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Abstract 

The exact Seiberg-Witten (SW) description of the light sector in the N = 2 SUSY 4d Yang-Mills theory [N. Seiberg 
and E. Witten, Nucl. Phys. B 430 (1994) 485 (E); B 446 (1994) 191 is reformulated in terms of integrable systems and 
appears to be a Gurevich-Pitaevsky (GP) [A. Gurevich and L. Pitaevsky, JETP 65 (1973) 6.5; see also, S. Novikov, S. 
Manakov, L. Pitaevsky and V. Zakharov, Theory of solitons] solution to the elliptic Whitham equations. We consider this as 
an implication that the dynamical mechanism behind the SW solution is related to integrable systems on the moduli space 
of instantons. We emphasize the role of the Whitham theory as a possible substitute of the renormalization-group approach 
to the construction of low-energy effective actions. 

1. The exact expression for the vacuum-condensate 
dependence of the effective coupling constant in d - 4 
N - 2 SUSY YM theory [ 1 ] provides a new basis 
for the search of a relevant description of the vacuum 
structure in non-abelian theories. Especially interest- 
ing is the emergence of the characteristic features of 
the 2d-integrable structures in essentially 4d problem. 
In this letter we explain that the SW answer for 4d 
theory is just the same as the GP solution of the ellip- 
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tic Whitham equations, which in its turn is a simple 
analog of the solutions to “string equations” arising 
in the context of 2d (world sheet) string theories and 
gravity models * . 

A more detailed discussion will be presented else- 
where. 

2. We begin with a survey of the relevant statements 
from the general theory of 4d YM fields and from 
Ref. [ll. 

The simplest dynamical characteristic of YM theory 
is the effective coupling constant gw2 (CL) (defined as 
a coefficient in front of s tr Fi,, in the effective action ) 
as a function of the normalization point /_L (roughly 
speaking, the IR cut-off in the integration over fast 
quantum fluctuations ). 

*To be exact we discuss throughout this letter the fist GP 

solution, which arises as a step decay in the KdV theory, while 

the second one rather corresponds to 2d sting equations. 
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Within the perturbation theory for the non-abelian 
model this function is given by Fig. la. If there is 
a scalar-field condensate 9 u, spontaneously breaking 
the original gauge symmetry SLI( 2) to V( 1), one gets 
instead a picture like Fig. lb. If the original symmetry 
is larger than SU(2) there is a series of transitions 
at various points u,. In the N = 2 SUSY YM theory 
the U( 1) p-function is zero, and what one obtains is 
Fig. lc. In this model one is actually interested in the 
function g-*(pIu) of two variables, since there is a 

9 See [ I] for notational details. 

valley in the effective potential and the value of u is a 
priori arbitrary (u is a dynamical variable). Because 
of the simple pattern in Fig. lc, the function 

g-*(/L = O(u) = g-*(/L = u/O) (1) 

can be considered as carrying a certain informa- 
tion about the most intriguing quantity g-*(,ulu = 
0). In other words, one can substitute the typi- 
cal confinement-phase problem (of evaluation of 
g-* (PJO) ) by the typical Higgs-phase one (of evalu- 
ation of g-* (01~) ) and the latter one definitely makes 
sense even beyond the perturbation theory. It is also 
natural to introduce the full complex coupling con- 
stant T = &(ig-* + CT), where 0 is the coefficient in 

front of the “topological” term s tr FhyFpv. Within 
the perturbation theory 6 does not depend on p and 
u (see, however, [ 31) . 

