorem 4.5) to the normalized Baker-Akhiezer
function ¥(x,t, P) constructed from the data (a curve with marked points) obeying
the conditions of Theorem 4.4.

Corollary 4.6. The map
ai(t), b7 (1), i(t) = {T,[D]}, (4.64)

where [D] is the equivalence class of the divisor D, is an isomorphism to within the
transformations (3.50}.

The corresponding curve I" does not depend on time, whereas [D] depends on the
choice tg = 0 of the initial point. The following theorem shows that this dependence
of [D(t9)] is linearized on the Jacobian.

Theorem 4.8. Let T' be the curve defined by equation (4.28), and let D =
M- 2 Yg+i—1 e a set of points in general position. Then the solutions of the
system (1.21), (2.23), (2.24) are given by the formulae

G(U(O).’Ei(t) + US4+ Zp) =0, U = Z Uat), (4.65)
i
Uz, (t) + UMt + Z,)

aio(t) = Q7 (t)ha(go) 80z , (4.66)
0, (g
b3 (t) = Q7 (t)hd (a0) w (t;(JrZEL]; t-23) : (4.67)

where

1

: Oz S OF (g — z+
Q?(t)=—z (g0) e (go) 2U i) + U = Za)6(Ui(t) + Ut — 23)

8(Za)6(Z3)

l\D

(4.68)
and qq s an arbitrary point of I'. Moreover, any solution in general position may
be obtained from solutions (4.65)—(4.67) by means of the symmetries (3.50).
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Remark. If the vector Zg in (4.65)—(4.67) is replaced by

Zorr Zo+ Y UMty, (4.69)
A

then the corresponding quantities z;(T'), ai(T"), b:(T), T = {ta} depend on t4
in accordance with the higher commuting flows of the system (1.21)-(1.23). It
should be emphasized that the points Pji enter symmetrically. For this reason the

dependence of z;(T), a;(T), b;(T) on the variable t_ = [~! E;Il t1,;;— is described
by the same equations as for t = t.

8 5. Difference analogues of Lamé operators

We consider the operator Sp defined by formula (1.9) for integer £. Taking into
account the obvious symmetry —£ > £ — 1, we see that it is sufficient to restrict
the consideration by the assumption £ € Z;. The finite-gap property of Sp means
that the Bloch solutions of the equation

(S0f)(z) = ef(z) (5.1)

are parametrized by points of a hyperelliptic curve of genus 2¢.
Any solution f(z) of (5.1) may be represented in the form

f4
f(@) = ¥(=)(6:(0/2)) """ ] 622 — 3m), (5.2)

i=1

where ¥(z) satisfies the equation

(Se®)(z) = U(z +5) + ce(z)T(z — n) = £¥(z), (5.3)

(o) = B2y @ = (1))

B @) (@ = ) (54)

The transformation (5.2) sends Bloch solutions of the first equation to Bloch solu-
tions of the second one. To construct the solutions of (5.3), we use the ansatz
similar to the one used for constructing solutions of the linear equation (2.2):

4

U =>"s;(z,k,)8(z — jn, 2)k*/", (5.5)
j=1
where
01(z+z + Nn) [6:(z — n)] =/(2n) Qe+1)
= N=———2, 5.6
2@2) = g T e @ B r | 2 (56)

(Note that ®; coincides with the function &(z, z) given by (2.6), and ¢, () coincides
with the function ¢(z — 1) defined by (2.8) to within a constant factor.)
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The function ®,(z, z) is doubly-periodic in z,
bz, 2 + 2wo) = By(x, 2). (5.7)

(In what follows we take the periods to be 2w; = 1 and 2wy = 7.) For values of
such that =/2n is a half-integer, the function @, is single-valued on the Riemann
surface Tg of the function E(z) defined by (2.9). For general values of z one can
select a single-valued branch of ®,(z, z) by cutting the elliptic curve 'y between
the points z = %1.

The function ®,(z,z), as a function of z, is a double-Bloch function, that is,

®4(z + 2w, 2) = T (2)®4(z, 2), (5.8)
where
9 (2 — 1/(2n)
T (2) = (i%z?%) , (5.9)

7/(2n)
0—‘(1_—”)) ’ . (5.10)

In the fundamental domain of the lattice the function ®,(z, z) has a unique pole at
the point z = 0,

Substituting (5.5) in (5.3) and comparing the residues of the left- and right-
hand sides of the equation at the points z = jn, j = 0,... , £, we obtain £+ 1 linear
equations

£
Y Lijsi=0, i=0,...,4, (5.12)
—

for £ unknown parameters s; = s;(z, k,€). The matrix elements L; ; of this system
are given by

Loy = k+h®,(—=2n,2)k™, Lo = h®(—(G+ Un, )k, i=2,...,¢
(5.13)

Liy=—¢—h®(—n,2)k~Y,  Lis=k— hd®y(~2n,2)k", 65.14
Ly ;= —h®(—jn,2)k™",  §>2 '
Lij =8 j11ck™ —€bij + 6i 51k, i>1, (5.15)
where
#2(n/2
h = 8,(0) res cp(z) = —1(—77/—)61 ()61 ((£ + )n), (5.16)
< 61(n)
. L7+ ((F—-2¢-1

