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Abstract 

The universal Whitham hierarchy is considered from the viewpoint of topological field theories. 
The r-function is defined for this hierarchy. It is proved that the algebraic orbits of Whitham hierarchy 
can be identified with various topological matter models coupled with topological gravity. @ 1994 John 
Wiley & Sons, Inc. 

1. Introduction 

The breakthrough in low-dimensional string theory that took place in the last 
two years is one of the most exciting results in modern mathematical and theoret- 
ical physics. In [ 11, [2], [6], [ 191, and [20] the remarkable connections between the 
non-perturbative theory of two-dimensional gravity coupled with various matter 
fields (see [3], [16], [22], and [23]) and the theory of integrable KdV-type sys- 
tems were found. This has led to a complete solvability of double-scaling limit 
of the matrix-models that are used to simulate fluctuating triangulated Riemann 
surfaces. Shortly after that Witten (see [46]) presented some evidence of a rela- 
tionship between random surfaces and the algebraic topology of moduli spaces of 
Riemann surfaces with punctures. His approach involved a particular field theory, 
known as topological gravity; see [32], [37], and [38]. Further development of his 
approach (especially, Kontsevich’s proof in  [24] and [25] of Witten’s conjecture 
in [46] and [47] of the coincidence of the generating function for intersection 
numbers of moduli spaces with 7-function of the KdV hierarchy) has shown that 
the two-dimensional topological gravity is the cornerstone of this new subject 
of mathematical physics that includes two-dimensional quantum field theories, 
intersection theory on the moduli spaces of Riemann surfaces with punctures, in- 
tegrable hierarchies with special Virasoro-type constraints, matrix integrals, and 
random surfaces. 

In this paper we go on with our previous attempts in (301 and [31] to find 
the right place in this range of disciplines for the Whitham theory which is the 
most interesting part of the perturbation theory of KdV-type integrable hierarchies. 
They were stimulated by the results of [45], where correlation functions for topo- 
logical minimal models were found. It turned out that the calculations in [45] of 
perturbed primary rings for A, models can be identified with the construction of a 
particular solution of the first n “flows” of the dispersionless Lax hierarchy (semi- 
classical limit of the usual Lax hierarchy). This fact made it possible to include the 
corresponding deformations of primary chiral rings into a hierarchy of an infinite 
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number of commuting “flows.” The calculations in [45] of partition function for 
perturbed A,, models gave an impulse for the introduction a 7-function for disper- 
sionless Lax equations into [30]. The truncated version of Virasoro constraints for 
the corresponding .r-function was proved. Their comparision with [46] shows that 
they are the necessary conditions for identification of “generators” of “higher” 
flows with gravitational descendants of primary fields after the model is coupled 
with gravity. They are not sufficient for n > 2. (The problem is the same as for 
.r-function of multi-matrix models. As was shown in [17] and [18], the .r-function 
of multi-matrix models satisfies the higher W-constraints that uniquely define it.) 
In Section 4 we prove the truncated version of W-constraints for .r-function of 
dispersionless Lax equations. Therefore, the full dispersionless Lax hierarchy can 
be really identified with topological A,, minimal model coupled with gravity. 

The results of [30] were generalized in [31] and [13] for higher genus case. 
In [31] it was shown that self-similar solutions of the Whitham equations on 
the moduli space of genus g Riemann surfaces are related to “multi-cut’’ solu- 
tions of loop-equations of matrix models. In [ 131 the generalization of topological 
Landau-Ginsburg models on Riemann surfaces of special type was advanced and 
their primary rings and correlation functions were found. In [ 131 the Hamilto- 
nian formulation (see [8], [9], [lo], and [39]) of the Whitham averaging procedure 
was used. In [ 121 the integrability of general Witten-Dijgraagh-Verlinder-Verlinder 
(WDVV) equations (at tree-level) was proved with the use of the Hamiltonian ap- 
proach to the Whitham theory. 

Two- and three-points correlation functions 

(1.1) (4.40) = qap 9 Capy = ( 4 a 4 p 4 y )  9 

of any topological field theory with N primary fields 41,. . . , 4~ define associative 
algebra 

Y (1.2) 4a40 = c l lp4y 7 cap = c a o p v ~ p  3 vapvp’ = > 

with a unit 41 

vap = Clap . (1.3) 

It turns out that there exists N parametric deformation of the theory such that 
“metric” qap is a constant and three-point correlators are given by the derivatives 
of free energy F ( t )  of the deformed theory 

The associativity conditions of algebra (1.2) with structural constants (1.4) are 
equivalent to a system of partial differential equations on F (WDVV equations). In 
[ 121 “spectral transform” was proposed for these equations. It proves their integra- 
bility, however (as it seems to us), the explicit representation of all corresponding 
models remains an open problem. 
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In Section 5 we will show that each “algebraic” orbit of the universal Whitham 
hierarchy gives an exact solution of WDVV equations. Moreover, the generaliza- 
tion of W-constraints for corresponding 7-functions, that are proved in Section 4, 
provide the evidence that the universal Whitham hierarchy can be considered as 
a universal (at tree-level) topological field theory coupled with gravity. 

In this introduction we present a definition of the Whitham hierarchy in a 
most general form. All the “integrable” partial differential equations, that are con- 
sidered in the framework of the “soliton” theory, are equivalent to compatibility 
conditions of auxiliary linear problems. The general algebraic-geometrical con- 
struction of their exact periodic and quasi-periodic solutions was proposed in [26] 
and [27]. There the concept of the Baker-Akhiezer functions were introduced. 
(The analytical properties of the Baker-Akhiezer functions are the generalization 
of properties of the Bloch solutions of the finite-gap Sturm-Liouville operators, 
which were found in a series of papers by Novikov, Dubrovin, Matveev, and Its; 
see [7] and [49]). 

The “universal” set of algebraic-geometrical data is as follows. Consider the 
space $tgd of smooth algebraic curves r, of genus g with local coordinates k;’(P) 
in neighborhoods of N punctures Pa , (k;’(P,)  = 0)  

This space is a natural bundle over the moduli space M R , ~  of smooth algebraic 
curves r, of genus g with N punctures 

(1.6) 

For each set of the data (1.5) and each set of g points 71 . . . , ys on rg in a gen- 
eral position (or, equivalently, for a point of the Jacobian J(T,)) the algebraic- 
geometrical construction gives a quasi-periodic solution of some integrable PNDE. 
(For the given non-linear integrable equation the corresponding set of the data has 
to be specified. For example, the solutions of the Kadomtsev-Petviashvili (KP) 
hierarchy correspond to the case N = 1. The solutions of the two-dimensional 
Toda lattice correspond to the case N = 2.) 