The definition of T( ,u), as well as identifications 
like Eq. ( 1) , beyond perturbation theory gets ambigu- 
ous. However, a qualitative description is well known 
in the instanton-gas approximation [ 41. The new be- 
haviour, as compared to the perturbation theory, is the 
occurrence of p-dependence of 8, which results in 
renormalization of the bare 0 # v at p = 03 to 6’ = 0 
at ,X = A, and deconfinement (occurrence of zero of 
fi-function at g-* # 0) at 8 = T. Both effects are 
described [ $61 by the characteristic renormalization- 
group flow shown in Fig. 2a. The analytic description 
is given by the equations 

dg-* 

dlogp 
= b + CCT-~~-* cos 0, 

de 
- = ~e-Yg_~ sine, 
dlwp 

(2) 

where b(2) = 61 + o(2) and c(?,p,u) are some 
positive functions depending on a particular model. 

Beyond the instanton-gas approximation one should 
represent T(P) as some parameter of the effective the- 
ory on the universal moduli space of instantons lo. In 
the N = 2 SUSY case, where perturbation theory is al- 
most trivial (for example, the perturbative &function 
has only one-loop contributions, [ 81) , one can expect 

lo In general this theory can have different phases. One of them 

- believed to be relevant for confinement in QCD - is known in 

less formal terms as that of the instanton fluid [ 71. 
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Fig. 2. 

that the relevant dynamical system is especially sim- 
ple. One of the possible ideas is that it somehow pos- 
sesses integrable properties, peculiar for dynamics on 

known moduli spaces (see for example [ g-111) . The 

results of [ 11, as well as their generalizations in [ 121, 

look as being consistent with this integrable dynamics. 
Namely, in [ l] r( /L = O(U) is identified with the 

coordinate on the modular half-plane for the one- 
dimensional complex tori, see Fig. 2b, while u is in- 
terpreted as a parameter (one of ramification points) 
in their elliptic representation 

Y2 = (z2 - A2)(z - u) ) (3) 

i.e. 

The SU( N) generalizations are described in [ 121 in 

terms of moduli of the specific subclass of hyperellip- 
tic surfaces, 

y2 = P$( z) - fQN, 

where PN is any polynomial of degree N. These ex- 

pressions provide an explicit way to avoid the singu- 

lar point u = A (where r = 0, i.e. ge2 = 0 and 13 = 0 

- in accordance with qualitative Fig. 2a; note that u 

was restricted to be real in that picture) by analytic 
continuation into the complex u-plane. It also intro- 

duces one more singularity at another point u = -A 

(r = f 1) , while the vicinity of the last singular point 
u = co (r = ice) is described by the ordinary per- 
turbation theory (thus, the three “infinitely-remote” 

points are not identical, and the theory actually lives 
on the covering of moduli space - again, as suggested 

by the naive Fig. 2a ) . 
Most impressive, [ 1 ] implies that the Riemann sur- 

faces themselves - not just their moduli - have some 

physical significance. Namely, the spectrum of exci- 
tations in the theory is identified as 

Mm,, = Ima + wll 1 

where 

.=/I, Q+ 

A B 

and 

(6) 

(7) 

is a particular l-differential on the sur$&e with the 

double pole and the double zero at the ramification 

points z = cc and z = u respectively ‘t . 

” In terms of the q-parametrization of the spectral curve (see 

(8)). the integrals (7) for IuI < 1 are just the action-integrals 

$ p(rp)dv in the Sine-Gordon model LSG = @* - A cos C,O over 
the classically allowed and forbidden domains at a given “energy” 

IL, see Fig. 3 (in this figure, the A-cycle corresponds to the 

interval I-IV, while the B-cycle is described by the interval III-V; 

one can certainly choose the cycles in another convention - say, 
instead of a, one can choose the linear combination A - B, which 

corresponds to the interval 11-111). Note that in this parametrization 



A. Go&y et al. / Physics Letters B 355 (199% 466-474 449 

Fig. 3. 

This poses the question of what is the reason for 
Riemann surfaces to appear in this theory: while r and 
u are present in it from the very beginning, the surface 
is something new and emerges dynamically only in 
the low-energy effective theory. 