61(3m61(( — 1)n)
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The overdetermined system (5.12) has non-trivial solutions if and only if the rank
of the rectangular matrix L;; is less than ¢£. We denote by L(® and L)) the
{¢£ x £)-matrices obtained from L by deleting the rows with i = 0 and i = 1,
respectively. Then the set of parameters z, k, € for which equation (5.3) has solutions
of the form (5.12) is defined by the system of two equations

det L) = RW(z k,e) =0, i=0,1. (5.18)

Expanding the determinants with respect to the upper row, we obtain

I4
RO (z,k,e) =r)(e) + 3 k™I®y(~jn, 2)ri2; (), (5.19)
Jj=1
[ 3
RW(z,k,e) = kFe_1(e) + 3 k™ I@y(—(j + 1), 2)ri?; e), (5.20)
Jj=1

where 7#¢_; and ’"e J, 751)3 are polynomials in € of degrees £—1 and £~ j, respectively.

These equations define an algebraic curve I realized as an £(£+1)/2-fold ramified
covering of genus 2 for the curve I'y, on which the functions ®,(—j7, z) are single-
valued. This curve has the obvious symmetry

(z,k,e) = (2, -k, —¢), (5.21)

which is a direct consequence of the following general property of equation (5.3). Let
¥(z) be a solution of (5.3) with an eigenvalue ¢; then ¥(z) exp(miz/n) is a solution
of the same equation with the eigenvalue —¢, and this transformation corresponds
to the change of sign for k.

Note that the function ¥(z, z, k) is invariant under the transformation k = —k in
(5.5) accompanied by the simultaneous interchanging of sheets of E(z). Therefore,
T may be considered as an £(£ + 1)-fold ramified covering of To.

We now show that this curve is also invariant with respect to the following

involution:
(2,k,€) = (—2, K~ 162(n/2), ). (5.22)

In fact, let ¥(z) be a solution of (5.3). Then the function

U(z) = ¥(-z)A(z), (5.23)
where
A(z) = 63 (n/2)>/" II Z‘Ei £, (5.24)

is also a solution of (5.3). It is easy to see that if ¥ is a double-Bloch solution,
then ¥ is also a double-Bloch solution; moreover, if the Bloch multipliers of ¥ are
parametrized by the pair (z, k), then the Bloch multipliers of ¥ correspond to the

pair (—z,k7'6}(n/2)).
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The variable ¢, as a function of P € f‘, is a meromorphic function on the curve L.
It cannot take any value more than twice, because for a given value of £ the second
order difference equation (5.3) has at most two different Bloch solutions. Since the
involution (5.22) is non-trivial, it follows that the function ¢ does take a generic
value twice. Therefore, the algebraic curve Tisa hyperelliptic curve of finite genus g.
Because of the symmetry (5.21) it can be parametrized by the equation

g+1

y? = [ - D). (5.25)

i=1

The involution (5.22) is the hyperelliptic involution that interchanges the sheets of
the ramified covering (5.25).

Now we prove that ¢ = 2£. From (5.25) it follows that there are 2g + 2 fixed
points of the hyperelliptic involution. On the other hand, the number of fixed
points of the hyperelliptic involution (5.22) is equal to the number of preimages of
the second-order points w, € I'g, a =0, ... ,3 (which are fixed points with respect
to the involution z —» —z on I'g) on T such that the corresponding value of k is
equal to £i%.00,(n/2). Explicitly, from now on we adopt the following notation:!
%, w2=1;7-, w3=:;—. (5.26)

Note that the values of k corresponding to preimages of the point z = 0 and
other semiperiods, which are fixed under involution (5.22), are different, since the
involution z — —z sends the point 2 = 0 to a point on the other side of the cut
between the points z = %7.

For each fixed point of the hyperelliptic involution there is only one Bloch solu-
tion; moreover, this solution has a definite parity with respect to the involution
(5.23), that is,

w0=0) w =

U(z) = v¥(—z)A(z), v ==l (5.27)

We now prove that v = (—=1)%.
In fact, equality (5.27) implies that for z = ¢

2

s = vk (=n) (-1 B2 g, (g, (e + 1) (5.28)

1(n)

Comparing this equality with equality (5.3) taken at = = 0, we see that v = (—1)¢
if 853 # 0. Otherwise, s = 0 and ¥(-7n) = 0. From (5.3) it follows that the
coefficients s, and ss in (5.5) cannot be equal to zero simultaneously. Indeed,
let j be a minimal index such that s; # 0. Assume that j > 2. Then the left-hand
side of (5.3) has a pole at the point z = (j — 1)n, but the right-hand side has no
pole at this point. Therefore, s3 # 0 if s;7 = 0, whence equation (5.3) implies that
T(0) # 0. At the same time from equality (5.27) taken at z = 0 it follows that

¥(0) = (-1)v¥(0). (5.29)
This proves the relation v = (—1)%.

IThis notation differs from that adopted in §2.
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In the case when z = w, and k = %98, (/2) the representation of double-Bloch
functions in the the form (5.5) can be written as follows:

£

¥(z) = (01 (;’-))z/nexp(m(az,a+63,a)w H “z’) (5.30)

where?

14
>z =wa. (5.31)
j=1

Lemma 5.1. The hyperelliptic involution of the curve T has 2d fized points, where
d is equal to the sum of the dimensions of the functional subspaces consisting of
functions that have the form (5.30) and satisfy (5.27) with v = (=1)%.

