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Abstract

Generic wavetrain solutions to the complex Ablowitz-Ladik equations are developed us-
ing methods of algebraic geometry. The inverse spectral transform is used to realize these
solutions as potentials in a spatially discrete linear operator. The manifold of wavetrains is
infinite dimensional, but is stratified by finite dimensional submanifolds indexed by nonnega-
tive integers g. Each of these strata is a foliation whose leaves are parametrized by the moduli
space of (possibly singular) hyperelliptic Riemann surfaces of genus g. The generic leaf is a
g dimensional complex torus. Thus, each wavetrain is constructed from a finite number of
complex numbers comprising a set of spectral data, indicating that the wavetrain has a finite
number of degrees of freedom. Our construction uses a new Lax pair differing from that orig-
inally given by Ablowitz and Ladik. This new Lax pair allows a simplified construction that
avoids some of the degeneracies encountered in previous analyses making use of the original
discretized AKNS Lax pair. Generic wavetrains are built from Baker-Akhiezer functions on
nonsingular Riemann surfaces having distinct branch points, and the construction is extended
to handle singular Riemann surfaces that are pinched off at a coinciding pair of branch points.
The corresponding solutions in the pinched case may also be found from wavetrains belonging
to nonsingular surfaces using Bicklund transformations. The problem of the reduction of the
complex Ablowitz-Ladik equations to the focusing and defocusing versions of the discrete non-
linear Schrédinger equation is solved by specifying which spectral data correspond to focusing
or defocusing potentials. Within the class of finite genus complex potentials, spatially periodic
potentials are isolated, resulting in a formula for the solution to the spatially periodic initial
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value problem. Formal modulation equations governing slow evolution of g4 1 phase wavetrains
are developed, and a gauge invariance is used to simplify the equations in the focusing and
defocusing cases. In both of these cases, the modulation equations can be either hyperbolic
(suggesting modulational stability) or elliptic (suggesting modulational instability) depending
upon the local initial data. As has been shown to be the case with modulation equations for
other integrable systems, hyperbolic data will remain hyperbolic under the evolution at least
until infinite derivatives develop.

1. Introduction.

The program of understanding the macroscopic behavior of oscillations in
nonlinear dispersive wave systems began in the 1960’s with the work of Whitham
[50], who showed how to describe slowly varying single phase wavetrains both
through averaging a variational principle describing the microscopic waves and
also through the averaging of local conservation laws. Whitham’s analysis yielded
a set of modulation equations that described the evolution (in appropriately
scaled slow time and space variables) of the amplitude and wavenumber of the
microscopic waves. The first steps in generalizing these methods to handle slowly
varying multiphase waves were taken by Ablowitz and Benney [2] and Ablowitz
[1], who explained how to use the method of multiple scales to obtain modulation
equations for multiphase waves, given that one could isolate a family of exact
multiphase waves. These methods had limited applicability because families of
multiphase waves were difficult to obtain, and because the Cauchy problem for
the resulting modulation equations was often ill-posed, which was interpreted
as indicating the modulational instability of the multiphase wavetrain. These
elliptic modulation equations could only be successfully integrated for initial data
that were real analytic in the macroscopic spatial variable.

The discovery that many physical nonlinear dispersive wave equations are in-
tegrable by an inverse scattering transform? was the breakthrough that allowed
the modulation theory of multiphase waves to continue. The thirteen years
between the discovery of the inverse scattering transform for the Korteweg-de
Vries equation by Gardner, Greene, Kruskal, and Miura [22] and the deriva-
tion of the modulation equations for g-phase wavetrains in the Korteweg-de
Vries equation by Flaschka, Forest, and McLaughlin [20] saw the development
of algebro-geometric methods for solving the Korteweg-de Vries equation (and
other integrable systems) in the class of multiphase waves. The spectral theory
of the quasiperiodic Schrodinger operator associated with the Korteweg-de Vries
equation was studied (see, for example Dubrovin, Matveev, and Novikov [13])
and soon thereafter a direct algebro-geometrical construction of multiphase wave
solutions was advanced. This construction was based on the complex structure of
Riemann surfaces on which the quasiperiodic Schrodinger eigenfunction is single
valued (see Krichever [29]).

2See the book by Faddeev and Takhtajan [18] for an exposition about the inverse scattering
transform using the nonlinear Schrédinger equation as a central example.
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With the practical difficulties of obtaining formal modulation equations in
integrable nonlinear dispersive wave equations under control, it remained to de-
termine the ubiquity of these modulation equations. There was little doubt that
as long as the modulation equations were hyperbolic, they would correctly de-
scribe the slow evolution of a system that was appropriately prepared to have
a slowly varying wavetrain as an initial condition. It was also shown that the
zero-dispersion limits of the Korteweg-de Vries equation [34] and the nonlinear
Schrodinger equation [27, 16] are weak limits described by multiphase modulation
equations®. However what was not known was whether modulated wavetrains
could appear spontaneously in nonlinear dispersive wave equations with arbi-
trary initial data in the limit of long time, as is known to be the case in linear
dispersive wave theory. Happily, this question was answered in the affirmative
by Deift, Venakides, and Zhou [8] in the case of the Korteweg-de Vries equa-
tion. Their method involves the interpretation of oscillatory Riemann-Hilbert
problems and has been extended the to the AKNS hierarchy in a study of the
modified Korteweg-de Vries equation [9], again resulting in the conclusion that
the long time limit is locally given by a multiphase wavetrain whose long scale
behavior is governed by modulation equations.

Most of the progress in multiphase modulation theory has occurred in the
study of dispersive wave systems that are spatially continuous. A notable ex-
ception is the Toda lattice system, the modulation theory of which has been
studied by Bloch and Kodama [5]. Since most familiar spatially discrete inte-
grable systems have natural continuum limits that are also integrable, it is easy
to incorrectly assume that the modulational description of the discrete system
will parallel that of the associated continuum system. The modulational descrip-
tion of the discrete system is in fact richer than that of the associated continuum
system because the two differ significantly for finite lattice spacings h, and yet
the discrete system becomes the continuous system as h goes to zero.

These ideas are stressed in the recent work of Levermore and Liu [38, 37] and
Hays, Levermore, and Miller [25] who undertake the macroscopic description
of oscillations in general conservative lattices; governed on a microscopic level
by systems of (infinitely many) coupled ordinary differential equations in time.
The microscopic equations describe the evolution of a quantity depending on
an integer position index, n, and a real time variable, ¢; the goal i1s to identify
and describe behavior on spatial and temporal scales much longer than those
characteristic of n and ¢. The main tool that i1s used here is the averaging of
local conservation laws about oscillatory solutions to obtain formal modulation
equations for the macroscopic variables. This procedure consists in general of
several steps:

1. Identify a class of oscillatory solutions of the microscopic dynamical system
at hand. This class is parametrized by a finite number of real constants of
motion.

3 A recent review of zero-dispersion limits of physical systems was written by Lax, Levermore,

and Venakides [35].
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2. Allow these parameters to depend on the slow modulational variables X =
hn and T = ht, where h is the small lattice spacing. Substitute this
modulated solution into a set of local conservation laws. There should be as
many independent real local conservation laws as there are real parameters.

3. Formally pass to the limit A | 0 in the local conservation laws to obtain
partial differential equations for the motion parameters as functions of X
and 7. In general, this step involves averaging the conserved densities and
fluxes over oscillations in the fast variables n and .

4. Study the resulting system of conservation laws to determine the domains
of hyperbolicity and ellipticity.

In the paper [25], this procedure was carried out for harmonic plane wave solu-
tions of a family of lattice equations given by

where n is an integer index, A, is a complex function of time, and f and F are
real valued functions. Since the family of harmonic plane waves is described by
two parameters, an amplitude p and a wavenumber k, the result of the averaging
procedure is a set of two coupled first order partial differential equations in X
and T describing the evolution of p(X,T) and k(X,T). Since in this case there
are only two equations, they may in principle be cast into Riemann invariant
form whenever they are hyperbolic. This fact was exploited in [25] in the study
of data for which the modulation equations are hyperbolic at 7" = 0 to deter-
mine conditions on the data sufficient to prevent the equations from dynamically
changing type from hyperbolic to elliptic.

In studying the macroscopic behavior of solutions more complicated than
harmonic plane waves, serious problems, some merely technical but some analyt-
ically substantial, arise in the first, second, and fourth steps. More complicated
exact solution families are very difficult to find*, and the system (1.1) is known
to have in general only two local conservation laws, causing the procedure to
fail in the second step for any solution families described by more than two real

parameters. Even if modulation equations could be obtained by other means®,

4In seeking multiphase wavetrains in a spatially discrete system such as (1.1), one first makes
the Ansatz Ay, (t) = exp(i00)B(61,...,0n) where 6; = k;n — w;t and B is taken to be periodic
with period 27 in each of its arguments. This leads to the problem of describing periodic
solutions of a nonlinear functional (partial) differential equation for B with k; and w; as pa-
rameters. The theory of functional differential equations is not as complete as that of ordinary
and partial differential equations, even at the level of existence of solutions. The book by Hale
and Lunel [23] gives a very good introduction to the difficulties that can arise in the analysis
of functional (ordinary) differential equations. Chapter 11 in particular deals with periodic
solutions to autonomous equations. In wave equations that are spatially continuous, the situ-
ation is somewhat better, since the equation for B is a partial differential equation, and not
a functional equation. However, even in this case, strategies for dealing with finding multi-
phase waves in the spatially continuous case have been primarily perturbative and numerical,
as discussed by Ablowitz [1].

51t is also possible to obtain modulation equations for parametrized families of waves in sys-
tems that can be described by a variational principle involving an action functional and its
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the analytical advantage of putting the modulation equations into Riemann in-
variant form can only be gained when the family of microstates is described by
no more than two parameters (in the absence of any additional structure). Thus,
the kind of change-of-type analysis carried out in [25] cannot be carried out for
modulation equations in the general case. But even more importantly, we expect
that the complete nonequilibrium thermodynamical description of a typical sys-
tem of the form (1.1) does not consist of microscopic behavior that is controlled
by local constants of motion at all, but rather consists of microscopic motion
that is irregular and may need to be described statistically. Understanding the
long range correlations in a spatially and temporally chaotic dynamical system
is a different program entirely, requiring other methods.

However, it 1s possible to learn a great deal by concentrating on special cases
of the general system of lattice equations (1.1) for which the methods outlined
in the four steps above work very well. For example, when f(p) = 1 £+ p and
F(p) = —2, the family of lattice equations becomes the Ablowitz-Ladik equations

(1.2) i0:An + (14 | A1) (Apgr + Apoy) — 24, = 0.

This system of equations is a discrete analog of the nonlinear Schrodinger par-
tial differential equation, and like its continuum limit partner, it is known to be
integrable by means of an inverse spectral transform, and has been dealt with in
the whole line [4] and periodic [6] cases. In principle, the methods of integrable
systems may be used to construct very broad classes of multiphase wavetrain
solutions of arbitrary complexity, which adhere to a macroscopic modulational
description also available within the framework of the integrability. As we will
show, this modulational description is a set of first order partial differential equa-
tions for quantities such as wavenumbers, frequencies, and amplitudes, that vary
on the slow scales of X and 7. In integrable systems similar to the Ablowitz-
Ladik system, these modulation equations have been shown to correctly describe
emergent macroscopic phenomena. For example, the long scale description of the
nonequilibrium region behind the shock front in the Toda shock problem, as de-
scribed by Venakides, Deift, and Oba [49] and constructed as a long time limit
of local averages in the exact shock solution, is equivalently given by the formal
modulation equations provided by Bloch and Kodama [5]. These modulation
equations provide a more generic description of macroscopic behavior than do
local averages constructed from a particular exact solution because the mod-
ulation equations are derived in the case of an arbitrary local solution in the
class of multiphase wavetrains. Furthermore, the modulation equations have the
advantage that they may always be written in Riemann invariant form. Thus,

associated Lagrangian function. The Lagrangian is averaged holding the parameters fixed,
and an variational principle is postulated for the parameters using the averaged Lagrangian
integrated over X and T as the action functional. This approach can give formal results even
when there are too few conservation laws to permit one to proceed as described in the four
steps above. The averaging of Lagrangian functionals to derive modulation equations was first
done by Whitham; a good description appears in his book [50]. Furthermore, formal modula-
tion equations may be developed by directly employing the method of multiple scales and an
appropriate solution Ansatz, as discussed by Ablowitz and Benney [2].
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it 1s desirable to understand the multiphase wavetrains and their corresponding
modulational descriptions in the special case of the integrable Ablowitz-Ladik
system as a benchmark from which perturbative methods may be used to extend
the theory as much as possible to generic systems of the form (1.1).

Henceforth, we will be concerned with the construction of some solutions to
the system of nonlinear ordinary differential equations given by

—i0Q(n,t) = [Qn+1,0) = 2Q(n. 1) + Qn — 1,1)]

+ Q(n,t)R(n,t)[Q(n+1,t)+Q(n—1,t)] =0,
iy R(n,t) +  [R(n+1,6)= 2R(n,0)+ R(n — 1,

- R(n,t)Q(n,t)[R(n—l—1,t)+R(n—1,t)] =0,

where n 1s an integer index specifying location in the lattice, and ¢ is a continuous
time variable. This system of equations is a complexified version of (1.2). The
latter is recovered by taking R(n,t) = +Q(n,t) for real t. Tt is easier to work
with the complexified system (1.3) since the construction that follows produces
complex potentials R and ) that are related only by being a solution pair to

(1.3); the symmetries that guarantee that R(n,?) = +Q(n,t) are imposed only
after the relationship between the data that we will use to generate a solution
and the solution (@, R) itself is made transparent.

Our objective 1s not to solve the initial value problem, only to produce a
class of multiphase wave solutions to (1.3) using methods of algebraic geometry.
However, we will show that this class of solutions includes almost all spatially
periodic solutions® of (1.3), and we will provide a closed form formula for the
solution to the initial value problem for a dense class of initial data in the case of
periodic boundary conditions. Although an algorithm for computing the solution
to the periodic initial value problem has been given [6], a formula for the solution
has not appeared in the literature.

6This is an expected result, placing the periodic initial value problem for the Ablowitz-Ladik
equations in natural context with other integrable systems. The initial value problem for
integrable wave equations with periodic boundary conditions is solved in terms of potentials
constructed using Riemann surfaces (possibly having infinite genus) because in each case, a
solution of such an equation is a potential in a linear operator (depending upon a complex
spectral parameter, say, A) that is second order (or higher order) in the independent spatial
variable. The fundamental spectral quantity in the periodic case is the Floquet multiplier,
which is naturally interpreted as a function on an multiple cover of the A plane, where the
multiplicity is equal to the order of the corresponding linear operator. For examples, see
Kac and van Moerbeke [28] regarding the Toda lattice, Ablowitz and Ma [39] regarding the
nonlinear Schrddinger equation, and McKean and Trubowitz [40] regarding the Korteweg-de
Vries equation. There is only one special case in which we do not provide the solution to the
periodic initial value problem in terms of finite genus solutions — the case when there is some
lattice point n such that Q(n,0)R(n,0) = 1. Basically, that point decouples from the rest
of the lattice, as can be seen from (1.3). Reasons for considering this as a special case are
provided in Appendix A.
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Let us begin to describe the scheme we will employ to construct this class of
solutions. Ablowitz and Ladik [4] observed that the system (1.3) is the simulta-
neous solvability condition for the spatial linear problem

(1.4) vin+ 1,t,A) = L(n,t,\)v(n,t,A),
where
A Q(n,1)
(1.5) L(n,t,A) = ,
R(n,t) A1

and the temporal linear problem

(1.6) —i0yv(n,t,A) = B(n,t, A)v(n,t,A),
where
B(n,t, )
(L.7) N —1-Q(ntR(n—1,1) Qn,H)A—Q(n—1,H)A"

Rin—1,H)A = R(n,H)A™" 1+ R(n,)Q(n — 1,t) — A~?

The solutions are two-component vectors v = (vy,vs)?, and A is a complex
parameter on which the solutions implicitly depend. For historical reasons, the
functions @Q(n,?) and R(n,t) appearing in these two linear problems are called
potentials”. This representation® is purely local in n and ¢, so it works regardless
of any particular boundary conditions imposed on the potentials Q(n,?) and
R(n,t).

There is a redundancy in these two linear problems, based upon the substi-
tution of —A for A, that has been observed ever since the introduction of (1.4)
as a scattering problem in [4]. When Ablowitz and Ladik developed the inverse
scattering scheme for (1.4) in order to reconstruct solutions (@, R) of (1.3) that
decay rapidly as |n| — oo, they observed that the reflection coefficients were

"The first problem treated by the inverse scattering method, the Korteweg-de Vries equation
[22], was associated (in analogy with the association between the nonlinear system (1.3) and
the spatial linear problem (1.4)) with a stationary Schrédinger equation for a wavefunction
i having energy A. The solution u(z,t) of the Korteweg-de Vries equation, interpreted as a
function of x with a parameter ¢, appears as the potential energy function in this Schrédinger
equation.

8 A representation of a nonlinear equation for potential functions as a compatibility condition for
a spatial linear problem with a temporal linear problem is called a zero-curvature representation
[18]. This nomenclature comes from the interpretation of the linear problems as representing
infinitessimal parallel translations of a vector V in space and time with respect to an affine
connection parametrized by the potentials. The curvature tensor of this connection vanishes
if the two linear problems are compatible.
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odd functions of A; this had the consequence of causing the discrete spectrum of
(1.4) to come in positive-negative pairs and the continuous spectrum of (1.4) to
have the same symmetry so that the reconstruction involved a contour integral
over only that part of the unit circle lying in the right half A plane [4]. Similarly,
Bogolyubov and Prikarpat-skii observed that the elements of the monodromy
matrix derived from (1.4) in the case of spatially periodic potentials had either
even or odd parity in A; this led them to construct solutions from Riemann sur-
faces whose branch points, like the discrete eigenvalues of the whole line problem,
came in positive-negative pairs [6].

