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Linear operators with self-consistent coefficients and rational 
reductions of KP hierarchy 
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Abstract 

A new general type of reductions of the hierarchy of Kadomtsev-Petviashvili equation is established. These reductions are 
equivalent to the Lax equations for pseudo-differential operators of the form LTtL2, where L~, L2 are ordinary differential 
operators with coefficients that are functions of variables tl = x, t2 . . . . .  It is shown that besides the KP hierarchy they are 
invariant with respect to the "rational" symmetries as well. 

1. Introduct ion 

All non-linear partial differential equations that are 

considered within the framework of  the soliton theory 

are equivalent to the compatibility conditions of  an 

overdetermined system of auxiliary linear problems. 

For spatially two-dimensional equations one of the 

most general type of  the corresponding representations 

has the form ( [ 1 ] ) 

lot L , 3 t -  A] = 0 ,  (1) 

where L and A are differential operators with respect 

to the variable x 

L= ~-~ui(x,y,t)c~.iv, A =  ~-~vj(x,y,t)3Jx (2) 
i=1 j=l 

with coefficients that are scalar or matrix functions of  

the variables x, y, t. 
The basic example of  these equations is the 

Kadomtsev-Petviashvili (KP) equation 

¼u;, + ( , , , -  ~u,,x 'u = - a .... ~) .  0 (3)  

that has the operator representation ( 1 ) with 

L = O~ + u (x , y , t ) ,  
3 a = O~ + ~UOx + w(x , y , t ) .  (4) 

If  the coefficients of  the operators (2) are independent 

of  the variable y, then Eq. ( 1 ) has the form 

3tL = [A ,L]  (5) 

The non-linear Schr6dinger equation 

i~bt - ~/,.~ + ozl~b12~b = 0 (6) 

has Lax representation (5) where L is a Dirac oper- 

ator. In [2] it was shown that algebraic-geometrical 
or finite-gap solutions of  this equation can be con- 
structed within the framework of  the approach that is 

based on the consideration of  (6) as a linear equation 
with self-consistent potential. The corresponding lin- 
ear equation is a non-stationary Schr6dinger equation 

(iOt - 32 + u(x, t) )~9 = 0 (7) 

and the "self-consistency" condition has the form 
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,, = < 4 , 1  ~. (8) ( O , + O 2 - u ( x , t ) ) ~ + ( x , t , Q )  =0 .  (15)  

Numerous physical models that describe interactions 

of  long and short waves also have the form of the linear 

equation (7) with various self-consistency conditions. 

For example, 

", + ' , ,  = Ig' 3 [31, (9)  

, ,  ,,.,., + ~<x.,..,- + ~(,2). , .~ = I~l~.., [4] .  ( lO)  

The general construction of  exact solutions of  the 

non-stationary Schr6dinger equation (7) with various 

types of  sell-consistency conditions was advanced in 

15] (its realization for the construction of soliton so- 

lutions was presented in [6] ). 

In [7] this approach has been extended for non- 

linear (r-models 

d+d ~ + (&q , ,  d ,F)~, = 0, 

,9 
J ( r ± ( r )  ( 11 ) c ) ± -  / ix± '  x± = ~ 

where ~/P( .3+, x_ ) is a vector-function and (., .) stands 

for a scalar product. Eq. ( 11 ) is a linear wave equation 

(c?~c?_ + u(x~ , x _ ) ) W  = 0, (12) 

with self-consistency condition 

. = (a_,/~,  a _ ~ . ) .  (13) 

The basic idea of  this construction may be very briefly 

presented as follows. The first step of the scheme is 

constructing an "integrable" linear equation. For ex- 

ample, for the non-linear Schr6dinger equation that is 

the construction of  the potentials u(x ,  t) such that a 

family of  solutions ~ = &(x, t, Q) parametrized by 

points Q of  the auxiliary spectral Riemann surface F 

is known for the linear equation (20).  The next step 

is to select among these potentials the potentials such 

that there exists a point Q on the corresponding Rie- 
mann surface such that 

u ( x , t )  =oe~b(x , t ,Q)~  ~ ( x , t , Q ) ,  (14) 

where g,+ (x, t, Q) are solutions of  the formal adjoint 

linear equation 

All self-consistency conditions that are considered 

in this scheme are corollaries of  the residue the- 

orem, because bilinear combinations of  the func- 

tions ~ ( x , t , Q )  and ~ + ( x , t , Q )  (for example 

(J(x, t, Q )O+(x ,  t, Q) ) or its derivatives are mero- 
morphic functions of  the spectral parameter Q. There- 

fore, the sum of all residues of  the differentials that 

are a product of  the corresponding bilinear combina- 

tion and a constant meromorphic differential dY2(Q) 