Proof. As was shown above, given a pair of fixed points of the hyperelliptic
involution of the curve I' that are invariant with respect to the involution (5.21)
corresponding to the change of sign for k, there exists a unique solution of (5.3),
which has the form (5.30) and satisfies (5.20) for v = (—=1)¢. On the other hand,
the space of such functions is invariant with respect to the operator Sy. In fact,
equality (5.28) for v = (—1)¢ (in which case it is a consequence of (5.27)) implies
that So¥ has no pole at z = 0. At the same time, So commutes with the linear
operator (5.23). Therefore, the number of solutions of (5.3) that have the form
(5.30) and satisfy (5.27) is equal to the number of eigenvalues ¢;, i = 1,... ,d,
of the operator Sy on these finite-dimensional spaces, that is, it is equal to the
sum of their dimensions.

It is easy to see that for wy = 0 the dimension of the space defined in Lemma 5.1
is equal to (£—1)/2if £is odd, and £/2+1 if £ is even. For the other three points of
second order the corresponding dimension is equal to (¢ +1)/2 if £ is odd, and £/2
if £ is even. Therefore, the number of fixed points is equal to 4£ + 2, which proves
the relation g = 2¢.

Lemma 5.2. The direct sum of the functional subspaces consisting of functions
that have the form (5.30) and satisfy relation (5.27) with v = (=1)¢ is invariant
with respect to the operators S, defined by

Ea)(o) = Ha| %O (o ) (532
b1(z — (£ +1)n)bat1(—z — n)
-6(3)" n@hE =) te=n)|,
H, = (i)’ bora0/2). (5.33)

61(n/2)

moreover, these operators are gauge equivalent to the operators (1.9).

2This condition is similar to the ‘sum rule’ in [35].
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We omit the detailed proof of the theorem, because it is in perfect analogy with
the proof of Lemma 5.1. Equality (5.28) implies that the operators S, ¥ have no
pole at z = 0, as before. At the same time these operators commute with the
transformation (5.23) and keep invariant the set of Bloch multipliers corresponding
to the spaces of functions of the form (5.30). Note that for a # 0 the coefficients
of S, are not elliptic; hence they do not preserve each space but only their direct
sum.

Remark. The above-described invariant spaces of S, coincide (after the gauge trans-
formation (5.2)) with the finite-dimensional representation spaces of the Sklyanin
algebra found in [8]. More information on invariant functional subspaces for
Sklyanin operators is contained in §6.

The variables k and ¢ are defined by equations (5.18) as multivalued functions
of z. We now consider analytic properties of i:he double-Bloch solutions ¥(z, @),

Q=(zk, )€ T, on the hyperelliptic curve T.
Theorem 5.1. Let T be an algebraic curve of genus 2¢ defined by the equation

2{+1

v =[] -¢), (5.34)

where ; are eigenvalues of So on the finite-dimensional invariant space of functions
of the form (5.30), (5.31). Then the Bloch solution ¢(z, P) = ¥(x, P)¥~1(0, P) of
equation (5.3) is a meromorphic function on T outside the cut between the points
P* at infinity (that are preimages of € = 0o on f‘) Outstide the cut, the function
Y(z, P) has 2¢ poles, which are independent of x and are tnvariant with respect
to the involution of T' covering the involution ¢ — —¢ (see (5.21)). The boundary
values of (*)(z, P) on opposite sides of the cut are connected by the relation

) = 1/1(*)62“/". (5.35)

In a neighbourhood of the points Iv?:t the function ¥(x, P) has the form
o0
P = gte/m (Z gsi(:c)e—5>, =1 (5.36)
s=0

Proof. The coefficients s; in (5.5) are solutions of the linear system (5.12). We
normalize them by the condition s; = 1. Then s; are meromorphic functions on f,

whence ¥ (as a function of Q € T') is well defined on T with cuts between the zeros
and poles of the function

_ 61(z—n) 12
K = (——61(:: +n)> k(2). (5.37)

To within a factor of order O(1), at the edges of these cuts the function ¥ has a
singularity of the form
U~ K/, (5.38)
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From (5.3) it follows directly that a function ¥ with such a type of singularity can
be a solution of (5.3) only if € = co at the singular points. On the other hand, in
neighbourhoods of these points we have K ~ ¢*!, which proves (5.36). It is easy
to see that the number of poles of v is equal to 2¢. In fact, the poles of 1 do not
depend on z, because the poles of s; are independent of . Further, let us consider
the following meromorphic function of e:

F(e) = (¥(n, Pu(e)) — $(n, Pa(e)))’, (5.39)

where P;(e) are two preimages of ¢ on T. This function does not depend on the
ordering of these points, that is, F is a meromorphic function of €. It has double
poles at projections of poles of ¥, has a second-order pole at infinity, and has
simple zeros at the branch points. Since a meromorphic function has as many zeros
as poles, it follows that the function 3 has g poles.

Note that Theorem 5.1 could be proved by a direct study of analytic properties of
¥ on the curve ' represented in the form (5.18). Inasmuch as this alternative proof
is very similar to the proof of Theorem 3.2, we skip it but present some arguments
explaining why the multivalued function K has only one pole and one zero.