Our experience in using the linear problems (1.4) and (1.6) to construct
general solutions to (1.3) using Baker-Akhiezer functions led us to analogous
results. We had wanted to proceed by directly constructing a simultaneous so-
lution v = (v, vs)T of (1.4) and (1.6) for all values of the spectral parameter
A from which the consistent potentials @(n,t) and R(n,t) could be deduced;
the general approach was to parallel those of Dubrovin [11], Krichever [29, 30],
and Previato [43] who treated similar problems in other nonlinear systems. For

example, to find solutions to the Toda lattice equations?,

(1.8) 6?(](77,,15) = eXp(Q(n +1,t)— Q(n’t)) — exXp <Q(n’t) —q(n — Lt)) )

one considers the two linear problems (whose consistency condition is (1.8))

(19) viln+1,8) = (@q(n,t)—|—/\)vl(n,t)—I—exp(q(n,t))vz(n,t),
valn+ 1,¢) = —exp(—q(n,t))vl(n,t),
and
(1.10) dv1(n,t) = —exp(q(n,?)),
Gva(n,t) = exp(—q(n—1,t))vi(n,t) + Ava(n,t),

where we have used the notation of Faddeev and Takhtajan [18]. These linear
problems are singular when A is large; asymptotic analysis gives two possible
dominant balances for A near oo. If A is reinterpreted as a sheet projection
function of a hyperelliptic Riemann surface with two points over oo given by
oot and oo™, one can ask that the functions v; and v, be functions on the

9The periodic problem for the Toda lattice was first solved in terms of Abelian integrals by
Kac and van Moerbeke [28], and a development of solutions using Baker-Akhiezer functions is
given by Krichever [30].
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Riemann surface with behavior given (in terms of a point P on the surface) by

U1 0(1)
= Mexp (/\_115) ., P — oot
Vo 0(/\_1)
(1.11)
v 0(/\_1)
= A "exp(At) . P — oo™
(2] 0(1)

It turns out that by insisting further that the functions v; and vs have certain
poles on the Riemann surface, and by appropriately normalizing them, one can
conclude that the two functions are unique, and that they solve the two lin-
ear problems, as long as ¢(n,t) is related to a certain leading coefficient near
oot. There are expressions for v; and v, in terms of Riemann theta functions,
and from these, one derives an expression for a solution of the Toda problem,
q(n,t). This isin fact the formula that Bloch and Kodama inserted into the local
conservation laws prior to averaging and passing to the continuum limit in the
parameters of the potential ¢(n,t) (the parameters characterizing the Riemann
surface employed in the construction), eventually obtaining formal modulation
equations for the moduli of a hyperelliptic Riemann surface [5].

In contrast, when we studied the linear problems (1.4) and (1.6) for the
Ablowitz-Ladik equations, the construction was not so simple. The asymptotic
analysis led us to consider Riemann surfaces with four punctures (cot, co™, 0F,
and 07), and by specifying the poles of v; and v3 and normalizing appropriately,
we were able to show that the two functions are unique. Where the construction
deviated essentially from that for the Toda lattice was at the point where one
concludes that v1 and vs solve (1.4) and (1.6). In fact, we were unable to solve
these linear problems with the functions v; and vo without further imposing the
symmetry

vi(n,t,o(P)) = (=1)"v1(n,t, P),
(1.12)

va(n,t,o(P)) = (—1)"+1vz(n,t, Py,

where P denotes a point on the Riemann surface, and o denotes the unique
involution of the surface that covers A — —AX and preserves the sign of the square
root function that defines the surface. We found that the involution o only exists
on Riemann surfaces of odd genus whose branch points enjoy the symmetry of
A — —A. In this case, we were able to obtain solutions to (1.3) as in the Toda
problem, however due to the symmetry, the formulas were reducible to simpler
formulas involving what appeared at the time to be an auxiliary Riemann surface
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of smaller genus. The details of the construction on Riemann surfaces of odd
genera and the corresponding reduction can be found in the dissertation of Miller
[41].

These clues led us to believe that the Lax pair (1.4) and (1.6) could be
replaced by another Lax pair that takes into account the A — —A symmetry.
The construction of solutions using this new Lax pair would then proceed in
the same manner as that for the Toda lattice, without the need to impose any
additional symmetries. Such a Lax pair is easy to find by introducing a simple
transformation of v; this induces a corresponding transformation in the linear
problems (1.4) and (1.6) yielding the new Lax pair. Consider a new vector
function u defined by

(1.13) ui(n,t) = Alvi(n,t),

us(n,t) = A'Flug(n,t).

The linear problems (1.4) and (1.6) are then correspondingly transformed into
equations for u:

(1.14) u(n+1,t,2) = L(n,t, z)u(n,t, z),
where
N z Q(n,t)
(1.15) L(n,t,z) = ,
zR(n,t) 1
and
(1.16) —idyu(n,t, z) = B(n,t,z)u(n,t,z),
where
ﬁ(n,t,z)
(1.17) 2=1=Q(n,)R(n—1,1)  Q(n,t)—z"'Q(n —1,t)

zR(n —1,t) — R(n,t) 1— 2zt + R(n,)Q(n — 1,1)

In these equations, the spectral parameter z has been substituted for A%, thereby
eliminating any redundancy associated with the symmetry A — —AX. The linear

equations (1.14) and (1.16) make up the transformed Lax pair that we will use

almost exclusively in the remainder of this paper'?; thus, we will henceforth

10Tn Appendix B we will use the original Lax pair of Ablowitz and Ladik to describe allowable
branch point configurations for periodic solutions of the focusing Ablowitz-Ladik equations. We
will also use a unimodular version of this original Lax pair to discuss branch point configurations
in the defocusing problem.
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drop the tildes on the transformed matrices. These linear problems may appear
to be less symmetrical than (1.4) and (1.6) in their dependence on the spectral
parameter, but they will allow a streamlined construction of solutions to (1.3).

This paper shows how to use this new Lax pair to find a class of algebro-
geometric solutions to (1.3) that are associated with finite genus Riemann sur-
faces, first assuming distinct branch points, and subsequently relaxing that con-
straint. Using these solutions, we will solve the spatially periodic (and later
twist-periodic!! initial value problem. We will also show how to select the so-
lutions that satisfy reality conditions and thus solve the integrable discretiza-
tion of the cubic nonlinear Schrédinger equation (1.2). Finally, we will develop
the modulation equations for multiphase waves in this spatially discrete set-
ting. Throughout, we will emphasize the similarities and differences between the
Ablowitz-Ladik equations and the (continuum) nonlinear Schrédinger equation.
The main differences will be:

e The spatially twist-periodic potentials of the Ablowitz-Ladik equations al-
ways correspond to (possibly singular) Riemann surfaces of finite genus,
whereas most twist-periodic potentials of the nonlinear Schrodinger equa-
tion correspond to surfaces of infinite genus,

e In the defocusing case of the Ablowitz-Ladik equations, there are nonempty
classes of both stable and unstable multiphase waves of each genus, whereas
the defocusing nonlinear Schrodinger equation has only stable multiphase
waves, and

e In the complex Ablowitz-Ladik equations, each hyperelliptic Riemann sur-
face and nonspecial divisor gives rise to two distinct algebro-geometric so-
lutions, whereas in the complexified nonlinear Schrodinger equation there
is only one solution for each Riemann surface and divisor.

The structure of the remainder of this paper is as follows. First, Section 2
contains a detailed analysis of the asymptotic behavior of solutions to the stream-
lined Lax pair (1.14) and (1.16) in the singular limits of z — 0 and z — oo, and
a development of the theory of functions on hyperelliptic Riemann surfaces that
behave asymptotically for large and small z like solutions of these two linear
problems. At the end of this section we will have found a pair of functions wu;
and ug that are likely candidates for a simultaneous solution of (1.14) and (1.16).
Then, in Section 3, the function theory will be used to prove that the candidate
functions w; and wuy actually solve both linear problems — not just asymptot-
ically, but globally — as long as the potentials () and R are related to certain
leading coefficients in the expansions of u; and us near singularities. Since, for
these potentials, the problems (1.14) and (1.16) are obviously consistent, @ and
R are solutions, constructed from a finite set of complex spectral data, to the
Ablowitz-Ladik equations (1.3). The final sections of the paper are devoted to the

11 Twist-periodic boundary conditions on the potentials Q and R are defined by choosing an
angle 6 and an integer N and insisting that Q(n + N) = exp(i#)Q(n) and R(n + N) =
exp(—10)R(n) for all n.
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analysis of the constructed solutions. Section 4 is dedicated to the reduction of
the complex Ablowitz-Ladik equations (1.3) to the focusing and defocusing cases
of the integrable discrete nonlinear Schrodinger equation (1.2). Realizing this re-
duction at the level of the finite genus potentials requires specifying conditions
on the spectral data equivalent to the reality conditions on the potentials them-
selves: R(n,t) = £Q(n,t). The reality conditions are most easily expressed in
terms of spectral data using polynomial (in z) squared eigenfunctions which are
introduced in Section 4 as a tool. Section 5 deals with the solutions to Ablowitz-
Ladik equations (1.3) restricted to be periodic in n. These periodic solutions
are characterized in terms of their spectral data, and the initial value problem
for periodic boundary conditions is coincidentally solved in terms of formulas for
Q(n,t) and R(n,t) first presented at the end of Section 3. Then, the periodic
theory will be extended to handle cases that are only twist-periodic in n. With
the elementary description of the finite genus exact solutions to (1.3) complete,
Section 7 undertakes a description of approximate solutions to (1.3) that appear
locally in n and ¢ to be exact finite genus solutions, but that vary slowly on the
slow scales X = hn and T' = ht for a small lattice spacing h. Formal modulation
equations are derived, and a gauge symmetry group is introduced that leaves the
modulation equations invariant, but alters their appearance. The gauge group is
used to simplify the modulation equations in the focusing and defocusing cases.
The resulting simplified modulation equations can locally be either hyperbolic
or elliptic, depending upon the local branch point configuration, but if initially
hyperbolic for all X, the equations cannot evolve to become elliptic as long as
the data are smooth in X. In Section 8, we summarize the results and discuss
open problems. Some technical matters are delegated to the appendices. Ap-
pendix A contains the description of solutions obtained from Riemann surfaces
in the singular limit of coinciding branch points; this material is more technical,
but 1s used in the complete solution of the initial value problem for periodic
boundary conditions given in Section 5. Finally, in Appendix B we prove two
theorems concerning allowable branch point configurations in the periodic focus-
ing and defocusing cases. The first theorem states that in the focusing case the
periodic and antiperiodic Floquet eigenvalues may only lie on the unit circle if
they have multiplicity greater than one. The second states that for defocusing
potentials satisfying |Q(n, )| < 1 for all n, the periodic and antiperiodic Floquet
eigenvalues must lie on the unit circle. In both cases, we suggest how the results
might be extended from the strictly periodic to the general finite genus cases.
The paper is intended to be somewhat self-contained; however, any technical
details not presented here can be found in Dubrovin [11].

2. Singular asymptotics of the linear problems. The Baker-Akhiezer
function.

In order to build a solution u = (uy, us)? for every value of the complex
parameter z, the behavior of the two linear problems (1.14) and (1.16) near
the singular values z = 0 and z = oo must, in particular, be examined. First,
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consider the spatial problem (1.14) in the case of z small. There are two dominant
balances possible:

ay ()= (G) e ()= (8.

Similarly, in the case of z large, there are two dominant balances possible:

(2.2) (uz) =z (0(1) , and w) =\0())
These balances will be modified by overall factors depending on z and ¢ obtained
by substituting them into the temporal linear problem (1.16) and seeking a

dominant balance. The final result of this procedure is the pair of dominant
balances valid for z near 0,

(2.3) (Z;) — (88;) , and (Z;) =exp(i(l —z7")) (88;) ;

and the pair of dominant balances valid for z near oo,

(2.4) (Z;) = " exp(i(z — 1)t) (88;) , and (Z;) - (gg) '

If the function u depending on the spectral parameter z is to include all four
of the above kinds of behavior, it is necessary to enlarge the scope of the problem.
Notice that reinterpreting the spectral parameter z as a sheet projection function
of a two-sheeted (hyperelliptic) Riemann surface T' and demanding that the
solution u live on I' yields the possibility of two different kinds of asymptotic
behavior near each of z = 0 and z = oo. Thus, to acommodate the function
u, we introduce the smooth Riemann surface I' as the algebraic curve of genus
g > 0 associated with the relation

2g9+2

(2.5) v =J[G-=).

i=1

If the z; are all finite and nonzero then z = 0 and z = oo will each have two
preimages. Labeling one of the preimages on I' of z = 0 as P = 0 and the other
preimage as P = 07, and similarly labeling preimages of z = co as P = coT and
P = oo™, we insist that our solution be a function of n, ¢, and P € I" having the
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asymptotic behavior!?:

) e

(2.6)

ui(n,t, P)\ _ [O(1) _
QWWfD—@@)’ P=oem.

It is important to observe that there are four possible ways to label the two
points over z = 0 as 0% and the two points over z = oo as co®, and that these
four different labeling choices lead to four different kinds of asymptotic behavior
on T' as described by (2.6). However, only two of these four labelings are essential,
since the simultaneous permutation of the two zeros and of the two infinities leads
to a function u that is just the hyperelliptic involute of the original function u.
So, without loss of generality, the distant point on I' that corresponds to large
positive y for large positive z will be denoted coT; the other point on I' over
z = oo will be denoted co™. Having made this choice, however, we cannot choose
an arbitrary labeling of the two points over z = 0 without loss of generality. The
two possible labelings for the points over z = 0 lead to two genuinely different
kinds of asymptotic behavior; these in turn will lead to two different classes of
solutions to (1.3). Such a partitioning of solutions will occur in every nonlinear
system that arises as a zero-curvature condition of 2-by-2 linear problems that
are singular for more than one value of the spectral parameter. Thus, while the
solutions to the the Ablowitz-Ladik equations come in pairs due to this labeling
ambiguity, the solutions to the continuum limit nonlinear Schrodinger equation
do not, since as described by Previato [43], the 2-by-2 linear problems giving
rise to the nonlinear Schrodinger equation are singular only when the spectral
parameter is large; a solution of the linear problems on the Riemann surface T’
would only be singular near the points oot and permutation of these two points
corresponds to hyperelliptic involution of the solution u(P). This is one point
in which the description of finite genus solutions for the Ablowitz-Ladik system
(1.3) differs significantly from that for the nonlinear Schrodinger equation.

12To the reader familiar with Baker-Akhiezer function solutions of Lax pairs it may seem
incorrect to refer to the point co™ as a singular point or a puncture on the surface I' since there
is no essential singularity (or the discrete version thereof, z™) there. The relative magnitudes
of the two components u; and us are, however, determined by the two linear problems at this
point independently of the potentials, and thus we must specify this behavior of the common
solution u. Furthermore, the corresponding solution v of the original Lax pair does indeed
have a singularity of the form A~" at the point co™.
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In the context of the solutions of the complex Ablowitz-Ladik equations (1.3),
it 1s not difficult to unify the two different components of the solution manifold.
In fact they may be analytically continued into each other through the follow-
ing device. Rather than thinking of specifying 2g + 2 distinct branch points
z (that is, an element of the set'3 (C*(2972)\ A)/8,,.4) in order to specify
the Riemann surface I', consider specifying an element of the double cover of
(C*29+2)\ A)/85,15 entering through the quantity

(2.7)

We denote this set of genus g Riemann surfaces with choice of n as M,, and
from now on, by the symbol I', we will mean an element of M,. Appendix A
includes a discussion of how to include the diagonals A in the set of branch
points, resulting in a slightly bigger set M ; an element I' of this enlarged set
consists of a Riemann surface of genus g < ¢ with choice of 5, and a divisor &
on C*. We will occasionally abuse notation by referring to the Riemann surface
determined by I' € /\/l;] by the same name, I'. Concretely specifying an element
of M, involves the following steps. First, choose a point (£, 7) with £ € C* from

the Riemann surface of the algebraic relation
(2.8) N =¢.
Then select 2¢g 4 2 distinct points 21, ..., 22442 from C* that satisfy

2g9+2

(2.9) II==¢

i=1

These points determine the Riemann surface. Finally, the labeling of the two
points over z = 0 is determined in this way: 0% is the point over z = 0 such
that y(0*) = 7, and correspondingly 0~ is the point over z = 0 such that
y(07) = —n. Thus, given a surface I' with one particular labeling of the points
over z = 0, one may analytically deform the surface in such a way that the
branch points return to their original configuration, but that the points 0% have
been exchanged. An elementary deformation that achieves this result consists
of holding all but one branch point fixed, and moving the remaining branch
point through a closed loop encircling z = 0, the point of monodromy. In the
course of this deformation, the branch points have all returned to their original
configuration, but the quantity n has changed sign. A similar kind of double
covering occurs in the study of periodic solutions to the sine-Gordon equation,
because the simultaneous solution to the two linear problems giving rise to the
(complex) sine-Gordon equation has singularities when the spectral parameter

13C* denotes the set of all finite nonzero complex numbers, S, denotes the symmetric group
of permutations of m symbols, and A denotes the diagonal, consisting of sets of branch points
where z; = z; for some ¢ and j.
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is both small and large. As explained by Ercolani, Forest and McLaughlin [14],
the solution to the sine-Gordon equation involves the square root of the product
of the finite nonzero branch points. Thus, each Riemann surface supports two
classes of complex solutions, one for each sign of the square root, and these two
classes may be continued into each other by the same device described above.
However, when reality conditions are imposed on the solution, these conditions
correspondingly introduce constraints on the allowable Riemann surfaces; these
constraints sever the analytic connection between the two components. We will
show at the end of Section 4 that the same is true when the complex Ablowitz-
Ladik equations (1.3) are reduced to the focusing and defocusing cases (1.2).

It is time to develop the theory of functions on I' with asymptotic behavior
given by (2.6). To begin with, we say that a function ¢(n,t, P) of P € T" and
depending parametrically on an integer n and a real number ¢ has singularities
of type 11f it has the following behavior:

P(n,t, P) = ai(n,t)z (1—1—(’)( ))exp((z—l)), P — oot
(2.10) 1/)(n,t,P):b1(n,t)(1—|—(’)( )) , P— oo™,

Y(n,t, P) = e1(n,t)z (1—1—(’)( )) P—0",

1/)(n,t,P):d1(n,t)(1—|—(’)( )) exp( (1 -2~ )t), P —0t,

where a1, b1, ¢1, and d; are arbitrary functions n, ¢, not identically zero. Sim-
ilarly, a function ¢(n,t, P) has singularities of type 2 if it has the following
behavior:

¢(n,t,P) = as(n,t)z" (14 O(z7")) exp(i(z — 1)t), P — oo™,
(2.11) d(n,t,P)=bo(n,t)z(1+ O(z71)), P — o0,

d(n,t, P) = ca(n, t)z"T1 (1 + (’)(z)) , P—0",

é(n,t,P)= dz(n,t)(l + (’)(z)) exp(i(l — z_l)t) , P —0t,

where again as, b2, ¢2, da are arbitrary nonzero functions. Let D = Py +...+ P,
be a nonspecial integral divisor'* on I' of degree g.

14 The points D = P + ... + Py must make up what is called a nonspecial divisor on I'. This
concretely means that if P* () is one of the g points P;, then P~ (u) cannot be, and vice-versa,
where g is not one of the branch points and Pt (u) and P~ (u) refer to the two distinct points
over z = . Such a condition of nonspeciality ensures that the function ©@(A(P) — A(D) — K)
does not vanish identically, but rather has exactly g zeros on I' at the points Py, ..., Py. Most
sets of g points make up nonspecial divisors; accordingly we will sometimes refer to the g points
of such a nonspecial divisor as being in general position.

It D = P, + ... 4 Py is the divisor of the poles (zeros) of a function u, then the poles
(zeros) of u are confined to the points Pi,..., Py, with allowable multiplicities at the point
P; determined by the number of times PP; appears in the formal sum D. Divisor notation is
reviewed in [11].
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DEFINITION 2.1.  A{(T, D) is the linear space of all functions on T with sin-
gularities of type 1 and otherwise meromorphic, having D as the divisor of the
poles.

DEFINITION 2.2.  Ao(T, D) is the linear space of all functions on T with sin-
gularities of type 2 and otherwise meromorphic, having D as the divisor of the
poles.