The data (1.5) are “integrals” of the infinite “hierarchy” of integrable non-linear 
differential equations, that can be represented as a set of commuting “flows” on a 
phase space. Let t~ be a set of all the corresponding “times.” In the framework of 
the “finite-gap’’ (algebraic-geometrical) theory of integrable equations each time 
t A  is coupled with a meromorphic differential dR,(PIA), A E $tg,~ 

(1.7) t A  ”dQA(P I A) 

that is “responsible” for the flow. (dR~(P1.k) is a differential with respect to the 
variable P E r depending on the data (1.5) as on external parameters.) 

In [28] the algebraic-geometrical perturbation theory for integrable non-linear 
(soliton) equations was developed. It was stimulated by the application of the 
Whitham approach for (1 + 1) integrable equations of the KdV type; see [41, 
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[15], and [21]. As usual, in the perturbation theory “integrals” of an initial equa- 
tion become functions of the “slow” variables &tA ( E  is a small parameter). The 
Whitham equations is a name given to equations that describe “slow” variations of 
“adiabatic” integrals. (We would like to emphasize that the algebraic-geometrical 
approach represents only one side of the Whitham theory. In [8], [9], [lo], and 
[39] a deep differential-geometrical structure that is associated with the Whitham 
equations was developed.) 

Let RA(k,T) be a set of holomorphic functions of the variable k (which is 
defined in some complex domain D), depending on a finite or infinite number 
of variables tA, T = {tA}. (We keep the same notation tA for slow variables 
&tA because we are not going to consider “fast” variables in this paper.) Let us 
introduce a one-form 

(1.8) 

onto the space with coordinates ( k ,  tA). Its full external derivative equals 

(1.9) 

where 

(1.10) 6 f l ~  = dkRA dk -k d ~ f l ~  dtB , d k  = d / d k  , dA = d/dtA . 
B 

The following equation 

(1.11) 

we shall call the Whitham hierarchy by definition . 

partial differential equations that have to be fulfilled for any triple A, B, C 

6w A 6w = 0 

The “algebraic” form (1.1 1 ) of the Whitham equations is equivalent to a set of 

(1.12) 

(summation in (1.12) is taken over all permutations of indices A, B, C and E ( ~ * ~ , ~ ~  

is a sign of permutation). 
The equations (1.1 1) are invariant with respect to an invertible change of vari- 

able 

(1.13) k = k ( p , T )  , d,k * 0 . 
Let us fix an index A0 and denote the corresponding function by 

At the same time we introduce a special notation for the corresponding “time” 
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After that all RA can be considered as the functions of the new variable p ,  RA = 
R A ( ~ ,  T ) .  The equations (1.12) for A, B, C = A0 have the form 

where {f, g} stands for the usual Poisson bracket on the space of functions of the 
two variables x, p 

(1.17) 

The Whitham equations were obtained in [28] in the form (1.12). In [29] it was 
found that they can be represented in the algebraic form (1.1 1). (We would like 
to mention here the papers [41] and [42] where it was shown that the algebraic 
form of the Whitham equations leads directly to semiclassical limit of “strings” 
equations.) 

The Whitham equations in the form (1.12) are equations on the set of functions 
R A ( ~ ,  T )  and give but a certain “shape” that has to be filled with a real content. 
It is necessary to show that they do define correct systems of equations on the 
spaces Mg&. For zero-genus case ( g  = 0) this will be done in the next section. In 
the same section the construction (see [28]) of exact solutions of the zero-genus 
hierarchy corresponding to its “algebraic” orbits is presented. The key element 
of the scheme in [28] is a construction of a potential S(p ,  T )  and a “connection” 
E ( p ,  T )  such that after the change of variable 

(1.18) p = p(E, T )  9 RA(E, T )  = RA(p(E, T )  1 

the following equalities 

(1.19) RA(E, T )  = dAS(E, T )  

are valid. 
In Section 3 the 7-function for the Whitham equations on the spaces hji~,., is 

introduced. For all genera (the case g > 0 is considered in Section 7) T-function 
can be represented in the following “field theory” form 

(1.20) I n 7  = / dS A dS . 
r 

Important remark. The integral (1.20) is not equal to zero, because S(p ,  T )  is 
holomorphic on r except for the punctures Pa and some contours, where it has 
“jumps.” Therefore, the integral over r equals a sum of the residues at Pa and the 
contour integrals of the corresponding one-form. 

The 7-function is a function of the variables t ~ ,  T = 4“). As will be shown in 
Section 3, it contains full information about the corresponding solutions 5 2 ~ ( p ,  T )  
of the Whitham equations. For g > 0 in T a geometry of moduli spaces is incoded. 
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In Section 4 zero-genus Virasoro and W-constraints for .r-function are proved. 
In Section 5 the primary chiral rings corresponding to algebraic orbits of Whitham 
hierarchy are considered. The last section is preceded by Section 6 where, using 
the ideas of [41] and [42], a “direct transform” for general Whitham hierarchy is 
discussed. It turns out that the existence of a potential S is not a special property 
of the construction of solutions. In a hidden form it is contained in the definition 
of Whitham equations. 

All the results that are proved for genus-zero Whitham hierarchy in the first 
five sections are generalized for the arbitrary genus case in Section 7. We present 
them without proofs mainly because they can be obtained more or less in the 
same way as in genus zero case but require greater length due to pure technical 
complexity. 

2. Whitham Hierarchy: Zero Genus Case 

par a = 1,. . . , N, and a set of formal local coordinates k;’(p)  
In zero genus case a point of the “phase space” A,=o& is a set of points 

(‘‘formal local coordinate” means that r.h.s of (2.1) is considered as a formal series 
without any assumption of its convergency). Hence, Ao,, is a set of sequences 

(2.2) 

The Whitham equations define a dependence of points of f i o , ~  with respect to the 
variables t A  where the set of indices A? is as follows 

(2.3) 

As it was explained in the Introduction, we can fix one of the points pa with the 
help of an appropriate change of the variable p. Let us choose: p1 = 00. 

Let us introduce meromorphic functions R, i (p)  for i > 0 with the help of the 
following conditions: 

R,,i(p) has a pole only at pa and coincides with the singular part of an expansion 
of kh(p) near this point, i.e., 

A, ,  = { p a ,  va,$ ff = 1 ,...) N ,  s = -1,0,1,2 )... } .  

d = { A = ( a , i ) ,  a =  1 ,..., N ,  i = 1 , 2  ,... a n d f o r i = O , a #  1 ) .  

i 

aa,i(p) 

R,.i(Co) = 0 ,  ff # 1 .  

= C wa,i,s(p - pa)-‘ = kh(p) + 0(1) 9 

s= 1 

(2.4) 
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These polynomials can be written in the form of the Cauchy integrals 

Here C ,  is a small cycle around the point pa .  
The functions R,,;=o(p), ar f 1 are equal to 

(2.7) Ra,o(p) = - ln(p - p a )  

Remark. The asymmetry of the definitions of Ra,i reflects our intention to 
choose the index A0 = ( 1 , l )  as a “marked’ index. 

