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1. I n t r o d u c t i o n  

The year of 1995 is not merely the centenary of the Korteweg-de Vries equation 
which we celebrate at this conference. It is also the year of the 'majority' of the 
finite-gap or algebraic-geometrical theory of integration of nonlinear equations 
- one of the most important components of the branch of modem mathematical 
physics, which is called the theory of integrable systems or the soliton theory. 
The main goal of this paper is to present the key points of the finite-gap theory 
and some of its applications. Part of its applications is directly related to the 
KdV equation, while a part of them lies beyond the framework of not only this 
particular equation but the theory of soliton equations in general. Corresponding 
examples refer to the string theory and topological field theory models. Not aspir- 
ing to be exhaustive, they manifest versatility of the methods, the origin of which 
would be forever related to the magic words: Korteweg-de  Vries Equation. 

Same as in the rapidly decreasing case, primerely the program of constructing 
periodic solutions of KdV equation was completely based on the spectral theory 
of the Sturm-Liouville operator - one of the so-called Lax operators for the KdV 
equation. 

But unlike the rapidly decreasing case in which the efficiency of direct and 
inverse spectral transform was sufficient both for constructing multi-soliton solu- 
tions and for solving the Cauchy problem in general, in the periodic case the level 
of efficiency of the corresponding spectral problems was far from sufficient. 

The creation of the effective spectral theory of finite-gap Sturm-Liouville 
operators proposed in the cycle of papers by S. E Novikov, 13. A. Dubrovin, 
V. B. Matveev and A. R. Its (see their reviews in [1, 2]; part of the corresponding 
results was obtained a bit later in [3, 4]), made it possible to construct not only 
a broad class of periodic and quasi-periodic solutions of the KdV equation. It 
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also brought about the reinterpretation of the approach to the spectral theory of 
ordinary periodic linear differential operators, as whole. 

The statement that the Bloch solutions of such operators considered for the 
arbitrary complex values of spectral parameter E, form a single-valued function 
on a Riemann surface, quite obvious nowadays, had remained outside the frame- 
work of the classical Flouque theory. It turned out that analytical properties of 
the Bloch functions on this surface are crucial for the solution of the inverse 
problem of reconstructing the coefficients of operators. In the case when this 
surface has a finite genus, the solution of the inverse problem is based on the 
methods of classical algebraic geometry and the theory of theta functions. 

The significance of the algebraic-geometrical approach was completely re- 
vealed in [5, 6], where the general algebraic-geometrical construction of period- 
ic solutions of two-dimensional soliton equations of the Kadomtsev-Petviashvili 
type was proposed. This construction is based on the concept of the Baker- 
Akhiezer function r y, t, Q), which is uniquely determined by their analytical 
properties on the auxiliary Riemann surface F, Q E F. The corresponding analyti- 
cal properties naturally generalize the analytical properties of the Bloch functions 
of ordinary linear periodic differential operators. Their peculiarity is that for any 
function possessing these properties there always exist differential operators L 
and A of the form 

n n 0 

L = ~ u i ( x , y , t ) O ~ ,  A =  ~ v j ( x , y , t ) O ~ ,  0x = 0---x" (1.1) 
i = 0  j = 0  

such that the Baker-Akhiezer function is the common solution of the linear 
equations 

(Oy - L ) r  y, t, Q) = O, (Or - A ) f ( x ,  y, t, Q) = 0. (12) 

The compatibility conditions of the overdetermined system of the linear problems 
(1.2) imply the operator equation 

JOy - -  L, Ot - A] = O( ~ o t n  - OyA + [L, A] = 0 (1.3) 

that is equivalent to the system of nonlinear partial differential equations on the 
coefficients of the operators L and A. 

For example, if L and A have the form 

n = a - l ( O ~  - u ( x , y , t ) ) ,  d = O3 - 3 uOx + w ( x , y , t ) ,  (1..4) 

then (1.3) is equivalent to the KP equation 

3 2  = (  ) uyy - + �88 (1.5) 
X 

If u = u(x ,  t) is independent of the second variable y and w = ~ux(x ,  t), then 
(1.3) is equivalent to the KdV equation 

1 us 3 uu~ + ~ ux~x = 0. (1.6) 



ALGEBRAIC-GEOMETRICAL METHODS 95 

We present the general algebraic-geometrical construction of exact solutions 
of the soliton equations in Section 2. It should be specially emphasized that this 
construction is purely local and is a sort of inverse transform: from a set of 
algebraic-geometrical data to solutions of the integrable nonlinear partial differ- 
ential equations 

{algebraic-geometrical data} J ~ {solutions of NLPDE} (1.7) 

In a generic case, the space of algebraic-geometrical data is a union for all g of 
the spaces 

Mg,N = {rg,P~,k~l(Q),71, . . .  ,Tg}, ~ = 1 , . . . ,N ,  (1.8) 

where Pg is an algebraic curve of genus g with fixed local coordinates k~l(Q), 
k~ 1 (Pc~) -- 0, in neighborhoods of N punctures Pc~, and ~/1,. . . ,  "/a are points of 

Fg in a general position. (It is to be mentioned that Mg,g are 'universal' data. 
For the given nonlinear integrable equation, the corresponding subset of data has 
to be specified.) 

A posteriory, it can be shown that these solutions can be expressed in terms 
of the corresponding Riemann theta functions and are quasi-periodic functions 
of all variables. Within this approach, it is absolutely impossible to give an 
answer to the basic questions: "How many algebraic-geometrical solutions are 
there? And what is their role in the solution of the periodic Cauchy problem for 
two-dimensional equations of the KP type?" 

The answer to the corresponding question in lower dimensions is as fol- 
lows. For finite-dimensional (0 + 1)-systems, a typical Lax representation has 
the form 

O~U(t,~) = [V(t ,~) ,  Y( t ,~) ] ,  (1.9) 

where U(t, )~) and V(t, )~) are matrix functions that are rational (or sometimes 
elliptic) functions of the spectral parameter A. In that case, all the general solu- 
tions are algebraic-geometrical and can be represented in terms of Riemann theta 
functions. 

For special one-dimensional evolution equations of the KdV type ((1 + 1)- 
systems), the existence of direct and inverse spectral transform allow one to prove 
(though it is not always the rigorous mathematical statement) that algebraic- 
geometrical solutions are dense in the space of all periodic (in x) solutions. 

It turns out that the situation for two-dimensional integrable equations is much 
more complicated. For one of the real forms of the KP equation that is called 
the KP-2 equation and which corresponds to o- = 1 in (1.5), the algebraic- 
geometrical solutions are dense in the space of all periodic (in x and y) solutions 
[7]. It seems, that the same statement for the KP-1 equation (o- = i) is wrong. 
One of the most important problems in the theory of two-dimensional integrable 
systems which is still unsolved is 'in what sense' the KP-I equation that has the 
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operator representation (1.3) and for which a wide class of periodic solution has 
been constructed, is an 'nonintegrable' system. 

The proof of the integrability of the periodic problem for the KP-2 equation 
is based on the spectral Floque theory of the parabolic operator 

M = Oy - + u ( x , V ) ,  (1.1o) 

with periodic potential u(x + ll,y) = u(x,y +/2) = u ( x , y ) .  This theory is 
presented in Section 3. It is a natural generalization of the spectral theory of 
the periodic Sturm-Liouville operator. We would like to mention that despite its 
application to the theory of nonlinear equations and related topics, the structure 
of the Riemann surface of Bloch solutions of the corresponding linear equation 
that was found in [7] has been used as a starting point for the abstract definition 
of the Riemann surfaces of the infinite genus [9]. 

In the last section, we present the algebraic-geometrical perturbation theory 
of soliton equations and its application to the topological models of quantum 
field theory. 