Functions in A1 (T, D) and Ay(T', D) are called Baker-Akhiezer functions; a vector
function whose first component 1s in A; and whose second component 1s in As
is called a vector Baker-Akhiezer function. It is a consequence of the complex
structure of the Riemann surface T' that the spaces A1(T', D) and A2(T, D) are
one-dimensional in the sense that any two elements of either of these two spaces
are proportional via a function of n and ¢ only. We make this idea concrete in
the following two lemmas.

LemMa 2.3. dimA4(T, D) = 1.

Proof: Begin by supposing the existence of a nonzero function 1(°) in the
space A1(T',DP) that has minimal order at the points of the divisor D. This
means that if the point P appears in the divisor D with multiplicity m, then
¥ has a pole of order m at P. With this assumption it is possible to show
that dim A;(T', D) = 1. Let ¢ be an arbitrary function in A;. Then, in view
of the expansions (2.10), the quotient ¢ = t/(®) is holomorphic near the four
singular points 0% and co*. The only poles of € on T lie in the nonspecial divisor
of zeros of ¥(¥) (since the poles of ¢ and ICY cancel) which has degree g. From
the Riemann-Roch theorem, the dimension of the space of all such functions is
exactly 1, and thus & is a constant function on T' (that is, dependent on n and
t only). Thus, ¥ oc ¢ for all ¢ in A;. So if Aj(T,D) contains a function like
(9 then A1(T, D) is exactly one dimensional.

Thus, to deduce that dim A1 (T, D) = 1, it must be shown that there exists a
nonzero element of this space having minimal order at the points of the divisor
D. Define the function:

O(A(P) — A(D) — K + Un + Vi)
O(A(P) — A(D) — K)

P P
X exp (n/ w(s) + t/ (.d(z)) .
Py Py

v O(n,t, P) =
(2.12)
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In this formula, A is the Abel mapping'®, K is the Riemann constant vector!'®
of I', and © is the Riemann theta function'” of the surface I'. The path on I in
the integrals in the exponent is chosen to be the same as the path in the Abel
mapping. The differentials w3y and w(z) on I' are normalized to have vanishing
integrals over all a-cycles of a canonical homology basis'®. The differential w(3)

12 The Abel mapping is defined as A : T' — Jac(T") by

P
A (P) = / Vi,
Py

where {v1 ...v4} is the basis of holomorphic differentials on I" dual to a canonical homology
basis. In this paper, the base point Fy is fixed to be one of the branch points of the surface I'.
The Abel map is extended by linearity to all divisors on I' so that A(D) = A(P1)+...4+ A(Py).
In order for the Abel map to be single valued, the integrals must make sense regardless of the
chosen path on I' from Fy to P. The value of the integral is thus considered modulo integrals
over noncontractable closed loops, and this is what we mean by using the symbol “=” in the
definition. The corresponding range when the map is appropriately extended to all divisors is
a multitorus in C9 denoted by Jac(T"), the Jacobian variety of I'. This nonlinear mapping is
often used to linearize nonlinear differential equations. See [11] for details.

16 The Riemann constant vector of a hyperelliptic Riemann surface gives the location of the
zeros of the corresponding theta function in the Jacobian of I'. Farkas and Kra [19] give a
useful formula for the Riemann constant vector in terms of the Abel map and the branch
points. Let the base point of the integral in the Abel map be the branch point z1. Then the
Riemann constant vector is defined on Jac(I') as

g
K= Z A(22i+1 ) s
=1

where the g branch points z2;41 are chosen (uniquely, up to permutation) so that A(z2;41) is
an odd half period. See [19] for details.

17The Riemann theta function is a function of w € C9 depending parametrically on a g-by-g
matrix M having a negative definite real part. The function is defined by the Fourier series

O(w) = Z exp(%nTMn-I—nTw) .

neZs9

The Riemann theta function of the Riemann surface I' corresponds to choosing the matrix M

so that
M;; :% Vi,
b

where the b; refer to the g b-cycles of a canonical homology basis, and the v; refer to the
elements of the basis of holomorphic differentials on I' dual to the chosen homology basis. See
[11] for details.

18 A canonical homology basis consists of 2g noncontractable oriented loops on the surface I'
labeled as a1,...,a4,b1,...,bg, modulo smooth deformations of the loops. The loops must be
independent, and must satisfy the intersection conditions

a;0a; =b;0b; =0,

and

a; 0by = b45,
where § here denotes the Kronecker delta function. The symbol “0” denotes the canonical
intersection number of the two loops; = o y is computed as the number of times the cycle y
intersects the cycle z, with the contribution being positive (negative) if y intersects z from the
right (left). Each cycle & can be lifted by the Abel integration map to C9 where we denote the
corresponding vector by x. The basis of holomorphic differentials dual to a canonical homology
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is an Abelian differential of the third kind having simple poles at 0~ and cot
with residues 1 and —1 respectively and no other singularities. The differential
w(2) is an Abelian differential of the second kind having singularities only at the
points cot and 0T where it has the expansions:

wiz) = (z +O(z72 ) dz
wizy = (iz72 4+ 0(1)) dz P—0t.

P — oot

(2.13)

The function ¥(® must first be shown to be a well defined function on T, since
some ambiguity enters the expression for ¢(®) through the path in the Abel map,
which 1s only determined modulo cycles on I'. However, if the choice of path
in the Abel map is changed by some cycle > l;a; + m;b; (and correspondingly
adjust the path in the exponent), the function transforms as'®

g
1/)(0) — eXp(Z |: l; (n]{ wW(3) —|—t% (.d(z))

(2.14) i=1

+ my (n]{ w(3) —I—t]{ w2y —Uin — Vlt) :|)1/)(0).
b b

So, choosing the vectors U and V so that

(2.15) U; :]{ W), Vi 2]{ w2y,
b b

z z

and using the fact that the two differentials have vanishing integrals over a-cycles,
the exponential factor becomes unity and the function (%) is well defined?®. It
remains only to show that ¥(?) is in A; and has minimal order at the points of
D. The exponential factor gives 1(°) singularities of type 1, and the solution

basis is the set of differentials of the first kind v such that

f Vg = 27T’i(sjk .
a:

7

Thus, we have a; = 2miej, where the e, are the usual unit vectors in C9. Since we will be
integrating differentials of the third kind with residues at cot, co™, and 0~, we must be aware
that a smooth deformation of a cycle on I' may introduce a residue contribution. The correct
way to handle this ambiguity is to consider a homology basis on the surface I' with punctures
at these three points. Around a puncture at a point P, we place a small closed oriented loop
cp. Thus, the homology basis we use is {a1,...,a4,b1,...,bg,Coo+,Coo— s Cg— }, Where a cycle
may not be deformed in such a way that it crosses a puncture. With this basis, loop integrals
of differentials of the third kind will be well defined.

19 This calculation requires the transformation law for Riemann theta functions as found, for
example, in [11].

20Strictly speaking, we must also consider changing the path by one of the cycles Coot 1 Coo— 1
or cg—. These cycles, being contractable on I" do not contribute to the Abel mapping, and
the exponential factor contributes nothing because the third kind differential w3y has integer
residues.
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of the Jacobi inversion problem in terms of Riemann theta functions gives the
denominator ezactly g zeros in the divisor D, in accordance with Riemann’s
theorem [11]. This means that 4(% is a well defined function on I' with the
required behavior. Thus dim A, (T, D) = 1.

LEmma 2.4, dimAL(T,D) = 1.

Proof: The proof that A containing an appropriate element ¢(®) implies
dim As = 1 is identical to the corresponding part of the above proof. Whereas
the proof of Lemma 2.3 employs the function ¥(?) the proof of this lemma
requires the existence of a nonzero function in As(T, D) of minimal order at the
points of D:

O(A(P) — A(D) — K + Un+ Vi + W)
O(A(P) — A(D) — K)

P P P
X exp (n/ w(s) + t/ w(z2) —1—/ w) .
Py Py Py

Here, w is the Abelian differential of the third kind on I' having simple poles at
0~ and oo™ with residues 1 and —1 respectively, and having vanishing integrals
over all a-cycles in the homology basis of I'. Choosing the vector W so that

¢ (n,t,P) =
(2.16)

(2.17) Wi :]g w=Ai(07) = Ai(o27),

makes ¢(°) a well defined function. By virtue of the integrals in the exponent it
has singularities of type 2, and again the solution of the Jacobi inversion problem
by Riemann’s theorem [11] gives the denominator exactly ¢ zeros in the divisor
D. Tt follows that dim Ao(T', D) = 1.

This all means that if it is further stipulated that the functions u; and u,
are to be meromorphic on I' away from the four singular points, and are to have
at most g simple poles at the fixed points P, ..., P; making up the nonspecial
divisor D, then the functions u; and ug are unique up to factors aq(n,t) and
as(n,t) constant on the surface T'. By choosing these two factors, we fix the
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functions u; and wy and obtain their expansions near the four singular points:

ui(n,t, P)
z" (c(ll)(n,t) + cgz)(n,t)z + (9(z2)) , P -0,
2.18
(2.18) exp(i(1 —z71)t) (d(ll)(n,t) +dP(n,t)z + (9(z2)) , P—0T,
zMexp(i(z — 1)t) (1 +adP(n, 1)z 4+ (’)(2_2)) , P — oot
bV (1) 4+ 08 (n, 1)+ O(27), P— oo,
(2.19)
u2(n,t, P)
PARE (c(zl)(n,t) + P (n,t)z + (9(z2)) , P—0,
exp(i(l — z_l)t) (1 + d(zz)(n,t)z + (’)(zz)) , P —0t,

" exp(i(z — 1)t) (a(zl)(n,t) +aP(n, 1)z + (’)(2_2)) , P — oot

z (b(zl)(n,t) + b(zz)(n,t)z_1 + (’)(2_2)) , P — oo™,

Thus, u; has been normalized to have a leading coefficient of 1 near cot and us
has been normalized to have a leading coefficient of 1 near 0. The expansion
coefficients depending on n and ¢ are working variables determined completely
by the choice of I' and D that will remain in use until the end of Section 3. They
do not appear in any final formulas.

Exact formulas for the functions u; and us are obtained by normalizing the
functions (9 and ¢(®) that appeared in the proofs of the lemmas. Any concrete
representation of u; and wus requires corresponding concrete representations of
the three differentials w(s), w(2) and w. These representations are

L/ g 1/1 29t 1 Pg(?_’)l(z,z)
(220 “<3>—l5(2‘5)+5(2+ o) e
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_[1/1 g 1 /1 z9t! 1 Pyi(z,2)

(2.22) w_[2<z_zy)+2<z_ zy)_2z+ y dz.

At this point, to obtain concrete formulas, we must choose a homology basis
{a;, bi, Cogt, Cog—,co-} for i = 1...g on T. Then, P;S)l, P;z)l, and P,_q are
polynomials of degree ¢ — 1 in z whose coefficients are symmetrical functions of
the all the branch points contained in the vector z and are determined by the g
conditions on each differential that the integrals over a-cycles should vanish. The
point here is that, while the functions u; and us do not depend on any choice of
homology, the formulas we will write down do depend on this choice as a result of
normalizing differentials with the a-cycles. Thus, while making a specific choice
of homology 1s nonphysical, like choosing gauge in a field theory, specific choice
of gauge can be used to improve cosmetic features of equations and formulas.

This homology gauge choice will be useful in simplifying modulation equations
in Section 7.

We will also need the expansions of integrals of the three differentials w(3),
w(2) and w near the points 0F (where us is normahzed) and oot (where u; is
normalized). The required asymptotic expansions are

P
/W(3) = g3+ 0(2), P — 0%,
(2.23) Po
P
/(.d(g) = 10g2+G3+0(Z_1), P — oot
Pq
P i
/w(z) = ———|—g2+0(2), P_>0+’
(2.24) Po -
P
/W(z) = iZ+G2+0(Z_1), P—>OO+,
Pq
P
/w = [+0(z)), P -0t
(2.25) Fo
P
/w = F+0(:Y, P — oot
Pq

There are corresponding expressions of the order 1 terms in the above expansions
in terms of (sometimes singular) integrals:

ot

(2.26) gs = / w(s),

Po
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OO+ d
(2.27) Gy = —log(z(Po))—l—/PD [w(g,)_f],
. ot d
(2.28) g2 = —Z(;O) -I-/PD [w(z)—lz—j] :
ot
(2.29) Gy = —iz(Po)—i—/ [wiay —idz] |
Po
ot
ot
(2.31) F o= / w.
Po

Choosing ¢ points in general position on I' as the nonspecial divisor D =
P+ ...+ P, gives the formulas for u; and wus:

O(A(0ot) — ZYO(A(P) — Z + Un + Vi)

o) ui(n,t,P) = O(A(cct) — Z 1 Un + V1)O(A(P) — Z)
X exp (_(G2 + i)t — Gan + /P nw(zy + tw(z)) ,
(2.33)
us(n,t,P) = O(A(0") —Z)O(A(P) —Z +Un+ Vi+ W)

O(A(0T) —Z+ Un+ Vi+ W)O(A(P) — Z)

P
X exp (—(g2 -t —gsn—f+ / nw(sy + tw(e) + w) ,
Pq

where Z = A(D) + K, K is the Riemann constant of I' and © is the Riemann
theta function of T

3. Solving the linear problems with the Baker- Akhiezer function.

In this section, we will show that the vector function u on I', specially con-
structed to have the correct asymptotic behavior near each of the four singular
points, and having poles in the divisor D, actually solves (1.14) and (1.16) glob-
ally on T', as long as the potentials Q(n,¢) and R(n,t) are taken to be certain
expansion coefficients of u; and wus. First, we deal with the spatial problem
(1.14). Consider the two functions on T' given by

5.1) Y(n,P) = z_luz(n +1,P)— R(n)ui(n, P)— z_luz(n, Py,
é(n,P) = wi(n+1,P)—zui(n, P)— Q(n)uz(n, P),
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where we have suppressed the ¢t dependence. These functions must be i1dentically
zero on I' in order for u to satisfy (1.4). Near singular points, they have the

asymptotic expansions (suppressing the dependence of the expansion coefficients
and potentials ) and R on the time )

" ([_R(n)(;g”(n) - c<;><n>] + O(Z)) , P—0,
exp (2(1 - z_l)t)
B32) v =13 x ([ +1) = RV () — ()] + 0()), P — 0%,

2" exp(i(z — 1)t) ([a(zl)(n +1)— R(n)] + (’)(z_l)) ., P — oot

B (n+1) = R (n) — b (n) + O(=71), P— oo,
(3.3)

a4 ([ 4+ 1) = ) - @yl ()] +0(2)) P =07,
exp(i(1—==10) ([dV(n + 1) - Q)| + 0(2)), P — 0t

¢ = Q2" exp(i(z — 1)t)

x ([l (n+1) = Qmat (n) — V()] + 0="1) P — o0,

= ([ =@yt o] + o). P~ oo™

From these expansions, it is evident that ¥ has singularities of type 1, while ¢
has singularities of type 2. Furthermore, away from the four singular points,
both of these functions have their poles confined to D because u; and wus do.
Thus, ¢ € A1(T', D) and ¢ € A2(T', D), so that ¢ oc uy and ¢ o ua.

At this point, if one chooses the potentials to satisfy

Qn,t) = dYn+1,1),
(3.4)

R(n,t) = a(zl)(n +1,1),
then the leading coefficient of v near oo™ vanishes identically in » and ¢ and
the leading coefficient of ¢ near 0% vanishes identically in n and ¢. Thus, the
constants of proportionality are identically zero in n and ¢, so that ¥ = 0 and ¢ =
0 globally as functions on I'. The function u solves (1.14) where the potentials
are given by (3.4). We have established the following lemma.

LemmMa 3.1, The vector Baker-Akhiezer function w solves the spatial linear
problem (1.14) globally in n, t, and P € T.
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With the spatial linear problem (1.14) solved, it is now possible to solve the

temporal linear problem (1.16) as well. Consider the functions

—idyuy (n) —

—[Q(n) -

—[1+R(m)Q(n—1) -

Q(n — 1)z

[z—1=Qn)R(n—1)]u
_1] UZ(n)’

—idyus(n) — [R(n — 1)z — R(n)] ui(n)

z_l] ua(n).

(n)

These functions should vanish identically on T in order for u to satisfy (1.16).
Near the four singular points, they have the expansions (once again suppressing
the dependence of the expansion coefficients and the potentials @ and R on )

(3.6)

([ =itV + 1+ QU A — 1) ¢ (n)
+Q(n = 1) ()] +0(2)),

exp( (1 —z=1)t ) ([— d(ll)(n) + Q(n,t)]z_l + (’)(1)) ,

2" exp(i(z — 1))

X ([Q(n) (R(n 1)
[ =61V (m) = Qe (m) = + 0(1),

2" exp(i(z — 1)t (

—(1+ R(n)Q(n

4 ([RGm)elY () +
exp (i(1 — z71)t)

x (B (& (n) = Q(n - 1>) |+00).
(n— 1)]z+ 0(1)) ,

-
|

[_ i9,b57(n) — R(n —

oPn

1>b§1><n>

— 1)) 8" (n)]

a(m) | + o) |

)] =t + o) |

z+0(1),

P—0-

bl

P —0t,

P — oot

P—=oo7,

P—07,

P —0t,

P — oot

bl

P — oo~
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Upon applying (3.4) and using the facts (following from the vanishing of the
expansions (3.3) and (3.2))

B\ (n, 1)+ Q(n, )0 (n,t) = 0,
(3.8)

c(zl)(n,t) + R(n,t)c(ll)(n,t) = 0,

the expansions (3.6) and (3.7) may be reduced to

z"O(1), P—0,

exp(i(1 —z71)t) O(1), P —0t,
(3.9) Y = ( )

Mexp(i(z — D) O(=7Y), P — oot

o), P — oo™,

o), P—0",

exp(i(l — 2z~ Ht) O(z), P —0t,
s | esta=nee

zMexp(i(z — 1)t) O(1), P — oot

0(z), P — oo™

Now, it is clear from these expressions that ¢ has singularities of type 1 and ¢
has singularities of type 2. Away from the four singular points on I', these two
functions have their poles confined to the divisor D because u; and uy do. Thus,
¢ € AL(T,D) and ¢ € As(T, D), so that ¢ & uy and ¢ x uz. But, from the
leading behavior of ¢ near oot and ¢ near 0%, it appears that the constants of
proportionality vanish as functions of n and ¢, and thus ¢» = 0 and ¢ = 0 globally
on T'. The function u solves (1.16) where the potentials are given by (3.4). We
have established the following lemma.

LEmMMA 3.2, The vector Baker-Akhiezer function u solves the temporal linear
problem (1.16) globally in n, t, and P € T.

We have constructed a simultaneous solution of (1.14) and (1.16) valid for all
values of the spectral parameter P € I', subject to the choice for the potentials
Q(n,t) and R(n,t) given by (3.4). Tt follows that the two linear problems (1.14)
and (1.16) are consistent for these potentials. Since the consistency conditions
for these two linear problems,

(3.11) 9 L(n,t,z)+ L(n,t,2)B(n,t,2) —B(n+ 1,¢, 2)L(n,t,2) = 0,
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are equivalent to the Ablowitz-Ladik equations (1.3), the potentials @(n,t) and
R(n,t) comprise a solution to this nonlinear problem.