(for example 

d s 2 ( x , t , Q )  =~O(x,t,Q)~p+ ( x , t , Q ) d y 2 ( Q )  ) (16) 

is equal to zero. The right-hand sides of  the sell'- 

consistency conditions (8 ) , ( 9 ) , ( 10 ) , (13 )  are equal 

to the sum of residues of the corresponding differen- 

tials at finite points of  the spectral Riemann surface. 

The left-hand sides are residues at "the infinities" of  

the spectral parameter. 

These analytical arguments have been used in var- 

ious forms for different schemes in the inverse prob- 

lem method (see [8] ) .  They show that in all these 

cases the non-linear SchrOdinger equation can be con- 

sidered as a reduction of the KP hierarchy, because 

the linear equation (7) is one of  the Lax operators fl)r 

the KP equation (after the redefinition of  the variable 

y ---+ it). The algebraic nature of  this reduction has 

been clarified in [9,10]. The main goal of  this report 

is to present the general rational reductions of  the KP 

hierarchy [ 11 ] which, as it seems to the author, con- 

tain all the integrable equations that have Lax repre- 

sentation (5) with matrix coefficients and all the in- 

tegrable equations that can been considered as linear 

systems with self-consistent potentials. 

2. Rat ional  reductions of  the KP hierarchy. 

The KP hierarchy in its original form is a system 
of non-linear equations on the coefficients vi., of the 
infinite set of  linear differential operators 

n--2 

Ln = 0 F + E t ' i , , , ( t , ,  t2 . . . .  )0~.. (17) 
i--0 
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These equations are equivalent to the operator equa- 
tions 

[O , , , -Lm,On-Ln]=O,  On=O/Otn. (18) 

In [ 12] the KP hierarchy has been defined as a sys- 

tem of commuting evolution equations on a space of 

infinite sequences ui(x) ,  i = 1,2 . . . . .  of functions of 

one variable. The corresponding equations have the 

Lax representation 

OnE = [ £ ~ , £ 1 ,  (19) 

where 
oo 

= Cgx 4- ZUiafi (20) £ 

i=1 

is a pseudo-differential operator. (Here and below 

D+ stands for the differential part of the pseudo- 

differential operator D.) The equivalence of these two 
definitions of the KP hierarchy was proved in [ 13]. 

The basic type of reductions that has been consid- 
ered in the theory of KP hierarchy is the reduction on 

the stationary points of one of the flows of the hierar- 
chy (or linear combination of such flows). These sub- 
manifolds are characterized by the property that the 
n-th power of the corresponding pseudo-differential 

operator £ is a differential operator, i.e. 

n--2  

£/' = £+ = L = Of 4, Z wi(x).  (21) 
i=1 

The coefficients of £ are differential polynomials in 

the coefficients wi of the differential operator L, that 
parametrize the corresponding invariant subspace of 
the KP hierarchy. 

Let )Urn,, be a manifold of pseudo-differential oper- 
ators £ such that 

12" = L~I Lz, (22) 

where Ll and L2 are co-prime differential operators of 
degrees m and ( n + m), respectively. (Two differential 
operators are called co-prime if their kernels do not 
intersect.) The coefficients of these operators 

m -  1 

L, : + Z W,/x, 
i=1 
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n+m-1 

L2 = c7 n+k 4- Z W2'JCgJ (23) 
.i=1 

are parameters that define the corresponding point of 
]~m,n. The normalization of £, such that in the right- 
hand side of (20) there is no free term, is equivalent 

to the only relation on the coefficients of Lj and L2 

Wl,m-1 --~ W2,n+m_ 1. (24) 

The coefficients of the pseudo-differential operators 

which belong to K~m,n, are differential polynomials 

with respect to wl,i and wz,j. 
A priori, the definition of Era,, depends on the or- 

der of factors in the right-hand side of (22). But we 

are going to show that the corresponding submanifold 
does not depend on this order and depends on the de- 

grees of the numerator and denominator of the non- 

commutative fraction only. 