For £ > 1 the function ®,(—jn, 2) has a pole and a zero of order j at the points
z = =+, respectively. Therefore, k has zeros and poles at all preimages of z = —n
(respectively, 2 = i) on I'. Hence K is regular at all these points. The function &,
has a simple pole at the point z = —Nn. It turns out that at one of the preimages
of this point the function & (as well as k) has a pole. The corresponding point is
one of the points at infinity on the curve T represented in the form (5.18). The
other point at infinity is one of the preimages of the point z = N1.

Remark. Formulae (1.9) give one particular series of representations of the Sklyanin
algebra found in [8] (called series (a) there). In this series the operator Sp has the
finite-gap property. It should be noted that in each of the other series there is again
an operator having the finite-gap property. In general, the other three operators in
each series do not have this property. Trigonometric degenerations of the difference
operators (1.9) were studied in {32]. In this case Sp corresponds to soliton solutions
of the Toda chain.

§ 6. Representations of the Sklyanin algebra

In this section we construct representations of the Sklyanin algebra from ‘vacuum
vectors’ of the L-operator (1.4). The notions of vacuum vector and the vacuum
curve of an L-operator were introduced by one of the authors [33] in studying the
Yang-Baxter equation by the methods of algebraic geometry. We recall the main
definitions.

To begin with, we consider an erbitrary L-operator L with two-dimensional auxil-
iary space C?, that is, an arbitrary (2n X 2n)-matrix represented as a
(2 x 2)-matrix, whose matrix elements are {(n x n)-matrices A, B, €, D:

L= <“§ g). 6.1)
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The operators A, B, €, D act in a linear space H = C", which is called the
quantum space of the L-operator. We emphasize that so far no conditions on L are
imposed. In particular, we do not impose relation (5) and do not imply any specific
parametrization of the matrix elements.

We consider a vector X @ U € H® C? (X € H, U € C?) such that

LXRU)=Y®YV, (6.2)

where Y € 3 and V € C?. Relation (6.2) means that the indecomposable
tensor X ® U is transformed by L into another indecomposable tensor. Written in
components, this relation has the form

L& X;Up = YiVa, (6.3)

where the indices a, 3 (respectively, i, j) enumerate the basis vectors of C? (respec-
tively, H), and summation over repeated indices is implied.

Assume that (6.2) holds. Then the vector X is called the vacuum vector of
the L-operator L. Multiplying (6.2) from the left by the covector V = (Va, —V})
orthogonal to V', we obtain

(VLU)X = 0. (6.4)

Here VLU is an operator in H with matrix elements V, Lﬁ‘, Up. Conversely, assume
that (6.4) holds. Then relation (6.2) holds, where the vector Y is uniquely deter-
mined by the vectors U, V| X.

In the particular case H{ = C? relation (6.2) was the starting point for
Baxter [14] in constructing a solution of the eight-vertex model. In the papers on
integrable lattice models of statistical physics this relation is called ‘pair propaga-
tion through a vertex’. In the context of the quantum inverse scattering method [2]
the equivalent condition (6.4) is more customary. It defines the local vacuum of the
gauge-transformed L-operator (this explains the terminology introduced above). In
general form the relation (6.2) first appeared in [33].

From (6.4) it follows that the necessary and sufficient condition for the existence
of vacuum vectors is written as

det(VLU) = 0. (6.5)

Putting U, = V3 = 1 for simplicity and using (6.1), one may write (6.5) in the more
explicit form

det(U3A+B - U\ ViC—ViD) =0, Up=Vy=1. (6.6)

This equation defines an algebraic curve in C2? called the vacuum curve of the
L-operator L. Thus, the family of vacuum vectors is parametrized by points of the
vacuum curve, that is, by pairs (U, V1) satisfying (6.6). In general the space of
vacuum vectors corresponding to each point of the curve is one-dimensional.

Now assume that H 22 C? and the operator L satisfies (1.5) with some matrix R.
In this case the vacuum curve has genus 1, that is, it is an elliptic curve &g.
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This curve is parametrized by points z of a one-dimensional complex torus with
periods 1 and 7.

Fixing a suitable normalization (for example, putting second components of all
the vectors equal to 1), one may consider the components of the vectors U(z),
V(z), X(2), Y(z) as meromorphic functions on &g having at most two simple poles.
With this normalization the right-hand side of (6.2) must be multiplied by a scalar
meromorphic function h(z). By the Yang-Baxter equation we have [33]

_ 7 —u(:-"
Y(z)—X(z+2), V(z) =U(z 2), 6.7)
where n and 1’ are some constants. Therefore, the basic relation (6.2) can be
written in the form [33]

!
L(X(2) ®U(2)) = h(2)Y (2) ® V(2) = h(z)X(z + g) ® U(z - %) (6.8)
Let Dx (respectively, Dy) be the divisor of poles of the meromorphic
vector X (z) (respectively, U(z)), and let M(D) be the space of functions
associated with an effective divisor D, that is, functions having poles at points
of D of order no higher than the multiplicity of the corresponding point in D.
For divisors of degree 2 on elliptic curves, this space is two-dimensional in general
position, so that dimM(Dx) = dimM(Dy) = 2, and components of the
vectors X, U form bases in these spaces. Further, the functions X;(z)Us(z),
i,a = 1,2, form a basis in the space M(Dx + Dy). Equality (6.8) implies that
the functions h(2)X;(z + 2)Uqs(z — 3’21) form another basis in this space, and the
matrix L connects the two bases. The divisors of poles of the left- and right-hand
sides of (6.8) must be equivalent, that is, must be equal modulo periods of the
lattice. Since under the shift by n'/2 the divisor of poles of a function having two
poles is shifted by 7', it follows that

n”—-n=M+Nr, M,N € Z. (6.9)
The vectors X (z), U(z) are doubly-periodic; therefore, there are four different cases:
7' =1+ 2w, (6.10)

where wo =0, wy = 1/2, we = (7 + 1)/2, w3 = 7/2 (see (5.6)).