THEOREM 3.3.  The pair of functions Q(n,t) = d(ll)(n +1,t) and R(n,t) =
a(zl)(n—l— 1,t) solves the Ablowitz-Ladik equations (1.3) for all integer n and com-
plex t.

Using the expressions for u; and us in terms of the Riemann theta function

of ', it is easy to extract the coefficients d(ll)(n, t) and a(zl)(n, t), resulting in the
following expressions for the solution to (1.3):

O(A(c0c™) — Z)O(A(0T) — Z + Un + Vi)

Qin—-11) = O(A(coT) — Z + Un + VH)O(A(0T) — Z)
(3.12) x exp((gs — Ga)n + (g2 — G2 — 2i)t)
R L - O(A(0T) — Z2)O(A(cct) = Z+ Un+ Vi4+ W)
(n=1t) = O(A(0T) —Z + Un + Vi + W)O(A(cot) — Z)
(3.13) xexp((F — f) — (93— Ga)n — (92 — G2 — 20)t) .

It is a consequence of the above construction that the function u(0,0, P)

is the constant function 1 on the surface I'. It follows that d(ll)(0,0) =1 and
hence Q(—1,0) = 1 for all constructed solutions to (1.3). Tt is easy to remove this
constraint by making use of the following simple symmetry of (1.3): if the pair of
functions (Q(n,t), R(n,t)) are a solution to (1.3), then (£Q(n, ), R(n,t)) will
also be a solution for an arbitrary nonzero complex number &. In contrast with
the construction of Previato [43] for the cubic nonlinear Schrodinger equation,
this C* action cannot be absorbed into the unscaled formulas (3.12) and (3.13)
through a change of the divisor D to a linearly equivalent?!' divisor D/, without
realizing the flow of (1.3) on a manifold that Previato refers to as a generalized
Jacobian.

A family of solutions to (1.3) has been constructed from a set of data that is
in analogy to the scattering data used to reconstruct the potential function in
whole-line inverse scattering problems. In our case, the data making up a given
solution pair (Q(n,t), R(n,t)) are

e the 2¢g+2 distinct finite complex branch points z; and the number n making
up the Riemann surface with labeling from the set M,

21 A divisor D is linearly equivalent to another divisor D' if D =D+ Pi + ... 4+ P — Q1 —

.. — @Qm, where the P; are the zeros and the Q; are the poles of some meromorphic function

on I'. It follows from Abel’s theorem that A(D) and A(D’) differ by a lattice vector of the

form
g
E mia; +n;b;,
i=1

where the m; and n; are integers.



28 P.D. MILLER, N.M. ERCOLANI, .M. KRICHEVER, C.D. LEVERMORE

o the ¢ points P; = (z;,y;) on I' making up the nonspecial divisor P, and

e the complex scaling parameter &.

We remark that the formulas simplify in the special case of ¢ = 0. In this
case, the theta quotients disappear, leaving only the complex exponentials. In
Appendix A, an enlarged class of solutions will be developed which will include
the above formulas as the generic case, but will allow the constraint that z; # z;
for ¢ # j to be effectively relaxed.

The solutions given by formulas (3.12) and (3.13) (or alternatively by the
generalized formulas (A.13) and (A.14)) show explicitly that the potentials @ and
R are functions of g 4 1 phase variables #; of the form k;n —w;t. For 1 < j <g,
the wavenumbers k; and frequencies w; are calculated from integrals over b-cycles
of the differentials w(s) and w(3) according to (2.15); one finds k; = —iU; and
w; = 1V;. For j = 0, however, we have the harmonic wavenumber

+
. Y e dz
(3.14) ko = —i(gs — G3) = z/0+ [W(g) e 1] ,

and the harmonic frequency

+
. Y . Jdz
(3.15) wo=241(g2 — G2) = 2—1/0+ [W(z)—zdz—zz—z] .

Note that these expressions are independent of the base point Py although the
values of g2, G2, g3, and (3 are base point dependent. If we can further establish
that the k; and w; are real, then the functions ¢} and R will in fact be periodic in
each §; independently (for real ¢ and integer n), and Q(n,t) and R(n,t) will rep-
resent ¢+ 1 phase wavetrains. In fact, whenever we consider the reduction of the
Ablowitz-Ladik equations (1.3) to the integrable discrete nonlinear Schréodinger
equation (1.2), the required reality will be present, and the finite genus potentials
will represent multiphase wavetrains. This reduction is considered in the next
section, and in Section 7 we will show that in the focusing and defocusing cases
it is always possible to choose the homology gauge so that the wavenumbers and
frequencies are real.

4. Quasiperiodic, focusing, and defocusing solutions.

Numerical reconstructions of the potentials @(n,?) and R(n,t) done using the
formulas given in this paper ((3.12) and (3.13)) show that, for general choices
of the data (the labeled surface from the set M,, the pole divisor P, and the
scaling parameter &), Q(n,t) and R(n,t) grow exponentially in both n and ¢.
Even if one considers purely real ¢, which is of eventual interest in the case
where the Ablowitz-Ladik equations go over into the integrable discrete nonlinear
Schrodinger equation (1.2), this exponential growth is generally observed. Tt
seems that in the general case, the finite genus solution cannot be correctly called
a multiphase wavetrain. However, the quantity @Q(n,¢)R(n,t) can be shown to
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always be bounded, since the growth rates in Q(n,t) are exactly cancelled by
decay rates in R(n,t). So, if it is known that R(n,t) = £Q(n,?) for real ¢, then
in particular, the two potentials will be of the same magnitude, and neither will
be able to undergo growth at the expense of the other. Following this lead,
we consider in this section selecting the branch points, pole divisor, and scaling
parameter so that R(n,t) = Q(n,t) for real ¢, the so-called defocusing case, or
R(n,t) = —Q(n,t) for real ¢, the so-called focusing case. In Section 7 we will
prove that by careful choice of homology gauge, real (focusing or defocusing)
potentials are always quasiperiodic functions of both n and ¢.

In order to study this problem, it is useful to pass over to a more algebraic
formulation analogous to that used by Previato [43] to study the solutions of
the focusing and defocusing NLS equation. Previato mentions that similar con-
structions appeared in the work of Jacobi. Suppose that for a given complex z,
one has any two solutions to the linear problems (1.14) and (1.16), u* and u~.
Consider the squared eigenfunctions given in terms of these two solutions by

on,t,2) = uf(n,t, 2)uy(n,t, z),
(4.1) x(n,t,z) = uf(n,t, 2)u;(n,t, 2),
1
fln,t,z) = §(uf(n,t,z)uz_(n,t,z)—|—uf(n,t,z)u§'(n,t,z)) :

It follows that these quantities solve the system of equations (suppressing the
dependence on the parameter z and the dependence of the matrix elements on
n and )

gp(n—i_lat) = L%lgp(nat)+L%ZX(nat)—i_QLllLlZf(n’t)’
w2 x(n+1Lt) = Lijp(nt)+ Liyx(n,t) + 2Lar Laaf(n, 1)
f(n+1,t) = LiiLop(n,t)+ LiaLaax(n,t)

+(L11Lss 4+ La1L12)f(n, 1),

and the system

_Zaﬁp(nat) = 2311@(71’15) + 2312f(nat) ’
(4.3) —idix(n,t) = 2Basx(n,t)+ 2By f(n, 1),
—i0¢f(n,t) = Baip(n,t) + Biax(n,t) + (Bi1 + Ba2)f(n, ).

We introduce the quantity

(4.4) J(n,t,2) = f2(n,t,2) — o(n,t, 2)x(n,t,2).
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From the evolution equations for ¢, y, and f, one derives the evolution equations

for J:

J(n+1,t,z) = [det(L(n,t,2)))* J(n,t,z2)
(4.5)
= 22(1—=Q(n,t)R(n,1))*J(n,t,z),
and
—i0:J(n,t,z) = 2tr(B(n,t,2))J(n,t,z2)
(4.6) = 2[z—2"" 4+ R(n,OQ(n—1,1)

- Qn,t)R(n—1,1)|J(n,t,2).

Thus, 1t is possible to write

(4.7) J(n,t,z) = 2" exp(2i(z — 2~ ')t) B*(n, )p(2),

where 3 depending on only n and ¢ solves the equation

(4.8) Bln+1,t) = (1= Q(n,t)R(n,1))B(n, 1),

and the equation

(4.9) —i9,8(n,t) = (R(n,)Q(n — 1,t) — Q(n,t)R(n — 1,1))3(n, ).

The quantity J(n,t, z) is useful because all of the nontrivial dependence on the
spectral parameter z is contained in the factor p(z), which does not depend upon
n or t. The factor p(z) is a generating function for constants of motion of the
dynamical system (1.3).

We now examine the squared eigenfunctions ¢, y, and f constructed from
the vector Baker-Akhiezer function u through the relations (4.1). We set??

(4.10) ui(n,t,z) = u(n,t,Pi(z)).

Using the description of u in terms of its behavior near the four singular points
of I" and the locations of the poles in D, we obtain the expressions

g
Hz—uknt
;
Hz—uJOO

22We use the notation Pi(w) for the pair of points on I' that are preimages of the sheet
projection function z(P) at the point w. That is, Z(Pi(w)) = w.

bl

(4.11) pn,t,z) = =z exp((z—z ))gog(n 1)
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S

(z = Ck(n,1))

(4.12) x(n,t,z) = Lt exp(i(z — z_l)t) Xg(n,1) kgzl ,
TI¢: = 100,0)
[ =(n0)

(4.13)  f(n,t,z) = 2" exp(i(z — z_l)t) for1(n,t) kg:o :
[Iz = w00,0)

<
1
-

In these expressions, the complex numbers y;(0,0) are the z projections of the
points P; on I in the pole divisor D. The numbers y; (n,t) are the z projections of
the moving zeros of the component u;; the numbers ;(n,t) are the z projections
of the moving zeros of the component uy. The numbers y;(n, ) can be expressed
in terms of u; and ug, but not as easily as pp(n,t) or (x(n,t). Multiplication by
a function of z only does not change the fact that these expressions solve (4.2)
and (4.3), so we renormalize them by multiplying by the common denominator
to be polynomials in z multiplied by a common factor z" exp(i(z — 2~ 1)t):

p(n,t,z) = z"exp(i(z—z_l)t) szgok(n,t)]

= exp(i(z —27) | oy (n,0) [T (= = pi(m, 1)) |

(4.14)  x(n,t,2) = 2" exp(i(z — 2z~ ")) zszXk(n,t)]
= 2z"exp (z(z - z_l)t) zxq(n, 1) H(z —¢(n, )|
rg+1 "
fln,t,z) = 2" exp(i(z—z_l)t) szfk(n,t)] :

So, when n and ¢ are equal to zero, f, ¢, and y are polynomials in z. It
then follows from the systems of equations (4.2) and (4.3) that the coefficients
fot1(n,t) and fo(n,t) both solve the same linear equations as the quantity 5(n, t);
thus the two coefficients are proportional via a constant (independent of n, ¢,
and z). We further normalize the squared eigenfunctions ¢, y, and f so that

(4.15) fe41(0,0)=1.
It then follows that

(4.16) f0(0,0) = —7.
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This normalization reveals the nature of the quantity J(n,t,z). In particular,

2g9+2

(4.17) J(0,0,2) = T (== =)

k=1

The evolution of J(n,t,z) in n and t is through the function 8(n,t); the zeros
zr In z remain fixed as n and t vary.

Since these polynomials were constructed from a vector Baker-Akhiezer func-
tion satisfying u;(0,0, P) = 1, there is a constraint on the coefficients, namely
that ¢0(0,0) = 2f5(0,0). By dropping this constraint, we will be able to describe
potentials that arise from the formulas (3.12) and (3.13) through the scaling pa-
rameter &, We will now show that the set of (almost) all polynomials of this
general type, for n = 0 and ¢ = 0, provides a coordinatization of the phase
space of (1.3) in the class of finite genus potentials. These coordinates will be
particularly useful because the reality conditions will find a very easy expression
therein. To begin with, we need a definition of finite genus potentials. Let M
denote the set of labeled surfaces M, with the diagonals z; = z; included; this
enlarged set is described in detail in Appendix A. An element I of /\/l;] consists of
a Riemann surface of genus ¢ < ¢ having distinct branch points, and an integral
divisor £ of degree g —g on C*. If g = g, then I' is in M. Section 2 contains the
description of the fibers of Baker-Akhiezer functions associated with elements
I' of My; the prescription for associating a fiber of generalized Baker-Akhiezer
functions to arbitrary elements of /\/l;] is given in Appendix A.

DEeFINITION 4.1.  The class of genus g potentials is the set of all pairs of
functions of n, (Q(n), R(n)), such that for some element I' of M, some set
of g pownts D = P; + ...+ Py wn general position on the Riemann surface
associated with T, and a given complex number £, Q(n) = £Q(n,0;T,D) and
R(n) = ¢€71R(n,0;T, D) where Q(n,t;-) and R(n,t;-) are constructed from the

generalized Baker-Akhiezer function u.

Most genus g potentials correspond to taking I' € M, so that the branch
points are distinct. Such a genus ¢ potential is determined by the branch points
21, ..., %2442 together with the sign of 5, the g points of the divisor D, and the
scaling parameter £. Up to the sheet indices (£1) of the points of the divisor
D, and also the sign of 7, these data make up 3¢ + 3 independent complex
parameters. Similarly, if J(0,0, z) has distinct roots, then with f,41(0,0) = 1,
there remain in polynomials f(0, 0, z), ¢(0,0, z), and x(0, 0, z) 3¢+3 independent
complex coefficients. In fact, more is true.

LEMMA 4.2.  The class of genus g potentials (Q(n), R(n)) is in one-to-one
correspondence with the class of (almost) all triples of polynomials (f(2), p(2), x(2))
of the form (4.14) withn =0, t = 0, and foy1 = 1. The meaning of “almost”
here s that a triple of polynomials must lead to a nonspecial divisor D and
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nonzero branch points. Such polynomials with otherwise arbitrary coefficients
provide global coordinates for the phase space of genus g potentials.

Proof:  We prove here only the association between genus g potentials corre-
sponding to I' € M, and polynomials for which J(z) has distinct roots, leaving
the discussion of the diagonal cases for Appendix A. Let (Q(n), R(n)) be a genus
g potential constructed from the data (21, ..., 29442, 1, D, &) with the z; distinct.
Construct the vector Baker-Akhiezer function u from the labeled curve I' and
the pole divisor D exactly as described in Section 2, and let u® be the corre-
sponding pair of vector functions of z obtained as described above. Set n and ¢
equal to zero, and construct the squared eigenfunctions (scaled as in (4.14), with
fo+1 = 1), calling them FO(), 9(2), and x(?)(z). We have yet to make use
of the scaling parameter &; we take this into account by defining the polynomials
f(2) = FO2), o(z) = €p9(2), and x(z) = € 1xP(2). On the other hand,
let arbitrary polynomials f(z), ¢(z), and x(z) of the form (4.14) with n = 0,
t =0, and f;41 = 1 be given, such that J(z) has distinct nonzero roots. The
branch points z; are obtained as the zeros of the polynomial f2(z) — (2)x(2);
the labeling parameter of the surface I' is given by n = —f;. The sheet projec-
tions of the points of the pole divisor D are given by the zeros of the polynomial
©(z); the sheet indices of the points of D are determined from the relations?3
y(P;) = —f(2(F;)). The only remaining piece of information to determine is
the scaling parameter &, which is given by ¢o/2fo. Given these associations, we
can now very precisely describe the class of polynomials that give rise to genus
g potentials:

o If y; and p; are roots of the polynomial ¢ such that p; = p;, then the
corresponding points of the divisor D must lie on the same sheet of I' in
order for D to be nonspecial; that is it must be true that f(u;) = f(g;).

e In order for the branch points to be nonzero, it must be true that fy # 0.

The polynomials we must exclude therefore make up a very low dimensional sub-
set of C3913 justifying our use of the phrase “almost all triples of polynomials”.

So, the phase space of genus g potentials is isomorphic to the set of almost
all complex polynomials of the form (4.14) with f,41 = 1. We will use this
representation of the phase space to obtain reality conditions on the problem
data sufficient to have R(n,t) = +Q(n,t) for real t. We introduce here two
involutions on the phase space of all potentials (Q(n), R(n)) (these will preserve
the classes of genus g potentials):

23 The correct signs of 1 and y(Pj) come from the representation of the Baker- Akhiezer function
at n = t = 0 In terms of the squared eigenfunction polynomials. We have u; (0,0, P) =1, and

FP) = u(P)
=(P)

uQ(0,0,P) =
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e the defocusing involution, given by

(4.18) D (?EEZD ~ (SEZ;) ’

e and the focusing involution, given by

() - ()

The set fixed points of D, the defocusing potentials, is invariant under the flow
of (1.3) for real ¢. Likewise the set of fixed points of F', the focusing potentials,
is invariant under the flow of (1.3) for real ¢. According to the lemma, there is
an induced action of D (respectively F') on the set of normalized polynomials of
the form (4.14) called D, (respectively Fy). The induced action is given by

f(z) ontgrr [(L(L/Z)
(4.20) D, le2) | »———1[x(1/2) |,

A(G) T e
and

f(z) ontgrr [ J(L/Z)
(4.21) Foile(z) ]| ———1-x(1/2)

x(2) © \—p(1/7)

Defocusing potentials are constructed from triples of polynomials that are fixed
by D.. Likewise, focusing potentials are constructed from triples of polynomials
that are fixed by F.. The fixed points are easily characterized; this, along with
the construction given in the proof of Lemma 4.2, provides a prescription for
generating the generalized Baker-Akhiezer function data (T',D,¢) necessary to
build both focusing and defocusing solutions to (1.3).

THEOREM 4.3.  For almost every set of data consisting of

e some 0 €[0,2m),
o g complex numbers (f1...f;) satisfying

f_kexp(iﬁ) = fot1-k >
o g+ 1 arbitrary complex numbers (¢q ... p4)

there 1s a focusing potential constructed via the polynomials

flz) = 2" [zg+1 + fo2' + ...+ fiz +exp(i9)] ,
g

e
k=0

x(z) = —z2"+g+1g0(1/f)exp(i9),

S
~
N
=
Il



FINITE GENUS SOLUTIONS TO THE ABLOWITZ-LADIK EQUATIONS 35

and a defocusing potential constructed via the polynomaials

flz) = 2" [zg'H—|—fgzg—|—...—|—f1z—|—exp(i9)] ,
g
p(z) = 2" lz @kZZk] 5
k=0
x(z) = ZTITLo(1/Z) exp(if)

using the construction of Lemma 4.2. The meaning of the word “almost” is that
the resulting polynomials must satisfy the mild conditions mentioned at the end
of the proof of Lemma 4.2 in order to avoid special divisors and branching at

z=0.