3. The answer to this question is, of course, more 
general than the particular SW example 12. 

The effective dynamics in the space of coupling con- 
stants, like 8 and gw2, substitutes the original dynam- 
ics in the ordinary space-time by a set of Ward identi- 
ties (low-energy theorems), which normally have the 
form of non-linear differential equations for the ef- 
fective action (which in this context is often referred 
to as the generalized r-function). When these equa- 
tions belong to (generalization of) the KF’/Toda-type 
hierarchy - as it often happens after an appropriate 
choice of variables - their solutions (i.e. acceptable 
shapes of effective actions) are parametrized in terms 
of some auxiliary “spectral surfaces” also known as 
“target space” curves (not world-sheet) in the lan- 
guage of string theory. 

The family of “vacua” of the original model is thus 
naturally associated with the family of spectral sur- 
faces, i.e. with their moduli space. It seems that only 
the moduli space itself has physical meaning, not the 

cp is identified with rp + 27r. It also deserves mentioning that for 
the elliptic solution the surface itself is isomorphic to its Jacobian, 
thus the periods of differentials play the role of periods of the real 
motion in potential (8) of the “auxuliary” quantum-mechanical 
problem. 
I2 The answer seems to be similar to that from the 2d (string the- 
ory) case where the arising (target-space!) spectral curve might be 
associated with the “scale-parameter” curve. The non-perturbative 
effects imply that such a surface has a nontrivial topology while 
the mechanism of arising the higher topologies is not yet clear. 

spectral surfaces but this is not however quite true. So 
far we discussed the effective action (KP/Toda-like 
r-function) as a function of time-variables (the cou- 
pling constants 8, gh2 etc) . However, if considered as 
a function of moduli (e.g. of scalar condensates u) , 
the effective r-function induces a new (low-energy- 
sector) dynamics on the space of moduli. This new 
dynamics implies that the moduli are no longer invari- 
ants of motion: instead they are “RG-slow” dynamical 
variables of the theory l3 . 

The general approach to the construction of such ef- 
fective actions is known as the Bogolyubov-Whitbam 
averaging method (see [ 14,171 for a comprehensive 
review and references). Though this Whitham dynam- 
ics is that of the moduli, its explicit formulation is 
most simple and natural in terms of connections on 
spectral surfaces. Thus the low-energy dynamics actu- 
ally gives a lot of physical significance to the spectral 
surfaces themselves, and, after all, it is not such a big 
surprise that the dynamical characteristics - of which 
(6) is a simplest example - are expressed in terms of 
them. 

In the SW case one could try to be more specific - 
but in this letter we restrict ourselves to the following 
simplified scheme. 

One begins with considering the u-field-dependent 
dynamics on the moduli space of instantons. One 
can further think that some directions in the func- 
tional space are most important for the low-energy 
theory. An obvious candidate for such a variable is 
K = s Eijk(A$jAk + $AiAjAk)d3r. Effective poten- 
tials are periodic in K and associated excitations are 
always light (unless they mix with something else 
which is also light - as is the case with the $-meson 
in QCD). The conjugate variable to K is exactly 8: 
one of our most significant (along with the gM2) 

I3 The situation is much similar to the standard renormalization 
group. Indeed, the RG dynamics is governed by the action of some 
vector field d/ logp. = c fii(g)a/agi on the space of coupling 
constants. Analogously, the Whitham dynamics gives an exam- 
ple of some vector fields generated by the corresponding “slow”- 
time flows, the counterpart of the coupling constant space being 
the moduli space. Certainly, the standard RG approach is unam- 
biguously used only within the perturbative framework, while we 
deal with the exact solution. Therefore, we consider Whitham as 
the corresponding generalization of the RG equations beyond the 
perturbative regime, which would still have the form of the first- 
order differential equations with respect to the coupling constants 
(co-ordinates in the moduli space). 
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“time variables”. After “Legendre transform” one can 
think of the original dynamics of the u-fields as of 
a RG-like one in the space of coupling constants. 
Solutions to these “RG’‘-equations identify the valley 
vacuum averages with moduli of spectral surfaces. 
Monodromies on these surfaces are natural variables 
of the Toda-chain hierarchies, with the length of the 
chain equal to N for the SU( N) gauge group. Indeed, 
the simplest type of dynamics for a variable U in the 
fundamental representation of SU(N) is implied by 
the Lagrangian 