2. The  B a k e r - A k h i e z e r  Funct ions .  Genera l  Scheme  

Let F be a nonsingular algebraic curve of genus g with N punctures P,~ and fixed 
local parameters k~ 1 (Q) in neighborhoods of the punctures. For any set of the 
points "71, �9 �9 �9 7g in a general position, there exists a unique (up to constant factor 
c(ta,i)) function r  t = (ta,~), a = 1 , . . . , N ;  i = 1 , . . . ,  such that: 

(i) the function r (as a function of the variable Q which is a point of F) is 
meromorphic everywhere except for the points Pa and has at most simple poles 
at the points "Yl,. �9 �9 79 (if all of them are distinct); 

(ii) at the neighborhood of the point Pa the function r has the form 

r  Q)  = exp , k s  = 
k i=1 / s=O 

(2.1) 

This is the most general definition of a scalar multi-puncture and multi-variable 
Baker-Akhiezer function. It depends on the variables ~ = {t l ,~ , . . . ,  tN,i} as on 
external parameters. 

From the uniqueness of the Baker-Akhiezer function, it follows that for each 
pair (a,  n) there exists a unique operator L~,n of the form 

n-1 
La,n = (~n, 1 ~- E "  (c%n) 

j--1 
(2.2) 

(where Oa,i = O/Ot~,i) such that 

(0,~,i - L~,n)r  Q) = 0. (2.3) 
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The idea of the proof of theorems of this type which was proposed in [5, 6] is 
universal. 

For any formal series of the form (2.1), their exists a unique operator L~,n of 
the form (2.2) such that 

(Oa, i -  L~,n)~b(t,Q) = O ( k - l ) e x p  E t a , i k i  �9 (2.4) 
i = i  

The coefficients of L~,n are differential polynomials with respect to ~s,~. They 
can be found after substitution of the series (2.1) into (2.4). 

It turns out that if the series (2.1) is not formal but is an expansion of 
the Baker-Akhiezer function in the neighborhood of P~, the congruence (2.4) 
becomes an equality. Indeed, let us consider the function 

gaz = (0~,n - L~,n)r  Q). (2.5) 

It has the same analytical properties as ~b except for one. The expansion of this 
function in the neighborhood of P~ starts from O(k-1).  From the uniqueness 
of the Baker-Akhiezer function, it follows that ~bl = 0 and the equality (2.3) is 
proved. 

COROLLARY 2.1. The operators Lcqn satisfy the compatibility conditions 

[Oa,n - L~,n, O~,m - Lc~,m] = 0. (2.6) 

Remark. Equations (2.6) are gauge invariant. For any function g(t) opera- 
tors 

[,~,n = gLe~,ng -1 + (O,~,ng)9 -1 (2.7) 

have the same form (2.2) and satisfy the same operator equations (2.6). The 
gauge transformation (2.7) corresponds to the gauge transformation of the Baker- 
Akhiezer function 

r (t, Q) = g ( t ) r  Q). (2.8) 

EXAMPLE (one-puncture Baker-Akhiezer function). In the one-puncture case, 
the Baker-Akhiezer function has an exponential singularity at a single point/:'1 
and depends on a single set of variables. Let us choose the normalization of 
the Baker-Akhiezer function with the help of the condition {i,0 = 1, i.e. an 
expansion of r in the neighborhood of PI equals 

r 1 +   s(t)k - s  . 
i=1 / 

(2.9) 
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In this case, operator Ln has the form 

n--2 
Ln = O~ + ~'*i(n)ni~q" (2.10) 

i~---O 

For example, for n = 2, 3 after redefinition x = tl we have L2 = crL, L3 = A, 
where L and A are differential operators (1.4) and 

U(X, t 2 , . . . )  = 20x~l (X, t 2 , . . . ) ,  (2.11) 

Therefore, if we define y = o--lt2, t = t3, then u(x, g, t, t4,...) satisfies the KP 
Equation (1.5). 

It should be emphasized that a algebraic-geometrical construction is not a sort 
of abstract 'existence' and 'uniqueness' theorems. It provides the exact formulae 
for solutions in terms of the Riemann theta functions. They are the corollary of 
the exact formula for the Baker-Akhiezer function 

O(A(P) + Z) , (2.12) 

Here: 
O(z) = O(z I B) is the Riemann theta function - the entire function of 9 

complex variables z = ( z l , . . . ,  zg) that is defined by the matrix B of b-periods 
of normalized holomorphic differentials da~i, i = 1 , . . . ,  9, on P: 

O(Zl,..., Zg) = E eZrri(m'z)+rri(Bm'm); (2.13) 

mEZg 

9ti,a(P ) is an Abelian integral 

ai,~(P) ----- dai,~, (2.14) 

corresponding to the unique normalized 

~a df~,c~ = 0, (2.15) 
k 

meromorphic differential on 1-" with the only pole of the form 

dka(1 + O(kffi-1)) (2.16) d~i,c~ = i 

at the puncture Pa; 
27riUj,,~ is the vector of b-periods of the differential df~j,a 

= 1 ~( df~j,~; (2.17) U~ 3,c~ 27ri Jbk 
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A(P) is a vector with coordinates 

F A(P) = dwk (2.18) 

(formula (2.18) is called the Abel transformation); 
Z is an arbitrary vector (it corresponds to the divisor of poles of the Baker- 

Akhiezer function). 
It follows from (2.11) that in order to get the solution of the KP equation, it 

is enough to take the derivative of the first coefficient of the expansion at the 
puncture of the ratio of theta functions in the formula (2.12). The final formula 
for the algebraic-geometrical solutions of the KP hierarchy has the form 

( 5 )  u(t l ,  t2 , . . . )  = 202 In 0 Uiti + Z + const, (2.19) 
k i=1  

(see details in [6]). 
Formula (2.19) that was derived in [6], has lead to one of the most important 

pure mathematical applications of the theory of nonlinear integrable systems. 
This is the solution of the famous Riemann-Shottky problem. 

According to the Torrelli theorem, the matrix of b-periods of normalized holo- 
morphic differentials uniquely defines the corresponding algebraic curve. The 
Riemann-Shottky problem is to describe symmetrical matrices with the posi- 
tive imaginary part that are the matrices of b-periods of normalized holomorphic 
differentials on algebraic curves. Novikov conjected that the function 

u(x, y, t) = 202 In O(Ux + Vy + Wt  + Z I B) (2.20) 

is a solution of the KP equation iff the matrix B that defines the theta func- 
tion is the matrix of b-periods of normalized holomorphic differentials on an 
algebraic curve and U, V, W are vectors of the b-periods of corresponding nor- 
malized meromorphic differentials with the only pole at a point of this curve. 
This conjecture was proved in [10]. 

Equations (2.6) for n = 2, m > 3 describe evolutions of u(x,y,  t, t4,. . .)  
with respect to 'higher times' or, equivalently, the whole KP hierarchy. Here it 
is necessary to make a few comments. In the original form, Equations (2.6) are 

a set of nonlinear equations on the coefficients u~ n) and do not have the form of 
evolution equations. It can be shown (see [11]) that they are equivalent to the 
evolution system in the form which was proposed by the Kyoto group [12]. We 
show this equivalence for algebraic-geometrical solutions. 

For any formal series of the form (2.9), there exists a unique pseudo-differential 
operator/2 

0(3 

12 = 01 + ~ ui(tl,.  . .)0~ -i, (2.21) 
i=1  
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such that 

s 1 6 2  k) = kr  k). (2.22) 

Then the operators Ln which are uniquely defined from the congruence (2.4) are 
equal to 

Ln = [/:n]+, (2.23) 

where [. . .]+ stands for the differential part of the pseudo-differential operator. 
From (2.3), it follows that if ~b(t, k) is an expansion of the Baker-Akhiezer 
function, then 

(On - [s162 Q) = o. (2.24) 

The compatibility conditions of (2.22) and (2.24) imply the evolution equa- 
tions 

Onff~ = [[~n]+, s (2.25) 

on the coefficients u i ( t l , . . . )  of/2.  The Equations (2.25) are the Sato form for 
the KP hierarchy. 

At the end of this section, we shall make a few comments about the multi- 
puncture case. For each oe Equations (2.6), up to the gauge transformation, are 
equivalent to the KP hierarchy corresponding to each set of variables {tc,,i}. 
What is the interaction between two different KP hierarchies? 