Lemma 1. For any co-prime differential operators L3 
and L4 of degrees m and n + m there exist unique 
normalized differential operators LI and L2 of degrees 

m and n 4, m, respectively, such that 

L~I L2 = L4L31. (25) 

(A differential operator is called normalized if its lead- 
ing coefficient equals I.) 

Remark. This result is well-known. The exact formulae 

for the coefficients of Ll and L2 may be found in [ 14]. 
Nevertheless, we are going to present the proof of it 

in a way that will be useful for us later. 

Proof Let (-Qi, i = 3, 4, be the kernel of Li, i.e. 

y(x)  E Oi : Liy(x) = 0. (26) 

The dimension of (94 equals (n + m). From the 
lemma's assumption it follows that the image of this 
space L3(C94) has the same dimension. Therefore, 
there exists a unique normalized differential operator 
L2 of degree n + m such that 

L2y(x) = O, y(x)  C L3(O4). (27) 

Let us define the operator LI of degree n by the equal- 
ity 
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Lly (x )  = 0, y (x )  E L4((Q3). (28) 

From (27),(28)  it follows that the differential oper- 

ators L2L3 and LIL4 of degree (2n 4. m) have the 
same kernel 03 4- 04. Therefore, they are equal to 
each other. The equality 

L1 L4 = L2L3. (29) 

Lemma 2. For any differential operator 79 of the de- 
gree 2n + m - 1 and for any co-prime differential op- 
erators L3 and L4 of degrees m and n 4. m there exist 
unique differential operators AI and A2 of degrees m 
and n 4, m such that 

A2L3 - AlL4 - 79 = O. (34) 

is equivalent to (25). The lemma is proved. 

In the same way one can prove the inverse statement 
that for any co-prime differential operators L1, L2 
there exist unique normalized differential operators 

L3, L4 such that (25) is valid. 

Proof Differential operator Al of degree m is 

uniquely defined by its action on any m-dimensional 

linear space. Therefore, it can be defined by the 

equality 

Aly (x )  = 79y(x ) , y (x )  E L4(O3). (35) 

Theorem 1. For any n and m the space/Cm,, is invari- 

ant with respect to the KP hierarchy (19). 

The analogous equality 

A2y(x) = 7 9 y ( x ) , y ( x )  C L3(O4) (36) 

Proof The equality (19) for £ E /Cm,n is equivalent 
to the equality 

- -  I i / n  - -  1 Oi(L~IL2)=[(LI  L2)+ ,Lj L2]. (30) 

From (30) it follows that 

defines the operator Az. From (34),(35) it follows 
that the differential operator that is defined by the left- 

hand side of (34) has degree 2n+m - 1 and its kernel 
has a dimension bigger or equal to 2n4.m. Hence, this 

operator is equal to zero. The lemma is proved. 

(diL2)L3 - (diLl)L4 

"i/nr LII  L2)i/+nL3, ) = L1 (L~JL2)+ ~4 - L2( (31 

where L3 and L4 are differential operators such that 
(25) is fulfilled. 

For the proof of the theorem it is enough to show 

that tbr given LI and L2 Eq. (31) uniquely defines 

operators (diLl) and (OIL2) of degrees ( m -  1) and 
(n + m - 1 ), respectively. 

Let 79 be an operator that is defined by the right- 

hand side of (31). The coefficients of this operator 

are differential polynomials with respect to the coeffi- 
cients of the operators L~ and L2, i.e. 79 = 79(L~, L2). 
The differential part of the operator (L~ 1L2)i/n can 

be replaced in (30) by its integral part 

_ i / n  (32) ( LII  L2)i/" = ( L~I L2)i/" - (L I l L2 )+  . 

Therefore, 

79 = L2(L~ILz)i/"L3 - LI(L~IL2)i/"L4. (33) 

The latter equality proves that the degree of the dif- 
ferential operator 79 is less or equal to 2n + m - 1. 

The operators Ai that are defined due to this lemma 
for L3, L4 and 79 given by equalities (25) and (33), 
depend on the operators Ll and L2, only. I.e. Ai  = 

Ai(Lj,  L2). Therefore, the equalities 

diLl  = Aj(L1,L2) ,  diL2 = A2(L1,L2) (37) 

do define the evolution of the operators LI and L2. 

The theorem is proved. 

When discussing this result with the author, T. Sh- 
iota proposed the exact form of the equations that de- 

fine the evolution of the operators L~ and L2. 