LU =tr( U-'dU)2 + tr U, (9) 

which in the Cartan sector reduces to: 

U -+ diag (eda) , kc,& = 0. (10) 
a=1 

Possible higher-derivative corrections to J$, can be 
associated with the higher Hamiltonians of the Toda- 
chain hierarchy. 

Now comes the first miracle. According to [ 131, 
the finite-gap solutions to the Toda-chain systems are 
characterized exactly by hyperelliptic surfaces of the 
peculiar type (5) 14. 

The next task is to consider the effective Whitham 
dynamics. With the “first miracle” in mind - and with 
the knowledge that all the Toda-chain systems are par- 
ticular members of the KP/Toda-lattice family - we 
can just use the well-known Whitham theory of inte- 

l4 We remind that the data (a spectral complex curve, a point 
on it and a complex coordinate in the vicinity of the point) is 
always in one-to-one correspondence with the solutions to the 
KP-hierarchy, the explicit relation being given in terms of the 
Baker-Ahiezer function (the curve itself can be also described 
by the evolution-invariant equation det (L(z) - y) = 0, where 
L(z) is the Lax-operator). Particular reductions of KP correspond 
to restrictions on the choice of Riemann surfaces. In particular, 
generic hyperelliptic surfaces correspond to solutions to KdV, while 
the subclass (5) describes solutions to the Toda-chain hierarchy. 
The most spectacular in the last relation is that the power of the 
polynomial PN in (5) is exactly the length of the chain, i.e. the 
size of the SC/(N) matrices in the fundamental representation. 

gruble hierarchies [ 14,171 I5 (these are exactly the 
ones that arised in the recent studies of 2d topologi- 
cal theories/gravities [ 16-191 and describe exact so- 
lutions to the string equations [ 20,2 1 ] .) 

4. Now let us turn to the next observation. If 
one takes as a characteristic of effective dynamics 
in the vicinity of the classical solution the SW for- 
mulas (6)-( 8), one immediately recognizes them 
as familiar objects from the theory of the Whitham 
equations. Namely, A in (7) is exactly the generating 
l-differential arising in the first Gurevich-Pitaevsky 
problem [2] I6 

In formal terms, the Whitham equations can be de- 
scribed as follows. The KP/Toda-type r-function as- 
sociated with a given spectral Riemann surface is equal 
to 

IIti} = et%9 *o + gtiki , ( 1 i=l 

ki = idai( (11) 

t5 This context can actually be not so narrow as it seems. As often 
happens, different original (non-renormalized) models produce 
the same kind of effective (renormalized) dynamics, and at the 
end of the day it can happen that integrable systems just label 
the classes of universality of effective actions. In other words, 
the concrete type of Whitham dynamics, even if derived from the 
study of integrable hierarchy, can have much broader significance. 
Moreover, the Whitham equations are themselves integrable, and 
- according to the previous remark - it is mostly this integrability 
that we refer to in the title of this letter. 
t6 This problem came from the physics of fluids and concerns the 

decay of a step (Heavyside) function under the KdV evolution. 
The exact KdV dynamics, 

_&!!!+a31i aa 
at3 at1 at; ’ 

drives the initial profile of Fig. 4a into that like Fig. 4b, while the 
Whitham dynamics describes the smooth enveloping curve, see 
Fig. 4c. For comparison, Fig. 4d shows the result of the evolution 
of the same step function according to the naive “quasiclassical” 
KdV (which is in fact the spherical Whitham equation): the 
Bateman-Hopf equation, 