It should be remarked that the conditions of reality sufficient to guarantee
focusing and defocusing solutions can be imposed on three levels:

e the level of the potentials, where reality means R = +Q;

e the level of the squared eigenfunction polynomials, where the reality con-
ditions are given by Theorem 4.3;

e the level of the Baker-Akhiezer function data (the element of M along
with divisor D and scaling parameter).

In the past, reality conditions have been transcendentally expressed at the level
of the Baker-Akhiezer function data via the Abel map (see for example [31]);
here we have chosen to characterize the spectral data corresponding to real po-
tentials at the level of the squared eigenfunction polynomials because the reality
conditions are simple in form and because the real Baker-Akhiezer function data
(T, D,€) can be recovered from the squared eigenfunctions using only algebraic
operations, as described in the proof of Lemma 4.2.

In particular, it is possible to conclude from Theorem 4.3 that Riemann sur-
faces for both focusing and defocusing solutions must have branch points that
are, as a set, symmetrical in reflection through the unit circle. Finding the set of
all divisors giving focusing (defocusing) potentials is an algebraic problem to be
solved after fixing a Riemann surface whose branch points enjoy reflection sym-
metry through the unit circle. The monic polynomial p(z) whose roots are the
branch points must be decomposed into polynomials f, ¢, and y having focusing
(defocusing) symmetry as described in Theorem 4.3 such that f?—¢y = p. Each
possible decomposition gives a focusing (defocusing) divisor D that is recovered
from ¢ and f. That there exist such decompositions is suggested by a calcula-
tion in Section 7 that demonstrates the existence of a real part of the Jacobian
of any Riemann surface whose branch points have the unit circle symmetry. In
practical calculations, it is most efficient to proceed according to the following
steps (as outlined by Tracy, Chen, and Lee [46] in the context of the nonlinear
Schrodinger equation):
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1. Choose branch points z; having reflection symmetry through the unit circle
and choose the sign of n. Build the monic polynomial P(z) whose roots
are the branch points.

2. Choose a monic polynomial f with f(0) = —», whose coefficients have the
symmetry described in Theorem 4.3.

3. Factor the polynomial P(z)— f?(z). In order for there to be a solution, none
of the roots may lie on the unit circle. From each pair of roots symmetric
with respect to unit circle reflection, select one root. These will be the pole
projections z(P;).

4. Calculate [£]? as

€2 = i<—41>g e [1<P<z> - fZ(Z))] !

n z]0 | 2

where + (—) indicates defocusing (focusing). In order for there to be a
solution, this value must be real and positive.

This procedure involves only root finding operations, and produces a solution
for each appropriate choice of the polynomial f as long as none of the roots of
P — f? lie on the unit circle and as long as the value of |¢]? is real and positive.
The possibility of finding a solution for a given set of branch points and value of
1 indicates an allowable branch point configuration. Not all symmetric branch
point configurations are allowable.

As a demonstration of the allowable branch point configurations, it is useful
to consider the simplest case, ¢ = 0. A simple application of the quadratic
formula shows that

e in the focusing case the two branch points do not lie on the unit circle,

and,

e in the defocusing case, the two branch points lie on the unit circle if
lpo|? < 4 and are split off the unit circle if |¢o|? > 4. In terms of the
potentials, since ¢y = —2nQ(—1,0), the separatrix between the two cases
occurs whenever there exists an n for which |Q(n,t)|* = 1.

Similar results hold for g > 0. More specifically, we will show in Appendix B
that in the focusing case, the branch points must always lie off of the unit circle
unless they are double. The defocusing case is less straightforward, due to the
presence of a separatrix in the phase space. The set of phase points satisfying
|Q(n,t)|* = 1 for some n make up a dynamical barrier for orbits of (1.3) in
the defocusing case. That is, if for some n and ¢ one has |Q(n,t)|* < 1, then
this condition persists for all real ¢, and similarly if one has |Q(n,t)|* > 1 for
some n and ¢, then this condition is also permanent. The defocusing phase space
is thus divided into dynamically disjoint sectors X, indexed by sets of lattice
points K = {n1,na,...} indicating that |Q(n,t)|? < 1 exclusively for those n
in k. In Appendix B, we will show that the branch points for all potentials in
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the component ¥z (where |Q(n,t)|? < 1 for all n) are all constrained to lie on
the unit circle. The constraints on the branch points corresponding to other
defocusing components X, may not be so strict. These statements are proved in
Appendix B using periodic boundary conditions on n, but by density arguments,
the branch point symmetries should carry over to general finite genus potentials.

With this information, it is possible to make a connection between the spectral
properties of the linear problem (1.14) and those of its continuum limit, the
AKNS scattering problem for the focusing and defocusing nonlinear Schrodinger
equations [3]. The fixed point set of the antiholomorphic spectral involution in
the continuous case is the real axis rather than the unit circle. In the defocusing
case, the AKNS spectral problem is self-adjoint, and thus the branch points
(periodic and antiperiodic Floquet eigenvalues) are constrained to lie on the real
axis, within the fixed point set. On the other hand, in the focusing case, spectral
convexity considerations [39] show that the branch points cannot lie on the real
axis unless they are double. Now, in the continuum limit, the cutoff condition
for the defocusing component Xz scales as

1

(422) QU <

where & is the vanishing lattice spacing. Thus, the only component of the defo-
cusing phase space that contributes in the continuum limit is Xz. In this com-
ponent, the branch points must lie on the unit circle. Furthermore, the branch
points for all focusing potentials must lie off of the unit circle. These conjectures
agree with the formal connection between the discrete spectral parameter z and
the AKNS spectral parameter ¢

(4.23) z = exp(—ih().

This transformation takes the real axis to the unit circle. The remaining com-
ponents of the defocusing phase space X, where k # Z contain behavior that
has absolutely no analog in the continuous defocusing nonlinear Schrodinger
equation. It 1s likely that these components of the defocusing phase space are
noncompact, as it has been observed that having a lattice point at which the
modulus of the solution exceeds the value 1 can lead to blowup in finite time
[26, 24].

Another interesting structural feature we deduce in both of the real cases
is that the focusing and defocusing submanifolds of the set M, each consist of
two disconnected components. This is a consequence of the arrangement of the
branch points about the unit circle; they must either come in pairs reflected
through the circle, or be on the circle itself in which case they must also come in
pairs, since the total number of branch points is even. It 1s easy to see that any
deformation in this class of Riemann surfaces that returns the branch points to
their initial configuration must either involve an even number of branch points
traveling around the origin, so that the points 0% cannot be exchanged one for
the other, or one branch point passing through another on the unit circle. Thus,
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the elements of M, given by ({z},n) and ({#}, —n) cannot be connected by
a smooth path of real elements of M. In the defocusing case, when a pair of
multiplicity 1 branch points may lie on the unit circle, it is possible to make the
connection, but only by passing through an element of the more general set /\/l;]
when the two branch points on the circle collide.

5. Spatially periodic solutions of the Ablowitz-Ladik equations.

In this section we identify the Baker-Akhiezer function data (T',D, &) that
correspond to finite genus complex solutions of (1.3) that are periodic in n,
and correspondingly describe the solution of the spatially periodic initial value
problem in terms of explicit formulas. In doing so, we will make contact with
the work of Bogolyubov and Prikarpat-skii [6], who considered the solution of
the initial value problem in the focusing and defocusing cases described by (1.2).

The analysis in the case when the potentials Q(n,t) and R(n,t) are periodic
in the integer index n with period N begins with the monodromy matriz of the
spatial linear problem (1.14). This matrix is given by

(5.1) S(n,t,z) =L(n+ N —1,t,2)L(n+ N —2,t,z)---L(n+ 1,t,2)L(n,t, z).

The monodromy matrix is the linear mapping that takes a solution u of the
spatial linear problem (1.14) at position n to the same solution at position n+ N.
It is easy to see that the eigenvalues of S(n,t, z) are independent of n and ¢. The
n independence follows from the similarity of S(n,t,z) and S(n + 1,¢, z):

(5:2) S(n+1,t,z) = L(n+ N,t,2)S(n,t,2)L™ (n,t,2)
5.2

= L(n,t,2)S(n,t,2)L™ (n,t,2).

The t independence comes from the fact that the monodromy matrix satisfies a
Lax equation in time; since

—idmu(n+ N,t,z) = —i@t(S(n,t,z)u(n,t,z))
= [—i@tS(n,t,z)]u(n,t,z)
+S(n,t,z) [ —idyu(n,t, z)]
= [—i@tS(n,t,z)—i—S(n,t,z)B(n,t,z)]u(n,t,z),
and also
—idmu(n+ N,t,z) = B(n+ N,t,z)u(n+ N,t,z)
(5.4)

= B(n,t,2)S(n,t,z)u(n,t,z),
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the monodromy matrix solves
(5.5) —49;8(n,t,z) = [B(n,t,2),S(n,t, 2)].
Thus, if A(n,t,z) is a matrix such that
(5.6) —i0;A(n,t,z) = B(n,t,2)A(n,t,2),
then it will be true that
(5.7) S(n,t,2) = A(n,t,2)S(n,0,2)A™ (n,t,2),

hence, the eigenvalues of S(n,t,z) will be independent of ¢ as well. The trace
and determinant of S(n,t, z) therefore depend on z only; accordingly, we write

(58) TS(Z) = tr(S(n,t,z)),
Ds(z) = det(S(n,t,2)).

The invariant eigenvalues of S(n,t, z) are the Floguet multipliers of the linear
problem (1.14). They have the form

(5.10) pE(z) = [Ts(z)j: Tg(z)_ws(z)],

N | —

where we use T2(z) to denote (T5(z))? here and throughout the paper. The
two multipliers may be analytically continued into each other in z; it is useful to
consider them as a single meromorphic function p(P) on a hyperelliptic Riemann
surface which we now proceed to describe. The polynomial under the radical is
written in factored form:

(5.11) T2(2) — 4Ds(2) = s*(2)p(2)

where s(z) and p(z) are monic polynomials, possibly with some roots in common,
but such that p(z) has distinct roots. Then, the surface used in the analysis of
the periodic problem is the surface of the algebraic relation

(5.12) v  =p(2),

In the case where s%(z) = 1, the expression on the right hand side is a monic
polynomial of degree 2N with p(0) = 1; thus, the genusis ¢ = N — 1, and the
initial value problem will be solved in terms of the formulas for Q(n,¢) (3.12) and
R(n,t) (3.13). However, in general, the genus will be less, s?(0)p(0) = 1, and the
generalized formulas for @(n,t) (A.13) and R(n,?) (A.14) from Appendix A will
be needed to solve the initial value problem. In any case, the Floquet multiplier
is then the function

(5.13) p(P) = = (To(2(P)) + s(=(P))y(P)) .

N | —
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We will now prove the following lemma.

LEMMaA 5.1, Let Q(n,t) and R(n,t) be generalized finite genus potentials,
given by (A.13) and (A.14), that are periodic in n with period N. When 1 < g <
N —1, the vector NU s in the period lattice of the hyperelliptic Riemann surface
characterized by the branch points z; satisfying p(z;) = 0 and n = 1/5(0).

Proof:  Using Riemann’s bilinear identity?* and the definition of the differ-
ential w(z), one obtains

(5.14)  NU; = N}é Wiz = NA;(07) = NAj(ooh) = Aj(NO™ — Noo™T).

But, by using Abel’s theorem [11], we see that NU is in the period lattice if
and only if the divisor N0~ — Noot is the divisor of a meromorphic function on
the Riemann surface of the relation (5.12). In such a case, when in addition the
surface is labeled over z = 0 by n = 1/s(0), we have such a function available; it
is the Floquet multiplier function p(P).

Thus 1n the formulas for periodic generalized potentials with ¢ > 1, the vector
NU has an expression of the form

g
(5.15) NU =) myb; + 2minje; .
ji=1
Once 1t 18 known that N U may be written in this way, it is possible to use the
transformation law for theta functions in the formulas (A.13) and (A.14) to insist
on periodicity and hence deduce that the harmonic wavenumber g3 — G5 obeys
the relation

g
(5.16) exp ijAj(oo+—0+)+N(g3—G3) =1.
ji=1

Using these relations and examining the generalized vector Baker-Akhiezer func-
tion u, we find that u is a Floquet eigenfunction (an eigenfunction of S). The
link between the Floquet multiplier and the differential w3y is given by

g
(5.17) —ijyj—i—NW(g):dlogp,

ji=1

24Riemann’s bilinear identity provides a link between differentials of the third kind and dif-
ferentials of the first kind. Let 7pg be the unique differential of the third kind with residue 1
(—1) at the point P (@), holomorphic otherwise, and having vanishing integrals over all a-cycle
representatives of a chosen generalized homology basis {a1,...,ag,b1,...,bg,c 4 ,¢00— ,Co— }-

Then
]{ rrg = A5(P) — 4;(Q).

bj

See [11] for details.
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where v; are the elements in the basis of normalized first kind Abelian differ-
entials on I'. Actually, these expressions can be simplified by choosing different
a-cycles (with respect to which ws) is normalized) in the canonical homology
basis. Since the differential dlogp has integer residues at 0~ and coT, it is pos-
sible to add to any a-cycle an integer sum of the cycles ¢+ and ¢g- so that for
the new a-cycles:

(5.18) Nuws) = dlogp,

and therefore

g
(5.19) NU = ) 2minje;,
j=1
(520) N(gg - Gg) = 27Ti77,0 ;

for some integer ng.

We can now characterize precisely the elements T' of the set M’_; corre-
sponding to periodic potentials of period N arising from the generalized formu-
las (A.13) and (A.14). To state the theorem, we need to use the fact that an
element T' in the set M’ _; consists of a Riemann surface of genus ¢ < N — 1
with choice of sign of n and having distinct branch points 21, ..., 22442, and an
integral divisor of degree N —1—gon C*, & = myw; + ...+ mjw;.

THEOREM 5.2.  For the potentials Q(n,t) and R(n,t) constructed from the
data (T',D,€) to be periodic functions of n of period N, it is necessary and
sufficient for T € M'y_, to be such that the branch points z; and the divisor £
satisfy

2

J 29+2
(5.21) lH(z - w,)ml] l I~ zk)] = s2(2)p(z) = [r(2)]2 + 6V,

=1 k=1

for some constant § # 0 and some monic polynomial T(z) of degree N satisfy-
ing 7(0) = 1, and for the labeling of the points 0% on the Riemann surface to
correspond to

-1

(5.22) n=s(0)" = [H(—woml]

=1

Proof: We will give the proof for the generic case of I' € My_1 and thus
j=0and ¢ = N — 1. The necessity follows from the fact that the trace of the
monodromy matrix has the form

(5.23) TS(Z)IZN+TN_1ZN_1+~~~+T12—|—1,
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and the determinant of the monodromy matrix has the form

n+N-—-1

(5.24) Ds(z)=2" ] (1-Qk,t)R(k,1)).

Thus, 7(2) = T5(z), and § = —2~N Dg(2)/4. The sufficiency follows from two
facts. First, as a consequence of the above lemma, of the Baker-Akhiezer function
data (T', D, &), only the branch points z; and the labeling parameter 7 determine
whether the potentials as given by the formulas (3.12) and (3.13) represent pe-
riodic functions of n. Thus, it is sufficient to appropriately specify the Riemann
surface I with choice of sign of n from the set My_1. Second, as we consider
varying the potentials within the class of periodic potentials of period N, the
coefficients in the trace and determinant of the monodromy matrix S(n,t,z)
take on all possible complex values (subject to the restriction that the trace is
monic with constant term equal to 1). Thus, any branch points satisfying the
conditions given in the theorem must generate only solutions that are periodic
in n.

The extension of the proof to cases in which T is in M/, _; but is not generic
(so that it is not in M_1) involves associating I' to 7 and & where [7(2)]? + 62V
has multiple roots.

It is not possible to associate an element of M’,_; to the case of § = 0
because, as explained in Appendix A, elements of M’ _; describe hyperelliptic
Riemann surfaces that are branched in at least two places, and when § = 0, all
roots of [7(2)]? + 62" are double and there are no branch points at all. It is
possible for the corresponding potentials to be periodic with period N (6 = 0 in
the periodic initial value problem if for some n, Q(n,0)R(n,0) = 1), but they
are not strictly given in terms of generalized Baker-Akhiezer functions. The
degenerate nature of this case is also discussed in Appendix A.

In any case, this theorem gives a prescription for generating periodic solutions
to the Ablowitz-Ladik equations (1.3) having period N. Choose an arbitrary
monic polynomial 7(z) of degree N with 7(0) = 1, and an arbitrary nonzero
constant §. Uniquely factor [7(2)]2+829F! as s?(2)p(z). The 2g+2 distinct roots
of the polynomial p(z) are the branch points of the curve associated with T' €

v_1- The divisor & associated with I' € M/, _, is equal to mywi +...+m; w;
where the w; are the roots of the polynomial s(z) of multiplicity m;. The point
0T must be chosen so that

-1

(5.25) y(0%) = 5(0)7" = [H<—wl>ml]

=1

If ¢ = N —1, the solution is given by the formulas (3.12) and (3.13). If the genus
is less, the solution is generated from a generalized Baker-Akhiezer function as
described in Appendix A.
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In particular, it follows from the condition 7(0) = 1 that for periodic poten-
tials, the product of the roots of [r(2)]? 4+ 627 is always equal to 1. If the roots
are distinct, then the corresponding Riemann surface will be constructed from
branch points whose product is equal to 1. Since generic finite genus potentials
do not have such a constraint on their branch points, we see that in order to
approximate an arbitrary genus g potential (say with the product of the branch
points equal to ) by a sequence of periodic potentials of arbitrarily large pe-
riods, N, we must use periodic potentials derived from polynomials 75 (z) and
constants &y such that the 2N roots of [ty (2)]? + én 2V come together in pairs
for large N, except for 2g 4+ 2 roots making up the branch points of the limit-
ing curve, such that the product of these ultimately distinct roots converges to
¢ as N increases. Furthermore, the z-projections of the points of the divisors
Dy must align themselves so that in the limit all but ¢ of them are positioned
at double points of [ty (2)]? + énzV. This ensures that the limiting aperiodic
wavetrain has exactly ¢ degrees of freedom.

Now, we turn our attention toward the initial value problem for spatially
periodic initial data. An algorithm for solving this initial value problem was
given in [6]; here, we endeavor to provide an explicit closed form formula for
the solution. The elements of the monodromy matrix are closely related to the
squared eigenfunctions used in the previous section. The connection is given by
the relations

p(n,t,z) = —=2S1s(n,t,2)8(n,t)z" exp(i(z—z_l)t) ,
(5.26) x(n,t,z) = 2521(71,15,z)ﬁ(n,t)z"exp(i(z—z_l)t),

fln,t,z) = [Siui(n,t, 2) = Saa(n,t, z)] B(n,1)z" exp(i(z — z_l)t) ,

which follow from comparing the equations for S to those for the squared eigen-
functions, and using the normalization f;41(0,0) = 1. The monodromy matrix
S(0,0, z) is easy to compute from the initial data; using the above relations along
with the construction in Lemma 4.2 gives an explicit construction of the solution
to the initial value problem:

1. Calculate from the initial data the monodromy matrix S(0, 0, z).

2. Calculate the appropriate element of M'y_,. Factor the polynomial tr?S —
4det S as s*(z)p(z). The branch points {z} of the Riemann surface are
the distinct roots of p(z). The roots w; of s(z) having multiplicity m; make
up the divisor £ = mywi;+...+m;jw;. Label the points 0% of the Riemann
surface according to y(0%) = 1/s(0), where

s(z) = H(z —w)™ .