The Baxter parametrization of the L-operator is based on the relation (6.8). In
fact, the equivalence class of the pole divisor of X (2) may differ from that of U(z)
only by a shift on €. The value of this shift is identified with the spectral parameter
of the L-operator. By means of a ‘gauge’ transformation one may represent L in the
form (1.4). With this parametrization one can write (6.8) in terms of #-functions.

To do this, it is convenient to use another normalization, specifically, the one in
which the vectors are entire functions of 2 (in this case they are cross-sections of
certain line bundles on ).

We introduce the vector

(6.11)
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Its components form a basis in the space of second-order #-functions #(z) with
monodromy properties 8(z + 1) = 8(z), 8(z + 7) = exp(—2wiT — 47iz)0(z). They
have two zeros in the fundamental domain of the lattice with periods 1, 7. Further,
we put

X(z) = 06(z), (6.12)
— Ut () = LY
U(z) =U (z)-@(z:t2(u+2) (6.13)
(for each choice of the sign). Then we may write (6.2) in the form [14], [2]:
1 n
(a) - L
L (u)@(z)@@(z:t 2(u+ 2)) (6.14)
br(u+2]|7) n 1 n
— 9g% 2 n oy
= 2g3 B 7) @(z+2)®®<zﬂ:2(u Z)j:wa>,
where
gt =gt =1, —igf =gf = —exp(:l:27riz + 7ri(u + 7'2;Tl>>7 (6.15)
3
O+1(u | 7)
L@ (y) = b+l ® (04 6.16
() bZ:; By (T [ © () (6.16)

(see (1.4) and (1.7)). Note that the operator L(®) (u) = ¢,L(u), where L(u) is given
by (1.4) with S, = 0, and the matrix product is performed in the auxiliary space,
satisfies the relation (1.5) ‘RLL = LLR’ with the same R-matrix (1.7) for each
a=0,...,3. The scalar factor in the right-hand side of (6.14) is determined from
the condition that L(n/2) is proportional to the permutation operator in C? ® C?.
One may verify (6.14) directly, by using identities for #-functions (see the Appendix
to this section).

Remark. Given an elliptic curve, one can consider the vector X(z) to be an even
function on this curve, X (—z) = X (z). This is why we introduce the parametriza-
tion (6.11), for which the function X (z) is even from the very beginning. Then the
equality corresponding to the minus sign in (6.14) follows from the similar equality
with the plus sign (it is enough to make the change z — —z). However, in Baxter’s
approach it is useful to deal with both equalities.

We now turn to the case of arbitrary spin. Consider the L-operator of the form
(1.4)

o Wo(u)So + W3 (u)Ss  Wi(u)S: — iWa(u)S
Liw) = (Wf (W)Ss + iWa(w)Ss Wo(w)So — Wa(u)Se ) . (617
where W = Geau ) 619)
¢ ga+1(121 | 7))’ .

and S, are generators of some algebra (at this stage the commutation relations (1.1),
(1.2) are not imposed). In what follows we generalize formulae (6.8) to obtain an
explicit functional realization of these generators.
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Preparatory to formulating the main result of this section, we need some more
preliminaries.

We are interested in the general form of representations in terms of difference
operators. For this reason in what follows we take for the quantum space of the
L-operator (6.17) the space of meromorphic functions of one complex variable z.
The generators S, act on elements of this space (that is, on functions X (z)) as
follows:

Sa: X(2) = (SaX)(2). (6.19)

We consider the following generalization of (6.8) and (6.14):

U%(2)7 (0 L(u)) X (2) = ga(u)U* (zFnFwa) "X (zj:g), a=0,...,3. (6.20)

Here z € &, UT = (Uy,Us), £is a parameter, g, (u) are scalar functions independent
of z, and

Ut(z) = @(z:l: “;h’> (6.21)

(note that U* coincides with (6.13) for £ = 1/2). As before, L(u) acts on U+ as a
(2 x 2)-matrix, while the action of each matrix element of L{u) on X (z) is defined
by (6.19). We have written (6.20) in terms of the covector UT, since the action
of the operator (6.19) on a function from the left is equivalent to the action of the
corresponding matrix (representing this operator in a fixed basis) from the right on
the covector formed by components of the function with respect to the basis. In
what follows we show that for £ = 1/2 relation (6.20) coincides with the conjugated
equality (6.14).