A. Go&y et al. /Physics Letters B 355 f 1995) 466-474 471 

(4 u=A u 

u=-A 
w 

X 

E-A * 
X 

Fig. 4. 

where 6 is a Riemann theta-function and dfii( z ) are 
meromorphic l-differentials with poles of the order 
i + 1 at a marked point ~0. They are fully specified by 
the normalization relations 

f 
dRi=O (12) 

A 

and 

dfli(z) = ((-i-* + O(t)) d( (13) 

where 5 is the local coordinate in the vicinity of za. 
The moduli {Us} of the spectral surface are invariants 

of the KP flows 

(14) 

and label the “vacua” - the (finite-gap) solutions to 
the KP system. The effective dynamics on the space 
of these “vacua”, generated by the Bogolyubov- 
Whitham method, arises with respect to some a priori 
new “slow” Whitham times Ti. The way the moduli 
depend on T is defined by the Whitham equations 
(induced by the fast KP/Toda-type equations), which 
for the two-dimensional integrable systems were first 
derived in [ 151 in the following form: 

(1% 

These equations imply that 

adS( z > 
dRi(Z) = 7 

I 

(16) 

with some “generating” l-differential dS( z ) , whose 
periods can be interpreted as the effective “slow” vari- 
ables. Note that the self-evident relation ( 16) was cru- 
cially used in constructing the exact solutions to the 
Whitham equation that was proposed in [ 151. The 
equations for moduli, implied by this system, are of a 
peculiar linear form: 

au, - = “;q*)g 
aTi I 

(17) 

with some (in general complicated) functions L$~, 
which depend on the type of “vacua” under consider- 
ation l7 . 

In the KdV case all the spectral surfaces are hyper- 
elliptic, i takes only odd values i = 2j + 1, and 

(18) 

the coefficients of the polynomials Pj being fixed 
by normalization conditions ( 12)) ( 13) (one usually 
takes zo = 03 and the local parameter in the vicinity 

I7 These formulas imply a special choice of the basis in the 

moduli space, taking the co-ordinates (T-variables) coming from 

commuting KP-BOWS. The relation 7ii = a2 log ‘T/8Ti37’j which 

defines the period matrix in terms of the N = 2 superpotential 

[ 11 has also appeared in the theory of topological 2d-theories, 

see [18]. 
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of this point is 5 = z -l/*). In this case Eqs. ( 17) can 
be diagonalized if the coordinates {u,.} on the moduli 
space are taken to be the ramification points: 

(19) 

Now an important remark is that after one switches on 
the Whitham dynamics the periods of the differential 
dS defined by ( 16) become the periods of the “mod- 
ulated” function ( 11) . We will see below that it gives 
us the SW spectrum. 

5. Let us be more specific in the elliptic (GP/SW) 
case and restrict ourselves to the first two time- 
variables, i = 1,3. The elliptic (one-gap) solution to 
KdV is 

fi(t1,t3,. . . lu) = -$logl(t,, tj,. . . ,u) 
1 

=UO~(klll+k3f3+...+~oIW,W’)+~, (20) 

where p(t) is the Weierstrass pfunction, and 

dp E da,(z) = ’ ;(;;')dz, 

dQ E dfi3(z) = 
Z2 - ;uz - P(u) 

Y(Z) dz- (21) 

Normalization conditions ( 12) prescribe that 

$ 
A 

a(u) = i “& and P(u) = 
§A 

(z*-+,uz)dz 

!;A z . (22) 

The observation, that we referred to at the begin- 
ning of Section 3, is that a particular solution dS( z ) 
to Eqs. (16) in the elliptic case is the same as the 
differential A(z) in (8). 