=1

3. Calculate the divisor D that determines the vector Baker-Akhiezer function
u. The z projections of the points of D are the N —1 zeros of the polynomial
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512(0,0, z) and the sheet indices are determined from the relations

Sll(n,t, Z(P])) — Szz(n,t, Z(P]))
s(2(Fj))

4. Determine the scaling constant: & = Q(—1,0).

=y(Fy).

5. The solution to the initial value problem is then given by the explicit (gen-
eralized) formulas (A.13) and (A.14), appropriately scaled by the complex
parameter &.

This solution of the initial value problem is valid whenever there are at least two
roots of tr?S — 4detS with odd multiplicity, although when there are repeated
roots the solution must be built from generalized Baker-Akhiezer functions as
described in Appendix A. It is interesting to observe that it is not possible for
finite initial data to give rise to a special divisor D, since a special divisor would
cause the formulas (A.13) and (A.14) to be undefined (in particular at ¢ = 0).
The solution to the initial value problem given here is complete except in the
special case of detS = 0, which is discussed in Appendix A.

6. The extension to twist-periodicity.

In this section, we consider extending the periodic theory to include the case
of twist-periodic boundary conditions in n. Choose some 6 € [0,27) and some
integer N. Then twist-periodic boundary conditions are defined by

Qn+ N,t) = exp(i0)Q(n,t),
(6.1)

R(n+ N;t) = exp(—if)R(n,t).

These boundary conditions include periodic boundary conditions as a special
case when 6 = 0.

It is possible to treat those cases of twist-periodic boundary conditions of
twist-period N for which # is a rational multiple of 7 within the context of the
periodic theory, and we will use this fact to demonstrate a predictable degeneracy
in the solution procedure that will lead us to the streamlined approach to be given
below. Suppose that § = 27p/q for relatively prime integers p and ¢. Then, the
potentials are periodic with period M = ¢N. The monodromy matrix for this
periodic problem 1s

(6.2) (=) = S°(2).
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where the twist-periodic monodromy matriz S is defined by

S(z) = Q'(OL(N —1,0,2)L(N —2,0,z)...L(0,0, 2)
(6.3) |4 BG)
o) D)

and the twist matrix is given by

_|exp(if/2) 0
(6-4) Q(0) = 0 exp(—16/2)| -

As a consequence of the factorization of the monodromy matrix T, the polyno-
mials take the factorized forms

The first few polynomials Fy(z) are

Fi(z) = 1,
Fy(z) = A(z)+ D(z),

(6.6) Fs(z) = A%z2)+ A(2)D(2) + B(2)C(z) + D*(2),
Fy(z) = A%(2)+ A%2)D(z) + 2A(2)B(2)C(2)

+2B(z)C(2)D(z) + A(Z)DZ(Z) + D3(z) )

Thus, the polynomial f%(z) — (2)x(2) takes the form

(67)  F2(=) - e(2)n(2) = 13(T) — Adet(T) = (tr(S) — 4det(S))F2(2)

and it will have roots of even multiplicity at the zeros of the polynomial F,(z).
The totality of the roots of f?(z)—(2)x(z) are constants of the motion for (1.3).
In particular, the roots of F,(#) are constants of the motion. But then, those
roots of ¢(z) that are in the factor F,(z) represent zeros of uq that are fixed in n
and t. These fixed zeros never leave the pole divisor D, and thus at these points,
neither poles nor zeros may be detected for any n or ¢ in the component u;. This
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result suggests that no more than N — 1 poles are really needed in the divisor D,
and correspondingly that the degree of the divisor £ could be (in most cases?®)
taken to be zero.

Now, we will see how to deflate the problem data to include only that which is
essential; we will replace the (true) monodromy matrix T with the twist-periodic
monodromy matrix S(z). It will then be clear how to extend the theory to cover
cases in which /27 is irrational.

The twist-periodic boundary conditions on the potentials induce the following
relations on the matrices L(n,t, z) and B(n,t, 2):

(6.8) L(n+ N,t,2) = Q(0L(n,t,2)Q " (0),
(6.9) B(n+N,t,z) = Q(0)B(n,t,2)Q (9).

Using the equations (1.14) and (1.16) along with the above relations shows that
the twist-periodic monodromy matrix S(z) obeys the relations:

(6.10) S(n+1,t,2) = L(n,t 2)S(n,t,2)L(n,t,2)7",
(6.11) —i0:S(n,t,z) = |B(n,t,2),S(n,t, z)|,

describing the evolution in n and ¢. Tt follows that the eigenvalues of S(n,t, z)
are independent of n and t. These are in fact the same differential equations
obeyed by the periodic monodromy matrix T(n,t, z). This shows that the essen-
tial dynamical information is contained in the twist-periodic monodromy matrix
S(n,t,z). One builds the Baker-Akhiezer functions u; and us from the polyno-
mials

p(z) = —=512(2),
(6.12) x(2) = Sa(z),
f(z) = Sii(z) = Saa(2).

Prior to using these polynomials to construct the Baker-Akhiezer function u, all
three must be multiplied by a common normalization factor to make f(z) be a
monic polynomial. One then constructs the potentials from these polynomials
exactly as described in the proof of Lemma 4.2. The corresponding potentials
Q(n,t) and R(n,t) solve the initial value problem where the polynomials are
constructed from S(0, 0, z) and the scaling parameter £ = @Q(—1,0) is used.

Although this approach was suggested by considering those values of # that
were rational multiplies of 27, and consequently embedding the twist-periodic
problem into a larger periodic problem, # can now be taken to be an arbitrary
real number in [0, 27).

251t is possible that even after taking into account the degeneracy in T arising from the twist-
periodicity there still remain multiple roots in the polynomial tr?(S) — 4det(S), however the
roots are generically distinct.
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To construct the solution with the least redundancy in its expression, it is im-
portant to find the smallest N for which the initial data is twist-periodic for some
0. Even if one has found the smallest such N, the polynomial f?(z) — ¢(z)x(2)
may still have repeated roots in some special cases. In these cases, the Baker-
Akhiezer functions u; and us will have to be constructed from data having r > 0,
where 7 is the number of homogeneous linear conditions imposed on the gener-
alized Baker-Akhiezer functions u; and us as discussed in Appendix A. There
is evidence that this degeneracy vanishes if one considers focusing or defocusing
potentials. In these cases, choosing the smallest possible N may guarantee that

r=0.

7. Modulation equations.

In this section, we begin to describe the modulational behavior of the solutions
to (1.3) constructed above. The procedure we follow was first used by Flaschka,
Forest, and McLaughlin [20] with respect to the Korteweg-de Vries equation,
and was recently used by Kodama and Bloch [5] to study the Toda lattice. The
modulation equations we will derive are based on an averaging principle that
is merely postulated as a correct description of a modulated wavetrain. Thus,
the technique is more formal than analytical. However it has been shown by
Krichever [32] that for general integrable systems expressible as 2-by-2 zero-
curvature conditions?®, these formal equations must be satisfied by any slowly
varying wavetrain in order for the true evolution to be uniformly approximated
to leading order (in the asymptotic limit of long modulational scales) by exact
finite genus solutions.

Modulation theory begins with local conservation laws that control the micro-
scopic motion. In the integrable setting, it is possible to write down a generator
that gives rise to an infinite number of local conservation laws. Let us construct
this generator. It 1s a consequence of the commutativity of the unit shift oper-
ator in n, A (defined by Aa(n) = a(n + 1)), and differential operators in ¢ that
the first component of the Baker-Akhiezer function satisfies

(7.1)  dlog (%) —(A-1) (m@tul(n,t,P)) .

This is an equation for functions on the Riemann surface; with an application
of the operator d of differentiation on the surface, it becomes an equation for
differentials

(7.2) G F(n,t, P;(T,D,&) = (A - 1)G(n,t, P;(T,D,¢)),

where F'is a generating function for local conserved densities:
Auy(n,t, P)

7.3 F(n,t,P;(I',D =dl _—

(73 (1,1, P(1.D, ) = dlog 10

26 The r-function of the universal Whitham hierarchy giving the formal modulational descrip-
tion of these systems was given by Krichever in [33]



48 P.D. MILLER, N.M. ERCOLANI, .M. KRICHEVER, C.D. LEVERMORE

and G is a generating function for the corresponding fluxes:
(7.4) G(n,t, P;(T,D,&)) = doslogui(n,t, P).

The parametric dependence on P allows an infinite number of local conser-
vation laws to be derived, for example by expanding in a formal series near a
singular point such as P = co™. Note that although the density generator F' is
manifestly in the range of A —1 and thus seems to be a trivial conserved density,
the individual expansion coefficients in a formal series are not trivial, since the
operator A — 1 is acting on a nonlocal sequence in n. Indeed, the coefficients
turn out to be the nontrivial local conserved densities for (1.3) [41]. Here, how-
ever, we retain the dependence on P in order to average over rapid oscillations
in all local conservation laws simultaneously. Consider the equation (7.2) in
the case when the reconstructed potentials R(n,t) and Q(n,t) are quasiperiodic
functions of n and ¢, for real ¢. Imagine the data (I',D,£) to be no longer fixed,
but to depend upon the slow variables X = hn and T' = ht where h is the small
lattice spacing (to denote this slow dependence through the data, we will write
F=FntX,T) and G = G(n,t, X, T)). For a function w depending on both
the fast and slow scales, make the usual multiple scale replacements

(7.5) Aw — Aw+ hdxAw,
and
(7.6) Ow — Oyw + horw .

The conservation laws then take the form

&F(n,t,X,T) + hopF(n,t,X,T)
(7.7)

= (A—1)G(n,t,X,T)+ hdx AG(n,t, X, T).

The averaging operation for fized X and T

(7.8) (w(n,t,X,T)) = lim !

N
Nioo 2N + 1 Z win,t, X, 1),
n=—N

where the resulting object depends on X and T only because we assume that
the fast variables n and ¢ are tied together in g+ 1 independent phases®7, is used
to eliminate the order 1 terms?®, yielding

(7.9) or (F) = dx (AG) .

271f the phases are not independent, so that the evolution in n and t does not cover the Jacobian
ergodically, it is necessary to proceed differently, introducing additional modulation equations
for the locked phases. Modulation theory in the presence of phase locking is discussed in [42].
28 The averaging operation is applied directly to the equation (7.7). The order 1 terms vanish
because they vanish for fixed X and 7', and the average of 0 is 0. The averaging operation
commutes with the slow differential operators dx and 9.
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The equation (7.9) contains all the information about the modulational be-
havior of a slowly varying ¢ + 1 phase wavetrain. The first task at hand 1s to
realize this equation in terms of the Baker-Akhiezer function data. Consider the
averaged conserved density generator (F'):

Auy(n,t, P)>

(7.10) (F) = <dlog RN

Replacing u; using the formula (2.32) and keeping only those terms depending
on P € I due to the presence of the operator d transforms this into

) = <w(3) tdlog QAP 2+ U(n+1) —|—Vt)>

O(A(P)

O(A(P)—-Z+ Un+ Vi)

O(A(P)—Z+U(n+1)+ Vt)>
O(A(P)—-Z+ Un+ Vi) '

(7.11)
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£
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o

o

Similarly, the averaged flux generator (AG) takes the concrete form

(AG)

0O(A(P) = Z+ U(n+ 1)+ Vi) >

(7.12) <w(2) +d O(A(P)—Z+U(n+1)+ Vi)

HO(A(P)—Z+U(n+1)+ Vi)
izt <d O(A(P)—Z+U(n+1)+ Vi) > '

So, the modulation equations take the form

Orwe) — Oxw(y

(7.13) — oy <d6t®(A(P) —Z+Un+1)+ Vt)>

|
D
~
S
IS
o
o

O(AP)-Z+U(n+1)+ V)
O(A(P)—Z+ Un+ Vi) >

Modulation equations for multiphase waves in integrable systems have ap-
peared in the literature, but without the terms involving the theta averages.
We call these terms gauge terms because their form may be altered by making
a change of specific choice of homology basis cycles?® on the surface I'(X,T).
The gauge group of the modulation equations is the group that takes cycles to

29We want to emphasize that the modulational equations themselves are gauge invariant, since
they derive from the Baker-Akhiezer function which does not depend on any choice of cycles.
Only the form of the modulational equations is affected by a change of gauge.
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cycles, preserving the intersection numbers; this group is Sp(g,Z), the group
of symplectic 2g by 2¢ matrices that have integer entries. In the cases worked
out in the literature (the Korteweg-de Vries equation [20], the cubic nonlinear
Schrodinger equation [21], and the Toda chain [5]), an implicit choice of gauge
was made that causes the gauge terms to vanish entirely. If we could make such
a choice of gauge in the modulation equations (7.13), the differentials w(s) and
w(3) would become normalized with respect to a distinguished basis of cycles; we
could write these as €2(5) and €2(3). Then, the modulation equations would take
on the familiar form

Modulation equations of the form (7.14) can be cast into a revealing form by
integration of them around b-cycles on the Riemann surface

(7.15) orU = 0xV,

and by expanding the path integral of (7.14) near 0% and co™ on the Riemann
surface to obtain

(7.16) Ir(Gs — g3) = Ox (G2 — g2) -

Together, equations (7.15) and (7.16) make up ¢+ 1 equations representing wave
conservation in the g+1 phases. They are g+ 1 equations on 2¢+2 unknowns (in
the generic case of I'(X,T) € M,, I'(X,T) is parametrized by the 2¢g + 2 branch
points and the sheet index of 7). The remaining half of the modulational degrees
of freedom contribute to defining the wave size and shape. Their modulational
description would be contained in (7.14) as well.

In the case that the branch points z; are invariant as a set under reflection
through the unit circle in the z plane, it 1s possible to remove the gauge terms. In
particular, the modulation equations for the focusing and defocusing versions of
the Ablowitz-Ladik equations (1.2) can be put into the form (7.14). First, observe
that in order for the gauge terms to vanish, it is sufficient for the wavenumber
and frequency vectors, U and V, to have pure imaginary components. These
components are the integrals of the differentials w(») and w3y around b-cycles;
this fact is the link between the choice of cycles and the vanishing of the gauge
terms. Just as we refer to the conditions necessary to cause the integrals of
w(2) and w(z) over a-cycles to vanish as normalization conditions, we refer to the
conditions necessary to cause the integrals of w(s) and w(s) over b-cycles to be
imaginary as gauge conditions. Whenever the unit circle symmetry is present,
there exists on the surface I' an anti-holomorphic involution given by

(7.17) L:(z,y) = (1/Z,99/7' ).

This involution takes a Riemann surface whose branch points are symmetrical
through the unit circle to itself, changing the complex structure everywhere by a
sign. It permutes 01 with co™ and 0~ with co~. The differentials w(2) and w(z)
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transform by the involution I in such a way that it is easy to choose cycles with
respect to which they should be normalized. We use an unnormalized variant
of the Abel map to identify the homology group of cycles on I' with the period
lattice A in CY:

h:H(T,Z) — A
C — fc(dz/y,zdz/y,...,zg_ldz/y)T.

Through this map, the involution [ acts on CY:

(7.18)

2F=1dz

h(I(C) = /w) -
- [ (57
_ _ﬁ/cfg_;df

= _ﬁhg+1—k(c) :

(7.19)

It is clear that the involution I maps H1(T', Z) onto itself; thus, the action on the
lattice A 1s also onto. The action of I on C? has a ¢ real dimensional subspace
of fixed points A, made up of complex vectors a whose components obey the
symmetry

(7.20) aj = T

This subspace contains ¢ lattice points, independent over Z, as a consequence of
the fact that whenever h(C)isin A, h(I(C)) is alsoin A, and thus the sum h(C)+
h(I(C)) is a lattice vector in the subspace A. These lattice points correspond
to cycles C' invariant under the involution, so that I(C) = C. Likewise, the
orthogonal complement3® of this subspace, AL contains a g dimensional real
sublattice corresponding to cycles C' such that I(C) = —C'". Every lattice point
h(C)in A can be uniquely written as the sum of a lattice point in A and a lattice
point in AL, The real sublattice contained within the subspace A is generated
by ¢ independent cycles in H1(T',Z). For any two such cycles, €1 and Cl, the
canonical intersection form can be written as

(7.21) CroCy=I(C1)oI(Ca),

because the involution does not affect cycles in A. Since the involution I acts on
the canonical intersection number (for general cycles Cy and Cs) as:

(7.22) I(Cy)o I(C2) = Ca0 (Y,

30The orthogonal complement is taken with respect to the Euclidean inner product on R29 =
Cs.
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it follows from the skew symmetry of the intersection form that for any pair
of cycles both in A, the canonical intersection number vanishes. We choose
¢ independent lattice points in A and call them a;,... a, (the corresponding
cycles on I' are denoted a4, ..., ay); the canonical basis of cycles is completed by
selecting g nonintersecting loops b1, ...,b, so that a; o b; = §;;.

Now, we consider the differentials w3y and w(z). Begin by writing the differ-
entials in the form

(2,3) (2,3)
723 “(2,3 :f(Z’S)ZdZ—I-wdz—I—ih (Z)dz,
(2,3) ”
where
1 1 n 29+2 1 2942
(7.24) ¢P(z) = i §Zg+1 572 1% Z -7 Dz dz,
ot =
1
(3) — .1 g
(7.25) ¢ = |-+ dz,

and the freedom of normalization has been absorbed into the ¢ — 1 degree poly-
nomials h(z’?’)(z). Since z = 0 and z = oo cannot be branch points, we may
choose concrete contours on I representing any homology class such that these
contours have z projections that do not encircle z = 0 or z = co. Using these
representatives, the integral of the y independent terms f(z’?’)(z) dz over any cy-
cle vanishes, so they cannot contribute to the normalization conditions or the
gauge conditions. The symmetry induced by the involution [ is given in these
terms by

(2,3) (2,3)
(7.26) G [w dz] ,
Y Y

where the asterisk denotes the pull-back. There is a ¢ dimensional real subspace
of holomorphic differentials obeying

(7.27) Fa=a.

Notice that any differential obeying I*a = @ will have real valued integrals over
all a-cycles, since

(7.28) ]{a:]{ a:]{[*a:]{&
a; I(ay) aj a;

7

Thus, it is possible to normalize the differentials w3y and w(s) to have vanishing
integrals over a-cycles by adding a differential in the class described by (7.27).
Ignoring those terms that do not contribute to integrals over closed cycles; the
two normalized differentials, which we may now refer to as {(») and {)(3), also
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have the symmetry of (7.27), since the two contributing terms in the expression
(7.23) do. Now consider the integral

(7.29) é@,

7

where ) is either sy or {(3). The cycle b; can be decomposed as

g
(7.30) by =Y mjrap +,
k=1

where the m;;, are integers and @ corresponds to a lattice point a in the subspace
AL. As a result of the normalization,

(7.31) é@:é@.