At present we cannot suggest any explicit description of the vacuum curve of
the L-operator (6.17). Moreover, we do not know any direct argument establish-
ing the equivalence between (6.20) and the ‘intertwining’ relation (1.5) for L(u)
(taken together with the Yang-Baxter equation for R(u)). However, it follows
from Theorem 6.1 proved below that relations (6.20) imply Sklyanin’s commuta-
tion relations on S,, and therefore L(u) should satisfy (1.5). We stress once again
that our arguments are in a sense inverse to Sklyanin’s original approach (see also
the papers [34], [35], where some formulae for vacuum vectors of the higher spin
XY Z model are obtained). Namely, the starting point is relation (6.20), and no
conditions on S, are implied. It turns out that within this approach the Sklyanin
algebra for S, (together with its functional realization) is reconstructed.

The main result of this section is the following assertion.

Theorem 6.1. Let the operator L(u) be given by (6.17), where S, are some opera-
tors in the space of meromorphic functions X (z) of one complex variable z. Suppose
that relations (6.20) hold for a = 0, that is,

Ut ()T L(u) X (2) = go(u)U(z F tn)TX (z + g) (6.22)
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where U%(2) is defined in (6.21), £ is a parameter, and go(u) is a scalar function
independent of z. Then S, are difference operators of the following form:

(i)°*20a41(Z | 7)

(SaX)(2) = A 2z | 7) (6.23)
x (00+1(2z —en | )X (2+7) = basi (<22 — bn | )X (2 - g))

where A is an arbitrary constant. Conversely, if the S, are defined by (6.23), then
(6.22) holds, where
go(u) = 2001 (u + €n | 7). (6.24)

Remark. (a) Using transformation properties of the vector ©(z) under shifts by
half-periods w,, it is easy to see that for a # 0 relations (6.20) follow from (6.22);
(b) if X(z) is an even function, then the two relations (6.22) are equivalent.

Proof. Relations (6.22) give a system of four linear equations for four unknown
functions (S,X)(z) occurring in the left-hand side of (6.22). More explicitly,
we have

UE(2) (L1 () X) (2) + UZE(2) (La1 () X) (2) = go(w)UE (2 F én)X<z + g)(,ﬁ "
5

Uli(z) (ng(u)X)(z) + Ugt(z) (ng(u)X)(z) = go(u)Ugt(z FinX (z + g)( )
6.26

where (Lqog(u)X)(2) are expressed in terms of (S,X)(z) by {6.17). We fix go(u)
as given by (6.24). Solving this system, we arrive at formulae (6.23) (all necessary
identities for f-functions are presented in the Appendix to this section). This proves
that the representation (6.23) is equivalent to (6.22), (6.24).

Corollary 6.1. Suppose that L(u) is an operator of the form (6.17) that
satisfies (6.22). Then L(u) satisfies the ‘intertwining’ relation (1.5), where the
R-matriz is given by (1.7).

The proof follows from the identification of (6.23) with formulae (1.9) for
the representations of the Sklyanin algebra by putting 2z = z, X(z/2) = f(x).
The constant A is not essential, since the commutation relations (1.1), (1.2) are
homogeneous.

Remark. From the technical point of view, solving system (6.22) is much simpler
than the direct substitution of (6.23) in the commutation relations. The amount
of computations in the former case is comparable with that in the latter one if we
identify only the coefficients in front of f(z * 2n).

We now consider equality (6.20) for a = 1,2, 3.

Lemma 6.1. Define the transformation Sy — Y.(Ss), a,b = 0,...,3, of the
generators by the following relation:

TaL(t + w) = halu )Z 9"“5’; |, Or(ulT)y 5y @0, (6.27)
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where ho(u) = hi(u) = 1, hy(u) = —iha(u) = exp(—-'—’f’- —imwu). Then the operators
Yo, a=0,...,3, are automorphisms of the algebra generated by S,.

The proof follows from the fact that the operators o, L(u + w,), a = 0,...,3,
satisfy the ‘intertwining’ relation (1.5) with the R-matrix given by (1.7), since the
matrices o, are c-number solutions of (1.5). Comparing the left- and right-hand
sides in (6.27), we see that the explicit form of Y, is given by (here 6,(1) = 0,(Z|7))

_ 6(3) . 6203 05(3) , 6a(2)
yl . (50751752753) g (_92(§)S17 0 (121)50) - (_;f) S37 03(_1%) Sz)) (6 28)
. 6:.1() . 10:(3) , 6:5(3) 04(3)
b S0 50.59 > (G Gy S0 iy~ 69
n n n
93: (30)51152’53) — (z;g;;s37 635;3327 ZZEZ;SI) Z4E§;SO)a (6 30)
2 2 2 2

and Yo is the identity transformation. These automorphisms were considered by
Sklyanin in [8].

Shifting v = u + w, in (6.20) and applying these automorphisms to (6.23), we
obtain for b=10,...,3:

(1)%20,41(2)
61(22)

X (9a+1(2z — - wb)X(z + 72—7) —Oot1(—2z — Iy —wp) X (z - g))

(SaX)(z) = (6.31)

Note that if £ is an arbitrary complex parameter, then formulae (6.31) are reduced
to (6.23) by the formal change £ — £ + wy/n. However, as is shown below, if the
operators (6.31) are restricted to invariant subspaces, then they yield non-equivalent
finite-dimensional representations of the Sklyanin algebra.