Indeed, as we are going to demonstrate, 

dS(z) = 
( 

T] +T3(z + ;u, +o(Ts) +... 
> 

x zdz 

=g(zITi;:,u)A(z)* (23) 

where g( z ) is a calculable function of Whitham times 
with pole only at z = CXJ of the order 9, if TI # 0 

and all the T,I = 0. The reason why dS( z) has this 
particular form (i.e. possesses double zero at z = u) is 
simple. Normally, the derivative of a meromorphic ob- 
ject over moduli has more poles (since after a change 
of the complex structure the holomorphic object be- 
comes non-holomorphic) , and moduli in the hyperel- 
liptic parametrization are located at the ramification 
points. In our case there is just one ramification point, 
u, which is Ti-dependent, and, in order to cancel the 
pole at z = u in adS( z ) /fli (which does not occur in 
dfli(z)),oneneedstoputsomepowerof(z-u)1/2in 
the numerator of dS( z ) - once y( z ) appeared in the 
denominator. Since (z - u) ‘/* is not a single-valued 
function on the surface, one needs to take its square. 

From (23) one derives: 

. . . , (24) 

and comparison with explicit expressions (21) im- 
plies: 

(;Tl + uT3)-$ = a(u) - u, 

(;Tl + uT3)E = p(u) - ;u*. 

In other words, this construction provides a (GP) so- 
lution to the Whitham equation 

(26) 

with 

u31(u) = 
p(u) - ;u’ dfi3(z) 

a(u) - u = d-nlo I$ 
(27) 

which can be expressed through elliptic integrals [ 21. 
We see that (7) can be reinterpreted as 

1 
a=-- 

Tl f 
dS(z) 7 

A T3,T5,...=0 
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1 
ao = - 

Tl f 
dS(z) 

B T3.T5..70 

(28) 

being the periods of the “modulated” GP elliptic so- 
lution. This implies that in the generic situation (for 
non-elliptic surfaces and all T2j+l # 0) the SW for- 
mula (6) should be 

(29) 

Note also that 

a 
a?;: f f dS = dfii = 0, 

A A 

while 

a 

z f f 
dS= dRi = ki, (31) 

B B 

which are the frequencies in the original KP/Toda- 
type solution ( 11) . So, the periods of the “modulated” 
Whitham solution give rise to the mass spectrum in 
the SW exact solution and its generalizations. 

6. All the quantities entering the Whitham equa- 
tions have the meaning of the averaged characteristics 
of the bare elliptic solution (3). Note also, that the fur- 
ther speculation of the meaning of the GP solution in 
the SW context of 4d gauge theory is possible. If one 
relates KP times 11, t3 with (the functions of) bare 8 
and gs2 then the main object under consideration - the 
KdV “potential” u( tt , tg ) becomes related to the cor- 
relator (FF, FF) . This looks quite hopeful since such 
correlators contain the information about topological 
excitations in the gauge theory. Now after the aver- 
aging the “slow” times 7’1, T3 in the Whitham system 
can be identified with the functions of the “renormal- 
ized” KP times (coupling constants). Moreover the 
form of the GP solution suggests its interpretation as 
a “decay” of the topological excitations in SW theory 
in the non-perturbative regime JuJ < A. 

The GP solutions have automodel form and this can 
be related to the emergence of the holomorphic cou- 
pling constant r = &( igM2 + 0). The physical impli- 
cations of the GP solution for the strong-coupling dy- 
namics of the YM theory will be discussed elsewhere. 

7. To conclude, we see that the central formula (6) 
of [l] can be interpreted as (29), i.e. in terms of 
periods of the central object dS( z ) in the theory of 
the Whitham hierarchy. This observation seems to be 
important since there exists a general belief that low- 
energy effective actions are proper objects to be re- 
ferred to as generalized r-functions. One should add 
that conceptually the Whitham method is precisely the 
averaging over fast fluctuations, which is necessary 
to produce the effective action for slow variables i.e. 
plays the role of the non-perturbative analog of the 
renormalization group. We believe that this analogy 
deserves attention and further studies ‘* will put them 
on a more solid ground. 
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that of A. Mir. was supported by the “Volkswagen 
Stiftung”. 
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parallels with the 2d physics). 
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