As was found in [13], for the two-puncture case, a full set of equations can 
be represented in the following form 

[Oo~,n -- Lob,n, O ~ , n -  n~,n] l'~a'fl r-gc*'fl : .-..N,m.,. , (2.26) 

where H '~'z is the two-dimensional Schr6dinger operator in a magnetic field 

H c~'z - 02 + vC~'ZOc~,l + v~'~Oc~,2 + u c~'5 (2.27) 
0c~,l 0~3,1 

and operators r~a'5 "-"g,rn are differential operators in the variables t~,l, t/L1. 

The sense of (2.26) is as follows. For the given operator H ~,~, any differential 
operator D in the variables t~,l, t5,1 can be uniquely represented in the form 

D = D1H '~'/~ + D2 + D3, (2.28) 

where D2 is a differential operator with respect to the variable t~,~ only and D3 
is a differential operator with respect to the variable tO,1 only. Equations (2.26) 
imply that the second and third terms in the corresponding representation for the 
left-hand side of (2.26) are equal to zero. This implies n + m - 1 equations on 
n + m  unknown functions (the coefficients of operators Lc~,n and Ll3,m ). Equations 
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(2.26) are gauge invariant. That's why the number of equations equals a number 
of unknown functions. Therefore, the operator equations (2.26) are equivalent to 
the well-defined system of nonlinear partial differential equations. 

3. Spectral Theory of Two-Dimensional Periodic Operators 

As was mentioned in the introduction, nowadays the origin of the Riemann 
surfaces in the spectral theory of periodic ordinary linear differential operators 
looks more or less obvious. 

Indeed, let L be an ordinary differential operator 

L = ~ ui(x)O~ (3.1) 
i=0 

with periodic coefficients ui(x + l) = ui(x) (that are scalar or matrix functions). 
Then the monodromy operator 

T: y(x)  , , y(x  + l) (3.2) 

induces the finite-dimensional linear operator 

T(E):  Z ( E ) ,  > s  (3.3) 

on the space s  of solutions of the ordinary differential equation 

Ly(x)  = Ey(x) ,  (3.4) 

where E is a complex spectral parameter. 
The characteristic equation 

R(w,  E) = det(w - T(E))  (3.5) 

defines the Riemann surface F of the Bloch solutions of Equation (3.4), i.e. the 
solutions g;(x, Q) of (3.4) that are eigenfunctions of the monodromy operator 

r  + l, Q) = w e ( z ,  Q), (3.6) 

Here Q is a pair Q = (w, E) such that (3.5) is fulfilled, i.e. a point of the 
corresponding Riemann surface Q E F. 

Equation (3.5) represents the Riemann surface of the Bloch solutions as an N- 
sheet covering of the complex plane of the spectral parameter E. In [7] another 
representation of the Riemann surface of the Bloch solutions was proposed. 

Let us consider as an example a nonstationary Schrrdinger operator (l.10). 
The solutions g,(x, y, wl,  w2) of the nonstationary Schr6dinger equation 

(trOy - 0 2 + u(x,  y))r y, w~, w2) = 0 (3.7) 

with a periodic potential u(x,  y) = u(x + al, y) = u(x, y + a2) are called the 
Bloch solutions, if they are eigenfunctions of the monodromy operators, i.e. 

r q- al,  y, Wl, w2) = Wl@(X, y, Wl, w2), (3.8) 
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r  y + a2, wl, w2) = w2r y, wl,  w2). (3.9) 

The Bloch functions will always be assumed to be normalized so that r  0, Wl, 
w2) = 1. The set of pairs Q = (Wl, w2), for which there exists such a solution is 
called the Floque set and will be denoted by F. The multivalued functions p(Q) 
and E(Q) such that 

11) 1 ~ e ipal, w 2 ~- eiEa2, 

are called quasi-momentum and quasi-energy, respectively. 
The gauge transformation r ~ eh(v)r where Oyh(y) is a periodic function, 

transfers the solutions of (3.7) into solutions of the same equation but with 
another potential g = u - crOyh. Consequently, the spectral sets corresponding 
to the potentials u and g are isomorphic. Therefore, in what follows we restrict 
ourselves to the case of periodic potentials such that 

foal u(x, y) dx = O. 

To begin with, let us consider as a basic example the 'free' operator 

M 0 : O - O y - ( ?  2 

(3.10) 

(3.11) 

with zero potential u(x, y) = 0. The Floque set of this operator is parametrized 
by the points of the complex plane of the variable k 

Wl~  ~kal , w ~  -a-lk2a2 (3.12) 

and the Bloch solutions have the form 

r  y, k) = e ikz-'~-lk''y. (3.13) 

The functions 

r  y ,  k)  = e - i k x + ~  (3.14) 

are Bloch solutions of the formal ajoint operator 

(o0 v + 02)r  + = 0. (3.15) 

Formulae (3.12) define the map 

k E C t ~, (w~ ~ E C 2. (3.16) 

Its image is the Floque set for the free operator M0. It is the Riemann surface 
with self-intersections that correspond to the pairs k r U such that 

w~ = wg(k"~, ,, / = 1,2. (3.17) 
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From (3.12) it follows that 

2~rN 
k - U - , (3.18) 

a l  

k2  _ ( k t )  2 _ o'27riM, (3.19) 
a 2  

where N and M are integers. Hence, all the resonant points have the form 

1rN criMal N • O, k I = k - N , - M .  (3.20) 
k : k N , M  --  a~- Na2 ' 

The basic idea of the construction of the Riemann surface of Bloch solutions 
of Equation (3.7) that was proposed in [7] is to consider (3.7) as a perturbation of 
the free operator (3.7), assuming that the potential u(x, y) is formally small. 

For any ko ~ kN, M it is easy to construct a formal Bloch solution ~ of the 
Equation (3.7) as a formal series 

OG 

= ~ ~s(~,y,~o), ~o(x,v, ko) = ~(x,v,  ko) = ~o. (3.21) 
8 : 0  

This series describes a 'perturbation' of the Bloch solution r of the nonperturbed 
equation. 

LEMMA 3.1. If  ko ~ kg,M, then there exists a unique formal series 

O 0  

F(V, k0) = E Fs(V, k0) (3.22) 
s = l  

such that the equation 

(~0~ - O~ + u (x , y ) )~ (x , y ,  ko) = F(y ,  ko)~(x,  V, ko) (3.23) 

has a formal solution of  the form 

(DO 

ffJ(x, y, ko) = ~ Cs(x, y, ,  ko), r = r (3.24) 
s = 0  

satisfying the conditions 

(r = (r162 %+ =r (3.25) 

(here and below (f(x)}z  stands for the mean value in x of the corresponding 
periodic function f )  

~P(x + al, y, ko) = wlo~P(x, y, ko), wlo = w~ (3.26) 
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�9 (X, y § a2, ko) = wzo~(x, y, ko), w2o = w~ (3.27) 

The corresponding solution is unique and is given by the recursion formulae 
(3.28)-(3.32). 

= > 1, (3 .28)  
nr 

~)n = ~)n( x, Y) ~- ~)(X, y, ]gn), 

~)+n = ~)+(z,Y,]gn), 
2T'?Z 

k,~ = k0 + - - ,  (3.29) 
a l  

cS(Y, ~0) = 0"-1 q/J2n X 
W20 --  W2n 

] 
i n dY r, 

/ ~ A - . . ~ a y  \ i = 1  (~)+n~)n)x ] 
(3 .30)  

wen = w~ (3.31) 

Fs(Y, ]r - -  (~/)0q-U~bs-1)x (r162 (3.32) 

From (3.23), (3.26), (3.27), it follows that the formula 

qJ(x,y, ko) { _l f Y  } (3.33) (b(x,y, k o ) -  ~(0 ,0 ,  k0) exp - F(y',ko)dy' 

defines the formal Bloch solution of Equation (3.7): 

(b(x + al, y, ko) = wlor y, ko), (3.34) 

~(x,  y + a2, k0) = 2520r y,/co), (3.35) 

where the corresponding Bloch multiplier is equal to 

~2o = wzoexp { - cr-l LaZF(y',ko)dy'}. (3.36) 

For sufficiently small u(x, y), it is not too hard to show that the above con- 
structed series of the perturbation theory converge outside some neighborhoods 
of the resonant points (3.20) and determine there a function r  y, k0) which 
is analytical in ko. This is true for any o-. The principle distinction between the 
cases Re cr = 0 and Re c r r  0 is revealed under an attempt to extend ~ to a 
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'resonant' domain. In the case Re cr = 0, the resonant points are dense on the 
real axis. In the case Re cr ~ 0, there is only a finite number of the resonant 
points (3.20) in any finite domain of the complex plane. The discreteness of the 
resonant points in the last case is crucial for the extension of r to a 'resonant' 
domain (and for the proof of the approximation theorem). 