The coefficients of R,,i,o(p) are polynomial functions of v , , ~ .  Therefore, the 
Whitham equations (1.10) (or (1.16)) can be rewritten as equations on &fo,,,. But 
still it has to be shown that they can be considered as a correctly defined system. 

THEOREM 2. I. The zero-curvature form (1.16) of the Whirham hierarchy in 
the zero-genus case is equivalent to the Sato-form that is a compatible system of 
evolution equations 

Proof Consider the equations (1.16) for B = ( a , j  > 0). From the definition 
of RA it follows that 

(2.9) 

Here and below we use the notation 

Q, = R A  - k h ,  for A = (a,i > 0) ,  
(2.10) 

R,, = R,,o - Ink, . 

Hence. 

Therefore, 

(2.12) dAka - { k a ,  a,) = O(k’-J) . 

The limit of (2.12) for j - 00 proves (2.8). The inverse statement that (2.8) is a 
correctly defined system can be proved in a standard way. So we shall skip it. 

Let us demonstrate a few examples. 
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Example 1. The Khokhlov-Zubolotskaya Hierarchy 

The Khokhlov-Zabolotskaya hierarchy is the particular N = 1 case of our 
considerations. Any local coordinate K - ' ( p )  near the infinity (p1 = 00) 

co 

(2.13) K ( p )  = p + c vsp-s 

(2.14) RAP) = [ H p ) ] .  , 

s= 1 

defines a set of polynomials: 

here [...I+ denotes a non-negative part of Laurent series. For example, 

3 
(2.15) 

2 

If we denote t 2  = y ,  t3 = t ,  then the equation (1.16) for A = 2, B = 3 gives 

(2.16) 

from which the dispersionless KP (dKP) equation (which is also called the Khokhlov- 
Zabolotskaya equation) is derived: 

0 2  = k2 + u , 0 3  = k3 + -uk + w , where u = 2vl , w = 3v2 . 

3 3 
2 wx = 4uy , w y  = Ut - -uux , 

(2.17) 
3 3 
,.yy + (4 - p) X = 0 

The Khokhlov-Zabolotskaya equation is a partial differential equation and 
though it has no a pure evolution form, one can expect that its solutions are 
to be uniquely defined by their Cauchy data u(x, y ,  t = O), that is a function of the 
two variables x , y .  Up to now it is not clear if this two-dimensional equation can 
be considered as the third equivalent form of the Whitham hierarchy (we remind 
that solutions of the hierarchy (2.8) formally depend on an infinite number of 
functions of one variable). 

Example 2. The Longwave Limit of the 2-d Toda Lattice 

The hierarchy of the longwave limit of the two-dimensional Toda equation is 
the particular N = 2 case of our considerations. There are two local parameters. 
One of them is near the infinity p1 = m and one is near a point p2 = a. They 
depend on two sets of the variables t,,s, a = 1,2, s = 1,2,. . . and also on the 
variable to. We shall present here only the basic two-dimensional equation of this 
hierarchy (an analogue of the Khokhlov-Zabolotskaya equation). 

Consider three variables t = t0,x = t l , l , y  = t2.1. The corresponding func- 
tions are 

(2.18) Ro = ln(p - a )  , 
V 

R2,I = - ' 
P - a  
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Their substitution into the zero-curvature equation (1.16) gives 

(2.19) v , = a , v ,  v , + a , = O ,  w , = O .  

From (2.19) it follows 

(2.20) a?,,+ + a?e4 = 0 ,  

This is the longwave limit of the 2-d Toda lattice equation 

(2.21) 

corresponding to the solutions that are slow functions of the discrete variable n, 
which is replaced by the continuous variable t .  The equation (2.20) has arisen 
independently in the general relativity, the theory of wave phenomena in shallow 
water, long radio-relay lines, and so on. A bibliography can be found in [40] where 
a representation of solutions of (2.20) in terms of convergent series was proposed. 

where + = In v . 

a,,cp, 2 = e%I -P" - eiPn-'P"+l 

Example 3 .  N-layer Solutions of the Benny Equation 

This example corresponds to a general N + I points case, but we consider only 
one zero-curvature equation. Let us choose three functions 

(2.22) 

which are coupled with the variables x, y ,  t ,  respectively. (In our standart notations 
they are 

(2.23) 
a= I 

The zero-curvature equation (1.16) gives the system 

(2.24) 

Solutions of this system that do not depend on y are N-layer solutions of the 
Benny equation. As was noticed in (481, the corresponding system 

(2.25) 

is a classical limit of the vector non-linear Schrodinger equation 

2 pi, - ( p ;  )x  + U, = 0 , v;, = 2(v;p;),, uy - u, + 2 v;, = 0 . 
I 

pi, - (P3.K + u, = 0 7 V i f  = 2biPi)x , = 2 c vi 
I 

(2.26) 

(Using this observation in [48] the integrals of (2.25) were found.) 



446 I. M. KRICHEVER 

In the second part of this section we consider “algebraic” orbits of the genus- 
zero Whitham equations. By definition they are specified with the help of the 
constraint: there exists a meromorphic solution E(p ,  T )  of the equations 

(2.27) ~ A E  = {E,  0,) , 

such thar 

(2.28) {E(p ,  TI, k J p ,  T ) )  = 0 . 
The last equality implies that there exist functions fa@) of one variable such that 

(2.29) ka(p ,T)  = f a ( E ( P , T ) ) .  

In order not to be lost in a too general setting right at the beginning, let us 
start with an example. 

Example. Lax Reductions ( N  = 1) 

Consider solutions of the dKP hierarchy such that some power of local param- 
eter (2.13) is a polynomial in p ,  i.e., 

(2.30) E(p,  T )  = p” + ~ , - 2 p ” - ~  + ... + uo = k’& T )  . 

The relation (2.30) implies that only a few first coefficients of the local parameter 
are independent. All of them are polynomials with respect to the coefficients u; 
of the polynomial E(p,  T). The corresponding solutions of dKP hierarchy can be 
described in terms of dispersionless Lax equations 

(2.31) diE(p, T )  = {E(P,  T ) ,  Ri(p, T)I 3 

where 

(2.32) 

(as before, [. . . I+  denotes a non-negative part of corresponding Laurent series). 
These solutions of KP hierarchy can also be characterized by the property that 
they do not depend on the variables t,. tan, t3”,. . . . We are going to construct an 
analogue of the “hodograph” transform for the solution of these equations. It is 
a generalization and effectivization of a scheme (see [43]), where “hodograph- 
type” transform was proposed for hydrodynamic-type diagonalizable Hamiltonian 
systems; see [81, [91, [lo], and [391. 