Now assume that £ € £Z,. In this case one may identify X (z) with a cross-
section of some linear bundle on the initial elliptic curve €g. Repeating the argu-
ments presented after formula (6.8), we conclude that the degree of this bundle is
equal to 4. By the Riemann—Roch theorem for elliptic curves, we see that in the
case of general position the dimension of the space of holomorphic cross-sections
of this bundle is equal to 4£. It is convenient to identify these cross-sections with
#-functions of order 4¢. We consider the space ‘TL of even #-functions of order 4¢,
that is, the space of entire functions F(z), z € C, such that F(—z) = F(z) and

F(z+1)=F(z2),
. : (6.32)
F(z + 1) = exp(—4bmit — 8¢miz) F(2).

By analogy with [8] it is easy to verify that the space T}, is invariant under the
action of the operators (6.31) for b = 0 and b = 1, while for b = 2 and b = 3 the
invariant space is exp(—miz? /n)‘J’L. It is known that dim ‘J’L = 2£+1 provided that
{e %Z.,_. Restricting the difference operators (6.31) to these invariant subspaces,
we find four series of finite-dimensional representations.
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Generally speaking, these representations are mutually non-equivalent. This
follows from the analysis of values of the central elements

3 3
Ko=) 82, Ky=) JS? (6.33)
=0 i=1
of the Sklyanin algebra, where the constants J; are defined in (1.3) and (1.10).
Their values for representations (6.31) at b =0, ... ,3 are given by
1
Ko :49%((134r 5)n+wb | T), (6.34)
K> =46, (€ + L)np+wp | )01 (€n +wp | 7). (6.35)

The arguments given above lead to the following assertion.

Theorem 6.2. The Sklyanin algebra (1.1), (1.2) has four different series of finite-
dimensional representations indexed by the parameter b = 0, 1, 2, 3. Representa-
tions of each series are indexed by the discrete (‘spin’) parameter £ € %Z+. They are
obtained by restriction of the operators (6.31) to the invariant (2 + 1)-dimensional
functional subspaces ‘J'L forb=10,1and exp(-wizz/n)‘ﬂ'} forb =2, 3. For general
values of the parameters these representations are mutually non-equivalent.

Let us compare these representations with those obtained by Sklyanin in {8]. For
b = 0 and b = 3 we reproduce series (a) and (c), respectively. These representations
are self-adjoint with respect to the real form of the algebra studied in [8]. The other
two series (corresponding to b = 1 and b = 2) in general are not self-adjoint. We
first consider the case b = 1. For rational values of 5, 7 = p/q, and special values
of £, £ = (¢ — 1)/2 mod q, these representations are self-adjoint and are equivalent
to some subset of representations of series (b).> To the best of our knowledge, the
series corresponding to the case b = 2 was never mentioned in the literature (though,
in a sense, it is implicitly contained in Sklyanin’s paper). Another outcome of our
approach is the natural correspondence between different series of representations
and points of order 2 on the elliptic curve.

It is natural to surmise that representations of the last two series become self-
adjoint with respect to other real forms of the algebra. A real form is defined by an
anti-involution (*-operation) on the algebra. It should be noted that classification
of non-equivalent real forms of the Sklyanin algebra and its generalizations is an
interesting open problem.

Concluding this section, we would like to note that, after a suitable discretization,
the variable z in (6.20) and (6.13) may be identified with the statistical variable
(‘height’) in IRF-type (‘Interaction Round a Face’) models [36]. This follows from
the well-known correspondence between the vertex- and IRF-type models, if we
take into account that the transformation connecting these models is constructed

3The whole family of representations of series (b) found in [8] has three continuous parameters.
These representations are self-adjoint and exist only if # = p/q. In this case all of them have
dimension g. They are obtained by restriction of the operator (6.31) to a finite discrete uniform
lattice.
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in terms of the vacuum vectors (for the explicit form of this transformation in the
case of higher spin models see [35]).

Finally, it seems instructive to carry out a detailed analysis of the trigono-
metric and rational limits of the constructions presented in this section. Some
particular related problems have already been discussed in the literature. In the
recent paper [37] the vacuum vectors for the higher spin X X Z-type quantum spin
chains are constructed. The vacuum curves of trigonometric L-operators have been
described in [38]. In the simplest case they are collections of rational curves inter-
secting at two points. Trigonometric degenerations of the Sklyanin algebra, which
are in a sense ‘intermediate’ between the initial algebra and the standard quantum
deformation of the algebra gly, are studied in [32].

Appendix to §6

We use the following definition of the §-functions:

0 (z|7) = Zexp (wir(k + %)2 + 27 (z + %) (k + %)), (6.36)
kEZ

2
b2(z|7) =3 exp (m'r(k+ %) +2miz (k + -;-)) (6.37)
kEeZ
O3(z | 7) = Y exp(mith? + 2mizk), (6.38)
kEZ
Oa(z|7) = Zexp (m'rk2 + 2mi (z + l)) . (6.39)
kEZ 2

For the reader’s convenience we recall here the definition of the o-function used

in §§2-4:
oz | w,w') = 9??6) exp(C(;ng)Hl (i i'). (6.40)

2wl w

We now cite the identities used in the computations.
The first group of identities (the addition theorems) is given by:

Oa(z | T)0s(y | T) =0a(z +y | 27)0s(z —y | 27) + b1 (z + y | 27)bh (z — y | 2(7;3),41)
0a(z | 7)8a(y | 7) =O3(z +y | 27)03(z —y | 27) — O2(z + y | 27)02(z — y | 27),
(6.42)