This integral is pure imaginary, since

(7.32) éQ:—é@Q:—éﬁQ:—éﬁ

Thus, it is possible in the focusing and defocusing cases to choose a homology
basis so that U and V have imaginary components. Similar arguments show
that the same basis makes G3 — g3 and (G — g imaginary, so that there is no
growth from the exponential factor in the formula for @ either. Not only does
this make the gauge terms in the modulation equations vanish, but it also proves
that the focusing or defocusing potential Q(n,?) is a multiphase wavetrain that
is quasiperiodic in n (for fixed t) and in ¢ (for fixed n).

Incidentally, the preceding arguments establish for any Riemann surface whose
set of branch points is symmetrical about the unit circle in the z-plane the exis-
tence of a real subtorus of the Jacobian. This subtorus contains the images under
the Abel map (7.18) of divisors giving rise to focusing or defocusing potentials.
Given that, the reality conditions presented in Section 4 might be expressible
entirely in terms of the involution 7, using an approach similar to that employed
by Krichever [31] in his study of the Kadomtsev-Petviashvili equation. Whether
this method works depends crucially on the nature of the fixed point set of I;
there needs to be a large enough set of fixed points to separate the Riemann
surface into two disjoint pieces. The fixed points of I must lie on one of the two
unit circles on the Riemann surface, however the exact structure of the fixed
point set depends on the number of branch points on the unit circle and the sign
of n.

In the focusing and defocusing cases then, we consider a specific choice of
cycles that removes the gauge terms and results in the system
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We continue by writing these modulation equations in Riemann invariant form,
in which the individual motions of the branch points z; are coupled only through
2g + 2 characteristic velocities. This form of the modulation equations will help
clarify the behavior of modulated wavetrains by revealing conditions under which
the equations are hyperbolic and well-posed or elliptic and ill-posed. Expand the
equations about the branch point z = z;. Differentiation with respect to X or
T of the local parameter \/z — zj results in a second order pole in each term of
(7.33). The equality of the coefficients of these poles is the expression

(734) Orzp + C(Zk, Z)@sz =0,

a system of partial differential equations for the branch points of the labeled sur-
face I'(X,T) € M, with symmetrical characteristic speeds given by the function

c(z,2)
7 7 2g9+2 1 29 2g9+2
2
(7.35) A 3 o s S| +2P (2,
j=1 ji=1

2494 9P®) (2, 2)
z g-13"

The characteristic speeds depend transcendentally on the modulational vari-
ables {1 ...22542} through the coefficients of the polynomials P;i)l and P;?—))1
arising from the normalization of {23y and €}(3y with respect to the distinguished
set of cycles ay, ..., ag,b1,...,by. In the symmetric case we have been describing,

it 1s easy to see that the speed function must have the symmetry
(7.36) co(z7hz) = c(z,2).

Thus, if a branch point z; lies on the unit circle, then its characteristic velocity
will be real; its corresponding equation of motion becomes

(737) orfr + c(exp(iﬁk), Z)@ng =0,

where z; = exp(ifl). Thus the motion confines the point z;(X,T) to the unit
circle. Furthermore, if all branch points are distinct and lie on the unit circle,
then all the characteristic velocities are real and distinct; the modulation equa-
tions are strictly hyperbolic3'. There are only two ways that this situation might
be dynamically destroyed:

e The dynamics in X and T might cause two branch points to collide and
then bifurcate off of the circle, leading to modulation equations that are
locally elliptic, or

31This is a sufficient condition for hyperbolicity, but not necessary. It is possible for the
characteristic speeds to be real although some branch points are not on the unit circle. See
[42] for an example of a class of focusing potentials that are modulationally stable, in spite of
the fact that none of the branch points lie on the unit circle.
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e The dynamicsin X and 7' might cause one of the quantities dx f; to become
infinite for finite X and 7" signaling the appearance of a hyperbolic shock.

In fact, the collision of branch points on the unit circle is impossible as long as
the modulation equations are classical, since

(7.38) le(exp(i0 + i€), z) — c(exp(if), z)| = O(e),

where € <€ 1 measures the distance between two nearby branch points. Thus,
the two branch points begin to move with the same velocity as they approach
each other on the circle, and (7.38) shows that their velocities align sufficiently
fast that the two branch points cannot catch up with each other in finite time.
Of course the interpretation of ¢(z,z) as a velocity is only valid when 9x6;
exists; thus it is possible for branch points to collide on the unit circle, but
shocks must then form also where the branch points coalesce. This result 1s the
converse of the result of Levermore [36] for the Korteweg-de Vries modulation
equations which says that shocks may only form only if branch points coalesce.
The fact that the modulation equations remain hyperbolic as long as they remain
classical is a familiar feature of the modulation equations of known integrable
systems, and here we see that it follows from the fact that in integrable systems,
the characteristic velocities are expressed as a single function evaluated at the
various values of the dynamical variables. The analyticity of the function ¢(-, z)
in its first argument leads directly to (7.38).

It is significant that in the defocusing case, there are two possibilities for the
modulational behavior. Some branch point configurations have all branch points
on the unit circle so that the modulation equations are hyperbolic, suggesting
stable modulational behavior. However, there are also branch point configura-
tions having some branch points split off of the unit circle in pairs; in this case the
modulation equations may be elliptic, suggesting unstable behavior. This result
should be contrasted with the modulational behavior of the continuum nonlinear
Schrodinger equation, where in the defocusing case all admissible branch point
configurations lead to hyperbolic modulation equations.

8. Discussion of results and future work.

We have presented in this paper a class of exact solutions to the Ablowitz-
Ladik equations (1.3), along with criteria for selecting from this class of solutions
those that are spatially periodic with a given period N, and those that are solu-
tions to the focusing or defocusing version of the discrete nonlinear Schrodinger
equation (1.2). The corresponding formal modulational equations have also been
presented; these are the first ingredients in a program to understand the complete
picture of macroscopic behavior in the discrete nonlinear Schrodinger equation.

We have left many questions unanswered for our future work to address. For
instance, we would like to understand the Hamiltonian structure of the complex
Ablowitz-Ladik equations (1.3) restricted to the genus ¢ component of the phase
space. For the strictly periodic case there is really no problem here, since in
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the nonsingular cases there are ¢ + 1 = N independent branch points (action
variables) and ¢ + 1 corresponding angle variables. For finite genus potentials
that are not periodic functions of n, however, finding the Hamiltonian structure
will require identifying which of the 3¢g + 3 coordinates are Casimir functions of
the Poisson bracket

{f, 9}

(8.1) of oy YT

=l g 2 (0 QIR0 [ 5005 TRty ~ 390 3R

The remaining coordinates can then be partitioned into canonical (complex)
action and angle variables. In the focusing and defocusing cases, the actions
should be real valued, and the potentials should be periodic functions of all the
angle variables.

In the focusing and defocusing cases, the modulation equations found in Sec-
tion 7 can also be given a Poisson structure. A general treatment of the relation
of modulation equations to flat metrics and Poisson brackets of hydrodynamic
type can be found in the paper [33] by Krichever. In some cases, this structure
can be exploited to explicitly solve the modulation equations by a generalized
hodograph transform first worked out by Tsarev and summarized by Dubrovin
[12].

Although we have identified coordinates for the genus g part of the phase
space of (1.3) in the general complex case, we have not yet addressed the topo-
logical properties of the genus ¢ component of the phase space. It is likely that
the manifold of complex genus g solutions is connected, but numerical construc-
tions of exponentially growing potentials using the formulas (3.12) and (3.13)
show that this manifold is not compact. Imposing reality on the complex solu-
tion manifold to isolate the focusing and defocusing submanifolds has the effect
of destroying the connectedness. In particular, both the focusing and defocusing
submanifolds of the phase space consist of at least two disconnected components,
corresponding to the fact that the analytic double covering present in the set M,
through the parameter 5 degenerates into two distinct copies of the unit circle
on which 1 must live. Assessing the compactness of these components in the
focusing and defocusing cases requires understanding where the special divisors
lie in the Jacobian, as in the approach of Previato [43]. Tt is known that there
is a noncompact component in the defocusing case, because defocusing initial
conditions of sufficiently large amplitude experience blowup in finite time [26].
It should be possible to characterize exactly which spectral data lead to this
catastrophic phenomenon.

We are interested in singular limits of the class of solutions to (1.3) that we
have described. One kind of singular limit is the limit of infinite genus. In some
cases, this limit can correspond to the continuum limit of smooth potentials.
But also, we expect to find in this limit at least in the focusing and defocusing
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cases, all discrete solutions corresponding to initial conditions that are bounded
as functions of n.

As shown in Appendix A, a more tractable kind of singular limit is the limit
of colliding branch points. The class of generalized potentials given there triv-
ially includes the potentials satisfying twist-periodic boundary conditions and
described in Section 6. The particular case of solutions having antiperiod 2 is
included in this class; these solutions correspond to genus 1, and have the in-
teresting property (observed numerically, and described in the context of finite
genus modulation theory in [42]) that they do not evolve into more general condi-
tionally periodic genus 1 waves under the flow of the modulation equations. But
potentials in the limit of colliding branch points can behave in other ways also.
In some cases, pinching the Riemann surface together in this way is known to
lead to homoclinic orbits and (dark) solitons. We would like to find the solitons
in formulas like (A.13) and (A.14) and describe more explicitly the Backlund
transformations that generate these solitons from quasiperiodic potentials. The
first steps in this program are already being carried out [17]. Yet another pos-
sible result of colliding branch points is that the limiting potential may achieve
even or odd symmetry in n. For example, this is the situation in any neighbor-
hood near the origin n = 0 of the Toda shock problem in the long time limit [49],
where the pinched genus 2 potential that appears after a long time is constrained
by the symmetry of the initial shock at the origin to be odd as a function of n.

Such long time limits as those explicitly calculated by Venakides, Deift and
Oba [49] in the context of the Toda shock problem (and similarly the zero-
dispersion limits first obtained for the Korteweg-de Vries equation by Lax and
Levermore [34] and later extended by Venakides [48]) are the real proof of the
validity of modulation equations of the type found in Section 7. These calcula-
tions always begin with a specific (but to some degree arbitrary) exact solution,
and the long time asymptotics are calculated explicitly using the inverse spec-
tral transform. The long time limit is given locally by a finite genus oscillation,
with macroscopic behavior given by the same modulation equations that can be
(formally, but more easily) obtained by other means. We would like to consider
verifying the modulation equations given in Section 7 with similar calculations.
The most effective method would be to recast the solution of (1.3) (considered
on the whole line) as the solution of a matrix valued Riemann-Hilbert problem.
Then, the very effective methods of Deift, Its, and Zhou [10] can be employed to
examine the long time behavior of the Riemann-Hilbert problem, resulting in a
description of the long time dynamics that is a natural nonlinear generalization
of the steepest descent expansions familiar from the asymptotic theory of linear
dispersive wave systems.

Regarding our original impetus for understanding the finite genus solutions to
(1.2), we need to undertake a more detailed study of the hyperbolic structure of
the modulation equations, and their corresponding evolutionary behavior. First,
we need to consider the modulation equations in the general complex case, in
order to determine how the modulation equations can be interpreted in the case
that the spectrum has no particular symmetries. If the modulation equations
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turn out to have some meaning in the complex case, we would like to understand
what kind of simplifications can be introduced by careful choice of gauge. Even
in the focusing and defocusing cases, there are questions to be answered. The
most important question is that of the qualitative difference between potentials
whose branch points lie on the unit circle having stable modulational behavior
and potentials whose branch points have split off the unit circle in pairs. In
Appendix B we have proved that in the focusing case all branch points lie off
of the unit circle, and that in the defocusing case restricted to the component
¥z (from which the continuum limit emerges) the branch points are constrained
all to lie on the unit circle. However, there is very little known about solutions
belonging to the other components X, of the defocusing phase space. Finally,
in the defocusing hyperbolic cases, we need to understand the consequences of
wave breaking and shock formation. We expect that, as has been shown with
other integrable systems, steepening fields in the modulation equations can be
regularized locally by describing the local microscopic behavior with a solution
of higher genus. Determining whether something similar is true in the case of the
Ablowitz-Ladik equations requires comparing the formal structure of the genus
¢ modulation equations with that of the genus ¢ + 1 modulation equations.
Finally, we want to use the machinery presented in this paper to extend
the results to the infinite hierarchy of flows that commute with the Ablowitz-
Ladik equations (1.3). A systematic algebraic investigation of this hierarchy of
equations was carried out by Schilling [44], who found a generator for a doubly
infinite sequence of temporal linear problems that commute with the spatial
linear problem (1.14) under the condition that the potentials Q(n,?) and R(n,t)
satisfy certain nonlinear equations. In the context of the current paper, these
“higher” Ablowitz-Ladik equations arise by specifying a new differential indexed
by an integer £ = 2,3, ..., “Elzc))’ in the place of w(y) (which we would write in

(1)
(2)
in the &k = 2 case, if we specify that the new Baker-Akhiezer function u behave

as

this scheme as w;,) having singularities of order k at 07 and ocot. For example,

u, P—07,
_ Jexp(i(1 — z=%H)t)yu, P — 0T,
(8.2) u=9o P oo

bl bl

exp(i(z? — D))y, P — oot

where the function u has the same n dependence as the vector Baker-Akhiezer

function we have used in this paper, then this new function solves the usual

spatial linear problem (1.14), and it is possible to deduce a “higher” temporal

linear problem satisfied as well. The formulas for the new Baker-Akhiezer func-

tion are identical to (2.32) and (2.33) with the differential w(s) replaced by a new
(2)

differential Wiz): The consistency relation between the two linear problems is a
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new nonlinear system, the second Ablowitz-Ladik equation. It takes the form

—i0Q(n) + o(m)](2+w(m)Q(n) + R(m)(Qn+1)? + Q(n — 1)?)
— (o= 1Qn—2) +o(n+1)Q(n+2))| =0,

(8.3)
i R(n) — o(m)]@+s(m)RM) + Q) (R(n+1)* + R(n —1)?)
— (o(n= DR —2) +o(n + )R +2))| =0,
where
(8.4) o(n) = 1-Q(n)R(n),
(8.5) k(n) = Qn—DR(n+1)+Q(n+ 1)R(n—1).

We remark that this system is Hamiltonian as well3?, with the Poisson bracket
(8.1) and the Hamiltonian

H? = lim

Ntoo 2N —|—1 Z {Q
5 R(n)’ (Q(n T2+ Qn— 1>2)
_R(n) (Q(n +2)+Q(n— 2)) +2log U(n)} .

Formally, at least, all statements we have made about the system (1.3) also
hold for the higher system (8.3) by the formal replacement of w(s) by wg;

(k)
2

controlling the time dependence of the Baker-Akhiezer function. The behavi(oi‘
of modulated solutions to the k-th flow will depend upon symmetry properties
of these differentials. In particular, we expect the flows corresponding to odd &
to have stability properties similar to those of modulated solutions to the system

(1.3) we have considered at length in this paper.

This procedure can be continued, resulting in a sequence of differentials w
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Appendix A: Solutions derived from generalized Baker- Akhiezer
functions.

The class of algebro-geometric solutions constructed in this paper is easily ex-
tended to include singular data giving rise to Riemann surfaces with nondistinct
branch points. The approach taken here is to describe the analytical behavior
of the vector Baker-Akhiezer function on a surface with choice of sign of n from
the set M, having distinct branch points in the limit as two or more branch
points are brought together. The limiting object is a function on a Riemann
surface of lower genus, but having as many poles as the original Baker-Akhiezer
function and satisfying a set of linear homogeneous relations holding where the
surface has been pinched to yield the smaller surface. The pinched surfaces with
labeling are elements of the more general set /\/l;]. This appendix provides a
characterization of Baker-Akhiezer functions associated with general elements
of M/ and describes their associated solutions to the Ablowitz-Ladik equations
(1.3), relating them to Backlund transformations.

Choose an integer 0 < r < g, and let § = g — r. Consider as before the
Riemann surface of the algebraic relation

2742

(A7) v =] G-=),

k=1

where the branch points z; are finite, distinct, and nonzero, and a specific la-
beling of the points 0% has been chosen. Introduce the singularity locus £, an
integral divisor on C* of degree r consisting of points w; with multiplicities m;.
& 1s called the singularity locus because it is at the points of £ where we consider
a genus g Riemann surface to have been pinched off to yield the genus g surface
given by (A.7). These data make up an element I' of the set M. If r =0, I' is
a member of the set M, introduced in Section 2. The case of » > 0 corresponds
to allowing r pairs of branch points to come together over the points of £. In
Section 2 we described the fiber of Baker-Akhiezer functions, coordinatized by
the nonspecial divisor D, associated to each element of M,. We now introduce
the generalized fibers of Baker-Akhiezer functions associated to elements of the
closure M. Let D be a nonspecial integral divisor on this surface of degree g.

DeFINITION A.l. Ay(T, D) (A2(T,D)) is the linear space of all functions
f(P) on the Riemann surface given by the relation (A.7T) with singularities of
type 1 (type 2) and otherwise meromorphic, having D as the divisor of the poles,



FINITE GENUS SOLUTIONS TO THE ABLOWITZ-LADIK EQUATIONS 61

and satisfying the following linear conditions at each point w of the singularity
locus &:

1. If w is not a branch point of the Riemann surface, and the multiplicity of
wn & is m, then

9. F(P*(2))

=0

bl

z2= Z=w

forl=0,...,m—1.

2. If w =z 1s a branch point of the Riemann surface, and the multiplicity of
wn & is m, then

0 f(P(r))| _ =0,

forl=1,...,m, where 7 = \/z — w s the local parameter at P = w.

In the case r = 0, this definition agrees with the ones given in Section 2. A
function in Ay (T, D) (resp. A2(T', D)) for » > 0 can be thought of as a limit of a
sequence of functions in the space A1 (T's, D) (resp. A2(T, D)) for s = 1,2,3,. .,
where T'; are elements of M, (so that » = 0) and the corresponding Riemann
surfaces are derived from algebraic relations given in terms of small parame-
ters ¢; 15 that control the pinching of the sequence of surfaces. These algebraic
relations are of the form

2§42 J 2m;
(A.8) vi= ] G-=) [ []G—wi+es),
k=1 i=11=1

where the complex quantities ¢; ; ; approach zero for large s. Segal and Wilson
[45] offer an analog of /\/l;] for the Korteweg-de Vries equation, allowing arbitrary
nonzero proportionality between the left and right hand sides of the constraint
imposed through £ in the case when w is not a branch point. However, only
when this constant of proportionality is taken to be unity does the constraint
correspond to a handle of the Riemann surface being pinched off exactly at the
point w. Date [7] and Krichever [31] have offered analogous constructions for
Lax pairs associated with other nonlinear equations.

In contrast with the generic case » = 0, the spaces A1(T', D) and Ax(T, D)
for r > 0 are constrained by r conditions at the points of the divisor £; however
there are also r additional degrees of freedom contained in the divisor D of degree
g+r. In fact, the spaces are one-dimensional for all integer r such that 0 < r < g.