OAp, T )  = [E””(P, T)1+ 

Let us introduce a generating function 

(2.33) 
M M 

where S l i  are given by (2.14) and K = El’”. (If there is only a finite number of 
t; that are not equal to zero, then S(p)  is a polynomial.) The coefficients of S are 



THE T-FUNCTION OF THE UNIVERSAL WHITHAM HIERARCHY 447 

linear functions of t; and polynomials in u;. We introduce a dependence of u j  on 
the variables ti with the help of the following algebraic equations: 

(2.34) 

where qs are zeros of the polynomial 

(2.35) 

Remark. It is not actually necessary to solve equation (2.35) in order to find 
qs.  We can choose qs, s = 1,. . . , n - 1 and uo as a new set of unknown functions, 
due to the equality 

(2.36) 

s= 1 

Let us prove that if the dependence of E = E ( p , T )  with respect to the variables 
t; is defined by (2.34), then 

(2.37) 

Consider the function &S(E, T ) .  From (2.33) it follows that 

diS(E, T )  = Ri(E, T )  . 

(2.38) a;S(E) = K' + O(K-')  = R;(E) + O(K- ' )  . 

Hence, it is enough to prove that aiS(E) is a polynomial in p, because by definition 
Ri is the only polynomial in p such that 

(2.39) Ri(p) = K' + O(K-' )  . 

The function d;S(E, T )  is holomorphic everywhere, except at q,(T), probably. In a 
neighborhood of qs(T) a local coordinate is 

(2.40) (E  - , EAT) = E(qs(T)) 

(if qs is a simple root of (2.35)). Hence, a priori S has the expansion 

(2.41) S(E,  T) = as(T)  + P,(T)(E - Es(T))''2 + . . 
and the derivative diS(E, T )  might be singular at the points qs. The defining rela- 
tions (2.34) imply that Ps = 0. Therefore, &S(E) is regular everywhere except at 
the infinity and, hence, is a polynomial. The equations (2.37) are proved. 
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Let us present this scheme in another form. For each polynomial E(p) of the 
form (2.30) and each formal series 

(2.42) 

the formula 

(2.43) 

defines the variables 

1 
ti = Tresm(K-‘(p)Q(p)dE(p)) 

1 

(2.44) tk = tk(Ui, bj) , i = 0,. . . , n  - 2 , j = 0,. . . 

as functions of the coefficients of E,  Q. Consider the inverse functions 

(2.45) ~i = ui(tl,.. .) , bj = bj(tl, . .  .) . 

Remark. In order to be more precise let us consider a case when Q is a 
polynomial, i.e., bj = 0, j > m. From (2.43) it follows that tk = 0, k > n +m - 1. 
Therefore, we have n + m - 1 “times” tk, k = 1 , .  . . , n + m - 1 that are linear 
functions of b,, j = 1,. . . , m and polynomials in ui, i = 0,. . . , n - 2. So, locally 
the inverse functions (2.45) are well-defined. 

THEOREM 2.2. The functions ui(T) are solutions of the dispersionless Lax equa- 
tion (2.3 l ). Any other solutions of (2.3 l )  are obtained from this particular one with 
the help of translations, i.e., ii(ti) = u(ti - ti 1. 0 

Consider now the general N case. Let E(p) be a meromorphic function with a 
pole of order n at the infinity and with poles of orders n, at points pa, a = 2, . . . , M 
. (We would like to mention that the case of negative n, f 0, which means that E 
has a zero of the order -n,, can be considered as well, but we are not going to 
do it here in order to avoid some technical complications.) 

Consider a linear space of such functions, i.e., the space of sets 

X(n,) = {ui, i = 0,. . . , n - 2; v,,,,s = 1 , .  . . ,n,)> , 
(2.47) 

a = 1 ,  ..., M ,  nl = n .  

If N i M ,  the function E(p) defines the local coordinates at the points pa with 
the help of the formula 

(2.48) k 2 ( p )  = E ( p ) ,  a = 1 ,..., N . 
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Therefore, N(n,) can be identified with a subspace of AO,N 
(2.49) N c A,, . 

THEOREM 2.3. The subspaces NM(n,) are invariant with respect to the Whitham 
equations on AO,N that coincide with the flows 

(2.50) d ~ E ( p ,  T )  = {E(p,  T ) ,  f l ~ ( p ,  T ) )  , 

where k ,  and f l ~  are defined with the help of formulae (2.481, (2.61, respectively. 
General solutions of (2.50) are given in an implicit form with the help of the 
following algebraic equations 

(2.5 1 )  

which have to befuljilled for all zeros qs of the function 

(2.52) 

The proof is the same as the proof of the previous theorem. Its main step is 
the proof that from the defining relations (2.51) it follows that 

(2.53) ~ A S ( E ,  T )  = RA(E, T) .  

DEFINITION. The particular solutions of the Whitham hierarchy that corre- 
spond to the algebraic orbits (2.50) and for which t! = 0 will be called homoge- 
neous solutions. 

An alternative formulation of this theorem can be done in the following form. 
Let Q ( p )  be a meromorphic function with its poles at the points par i.e., 

(2.54) 
j =  1 a=2 j = l  

The formulae 
1 
i fa,i = -res,(k,’(p)Q(p)dE(p))),  i > 0 ; 

(2.55) 
ta,0 = res,(Q(p)dE(p)) 

define “times” ta,i as functions of the coefficients of Q(p)  and E ( p )  (which has the 
form (2.46)). Consider the inverse functions 

(2.56) va,s = va,s(tD,i) 9 ba,j = ba,j(tp,i) . 
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(recall that index a = 1 corresponds to the infinity p1 = 00). 

COROLLARY 2.1. The inversefunctions v,,,(tp,i) are solutions of Whitham equa- 
tions. In particular, (for all N )  

2 
n 

(2.57) 

is a solution of the Khokhlov-Zubolotskaya equation (2.17) and 

u(x, y, t )  = -Un-2(tl,l = x, t2,l = y ,  t3.l = t, . . .) 

1 
+(x,y,t) = - 

n2 
(2.58) = t 1 . 1 , ~  = t2,1, t = t2.0,. . .) 

is a solution of the longwave limit of the 2-d Toda lattice equation (2.20). 

(We would like to emphasize that in the formulae (2.57), (2.58) all the “times” 

The inverse functions (2.56) define the dependence of the functions E(p, T )  and 
except the first ones are parameters.) 

Q(p, T )  on the variables tA. The differential of the potential S(p, T )  equals 

(2.59) 

From (2.53) it follows that 

dS(p, T )  = Q(p,  T)dE(p, T )  . 