In the stationary case, when u does not depend on y, the preceding formulae 
turn into the usual formulae of the perturbation theory of eigenfunctions corre- 
sponding to simple eigenvalues. The condition 

W2n r W20 < ..... > kO r ]r (3.37) 

is a simple analog of an eigenvalue of an operator. In cases when it is violated, 
it is necessary to proceed along the same lines as in the perturbation theory of 
multiple eigenvalues. 

As the set of indices corresponding to the resonances, we can take an arbitrary 
set of integers I E Z such that 

W2ee • W2n, Ol E I, n ~ I. 

LEMMA 3.2. There are unique formal series 

O 0  

F~(y, wl) = ~ F~,s(y, Wl ) 
s=l 

such that the equations 

- + = r 2 ( v ,  , o l )  

have unique formal Bloch solutions of the form 

OO 

~I~~ Wl) -- ~ r Wl), 
8 = 0  

(3.38) 

(3.39) 

(3.40) 

(3.41) 

�9 "(x + al,V, wi) = wle (x, v, (3.42) 

~I'~(x, y + a2, Wl) = w2,~'~(x, y, wl). (3.43) 

such that 

(~@- ~ ) x  = 6~,~ (r  + ~b~)x" (3.44) 

The corresponding formulae for Fff and ~ are the matrix generalization of 
formulae (3.28), (3.29) (see details in [7]). 

Let us define the matrix T = Tff (y, wl) by the equation 

crOfT + TF = 0, T(0,  wl) = 1. (3.45) 
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The functions 

~ ( x ,  y, wl ) = ~-~ T~ (y, wl ) ~ (x, y, wl ) (3.46) 

are solutions of (3.7). Under the translation by the period in x, they are multiplied 
by wl, while under the translation by the period in y, they are transformed as 
follows 

~a(x, y + a2, Wl) = E T~ (wl )w2~3~2~3 (x, y' Wl), (3.47) 

where 

T~(wl) = T~(a2, w,). (3.48) 

It is natural to call a finite set of the formal solutions ~ a  quasi-Bloch, since it 
remains invariant under the translation by the periods in x and y. 

The characteristic equation 
A 

R(wl, z52) = det (z526c~,~ - Tff(w,)w2,~) = 0 (3.49) 

is an analog of the 'secular equation' in the ordinary perturbation theory of 
multiple eigenvalues. 

A 

Let ho,(wl, ~2) be an eigenvector of the matrix Tff(Wl)W2,~ normalized so 
that 

= 1, 4) = ( 3 . 5 0 )  
O t  

then 

~ ( x , y , Q , )  = Eho~(Q)~~ (3.51) 
O~ 

is the formal Bloch solution of (3.7) with multipliers wl and w2, normalized in 
the standard way. The last statement means that the Bloch solutions are defined 
(locally) on the Riemann surface (3.49). 

3.1. STRUCTURE OF THE 'GLOBAL' RtEMANN SURFACE OF BLOCH 
SOLUTIONS 

To begin with, we shall give here an explanation of the structure of the 'global' 
Riemann surface of Bloch solutions in the case of small u. Let us consider some 
neighborhoods RN,M and R-N,-M of the resonant pair of the points kN, M 
and k-N,-M, respectively. The function w1(1r (3.12) identifies them with some 

neighborhood ffgN,M of the point Wl(kN, M) =- Wl(k-N,-M) on the complex 
plane of the variable wl. The series (3.28)-(3.32) of the nonresonant perturbation 
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theory diverge in RN, M and R_N,_M, but it turns out that the series of the 
Lemrna 3.2 converge in ff~N,M and in this domain define quasi-Bloch solutions 
of (3.7) which are analytical in wl. The characteristic Equation (3.49) in this 
case has the form 

w22 - fl  (Wl)W2 q-fZ(Wl) = 0 (3.52) 

and defines two-sheet covering RN, M over RN, M on which the Bloch solutions 

of (3.7) are defined. The boundary of RN, M can be naturally identified with the 
boundaries of RN,M and R-N,-M. Hence, the structure (local) of the Riemann 
surface F of the Bloch functions looks as follows. Let us cut out RN, M and 
R-N, -M from the complex plane and, instead of them, glue a corresponding 
piece of the Riemann surface RN,M. From the topological point of view, this 
surgery is a glueing of a 'handle' between two resonant points. 

The remarkable thing is that the perturbation approach works even when 
u(x, g) is not small. Of course, in that case, the estimations of the perturbation 
theory series are much more complicated. In [7], it was proved that if the potential 
u(x, if) can be analytically extended into a domain 

IIm x I < "rl, IIm y[ < 7"2, (3.53) 

for some ~-1, "r2, then the perturbation series for the nonresonant case converge 
outside some central finite domain R0 and outside RN,M for kN,M ~ Ro. Outside 
Ro, we again have to perform a surgery of the previous type ('glue' handles 
between ]r and k_N_ M for ION, M ~ P~). In the central domain R0, we have 
to glue some finite genus piece of the corresponding Riemann surface/~0 instead 
of disc R0. As a result, we obtain the global Riemann surface F of the Bloch 
solutions of Equation (3.7) with Re ~r r 0. 

THEOREM 3.3. If the potential u(x, y) of Equation (3.20) can be analytically 
extended into the domain (3.53), then the Riemann surface F of the Bloch solu- 
tions of this equation is a result of the above-defined glueing of the three types 
of 'pieces': 
1 ~ A complex plane of the variable k without small neighborhoods of the finite 

or infinite set of points ]r ]r and without some central domain 
Ikl > K0, 

2 ~ A set of 'handles' /~IN,Mr that are defined by equations of the form (3.52) 
as the two-sheets covering of the small neighborhoods of the pairs kN, M, 
]~-N,- M; 

3 ~ A Riemann surface I~o (with the boundary) of a finite genus 90. 
The Bloch solutions of (3.7) ~(x, y, Q), Q E F, that are normalized by the 

condition ~(0, O, Q) = 1 are meromorphic on F. Their poles do not depend on 
x, y. It has one simple pole in each of the domains RrN,MI. In the domain Ro, 

it has 9o poles, where go in general positions (when T~o is smooth) equals the 
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genus of Ro). Outside these domains, the function ~b is holomorphic and has no 
z e r o s .  

If there is a finite number of handles that are glued then the corresponding 
curve is compactified by one point and the corresponding Bloch function is the 
Baker-Akhiezer function on the compactified Riemann surface. 

In the case of real and smooth u(x, y) for a = 1 the final form of the Floque 
set can be represented in the following form [7]. Let us fix some finite or infinite 
subset S of integer pairs (N > 0, M).  The set of pairs of complex numbers 
7r = {psj,ps,2}, where s E S would be called 'admissible' if 

~rN 
R e p s , i = - - - ,  Ip~,~-ks[ =o(Ik l-1), i =  1,2, (3.54) 

a l  

and the intervals ~%,1 ,Ps,2] do not intersect. (Here ks are resonant points (3.20), 
s = (N, M).)  

Let us define the Riemann surface P(Tr) for any admissible set ~-. It is obtained 
from the complex plane of the variable k by cutting it along the intervals 
[Ps,I,P~,2] and [-10s,1,-/5s,2] and by sewing after that the left side of the first 
cut with the right side of the second cut and vice versa. After this surgery, for 
any cut [Ps,1, Ps,2] there corresponds a nontrivial cycle as on F(~-). 