LEmma A.2. dimA(T,D) =1 and dimA(T, D) = 1.
Proof: We sketch the proof for the space A;. The extension to the case

of the space A, is exactly as it was in Section 2, through the adjoining of the
differential w. Consider the enlarged linear space Y1 consisting of all functions on
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the Riemann surface described by (A.7) having singularities of type 1 and poles
in D. Ay(T, D) is a subspace of T1 obtained by imposing the linear constraints
embodied in the divisor £. First, we will show that the dimension of T; is r+ 1
and provide a basis for this enlarged space. Then, we will impose the r linear
conditions entering through the divisor £ to obtain the one-dimensional subspace
A (T, D).

Let 1% be a fixed nonzero element of Ty having the least possible order at
each point of D. This means that if P is in D with multiplicity m then the
function (%) has a pole of order m at the point P. Later, by providing a basis,
we will demonstrate that such an function exists. Consider the linear mapping
taking each element % of T1 to a meromorphic function on the algebraic curve,

(A.9) €=/,

Consider the range of this transformation. It is the space of all meromorphic
functions on the curve having poles in the divisor of zeros of the function (%),
This divisor is nonspecial and has degree g. Thus, by the Riemann-Roch theorem
applied to the Riemann surface of genus § = g —r, the range has dimension r+1.
But the linear mapping ¢ +— & is invertible, so the dimension of Ty is r+1 (given
that an appropriate element (%) exists).

Let us now provide a basis for T;. Choose r 4+ 1 linearly independent non-
special integral divisors D; of degree g such that D; < D. The basis elements are
then (), given by

O(A(P) — A(D)) — K + Un + Vi)
O(A(P)— A(D;) — K)

P P
X exp (n/ wes) + t/ (.d(z)) .
Py Py

A generic linear combination of these » + 1 functions will have minimal order at

v (n,t,P) =

(A.10)

all points of the divisor D; such a function can serve as 1(?).

Now it is time to impose the linear constraints described by the singularity
locus & to obtain the subspace A1(T', D). There are r linear equations that must
be satisfied by an element of the subspace A (T, D). Whenever these equations
have full rank, the dimension of A1 (T", D) will be exactly 1. In fact, the equations
generically have full rank; an argument will not be given here, except to say
that one may argue inductively that by Gaussian elimination it is possible to
produce a triangular system with nonzero pivots. At each step of the induction,
one must demonstrate the existence of a function in T; that does not satisfy
the homogeneous linear conditions entering through £. The essential condition
required is that of the regularity of the divisor D: D must be linearly equivalent
to D + q1 + ...+ q where Disa nonspecial integral divisor of degree g. The
complete argument for the full rank condition in the case when none of the points
of £ are branch points appears in [17]. Also, the full rank condition has been
verified in the case when £ consists of a single branch point for g = 0.
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Normalizing an element of A;(T, D) at co™ and an element of As(T, D) at
0T exactly as in Section 2, we obtain the generalized Baker-Akhiezer functions
ui(n,t, P) and us(n,t, P). These functions reduce to those given in Section 2
when r = 0 and thus I is in the set M. It is easy to generalize the arguments of
Section 3 to show that the generalized Baker-Akhiezer functions solve the spatial
linear problem (1.14) and the temporal linear problem (1.16). The only required
adjustment to the arguments of Section 3 is to check that the functions ¥ and ¢
employed there satisfy the linear conditions imposed through the divisor £. But,
since u1 and us satisfy these conditions, they extend by linearity to the functions
1 and ¢. The remainder of the arguments go through unchanged, leading to the
following lemma.

Lemma A3, The generalized Baker-Akhiezer functions uy and uy satisfy the
spatial linear problem (1.14) and the temporal linear problem (1.16) globally in n,
t, and for all P on the algebraic curve defined by (A7), as long as Q(n—1,1) =

d(ll)(n,t) and R(n —1,t) = a(zl)(n,t).

Since the consistency conditions for (1.14) and (1.16) are the Ablowitz-Ladik
equations (1.3), each generalized vector Baker-Akhiezer function u leads to a
solution (Q(n,t), R(n,t)) of (1.3). We state this as a theorem.

THEOREM A.4. Let u be the generalized vector Baker-Akhiezer function con-
structed from an arbitrary element of /\/l;] and the divisor D. Then, the coeffi-
cients Q(n,t) = d(ll)(n—l—l,t) and R(n,t) = a(zl)(n—l—l,t) solve the Ablowitz-Ladik
equations (1.3).

In order to give formulas for the solution it is necessary to calculate the
appropriate linear combination of the basis elements of the inflated linear spaces
T, and T to satisfy the conditions imposed through the divisor £. To calculate
Q(n,t) and R(n,t), one first finds u; and wa:

ui(n,t, P)
(e O(A(c0t) — Z))O(A(P) — Z; + Un + Vi)
(All) = {; a,(n,t)e(A(OO+) —Z; 4+ Un+ Vt)O(A(P) — Z)

P
X exp (—(Gz +i)t —Gan+ / nw(s) + t(.d(z)) ,
Pq
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u2(n,t, P)
& O(A(cot) — Z)O(A(P) — Zy + Un+ Vi + W)
A1) = {;ﬁl(n’t)(a(fl(oo‘l‘) —Zi+Un+ Vi+ W)O(A(P) — Z))

P
X exp (—(g2 — it —gsn—f+ / nw(sy + tw(o) + w) ,
Pq
where Z; = A(D;) — K and aq(n,t) satisfying a1 (n,t) + ...+ apq1(n,t) = 1 and
Bi(n,t) satisfying f1(n,t)+. . .+ 5r41(n,t) = 1 are coefficients used to achieve the
7 linear constraints on uy and us entering through the singularity locus £. The
ai(n,t) and Fi(n,t) may be directly and easily calculated from (A.11) and (A.12)
in terms of theta functions by imposing the r conditions at the points w; of &,
although 1t is not easy to give a general formula for them. The corresponding
potentials Q(n,t) and R(n,t) are given by

Q(n—1,1)

B r+l O(A(coT) — Z1)O(A(0T) — Z; + Un + Vi)
(A13) = {Z ‘”(”’t)@(A(ooﬂ — Zi+ Un + V1)O(A(cot) — Zy)

=1

x exp((gs — Gs)n + (g2 — G2 — 2i)t),

R(n—1,1)

& O(A(cot) — Z))O(A(0F) — Z; + Un + Vi + W)
(A1) = {;ﬁl(n’t)(a(fl(oo"‘) — 7+ Un+ Vi+ W)0(A(cot) — Z)

xexp((F — f) — (g3 — Gs)n — (92 — G2 — 2i)t).

In the case of § = 0, the formulas will be simpler, since the functions in T; and
T can be written as explicit rational functions of z and y multiplied by the
exponential factor. The corresponding solutions Q(n,t) and R(n,t) will have
rational exponential expressions.

These singular solutions given by (A.13) and (A.14) can be viewed as the
result of applying Béacklund transformations to nonsingular solutions of (1.3).
Backlund transformations are nonlinear analogs of the superposition principle in
linear systems; they allow solutions of a nonlinear problem to be combined (non-
linearly) to yield a genuinely new solution to the same problem [15]. One con-
structs such a Backlund transformation for the Ablowitz-Ladik equations in the
following way. Choose an integral divisor & of degree » on C* that will character-
ize the transformation. Begin with »+ 1 nonsingular solutions (Q;(n,t), Ri(n,t))
to (1.3) that correspond to the the same Riemann surface (A.7) and to the non-
special divisors D; for l = 1,2, ..., r+ 1. These solutions are all merely translates
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of each other on the Jacobian of the Riemann surface. For each of these poten-
tials, there is a (nonsingular) vector Baker-Akhiezer function u;. Assemble an
arbitrary linear combination (with coefficients depending on n and t) of the first
components of the Baker-Akhiezer functions and then fix the coefficients (main-
taining the normalization) by imposing homogeneous linear conditions on the
linear combination through &£ as we have done above. Repeat the same for the
second components of the Baker-Akhiezer functions. Again expanding these lin-
ear combinations near co™ and 0%, one obtains new potentials (Q(n,t), R(n,t))
satisfying (1.3). Tt is a pleasant feature that each nonlinear Backlund transforma-
tion of potentials Q;(n,t) and Rj(n,t) is actually a genuine linear superposition
of the corresponding vector Baker-Akhiezer functions u;.

Let us now explain the role played by these generalized solutions to (1.3) in the
complete solution of the initial value problem with periodic boundary conditions
in n of period N. The procedure described in Section 5 began with polynomials
f(z), ¢(z) and x(z) calculated from the monodromy matrix S(0,0,z). The
Riemann surface was given by the algebraic relation

(A.15) v = 2(2) = elax(2),

whenever the roots of the polynomial f? — ¢y were distinet. In this way, an
element of M _; is associated with the initial data, and the polynomials ¢ and
f are used to define the divisor D that selects a vector Baker-Akhiezer function
from the associated fiber. It is now possible to remove the constraint of distinct
roots, as long as at least one pair of distinct branch points remains. Write the
polynomial f? — ¢y in the form

2

j 2542
(A16)  F2(2)— e(2)x() = [H@—wi)ml] [Hu—zw] ,

i=1 k=1

where g+ m; 4+ ...+ m; = N —1, and the z; are all distinct, as are the w;. The
Riemann surface is given by the familiar algebraic relation

2742

(A.17) v =T[G-=),

k=1
the labeling of the Riemann surface is determined from

-1

(A.18) y(0%) = [H(—w»ml]

i=1

The divisor £ is given by

J
i=1
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These two objects specify an element of the set M’;_ ;. Then, the divisor D of
degree N — 1 is obtained from the polynomials ¢ and f exactly as follows. The
z-projections of the points of D are the N — 1 roots of ¢. The y-projections of
the points of D are given by:

f=(P))

A. = T
(A.20) y(P) (P — )

i=1

bl

thus selecting a function u from the associated fiber. Finally, the scaling param-
eter € is given by Q(—1,0). The corresponding solution (£Q(n,t),é~ R(n,t))
obtained from the generalized vector Baker-Akhiezer function with the data
I' € M/y_, and D then solves the initial value problem, for all finite initial
data except that giving rise to an invariant polynomial having no distinct roots.

The case in which all the roots of 2 — ¢y coincide in pairs requires spe-
cial treatment because in the limit as the branch points coincide, the Riemann
surface splits into two disjoint copies of the Riemann sphere. If the point 0F
remains in the same connected component of the split surface as ocoT as the
gaps between neighboring branch points close, the limiting Baker-Akhiezer func-
tion (for concreteness, consider the component ;) is not well defined, the limit
depending upon the order in which the tubes connecting the two spheres are
pinched off. This is because there are singularities of the form 2" at the points
0~ and oo™, each of which ends up in a different sphere when the final pair of
branch points come together; thus, in the limit, n poles and n zeros must appear
in some configuration where the gaps have been pinched (the situation becomes
increasingly complicated as more pairs of branch points are brought together in
unison, rather than one pair at a time). This configuration will depend upon
which pair(s) of branch points merged last. On the other hand, if the point 0~
remains in the same connected component of the split surface as cot as the gaps
close, the limiting Baker-Akhiezer function s well defined, and 1t is possible to
give a unique construction of the solution in this case.

Unfortunately, it is the former case that applies to the solution of the initial
value problem for periodic initial data. This is true because, from the description
of the periodic problem given in Section 5, it can be seen that the case of all
branch points being double corresponds to é = 0 where

(A.21) § =41 = Qk,)R(k, 1)),

so that the function y becomes simply &trS. The “branch” of this function
containing the point oo™ is y = trS, whose value at z = 0 is 1, so that the point
connected to cot is 0. It is unlikely that a Baker-Akhiezer function can be
used to describe the dynamics in this case, since there is only one singular point
in each sphere for the spatial dynamics, and thus, the evolution in n cannot be
described by a simple differential of the third kind. To be more concrete, the
two Floquet multipliers become p = 0 and p = trS in this case; finding a third
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kind differential w(g) having integer residues and satisfying
(A.22) Nuw(s) = dlogtrS

on the Riemann sphere is impossible unless trS = (2 + exp(27ik/N))V for some
integer k, since these are the only degree N monic polynomials having the con-
stant term equal to 1 where all N zeros coincide, as do all N poles.

Although our solution to the initial value problem with periodic boundary
conditions cannot be strictly considered complete without treating the case § = 0,
the solution for 6 = 0 will not be presented here, since it does not fall into the
class of finite genus solutions to (1.3). But beyond the fact that the construction
for 6 = 0 does not involve Baker-Akhiezer functions, the problem itself is a
bizarre special case in which even the notion of periodic boundary conditions
appears to break down. Let us explain this statement. In the case of 6 = 0, it
can be seen from (A.21) that for some k, Q(k,0)R(k,0) = 1. As is easily verified

from the equations of motion (1.3), the motion at the site & is trivial; indeed
(A.23) Q(k,t) = Q(k,0)exp(—2it) and R(k,t)= R(k,0)exp(2it).

Furthermore, the section of the lattice to the left of site k is dynamically de-
coupled from the section of the lattice to the right of site £. Thus, the periodic
problem becomes an initial value problem with exponentially evolving boundary
conditions at the lattice points & and k 4+ N, repeated periodically along the
lattice. This initial value problem with boundary conditions at the endpoints
given by (A.23) was treated in the defocusing case by Vekslerchik [47] who gave
an algorithm for the solution of the initial value problem in terms of Toeplitz
determinants. The dynamics are described by rational trigonometric functions;
evidently the harmonic driving at the endpoints of each decoupled segment of
the chain excites only a finite number of modes in this case.

Appendix B: Spectral symmetries of the Ablowitz-Ladik equations.

It was shown in Section 4 that in both the focusing and defocusing cases of
the Ablowitz-Ladik equations, the finite genus solutions are built from Riemann
surfaces that have their branch points invariant as a set with respect to reflection
through the unit circle. We claimed that more was true; there were additional
symmetries that applied to the focusing case and to the defocusing |@Q] < 1 case.
In this Appendix, we describe these additional symmetries. First, we deal with
the focusing case.

THEOREM B.1.  In the focusing case, the branch points come in pairs reflected
through the unit circle, and can only lie on the circle if the multiplicity is greater
than one.

Proof: We prove the theorem for periodic potentials @(n,t), and we will
later appeal to density arguments to extend the result to general finite genus
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potentials. We will employ a spectral convexity argument essentially identical to
that used by Ma and Ablowitz [39] to achieve an analogous result for the periodic
focusing nonlinear Schrodinger equation. It is useful to deal with the original
spectral problem (1.4), based on the spectral parameter A. In the focusing case,
the spectral problem takes the form:

(B.24) vin+ 1,t) = v(n,t).
~Q(n) A~

In a periodic problem of period N, the Floquet multipliers are the eigenvalues
of the monodromy matrix which i1s the product of the shift matrices. In the
focusing case, it has the form:

(B.25) S = R :

—b(1/X) a(1/)

where a(A) and b(A) are Laurent polynomialsin A. The zeros in C* of the Floquet
discriminant

(B.26) A(N) = tr?S —4det S,

determine the branch points of the Floquet multiplier curve. Thus, the branch
points (in the A spectral variable) are the roots of

(B.27) a(A) + a(l/X)] " _4p=o,

where the determinant of S 1s

(B.28) D =a(Na(1/X) +b H (1+|Q(k)*) >1.

It is important that D is independent of A. Define

(B.29) ar(\) = SE
(B.30) ar(A) = w
(B.31) br(A) = w
(B.32) by = MO/
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In terms of these four meromorphic functions of A, the branch points solve the
equation

(B.33) ah(A) =D,
where the A independent determinant has the expression
(B.34) D = ak(A) + af(A) + b5 (X)) + b3 ().

If |A| = 1, then all four of the quantities ag, ay, bg, and by are real. Thus, if A’
is a branch point on the unit circle, one has ar(A') = br(A) = by(X) = 0. The
convex shape of the graph of (B.34) allows us to deduce this; it is the reason
for the term “spectral convexity”. Differentiating (B.34) with respect to A, and
evaluating at the branch point A’ on the unit circle gives

d
(B.35) aR(/\')ﬁaR(A)h:)\, =0,

which, since a%(X) = D > 1, implies

d
(B.36) ﬁaR(/\)h:)\, =0.
This proves that the multiplicity of any unimodular root A" of a%(A) — D = 0
is at least two. Since the branch points z; in this paper are just the squares
of the branch points £; (they come in positive negative pairs, as discussed in
Section 1), the branch points in a focusing periodic problem that lie on the unit
circle are multiple.

Now we move on to the defocusing case. Our results are restricted to the case
where the potential satisfies |Q(n,t)|> < 1 for all n, the component of the phase
space that in Section 4 we have called Xz.

THEOREM B.2. In the defocusing case, finite genus potentials in the contin-
wum limit component Xz of the phase space are built from Riemann surfaces that
have all branch points on the unit circle.

Proof: We will now show that, subject to periodic boundary conditions,
the branch points of Riemann surfaces corresponding to defocusing potentials
satisfying the constraint |Q(n,t)| < 1 must lie on the unit circle in the z-plane.
Later, we will appeal to density arguments to extend the result to general finite
genus potentials. Here, it is useful to consider the unimodular version of the
Lax pair of Ablowitz and Ladik, obtained through the transformation of the
Baker-Akhiezer function:

n—1

(B.37) vin,t,\)=w(n,t,\) [[ vV1-Q®n OR(n1).

k=—o0
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The defocusing spatial linear problem for the vector w then takes the form

B38)  wihaln=—— L | Mg
. T 1_|Q(nat)|2 W ! o

Observe that this linear problem can be written as a genuine eigenvalue problem:

V1I=1Q(n, t)[Pwi(n+ 1,1) — Q(n,t)wa(n,t) = Awi(n,t),

Q(n—l,t)wl(n,t)—i—\/1—|Q(n—1,t)|2w2(n—1,t) = Awa(n,t),

(B.39)

which has the form
(B.40) Aw = dw

bl

where the operator A involves the unit shift operator A, and can be written as

L=|Q(n,t)PA —Q(n,1)
Qln—1,1)  /1-[Q(n—LHPA~!

(B.41) A=

The operator A is invertible. The inverse 1s easily calculated:

. VISR =T0PA™ Q-1
—Q(n,1) 1 —|Q(n,1)*A

Furthermore, the adjoint (for boundary boundary conditions) with respect to
the inner product on w given by

(B.43) (w,w) => wlw',

(B.42) A™

can be calculated as

B V1=1Q(n —1,1)2PA1 Q(n—1,1)
_Q(nat) V 1- |Q(nat)|2A

Thus, periodic boundary conditions on Q(n,t), and the constraint that |Q(n,1)]
is less than 1 for all n clearly imply that

(B.44) AT

(B.45) AT = AT
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That is, the operator A is unitary. This i1s the discrete analog of the self-
adjointness for the AKNS spectral problem corresponding to the defocusing
nonlinear Schrodinger equation. Since A is unitary, its Floquet spectrum in
the A-plane lies on the unit circle. The corresponding z-values then also lie on
the unit circle, since z = A2.

By the discussion at the end of Section 5 concerning approximating arbitrary
finite genus potentials by periodic potentials, these results should carry over to
the general finite genus case as well, thus verifying Theorems B.1 and B.2 in
their entirety.
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