(2.60) 

In particular, 

(2.61) 

The derivatives with fixed E and p are interelated with the help of the following 
formula: 

Using (2.61) and (2.62) we obtain 

COROLLARY 2.2. 
“string equation ” 

The functions Q(p, T )  and E(p, T )  satisfy the quasi-classical 

(2.63) 

(This corollary was prompted by [41] and [42], and we shall return to it at 
greater length in Section 6.) 
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3. The r-Function 

45 1 

In the previous section the "algebraic" solutions of the Whitham hierarchy in 
zero-genus case were constructed. It was shown that for their "potentials" 

(3.1) 

(where f i  are corresponding constants) the following equalities 

are fulfilled. In this section we define with the help of S ( p , T )  the 7-function 
corresponding to the algebraic solutions of the Whitham equations. 

The T-function of the universal Whitham hierarchy (in zero genus case) would 
be by definition 

lnT(T) = F ( T )  , 

(3.3) 

- 0 f . = t  . - t  a,i a,i a. ir  

where res, denotes a residue at the point pa and s, is the coefficient of the ex- 
pansion 

Here and below we use the notation 

(3.5) 

The 7-function can be rewritten in a more compact form. Let us make cuts con- 
necting the point p1 = 00 with the points pa.  After that we can choose a branch 
of the function S(p ,  T) .  The coefficient s, equals 

where ua is a contour around the corresponding cut. The function S has jumps 
on the cuts. Its &derivative is a sum of delta-functions and their derivatives at 
the points pa and one-dimensional delta-functions on cuts. Therefore, (3.3) can be 
represented in the form: 

(3.7) 
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(The integral in (3.7) is taken over the whole complex plane of the variable p. It 
is non-zero because S(p ,  T )  is holomorphic outside punctures and cuts, only.) 

THEOREM 3.4. For the above dejned r-function the following equalities are 
@&lied: 

(3.8) da,iF(T) = res,(k;dS(p,T)), i > 0 ,  
(3.9) da.oF(T) = sa . 

Proof Let us consider the derivative d~ for A = (a, i > 0). It equals 

From 

(3.12) 
N 

Cresa(R.4dRs) = 0 
a=l 

it follows that 

(3.13) resg(k;dR,,i) = resa(k;dRp,j) , j > 0 . 

Besides this, 

(3.14) R ~ ( p p )  = resp(%d Mp - pp) )  = res,(kidRp,o) . 
The substitution of (3.13), (3.14) into (3.10) proves (3.8). The proof of (3.9) is 
absolutely analogous. 

The formulae (3.8), (3.9) show that the expansion of S(p ,  T )  at the point pa has 
the form 

" 1  
a=l i = l  j = 1  J 

N m  

(3.15) S(p ,  T) = fa,ikL + 2,,olnka + da,oF + C Td, , jFk i j  . 

From (3.8), (3.9) follows: 

COROLLARY 3.3. The second derivatives of F are equal to 

(3.16) d&jF(T) = res,(kL dRB) , A = (a, i > 0) , 
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Hence, the expansion of the non-positive part (2.10) of O A ( p )  at the point ps  
has the form 

(3.18) 

Therefore, the 7-function that depends on the “times” only, contains complete 
information on the functions 0 ~ .  

4. Truncated Virasoro and W-Constraints 

In Section 3 it was shown that any solution of the Whitham equations (g = 0) 
corresponding to an algebraic orbit can be obtained from the “homogeneous” 
solution with the help of translations FA = ?A - t!. In this section we consider 
7-functions of homogeneous solutions, only. 

The truncated Virasoro constraints for the T-function of the dispersionless Lax 
equations (2.31) were proved in [30]. The proof was based on an invariance of 
residues with respect to a change of variables. The same approach can be applied 
for the general N-case, also. In this paper we use another way that was inspired by 
the N - m limit of loop-equations for the one-matrix model (a review of recent 
developments of the loop-equations technique can be found in [35]). 

The function E ( p )  of the form (2.46) represents the complex plane of the 
variable p as D-sheet branching covering of the complex plane of the variable E ,  
D = c, n,. The zeros qs of the differential dE,  dE(q,)  = 0, are branching points 
of the covering. Hence, any function f ( p )  can be considered as a multi-valued 
function of the variable E .  Let p;(E) ,  i = 1,. . . , D be roots of the equation 

The symmetric combination of the values f ( p i )  

is a single-valued function of E .  Let us apply this argument to the function Q K ( p ) ,  
where 

(4.3) 

S ( p )  is the potential of the homogeneous solution of Whitham equations. The 
defining algebraic relations (2.5 1) imply that Q(p)  is holomorphic outside the 
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punctures pa (that are "preimages" of the infinity E(pa)  = 00). Therefore, the 
function 

(4.4) 

is an entire function of the variable E. In other words, the Laurent expansion of 
the function Q K ( E )  contains only positive powers of E, i.e., 

The residue (4.5) at the infinity of the complex E-plane is equal to a sum of 
residues at the points pa,  i.e., 

(4.6) 
N 

E r e s ,  ((@(k,)E"" d E )  = 0 , E = k? . 
i= 1 

From (3.15) it follows that the function Q ( p )  has the expansion 

(4.7) 

at the point pa.  The substitution of (4.7) into (4.6) for K = 1 gives obvious 
identities: 

N Eta,o = 0 ,  m = - I ,  
a= I 

(4.8) 
N Caa,mna~ = 0 ,  m = 0 , 1 ,  ... . 

(For Lax reductions, N = 1, the equalities (4.8) imply that F does not depend on 
t,, t 2 n r . .  . .) For K > 1 the relations (4.6) lead to highly non-trivial equations. For 
example, the case K = 2 corresponds to the truncated Virasoro-constraints. 

a= I 

THEOREM 4.5. The r-function of the homogeneous solution of the Whitham 
equations (corresponding to the orbit N ( n a ) )  is a solution of the equations 

(4.9) 
= o ;  
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(4.10) 

(4.11) 
= 0 ,  m = l ,  . . . .  

The equalities (4.5) for any K can be written in the form 

N 

(4.12) c nA-K C[ii 1ta,il . . [ is~ta, i~aa,j~+l~ * . . aa,,,F = 0 3 

a = l  1,J 

where the second sum is taken over all sets of indices I = {ik), J = { j k )  

such that 
S K 

(4.13) 

and [i] denotes 

(4.14) [ i ] = i ,  if i + O  [ 0 ] = 1 .  

For N = 1 the equations (4.12) coincide with a nonlinear part of the W K  con- 
straints. 

At the end of this section we present the truncated Virasoro constraints for 
N = 1 and n = 2 in the form of the planar limit of loop-equations for a one- 
matrix hermitian model. 