THEOREM 3.4. For any real periodic potential u(x, y) which can be analytical- 
ly extended into some neighborhood of the real values x, y, the Bloch solutions 
of Equation (3.7) with cr = 1 are parametrized by points Q of the Riemann 
surface F(Tr) corresponding to some admissible set 7r. The function ~(x,  y, Q) 
which is normalized by the condition ~b(0, 0, Q) = 1 is meromorphic on F and 
has a simple pole % on each cycle as. If the admissible set 7r contains only a 
finite number of pairs, then F(1r) has finite genus and is compactified by only 
one point t91 (k = cxD), in the neighborhood of which the Bloch function ~b has 
the form (2.9). 

The potentials u for which F(Tr) has finite genus are called finite-gap potentials 
and as it follows from the last statement of the theorem, they coincide with the 
algebraic-geometrical potentials. The following theorem states that the finite-gap 
potentials are dense in the space of all periodic smooth functions in two variables 
[7]. 

THEOREM 3.5. Each smooth periodic potential u(z, y) of Equation (3.7) with 
Re cr # 0 analytically extendable to a neighbourhood of real x, y can be approx- 
imated by finite-gap potentials uniformly with any number of derivatives. 

4. Algebraic-Geometrical Perturbation Theory of Integrable Systems 

The nonlinear WKB (or Whitham) method for the construction of the asymptotic 
solutions may be applied for any nonlinear system that has exact quasi-periodic 
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solutions of the form 

u(x , y , t )  = uo(Ux + Vy  + W t  1I), (4.1) 

where u0 (Zl, . .  �9 z o [ I)  is a periodic function in variables zi depending on a set 
of parameters I = ( I1 , . . . ,  IN); U = U(I),  V = V(I) ,  W = W ( I )  are vectors 
depending on the same set of data. 

Let us consider the asymptotical solutions of the same equation of the form 

u(x , y , t )  = u o ( e - I S ( X , Y , T )  I I ( X , Y , T ) )  + 

+eul (x, y, t) + e2u2(x, y, t), (4.2) 

where X = ex, Y = ey, T = et are 'slow variables'. 

Remark. Parameters I are integrals of the corresponding nonlinear partial dif- 
ferential equation. As usual, in the perturbation theory the 'integrals' of the initial 
equation become functions of the slow variables. We would like to emphasize 
that for partial differential equations one of the possible types of perturbation 
(that does not exist in the finite-dimensional case of the classical Hamiltoni- 
an integrable systems) is not the perturbation of the equation by itself, but the 
perturbation of a class of initial or boundary conditions. The construction of 
the asymptotic solutions of the form (4.2) corresponds to the perturbation when 
instead of a class of periodic or quasi-periodic functions one considers functions 
with slowly modulated periods. 

If the vector S(X, Y, T) satisfies the relations 

OxS  = U( I (X ,  Y, T)) = U(X,  Y, T), 

oys= V(X,Y,T), OrS= w(xlz, r), (4.3) 

then the main term u0 in the expansion (4.2) satisfies the initial equation up 
to the first order in e. After that, all the other terms of (4.2) are defined from 
the nonhomogeneous linear equations. They can be easily solved if a full set of 
solutions for a homogeneous linear equation are known. 

The asymptotic solutions of the form (4.2) can be constructed with an arbitrary 
dependence of the parameters/k on the slow variables. In this case, the expansion 
(4.2) will be valid on a scale of order 1. The right-hand side of the nonhomoge- 
neous linear equation for ul contains the first derivatives of the parameters Ik. 
Therefore, the choice of the dependence of Ik on slow variables can be used for 
the cancellation of the 'secular' term in Ul. 

Let us show briefly the way to derive necessary conditions for the existence 
of the asymptotic solutions of the form (4.2) with uniformly bounded first-order 
term (ul) for an equation that has a zero-curvature representation of the form 
(1.3). 
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Let Lo, Ao be the linear operators corresponding to an exact algebraic- 
geometrical solution of the corresponding equation. We consider the asymptotic 
solutions of (1.3) 

L = Lo + eL1 + e2L2 + . . . ,  A = Ao + eA1 +eZA2 + . . ' ,  (4.4) 

assuming that the algebraic-geometrical data that define Lo, A0 are functions of 
the slow variables. The corresponding dependence of L0, A0 defines the right- 
hand side F(Lo,  Ao) of the nonhomogeneous equation 

OtL1 - OyAx + [L1, A0] + [L0, All = F(Lo, Ao). (4.5) 

for the first-order terms of the asymptotic solution (4.4). (The left-hand side 
of (4.5) is a linearization of (1.3) on the background of the exact solution 

L0, A0.) 
Let r be a solution of the auxiliary linear problems 

(Oy --  LO)2/) -~ O, (Or -- A0)r = 0, (4.6) 

and r  be a solution of the adjoint equations 

r - Lo) = O, r - A0) = 0, (4.7) 

then (4.5), (4.6) imply that 

Ot(r162 - 0y(e+Al~b) - ( r 1 6 2  = 0z(r162 (4.8) 

where D is a differential operator with coefficients that are differential polyno- 
mials in the coefficients of the operators L0, L1, A0, A1. 

The equality (4.8) implies that if the product r is quasi-periodic in the 
variables x, y, t, then 

((r162 = 0, (4.9) 

where (')x,y,t stands for the mean value in the variables x, y, t of the correspond- 
ing function. 

In [8] it was found that (4.9) and the compatibility conditions of (4.3) are 
equivalent to a well-defined system of partial differential equations on the moduli 
space of curves with punctures and fixed local coordinates in the neighborhoods 
of these punctures. 

4.1. WHITHAM EQUATIONS 

To begin with, we shall give an algebraic form of the 'universal' Whitham 
hierarchy (see [14]). Let ~A(k~T)  be a set of holomorphic functions of the 
variable k (which is defined in some complex domain D), depending on a finite 
or infinite number of variables tA, T ----- {tA}. (We keep the same notation tA 
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for slow variables EtA because we are not going to consider 'fast' variables in 
this section any more.) Let us introduce a one-form 

w = E ~ A ( k , T ) d t A ,  (4.10) 
A 

onto the space with coordinates (k, tA). Its full external derivative equals 

5w = ~-~ ~ A ( k , T )  A dtA, (4.11) 
A 

where 

(~A : Ok~A d]~ q- E OB~A dt, B , Ok:O/Ok,, OA m O/O~A. (4.12) 
B 

The equation 

5w A 5w = 0 (4.13) 

we shall call, by definition, the Whitham hierarchy. 
The 'algebraic' form (4.13) of the Whitham equations is equivalent to a set 

of partial differential equations that have to be fulfilled for any triple A, B, C 

E E{A'B'C}OA~BOk~C = 0 (4.14) 
{A,~,C} 

(summation in (4.14) is taken over all permutations of indices A , B , C  and 
e{ A,B,C} is a sign of permutation). 

Equations (4.13) are invariant with respect to an invertable change of vari- 
able 

k = k(p, T), Opk (: O. (4.15) 

Let us fix an index A0 and denote the corresponding function by 

p(k, T) = f~Ao(k, T). (4.16) 

At the same time, we introduce a special notation for the corresponding 'time' 

tA0 = x. (4.17) 

After that, all ~A can be considered as functions of the new variable p, ftA = 
f~A(p,T). Equations (4.14) for A, B, C = A0 after this change of variable h 
have the form 

CgA~B -- OB~A -q- {~A,  ~ B }  = 0, (4.18) 

where {f,  g} stands for the usual Poisson bracket on the space of functions of 
the two variables x ,p  

{ f , g} = Oxf Opg - OxgOpf . (4.19) 
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The Whitham equations were obtained in [81 in the form (4.14). In [7], it 
was found that they can be represented in the algebraic form (4.13). (We would 
like to mention here the papers [15, 16] where it was shown that the algebraic 
form of the Whitham equations leads directly to the semiclassical limit of 'string' 
equations.) 