Theorem 2. The restriction of the KP hierarchy on 
/Cm,, is equivalent to the equations 

i/n ,,i/n r 3iLl = LI(L~IL2)+ - (L2L~ I j+ c j ,  (38) 

~i/,, (L2L11 ~ i / n ,  aiL2 L 2 ( L l l L 2 , +  = -- )+ ~2,  (39) 

Proof From Theorem 1 it lbllows that (30) correctly 
defines the evolution of Ll and L2. The equality (30) 
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is a corollary of  the equalities (38) , (39) .  Therefore, 

for the proof of  the theorem it is enough to verify 

that the right-hand sides of  (38) , (39)  are differential 
operators of  degrees not greater than m - 1 and n 4- 

m - 1. The last statement follows from the equalities 

L71 ( L2L( j )i/"L I = ( LIl  L2) i/'', 

L21 (L2L/ I  )i /"L 2 = ( LI1L2) i / ' '  (40) 

which imply that ( 38 ), (39) are equivalent to the equa- 

tions 

' - I i l ) 1  
/iiLI = ( L 2 L r  I)~/''LI - L](L~ L2)_ , (41) 

system of two equations for two unknown functions 

due to (44) for i = 1,2 

02111 = I l l . ix  4- 2u2~ u2 = U l x  q- Ul t l ,  ( 4 5 )  

02/Q = u2xa -:- 2/O.x 4- 2UlUl ~ 

= l¢2.~.t - 2 ( u2x 4- vu2 ) .~ 4- 2tll It la. (461 

Let us delinc the two new unknown functions r anti q 

with the help of the relations 

r.~ 
ul = rq, v -  . (47) 

r 

Eqs. (45) , (46)  are equivalent to the system 

alL2 = (L2L/ I  )i/nL2 - L~( L~ I L2) i/'''. 

The theorem is proved. 

(42) 

Remark. The formulae (41) , (42)  are similar to the 

lbrmulae for the evolution of  the factors L = L1L2, 

where Li are differential operators or some special 

kinds of pseudo-differential operators, which have 

been obtained in [15].  

Example. In [ 10,9] it was proved that the hierarchy of 

the non-linear Schr6dinger equation can be obtained as 

a reduction ol' the KP hierarchy. This is the particular 

case of the above-proved theorem. In the notations of 

this work the corresponding reduction is the reduction 

onto the space JCi,2. 

The coeflicients of  the pseudo-differential operator 

/2 of the form 

12 = (0~ + v)-1(a .~  + t,O, + w) = 0, + u,a~ (4~) 
i=1 

are differential polynomials with respect to the func- 

tions c, and w. They are recurrently defined from the 
equalities 

02r = r~.~ + rqr, 02q = q~x + qrq,  (48) 

which for r = ~-q* and t2 = it implies the non-linear 

Schr6dinger equation 

irt - rxx q-]r]2r = 0. (49) 

The restriction of the KP hierarchy onto the spaces 

/C,n,,, is the quantization of  the corresponding algebraic 

orbits of  the dispersionless KP hierarchy that was in- 

troduced in [16].  In [16] it was found also that al- 

gebraic orbits of the dispersionless KP hierarchy have 

additional symmetries. The next theorem shows that 

these additional symmetries can be quantized. 

Theorem 3. The restriction of the KP hierarchy onto 

the invariant spaces/C,,,.,, is compatible with the equa- 

tions 

Z2:-= [A- i ,121 ,  (50) 

where 

A - i  = M I I  M2, (51 

M] is a normalized differential operator of  degree t. 
and M2 is a differential operator of  degree i - 1. 

111 = W ,  l t i+ 1 4-  I4ia 4- L't,ti = O , i >  1. (44) 

Let us consider the second flow of the KP hierarchy 
(19),  i.e. the equation that defines the dependence of 
/2 with respect to the variable t2. For n = 2 the opera- 
tor £'~ equals 92 x + 2ul. The corresponding equations 
for the first two coefficients o f /2  become the closed 

Proof  Eq. (50) for /2 = L l l L 2  is equivalent to the 

equation 

(OrL2)L3 - (OrLI)L4 = LI A i L 4 -  L2A ik3, (52) 

where L3, L4 are the operators for which the equal- 
ity (25) is fulfilled. The pseudo-differential operator 
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Ai has a negative degree. Therefore, (52) is a well- 
defined evolution system iffthe pseudo-differential op- 
erator D in its right-hand side is a differential opera- 
tor. For the generic A i the operator 79 can be uniquely 
represented in the form 
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