Consider the negative part of Q ( k )  ( N  = 1,n = 2) 
r M  00 

(4.15) - 

and introduce 

(4.16) 

where 

(4.17) 
- 2 i + 1  
t2i  = - t2i+ I 2i 
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Then 

(4.18) Q(k) = V ’ ( k )  - Wo 

and (4.6) is equivalent to the equation 

(4.19) 

where C is a small contour around the infinity. Equation (4.19) is a planar limit 
of the loop-equation for a one-matrix hermitian model (see [35]) 

(4.20) 

In (4.20) W(k) is the Wilson loop-correlator that by definition is equal to 

(4.21) W =  ( tr- x )  = /trk_Xe-trv‘x’dX 1 , 

where X is a hermitian M x M matrix. 

Remark. As was shown in [5], the double-scaling limit of the n - 1 matrix 
chain model is related to the n-th reduction of the KP-equation. The dispersionless 
Lax equations (2.30), (2.31) are their classical limit. Therefore, the negative part 
WO of the series (4.7) for N = 1 and arbitrary n has to be related to the planar 
limit of some Wilson-type correlators for multi-matrix models. Therefore, higher 
“loop-equations” (corresponding to K > 2) are to be fulfilled for them. It would 
be interesting to find a direct way to produce the corresponding equations in the 
framework of the multi-matrix models. 

5. Primary Rings of the Topological Field Theories 

Topological minimal models were introduced in [14] and were considered in 
[34]. They are a twisted version of the discrete series of N = 2 superconformal 
Landau-Ginzburg (LG) models. A large class of the N = 2 superconformal LG 
models has been studied in [33], [36], and [44]. It was shown that a finite num- 
ber of states are topological, which means that their operator products have no 
singularities. These states form a closed ring 9, which is called a primary chiral 
ring. It can be expressed in terms of the superpotential E(pJ  of the corresponding 
model 

In topological models these primary states are the only local physical excitations. 
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In [45], it was shown that correlation functions of primary chiral fields and 
integrals of their second descendants can be expressed in terms of perturbed su- 
perpotentials E(pi, t l ,  t 2 ,  ...). For the A,-I model the unperturbed superpotential 
has the form: 

(5.2) Eo = p” . 

The coefficients of a perturbed potential 

(5.3) E ( p )  = p“ + ~,-2p“-~ + ... + uo 
can be considered as coordinates on the space of deformed topological minimal 
models. In [45] the dependence of ui on the coordinates ? I , .  . . , t,-l that are “cou- 
pled” with primary fields di was found. It was shown that the deformation of 
the ring 9 

(5.4) B(ti,. . . , t f l - l )  = C[pI / (dE(p ,  t i , .  . . , ? , - I )  = 0) 

is a potential deformation of the Frobenius algebra (in the sense that was explained 
in the Introduction). 

In this section we consider the application of the general Whitham equations 
on f i o ~  to the theory of potential deformations of Frobenius algebras. They are 
based on the following formula for the third logarithmic derivatives of the 7- 

function. Let E(p, 7‘) be the homogeneous solution of the Whitham equations 
(2.50) corresponding to an algebraic orbit X(n,), i.e., E ( p )  has the form (2.46) 

M n, 

E = p” + ~ , - 2 p ” - ~  + ... + uo + v,,,(p - pa)-” . 
a=2 s=l 

The formulae (2.55), (2.56) define the dependence of E(p)  and of the “dual” func- 
tion Q ( p )  on the variables t ~ .  

THEOREM 5.6. The third logarithmic derivatives of the r-function of the ho- 
mogeneous solution of the Whitham equation corresponding to an algebraic orbit 
X ( n , )  are equal to 

(5.5) 

where qs are zeros of the differential dE(q,) = 0. 

Proof: Let us suppose that A = (a, i > 0). (The case when A,B,  C are 
equal to (a, O), (D, O), ( y ,  0) can be considered in the same way.) From (3.8) it fol- 
lows that 
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Here the derivative acQA(E,T)  is taken for the fixed E .  As was explained in 
Section 2, the function E ( p ,  T) is a “good” coordinate except at the points qs(T) 
where local coordinates have the form (2.40). Hence, at the point qs(T)  the function 
RA has the expansion 

RB(E, T )  = WB,O(T) + WB,l - Es(T))”* + . . . 9 

(5.7) 
E m  = E(q,(T) ,T)  . 

The sum of all residues of a meromorphic differential equals zero. Therefore, 

From (5.7) it follows that in a neighborhood of the point qs 

(5.9) 

Therefore, 

(5.10) 

From (2.50) it follows that 

(5.1 1) 

The string equation (2.63) implies 

(5.12) 

Substitution of (5.11) and (5.12) into (5.10) proves the theorem. 

For each algebraic orbit X(n,) let us define a “small phase space” (see moti- 
vation in [46]). It will be a space of times fa with the indices a belonging to the 
subset dsm, 

(5.13) 

Let us fix all the other times tA: 

dsm ={(a,i)Ia= l , i =  1 ,..., n - l ; a = 2  ,..., N , i = O  ,..., n,}. 

- -  t1,n = 0 9 [ l ,n+ l  - n:l , tl ,i  = 0 ,  i > n +  1 ; 

Li = 0 , a = 2 ,..., N ,  i > n , .  
(5.14) 

Comparision with (4.7) shows that in this case 

(5.15) Q ( P )  = P 
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in the formula (2.55). In other words, ra as functions of u;, v , , ~  are given by the 
formulae 

1 
to,; = Tres,(ki'(p)pdE(p))) , i > 0 ; 

r,,0 = res,(pdE(p)) . 

1 

(5.16) 

Inverse functions define the dependence of the coefficients of E on the vari- 
ables t ,  

COROLLARY 5.4. Let 

(5.17) 

be the restriction of F = l n r  on the afine space that is dsm shifed by r l , n + ~  = 
Then n + l '  

(5.18) 

Let us summarize the results. Each meromorphic function E(p) of the form 
(2.46) defines a factor-ring 

(5.19) L ~ E  = L@/(dE = 0) 

of the ring 
differential dE. The formula 

of all meromorphic functions that are regular at the zeros qs of the 

defines a non-degenerate scalar product on 9)~. The scalar product (5.20) supplies 
gE by the structure of the Frobenius algebra. In the basis 

(5.21) dRa 4 = -  
a dP  

the scalar product has the form 

(5.22) 

where [i] is the same as in (4.14). Our last statement is that the formulae (5.17) 
define in an implicit form the potential deformations of these Frobenius algebras. 
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The case N = 1 covers the results of [45]. As was mentioned in the Introduction 
an integrability of WDVV equations was proved in [ 121. The results of this section 
can be considered as an explicit construction of their particular solutions. 

with topological gravity corresponds 
to the process of “switching on” of all the times of the Whitham hierarchy. It 
follows from the recurrent formula for the third derivatives of 7-function. First of 
all, let us present the formula 

The “coupling” process of the ring 

It can be proved in the following way. The right- and left-hand sides of (5.23) are 
holomorphic outside the punctures. Hence, it is enough to compare their expan- 
sions at the points pa.  The coefficients of the expansion of f l ~  are given by the 
second derivatives of F (3.18). Therefore, (5.23) is fulfilled. 