The Whitham equations in the form (4.14) are equations on the set of functions 
~A(P, T) and give but a certain 'shape' that has to be filled with a real content. 
It is necessary to show that they do define correct systems of equations on 
the moduli spaces Mg,N of smooth algebraic curves 1" 9 of genus 9 with local 
coordinates k~ 1 (P)  in neighborhoods of N punctures P~ (k~ 1 (P~) = 0) 

~rg,N = {ru, Pa, kgl(P), a = 1 , . . . , N } .  (4.20) 

Let us consider as the first e._.xample the zero-genus case (g = 0). In this case, 

a point of  the 'phase space' Mg=O,N is a set of points Pa, o~ = 1 , . . . ,  N, and a 
set of formal local coordinates k~ 1 (p): 

OO 

ks(p) = ~ va,s(p - p~)S (4.21) 

('formal local coordinate' means that the r.h.s of (4.21) is considered as a formal 
series without any assumption of its convergency). Hence, MO,N is a set of 
sequences 

MO,N = {Pa, v,~,s, a = 1 , . . .  ,N,  s = - 1 , 0 ,  1 ,2 , . . .} .  (4.22) 

The Whitham equations define a dependence of points of MO,N with respect to 
the variables tA, where the set of indices .A is as follows 

A = {A= (a,0,  1 , . . . ,N,  i = 1 , 2 , . . .  
and f o r i = 0 ,  a r  (4.23) 

As it was explained above, we can fix one of the points pa with the help of an 
appropriate change of the variable p. Let us choose pl = co. 

Let us introduce meromorphic functions f~,i(P) for i > 0 with the help of 
the following conditions: 

f~,i>0(P) has a pole only at p~ and coincides with the singular part of an 
expansion of k~ (p) near this point, i.e. 

i 

= - = k (v) + o ( 1 ) ,  

s = l  

Ut~,i(cxD) = 0, a • 1. (4.24) 
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i 

f~l,i(P) = Z Wl,i, 8p8 = k~(p) + O ( k l l ) .  (4.25) 
8=1 

These polynomials can be written in the form of the Cauchy integrals 

ftc~,i(p, T) = _~1 T) dzc~ (4.26) 
27ri , p - za 

Here Ca is a small cycle around the point p~. 
The functions ft~,i=0(p), a r 1, are equal to 

ft,~,0(p) = - ln(p - p~). (4.27) 

Remark. The asymmetry of the definitions of ft~,i reflects our intention to 
choose the index A0 = (1, 1) as a 'marked' index. 

The coefficients of f~c~,i>0(P) are polynomial functions of V~,s. Therefore, the 

Whitham equations (4.12) (or (4.18)) can be rewritten as equations on MO,N. 
But still it has to be shown that they can be considered as a correctly defined 
system. 

THEOREM 4.1. The zero-curvature form (4.18) of  the Whitham hierarchy in 
the zero-genus case is equivalent to the Sato-form that is a compatible system of  
evolution equations 

OA]Ca ~-- {kc~, ~A}.  (4 .28 )  

Let us demonstrate a few examples. 

EXAMPLE 1 (Khokhlov-Zabolotskaya hierarchy). The Khokhlov-Zabolotskaya 
hierarchy is the particular N = 1 case of our considerations. Any local coordinate 
K -1 (p) near the infinity (Pl = ec) 

oo 

K(p)  = p +  ~-~vsp -8 (4.29) 
8 = 1  

defines a set of polynomials: 

f~i(P) = [Ki(P)]+, (4.30) 

here [.. .]+ denotes a nonnegative part of Laurent series. For example, 

~-~2 ---- k2 ~- U, ~'~3 ---- h3 n t- 3 u/~ + w,  (4.31) 

where u = 2Vl, w = 3v2. If we denote t2 = y, t3 = t, then Equation (4.18) for 
A = 2 ,  B = 3 g i v e s  

wx = 3 Uy, w v = u t -  3 uux, (4.32) 
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from which the dispersionless KP (dKP) equation (Khokhlov-Zabolotskaya equa- 
tion) is derived: 

3 -~Uyy-~- (Ut-- 3 UUX)x =O. (4.33) 

The Khokhlov-Zabolotskaya equation is a partial differential equation and 
though it has no pure evolution form, one can expect that its solutions are to be 
uniquely defined by their Cauchy data u(x, y, t = 0), that is a function of the 
two variables x, y. Up to now, it is not clear if this two-dimensional equation can 
be considered as the third equivalent form of the Whitham hierarchy (we recall 
that solutions of the hierarchy (4.28) formally depend on an infinite number of 
functions of one variable). 

EXAMPLE 2 (longwave limit of 2D Toda lattice). The hierarchy of the longwave 
limit of a two-dimensional Toda equation is the particular N = 2 case of our 
considerations. There are two local parameters. One of them is near the infinity 
Pl = (xz and one is near a point P2 = a. They depend on two sets of variables 
ta,s, o~ = 1,2, s = 1 , 2 , . . . ,  and also on the variable to. We shall present here 
only the basic two-dimensional equation of this hierarchy (an analogue of the 
Khokhlov-Zabolotskaya equation). 

Consider three variables t = to, x = t l , 1 ,  y = t2,1. The corresponding func- 
tions are 

v 
. . . .  (4.34) f/o ln(p a), ~ 1 , 1  = P, f~2,1 p -  a 

Their substitution into the zero-curvature Equation (4.18) gives 

vx = atv, vt + ay = O, wt = 0. (4.35) 

From (4.35), it follows that 

6~yr + 02e r = 0, (4.36) 

where q5 = In v. This is the longwave limit of the 2D Toda lattice equation 

02xy~n - ~  e q ~  _ _  e~-~n+l (4.37) 

corresponding to the solutions that are slow functions of the discrete variable 
n, which is replaced by the continuous variable t. Equation (4.36) has arisen 
independently in general relativity, the theory of wave phenomena in shallow 
water, long radio-relay lines, and so on. A bibliography can be found in [17] 
where a representation of solutions of (4.36) in terms of convergent series was 
proposed. 
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EXAMPLE 3 (N-layer solutions of the Benny equation). This example corre- 
sponds to a general N § 1 points case, but we consider only one zero-curvature 
equation. Let us choose three functions 

N 
~1 = P, ~ 2  = P + ~ v___/ , f23 = p2 q_ u, (4.38) 

~=1 p --Pi 

which are coupled with the variables x, y, t, respectively. In our standard nota- 
tions, they are 

N + I  

x = tl,1, y = ~ tc~,~, t = t~,2. (4.39) 
o~=1 

The zero-curvature Equation (4.18) gives the system 

2 
Pit  -- (Pi )x  + Ux = O, Vit = 2 ( v i P i ) x ,  

Uy - uz + 2 ~ Vix = O. (4.40) 
i 

Solutions of this system that do not depend on y are N-layer solutions of the 
Benny equation. As it was noticed in [18], the corresponding system 

2 
Pit  -- (Pi )x  + Ux = O, vit = 2(vipi)x, u = 2 ~ vi (4.41) 

i 

is a classical limit of the vector nonlinear SchrOdinger equation 

i r 1 6 2  + U r  u = ~ [~bil 2. (4.42) 
i 

(Using this observation in [18], the integrals of (4.41) were found.) 

In the case of the arbitrary genus curves, the basic Whitham hierarchy is 
generated by Equations (4.13) or (4.18), where the set of indices A is the same 
as in genus zero case. The corresponding functions for A = (ct, i > 0) are 
defined by (2.14)-(2.16). The functions f/c~,0 are integrals of the normalized 
Abelian differentials df~,~,o, a r 1, of the third kind with simple poles at the 
points P~ and Pa with residues 1 and - 1 ,  respectively, 

daa,0 = dka(k~ 1 + O(k~-l)), 

da~,0 = - d k l  ( k l  I -I- O ( k l  1)); (4.43) 

Remark. It should be mentioned here that the corresponding system of equa- 
A 

tions is defined on the covering M~, N of the moduli space Mg,N that corresponds 
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to the choice of canonical basis of c.ycles on the curve. In order to have the system 
of equations that are defined on Mg,N but not on its covering, it is necessary to 
change the normalization conditions (2.15) by the conditions that do not depend 
on the choice of basic cycles. The corresponding conditions are 

Im r df]A = 0, c E H1 (Pg, Z). (4.44) 
d e  

This normalization conditions were obtained for the Whitham hier..__archy in [8]. 
Below, for the simplicity, we consider the Whitham hierarchy on M~, N, only. 