03(z | 7)83(y | 7) = Os(z +y | 27)03(z —y | 27) + Oa(z + y | 27)02(z — y | 27),
(6.43)

O2(x | T)02(y | 7) = Os(z +y | 27)02(z —y | 27) + O2(z + y | 27)03(z — y | 27),
(6.44)
O1(x | )01 (y | 7) = Os(z +y | 27)02(z —y | 27) ~ Oa(z + y | 27)03(x — y | 27).
, (6.45)
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It is convenient to write out explicitly their simple consequences

Os(z | 7)03(y | 7) + 0a(y | T)0s(x | 7) = 204(z +y | 27)0a(z — y | 27), (6.46)
Os(x | 7)03(y | 7) — ba(y | 7)0s(z | 7) = 201 (z +y | 27)61(z — y | 27), (6.47)
Os(z | 7)0s(y | 7) + 04(y | 7)84(z | 7) = 203(x +y | 27)b3(x — y | 27), (6.48)
Os(z | )03(y | 7) — Oa(y | T)ba(z | T) = 202(z +y | 27)02(z —y | 27). (6.49)

The second group of identities is given by

ot 1= (52 (52 ) (g (5 )
205 (z | 27)85(y | 27)291(“2“3’ |r)9l(z;y ) +92(”’;y )T)ez(g”;y(l;s)l,)
e 0t 0= (2 (52 1) (5 a5 )
e 30001 2= (52 (252 1) - (S (5 ),
Particular cases of these identities are given by
20, (2 | 7)0a(z | 7) = 63 (o | %)91 (z | %) (6.54)
2, (z | T)83(2 | 7) = b2 (o | %)02 (z | g) (6.55)
Two more identities are given by
6, (z | %)92 (z ] %) = 0400 | 7)01(22 | 7), (6.56)
04 (z | g)eg (z [ %) = 04(0 | 7)84(22 | 7). (6.57)

§ 7. Concluding remarks

This work elaborates upon the following three subjects.

(I) The dynamics of poles for elliptic solutions to the 2D non-Abelian Toda
chain.
(1I) Difference analogues of Lamé operators.
(I1I) Representations of the Sklyanin algebra in terms of difference opcrators.

We now outline the results.

— The poles move according to equations of motion for spin generalizations of
the Ruijsenaars-Schneider model; the action-angle variables for the latter
are constructed in terms of some algebraic-geometrical data.

— One of the generators of the Sklyanin algebra, represented as a difference
operator with elliptic coefficients, has the ‘finite-gap’ property that is a
motivation for the analogy with Lamé operators.

— Starting from the notion of vacuum vectors of an L-operator, a general sim-
ple scheme for constructing functional realizations of the Sklyanin algebra
is suggested.
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We would like to explain why these three themes are more intimately connected
than seems possible at a first glance.

With each problem (I)-(III) a distinguished class of algebraic curves has been
associated. In case (I) these are spectral curves T' for the L-operators of the
Ruijsenaars—Schneider-type models; in case (II) we deal with the spectral curve
I'" for the Lamé difference operator Sy (a generator of the Sklyanin algebra); in
case (III) the representations are defined on cross-sections of certain line bundles
on a vacuum curve € of the elliptic higher spin L-operator {(1.4). It has been shown
that the curves I' and I are ramified coverings of the initial elliptic curve. The
characteristic property (6.20) for the vacuum vectors suggests that the same should
be true for &, that is, £ is a ramified covering of the initial elliptic curve £ (that
is, of the vacuum curve of the spin-1/2 L-operator).

The connection between points (I) and (II) is similar to the relation between
elliptic solutions of KP and KdV equations. Specifically, the elliptic solutions of
the Abelian 2D Toda chain, which are stationary with respect to the time flow
t4+ +t—, correspond to isospectral deformations of the Lamé difference operator Sy,
which is the Lax operator for the 1D Toda chain. In other words, the hyperelliptic
curves I form a specific subclass of the curves I'. A similar reduction in the
non-Abelian case yields spin generalizations of Lamé difference operators. Their
properties and a possible relation to the Sklyanin-type quadratic algebras remain
to be figured out.

Apart from the apparent result that the construction proposed in §6 provides
a natural source of Lamé-like difference operators, we expect deeper connection
between points (II) and (III). Specifically, the spectral curves I are expected to be
very close to the vacuum curves €. Conjecturally, they may even coincide, at least
in some particular cases. At the moment we cannot present any more arguments
and leave this as a further problem.

Finally, we would like to note an intriguing similarity between the basic ansatz
(2.26) for a double-Bloch solution of the generating linear problem and the func-
tional Bethe ansatz [39]. Indeed, in the latter case the wave function (with sep-
arated variables) is sought in the form of an ‘elliptic polynomial’ [To(z — 2;),
where the roots z; are subject to Bethe equations. Similarly, in the former case we
deal with a ratio of two ‘elliptic polynomials’ (see (5.30)). The only difference is
that we parametrize this function by residues at the poles rather than zeros of the
numerator. This may indicate a non-trivial interplay between Calogero—Moser-type
models (and more general Hitchin systems) and quantum integrable models solved
by means of the Bethe ansatz.*
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4The recently observed formal resemblance [40} between Bethe equations and motion equations
for discrete time Calogero—Moser-like systems may be a particular aspect of this relation.
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