Let us define for each a = (a, i > 0) E dSm the fields 

(5.24) 

The substitution of (5.23) into (5.8) proves the recurrent formula for the correlation 
functions for the gravitational descendants (see [46]) 

(5.25), ( a p ( + a ) a B a C )  = ( a p - 1 ( G ) + b h b c ( 4 c a B a C )  7 

where OB, ac are any other states. (The integrability of general descendant equa- 
tions was proved in [12].) 

Remark. This paper had already been written when the author got a preprint 
(see [ 1 11) in which the Frobenius algebras and their ”small phase” deformations 
corresponding to the Whitham hierarchy for the multi-puncture case had been 
considered. 

6. Generating Form of the Whitham Equations 

In this short section (or rather long remark) we would like to clarify our con- 
struction of the algebraic solutions of the Whitham equations and the definition of 
the corresponding 7-function. It was stimulated by the papers [41] and [42] where, 
with the use our approach in [30], the .r-function for the longwave limit of 2-d 
Toda lattice was introduced. 

Let R A ( ~ ,  T )  be a solution of the general zero-curvature equation (1.16) 

(6.1) d A f i B  - d B R A  + {RA,  0,) = 0 . 
They are compatibility conditions for the equation 

(6.2) ~ A E  = {E,RA}  . 
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Therefore, an arbitrary function E ( p ,  x) defines (at least locally) the corresponding 
solution E ( p ,  T )  of (6.2), E(p,x) = E ( p ,  rAo = x, t A  = 0,A # Ao). In the domain 
where d,E(p ,T)  f 0 we can use a variable E as a new coordinate, p = p(E,t). 
From (2.62) it follows that in the new coordinate the equations (6.1) are equivalent 
to the equations 

(6.3) 

Hence, there exists a potential S(E,  T )  such that 

~ A R B ( E ,  T )  = ~ B R A ( E ,  T )  . 

(6.4) RA(E, T )  = aAS(E, T )  . 

Due to this potential the one-form w (1.8) can represented as 

(6.5) w = SS(E, T )  - Q(E, T)dE , 

where 

(6.6) 

Hence, 

(6.7) Sw = SE A SQ . 

The formulae (2.59H2.62) that are valid in the general case prove that the func- 
tions E and Q as functions of two variables p, x satisfy the classical string equation 

(6.8) {Q,E)  = 1 . 

They show that 

(6.9) 

A set of the pairs of functions Q(p,  x), E(p,x) satisfying the string equation is a 
group with respect to the composition, i.e., if Q(p, x), E(p ,  x) and Ql(p ,  x), E1 ( p ,  x) 
are solutions of (6.8), then the functions 

(6.10) Q(P, x) = Qi (Q(P, x), E(p ,  x); &AX) = EI (Q(p, x), E ( p ,  x)) 

are the solution of (6.81, as well. The Lie algebra of this group is the algebra 
S D i f f ( T 2 )  of two-dimensional vector-fields preserving an area. The action of this 
algebra on the potential, .r-function (and so on) in the framework of the longwave 
limit of 2-d Toda lattice was considered in [41] and [42]. 

The previous formulae can be used in the inverse direction. Let E ( p , x )  and 
Q ( p , x )  be any solution of the equation (6.8). Using them as Cauchy data for the 
equations (6.2), (6.9) we define the functions E ( p ,  T) ,  Q(p, T )  that satisfy (6.8) for 
all T. After that the potential S(p ,  T )  can be found with the help of the formula 

(6.11) 



462 I. M. KRICHEVER 

Let us revise from this general point of view the definition of the .r-function 
corresponding to the solutions of the Whitham equations on &OJ. As was shown 
in Theorem 2.1, the local parameters k, proper are solutions of the equations (6.2). 
Therefore, they define a set of local potentials S,(k,) such that the relations (3.2) 

RB(ka, T )  = dESa(ka, T )  3 B = (PI i) 3 

are fulfilled. On the other hand, let us consider the solutions E ( p , T ) , Q ( p , T )  of 
the equations (6.2) with the initial data 

(6.12) E ( p , x )  = p , Q(p ,x )  = x . 

They are holomorphic outside the punctures p,(T). Hence, a “global” differential 
dS&, T )  exists that is also holomorphic outside the punctures p,(T). Let us define 
a one-form on the space with the coordinates t A  

(6.13) 

where (T, is a contour around the cut connecting p1 = 00 and pa. It is easy 
to check with the help of the formulae (3.11H3.14) that 61nT is a closed form. 
Therefore, locally there exists a .r-function. What are advantages of algebraic 
solutions? 

As was shown in Section 3, for algebraic solutions there exist constants t! such 
that the sum 

(6.14) 

is a “global” potential coinciding in neighborhoods of pa with local potentials S,. 
This provides the possibility of defining explicitly with the help of formula (3.3) 
the 7-function and not only its full external differential (6.13). 

7. The Arbitrary Genus Case 

7.1. Definition 

The moduli space &fg,” is “bigger” then &%o,N. In the approach in which the 
“times” of the Whitham hierarchy are considered as a new system of coordinates 
on the phase space it is natural to expect that there should be more flows in the 
Whitham hierarchy on &,,. We shall increase their number in a few steps. But 
at the beginning let us consider the basic Whitham hierarchy in the form that has 
arisen as a result of the averaging procedure for the algebraic-geometrical solutions 
of two-dimensional integrable equations. In this hierarchy there is the same set of 
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the “times” (2.3) and this is the only part of universal Whitham hierarchy on M g , ~  
that has a smooth degeneration to the zero-genus hierarchy. 

Let rR be a smooth algebraic curve of genus g with local coordinates k;’ (P)  in 
neighborhoods of N punctures Pa, (&‘(Pa) = 0). Let us introduce meromorphic 
differentials dRA on rR such that: 

1 .  dRa,i>o is holomorphic outside Pa and has the form 

(7.1) d!da,; = d(kL + O(k,’)) 

in a neighbourhood of Pa; 

residues 1 and - 1, respectively 
2. Ra,o, a f 1 is a differential with simple poles at the points P I  and Pa with 

(7.2) 

3. The differentials dRA are uniquely normalized by the condition that all their 
periods are real, i.e., 

(7.3) Im d!dA = 0 ,  C € HI(rg,z) . i 
The normalization (7.1) does not depend on the choice of basic cycles on rx. 

Below, for the simplification of formulae we consider the complexation of the 
Therefore, dRA is indeed defined by data  fig,^. 