4.2. ALGEBRAIC ORBITS AND EXACT SOLUTIONS OF THE WHITHAM 

EQUATIONS 

In [7] a construction of exact solutions of the Whitham equations corresponding 
to 'algebraic orbits' was proposed. (This construction is a generalization and 
effectivization of the scheme [19] where 'generalized godograph' transformation 
was proposed for hydrodynamical-type diagonalizable Hamiltonian systems; see 
[20-221.) 

Let ~A(k, T) be a solution of the general zero-curvature Equation (4.18) 

OAf'~B -- OBf~A q- {["IA, ~B}  = 0. (4.45) 

They are the compatibility conditions for the equations 

OAE = {E, f~A}, (4.46) 

Therefore, an arbitrary function E(p,  x) defines (at least locally) the correspond- 
ing solution E(p, T) of (4.46), E(p, x) = E(p, tAo = x, tA = O, A 7k Ao). In 
the domain where OpE(p, T) 7k O, we can use a variable E as a new coordinate, 
p = p(E, t). The derivatives for fixed E and p are interrelated with the help of 
the following formula 

d f  
OAF(p, t) = OAf(E, t) + -d-~OAE(p, t). (4.47) 

Therefore, in the new coordinate, Equations (4.45) are equivalent to the equa- 
tions 

OAf~B(E, T) =- OBf~A(E, T). (4.48) 

Hence, there exists a potential S(E, T) such that 

f~A(E, T) = OAS(E, T). (4.49) 

Due to this potential, the one-form co (4.10) can be represented as 

co = 6S(E, T) - Q(E, T) dE, (4.50) 
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where 

Q(E, T) - OS(E, T) (4.51) 
OE 

Hence, 

5a~ = 5E A ~O. (4.52) 

Formula (4.52) implies that the functions E and Q as functions of two variables 
p, x satisfy the classical string equation 

{Q, E} = 1. (4.53) 

They show that 

OAQ = {Q, f~A}, (4.54) 

also. 
A set of the pairs of functions Q(p, x), E(p, x) satisfying the string equation 

is a group with respect to the composition, i.e. if Q(p, x), E(p, x) and Q1 (p, x), 
E1 (p, x) are solutions of (4.53) then the functions 

(2(p,x) = QI(Q(p,x), E(p,x)); E,(p,x) = EI(Q(p,x),E(p,x)) (4.55) 

are a solution of (4.53), as well. The Lie algebra of this group is the algebra 
SDiff(T 2) of two-dimensional vector-fields preserving an area. The action of 
this algebra on the potential, "r-function (and so on) within the framework of the 
longwave limit of a 2D Toda lattice was considered in [15, 16]. 

By definition, the 'algebraic orbits' of the Whitham hierarchy are solutions 
such that there exists a 'global' solution of Equation (4.46). In the case of genus- 
zero Whitham equations, 'global' means that E(p, T) is a meromorphic solution 
of Equations (4.46) such that 

{E(p, T), k~(p, T)} : 0. (4.56) 

The last equality implies that there exist functions f~ (E) of one variable such 
that 

k~(p,T) = f~(E(p,T)). (4.57) 

In order not to be lost in a too general setting right at the beginning, let us 
start with an example. 

EXAMPLE (Lax reductions, N = 1). Consider solutions of the dKP hierarchy 
such that some power of local parameter (4.29) is a polynomial in p, i.e. 

E(p, T) = pn + u,~_2pn-2 +. . .  + no = Kn(p, T). (4.58) 
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The relation (4.58) implies that only a few first coefficients of the local parameter 
are independent. All of them are polynomials with respect to the coefficients ui 
of the polynomial E(p, T). The corresponding solutions of dKP hierarchy can 
be described in terms of dispersionless Lax equations 

OiE(p, T) = {E(p, T), fli(P, T)}, (4.59) 

where 

fli(p, T) = [Ei/n(p, r)]+ (4.60) 

(as before, [...]+ denotes a nonnegative part of corresponding Laurent series). 
These solutions of KP hierarchy can be also characterized by the property that 
they do not depend on the variables tn, t2n, t3n, . . . .  

The construction of the exact solutions of the dispersionless Lax equations 
can be presented in the following form. For each polynomial E(p) of the form 
(4.58) and each formal series 

0(3 

Q(p) = ~-~, bjtfl, (4.61) 
j=l 

the formula 

1 
ti = -resoo ( K - i  (p)Q(p) dE(p))  (4.62) 

defines the variables 

t k = t k ( u i ,  bj), i = 0 , . . . , n - 2 ,  j = 0 ,  . . . .  (4.63) 

as functions of the coefficients of E,  Q. Consider the inverse functions 

ui = ui( t l , .  . .), bj = bj(h,  . . .). (4.64) 

Remark. In order to be more precise, let us consider a case when Q is a 
polynomial, i.e. bj = O, j > m. From (4.62), it follows that tk = 0, k > n + m - 1 .  
Therefore, we have n + m -  1 'times' tk, k = 1 , . . .  ,n  + m -  1, that are linear 
functions of bj, j = 1 , . . .  ,m,  and polynomials in ui, i = 0 , . . .  , n  - 2. So, 
locally the inverse functions (4.64) are well defined. 

THEOREM 4.2. The functions ui(T) are solutions of dispersionless Lax Equa- 
tion (4.59). Any other solutions of (4.59) are obtained from this particular one 
with the help of translations, i.e. u(ti) = u(ti - t~ 

The construction of solutions of the dispersionless Lax equations that was 
presented above manifest the general form of the construction of exact solutions 
of universal Whitham hierarchy on all spaces M~, N. 

The key elements of this construction are as follows: 
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1. First of all there is the 'big phase space', that is the moduli space 

./k[g(n~) = {Pg, dQ, dE, ai, bi E HI(Fg, Z)} (4.65) 

of curves with a fixed canonical basis of cycles, with a fixed normalized mero- 
morphic differential dE having poles of orders n~ + 1 at points Pa and with a 
fixed normalized differential dQ (P) that is holomorphic outside the punctures. 

2. The second step is the definition of a set of functions on this moduli space. 
They are given by the formulae 

1 
S - i  t~,i = - r e  p~(kc~ (p)Q(p)dE(p)), 

tc~,0 = resp~ (Q(p) dE(p)) 

and the formulae 

th,i= ~ dS, i =  1,. . . ,g,  
d a  i 

Tb~ i > o, (p) = z ( p ) ;  

(4.66) 

dS = Q dE, (4.67) 

f f 
tQ# = - ~ .  dE, rE , i=  ~. dQ, i = 1 , . . . , 9 .  (4.68) 

J / )  i ,10i 

Let us introduce the differentials that are 'coupled' to the new type of the vari- 
ables tA. Namely, to the variables th,k, to,k, tE,k. 

1. df~h,k is normalized 

f df~h,k = ~ik (4.69) 
i 

holomorphic differentials. 
2. The differentials df~E,i, df~Q,{ a r e  holomorphic on the curve Fg everywhere 

except for the a-cycles where they have 'jumps'. Their boundary values on aj 
cycle satisfy the relations 

df2+,i - df~,  i = 5ij dE, (4.70) 

df~,  i - df~2,i = 5# dQ, 

These differentials are uniquely normalized by the conditions 

~ daE,J=~a daQ,j=O. 
i i 

Let 

(4.71) 

(4.72) 

739(nc~) C A/'9(nc~) (4.73) 

be an open subset of the big phase space such that the corresponding differentials 
dE, dQ have no common zeros on Pr 
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THEOREM 4.3. The map 

7)a(na ) , , (T = {tA}) (4.74) 

that is defined by formulae (4.66)-(4.68) is nondegenerate, i.e. the set of func- 
tions {tA} defines a system of coordinates on 73g(na). The corresponding depen- 
dence of the curve Fg(T) and the differential dE(T)  with respect to these coor- 
dinates define a solution of  the universal Whitham hierarchy on the moduli space 
M;,N. 

In other words, the Whitham hierarchy can be considered as a way to define 
the special system of coordinates on the moduli space of curves with punctures 
and with jets of local coordinates in neighborhoods of the punctures. The na-jets 
of the local coordinates are the equivalence classes of the coordinates. Two local 
coordinates kl,c~(P) -1 and k,~(P) are equivalent iff 

kl,c~(P) =- ka(P) + O ( k a ( P ) - n ~ - ' ) .  (4.75) 

The formula 

k2 ~ (P) = E(P) ,  (4.76) 

where E ( P )  is the integral of the differential d E  defines locally a map from 
the moduli  space of {l"g, dE}  of curves with fixed normalized meromorphic 
differentials of the second kind with poles of orders na  + 1 at points Pa to the 
moduli space M~, N. This maps is a local isomorphism with the moduli space 
Mg,N (n,~) of curves with punctures and with fixed na  jets of local coordinates. 

4.3. TOPOLOGICAL MINIMAL MODELS 

In [23], it was notice that the calculations of [25] of the perturbed primary 
rings of the so-called topological minimal A,~-models can be identified with 
the construction of the solutions of the first n equations of the dispersionless 
Lax hierarchy (4.59). This fact made it possible to include the corresponding 
deformations of the primary rings into a hierarchy of an infinite number of 
commuting flows. The calculations in [25] of partition function for perturbed An 
models gave an impulse for the introduction a ~--function for dispersionless Lax 
equation. The corresponding results were generalized in [14, 24, 26, 27]. 

Two- and three-points correlation functions 

(r162 = ~/a#, ea#.y = (r (4.77) 

of any topological field theory with N primary fields 41,. �9 �9 CN define associa- 
tive algebra 

r 7 "y CaBr = e,~Bu~I TM, rlaurl uB = 66, (4.78) = cab 
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with a unit r 

~]a/3 = Cla/3. (4.79) 

It turns out that there exists N parametric deformations of the theory such that 
'metric' rlar is a constant and three-point correlators are given by the derivatives 
of free energy F(t)  of the deformed theory 

c~r ) = O~TF( t  ), ~ = 0 1 ~F ( t )  = const. (4.80) 

Such deformations are called potential FrObenius deformations. (We recall that 
the commutative associative algebra with the bilinear form (., .) that is compatible 
with multiplication, i.e. (ab, c) = (a, bc) is called the Fr6benius algebra.) 

The associativity conditions of algebra (4.78) with structural constants (4.80) 
are equivalent to a system of partial differential equations on F (WDVV equa- 
tions). In [28], it was noticed that these equations are equivalent to the equa- 
tions 

[0~ - ACe(t), O~ - )~U/~(t)] = 0, (4.81) 

where Co(t)  is a matrix with entries %r In other words, the structure constants 
of the algebra of deformed topological theories define a flat connection on the 
space of deformed theories with a spectral parameter A. The coupling constant 
are flat coordinates for the space of deformed theory. 

The topological minimal An models are particular examples of such models. 
Topological states for twisted N = 2 superconformal Landau-Ginsburg models 
are defined by the superpotential E. In case of the An-1 model, the deformed 
potential has the form 

E ( p )  = p n  .q_ U n _ 2 p n - 2  + . . . q_ UO. (4.82) 

The coefficients ui can be considered as coordinates on the space of the deformed 
topological minimal models. Each polynomial E defines a factor ring 

U~)] OE (4.83) 
~ e  -- E '  : 0 '  e ' ( p )  -- 019. 

The formula 

( ) (f,  9} = ~ resq8 dp I(P), 9(P) C TeE, (4.84) 
qs E p  

defines a nondegenerate bilinear form on 7~t~, i.e. supplies 7~E with the structure 
of the Fr6benius algebra. 

In [25], it was shown that the functions t i (uo , . . . ,  un-2), i = l , . . .  , n -  1, 
that are defined by formula (4.62) for Q(p) = p are flat coordinates for the 
bilinear form (4.84) and define the potential Fr6benius deformation of the algebra 
(4.83). 
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THEOREM 4.4 ([23]). Let E(p, tl, t2, . . .  , tn-l ,  t~+l,.. .) be the solution of the 
dispersionless Lax hierarchy which was constructed above. Then the superpo- 
tential of the perturbed An-1 topological minimal model is equal to 

W(p,  t l , . . .  , tn-1) = E(p, Q , . . . ,  tn-1, 1,0, 0 , . . . ) .  (4.85) 

The free energy of this model is equal to 

F = F( t l , t 2 , . . . , t n -1 ,  1 ,0 ,0 , . . . ) ,  (4.86) 

where F(t l ,  t2, . . . .  ) is given by the formula 

F ( T ) =  resoo ( i~=l t iKi dS)  , dS(p) = Q(p) dE(p). (4.87) 

The function r (T)  = exp(F(T))  is the r-function of the dispersionless Lax 
hierarchy. The general definition of such a function for algebraic orbits of the 
universal Whitham hierarchy for all genera is given by the formula 

l n r = s  d S A d S ,  d S = Q d E .  (4.88) 
d l  g 

Important remark. The integral (4.88) is not equal to zero, because S(p, T) 
is holomorphic on 1-' except for the punctures Pa and some contours, where it 
has 'jumps'. Therefore, the integral over Pg equals to a sum of the residues at 
Pa and the contour integrals of the corresponding one-forms. 

The r-function is a function of the variables tA, r = r(T). As it was shown 
in [14] it contains full information about the corresponding solutions f~A(P, T) 
of the Whitham equations. For 9 > 0 in r a geometry of the moduli spaces is 
encoded. 

At the end of this section we present the results of [14] where it was shown 
that the open domain JV'g(nc~) of the 'small' phase space 

.g'g(nc~) = {Fg, dE, ai, bi E Hl(Vg, Z)} (4.89) 

that is the moduli space of marked smooth genus g algebraic curves with fixed 
normalized Abelian differential dE which has poles of orders na + 1 at some 
points Pa, is a FrObenius foliation, i.e. a smooth foliation with leaves such that 
the fibers of the tangent bundle has a structure of the Frrbenius algebra and they 
form the potential deformation of these algebras. 

The leaves .h/V(n~) of the foliation are defined by the periods of dE 

fb dE = Irk, (4.90) 
k 

and are parametrized by constants V -- (Vk). Let us us denote the normalized 
differential with the only pole at the point Pa of the form (4.91) by dp; 

dp = d(E l/nl + 0(1)).  (4.91) 
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From Theorem 4.3, it follows that the functions 

1 
t~,i = _ resp~ (k~(p)pdE(p)), (4.92) 

a = l ,  i = l , . . . , n l - 1 ,  

o~ > 1, i = 1 , . . . , n~ ,  

ta,o = resa(pdE(p)); (4.93) 

= r pdE,  k = l , . . . , g ;  (4.94) t h , k  
Ja  k 

= ~. dp, k = 1 , . . . , g ;  (4.95) tE,k 
J b  k 

define a system of the coordinates on the leaves A/"V (n~) of the foliation Afg (n~). 
Therefore, the vectors 0a = O/Ot~ form the basis in the tangent space of 
Jvy(n ). 

THEOREM 4.5. The formulae 

(Oa, Ob) = E resqs ( dfta df~b ) 
qs \ ' 

dE(qs) = 0, (4.96) 

q~ \ dp dE ] '  (4.97) 

(where the differentials d~2a are defined by (2.15, 2.16, 4.43,4.69-4.72)) define 
on N'V(na) the structure of the FrObenius manifold. The vector ~(t,;~) with 
coordinates 

dpe )~E, (4.98) 

are horizontal sections of the flat connection (4.81), i.e. 

(Oa + ACa(t))~(t, A) = O. (4.99) 

Within the framework of the theory of topological models (see [28]), this 
result may be presented in the following way. The linear space spanned by the 
differentials df~a is isomorphic to H 1 cohomology of the operator DI = 0 + d E A  
acting in the space of smooth differential forms on the curve Pg. The bilinear 
form (4.96) on the space of such differentials coincides with the natural pairing in 
the middle dimensional cohomologies of this operator. The periods (4.98) define 
the class of equivariant cohomologies of the operator 

+ dE + A0 (4.100) 
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that are horizontal sections of the fiat connection defined with the help of 
(4.97). 
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