Whitham hierarchy on fig& that is the hierarchy on the moduli space 

(7.4) h ; , N  = { r g 7 p a 7 k M ,  a;,b; E w g , z ) } ,  

where a;, b; is a canonical basis of cycles on rg, i.e., the cycles with the intersec- 
tion matrix of the form aiaj = bibj = 0, aibj = Si,,. In this case the differentials 
d o A  should be normalized by the usual conditions 

(7.5) 

Both types of hierarchies can be considered absolutely in a parallel way. 
Now we are going to show that generating equations ( 1 . 1  1) in which CIA are 

integrals of the above-defined differentials are equivalent to a set of commuting 
evolution equations on fii,N (or  fig,^, respectively). Let us fix one point P I  and 
choose as the “marked” index A0 = (1 , l ) .  The multi-valued function 
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can be used as a coordinate on r everywhere except for the points ll,, where 
dp( l l , )  = 0. The parameters (2.2), i.e., 

{pa  = p(P,), v,,,, LY = 1 , .  . . , N ,  s = - 1,0,1,2,. . .} 

and additional parameters 

(7.7) 7rs = p(rI,) , s = 1 ,..., 2g , 

(7.8) 

are a full system of local coordinates on a&. 
THEOREM 7.7. The zero-curvature form (1.20) of the Whitham hierarchy on 

 hi,^ is equivalent to the compatible system of evolution equations 

(7.9) aAka(P, T )  = { k ( p ,  TI, R A ( ~ ,  TI) , 

(7.10) 

In [12] where the application of the Whitham equations for generalized Lan- 
dau-Ginsburg models was considered for the first time, it was noticed that the 
construction of solutions of the Whitham equations that was proposed by the au- 
thor in [28] can be reformulated in the form that actually includes new “additional” 
flows commuting with the basic ones (7.1 1). It is to be mentioned that only g of 
them are universal. Let us introduce a set of g new times th,l,. . . , th,g that are 
coupled with normalized holomorphic differentials d0h.k 

(7.12) 

THEOREM 7.8. The basic Whitham hierarchy (7.1 1) is compatible with the 
system that is dejned by the same equations but with new “Hamiltonians” dRh,k. 

The proofs of the two theorems above do not differ seriously from the usual 
considerations in the Sat0 approach, so we shall skip them. 

7.2. 

Let us introduce finite-dimensional subspaces of a& that are invariant with 
respect to the Whitham hierarchy. Consider a normalized meromorphic differential 

Algebraic Orbits and Exact Solutions 
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d E  of the second kind (i.e., d E  has no residues at any point of r,) that has poles 
of orders n, + 1 at the points Pa.  (Normalized means that 

(7.13) i , d E  = 0 

for the hierarchy on "I;.. and that d E  has real periods for the hierarchy on f i , , ~ . )  
The integral E ( p )  of this differential has the expansions of the form 

(7.14) E ( p )  = P" + u n - 2 ~  n-2  + . . . + 2.40 + 0 ( p - ' )  , 

(7.15) 
s= 1 

at the point P I  and the points Pa, a f 1, respectively. The formula (2.4% i.e., 

k $ ( p )  = E ( p ) ,  a = 1 ,..., N ,  

defines local coordinates k;' in neighborhoods of Pa. Therefore, we have de- 
fined the embedding of the moduli space X,(n,) of curves with fixed normalized 
meromorphic differential d E  into f i i , ~  
(7.16) Xg(na) c ";,N . 

The dimension of this subspace equals 

(7.17) 
N 

D = dimN,(n,) = 3g - 2 + z(n. + 1) . 
a= I 

There are two systems of local coordinates on N,(n,). The first system is given 
by the coefficients of the expansions (7.13, (7.15) 

(7.18) {ui,i = 0, .  . . ,n  - 2; pa,  v ~ , $ , s  = 1,. . .,n,)) , 

and by the variables (7.7), (7.8), i.e., 

The second system is given by the following parameters 

(7.19) 

(7.20) E ,  = E(q, )  , where dE(q,) = 0 , s = 1,.  . . , D - g . 

Using the first system of coordinates it is easy to show that 
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THEOREM 7.9. The restriction of the Whitham hierarchy on N g ( n a )  is given 
by the compatible system of equations (2.50) 

a ~ E ( p ,  T )  = {E(p,  T ) ,  RA(P, T ) }  . 

(We would like to recall now that besides t,,; the set of “times” t~ includes the 

Let dHi be a normalized differential that is defined on the cycle ai, i.e., 
times th,k that are coupled with the normalized holomorphic differentials dflh,k.) 

(7.21) 

For each set H = {dH;} of such differentials there exists a unique differential dSH 
such that dSH is holomorphic on rg except for the cycles a; where it has “jumps” 
that are equal to 

(7.22) dSA(P)-dS,(P) = dHi(P) P E a ; ,  

(7.23) 

THEOREM 7.10. For any solution of the Whitham equations on NJn,) there 
exist constants t j  and constant duerentials dHi (i.e., they do not depend on T )  
such that this solution is given in an implicit form with the help of equations 

(7.24) 

(7.25) 

The relations (7.25) imply that 

(7.26) dS = Q d E ,  

where Q(p)  is holomorphic on rR outside the punctures P, and has “jumps” 

(7.27) 

on cycles a;. 

ing to the constant jumps only, i.e., 
In this section we consider the solutions of the Whitham hierarchy correspond- 

(7.28) dH;(P) = te,;dE(P) 
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In that case dQ is a single-valued differential on r,. Let us present an alternative 
formulation of the construction of such solutions. 

Consider the moduli space 

(7.29) 

of curves with a fixed canonical basis of cycles, with a fixed normalized mero- 
morphic differential dE having poles of orders n, + 1 at points Pa and with a fixed 
normalized differential dQ(P) that is holomorphic outside the punctures. 

The coordinates on this space are the variables (7.7), ( 7 8 ,  (7.18) 

{rs 9 UP 9 ui 9 Pa 9 va,s 9 I 
and the coefficients of singular terms in the expansions 

03 

~ ( p )  = C b l , j $  + ~ ( p - ’ ) ,  
j = 1  

(7.30) 
03 

~ ( p )  = ba,j(p - pa)-’ + o(p  - pa)  . 
j= 1 

The formulae (2.55), i.e., 

1 
t , i  = Tres,(k,’(p)Q(p)dE(p))) , i > 0; 

t,,O = res,(Q(p) dHp)) 

1 

(7.31) 

and the formulae 

(7.32) th,i = ii dS 7 i =  1 ,..., g ,  dS = Q d E ,  

N 

define times t A  as the functions on the space .h’”,(na). 
The differentials dRE,i, doe,‘ that are coupled with the times tE,i, t ~ , i  are 

uniquely defined with the help of the following analytical properties: 

1. The differentials dRE,i, dRQ,i are holomorphic on the curve r, everywhere 
except for the a-cycles, where they have “jumps”. Their boundary values on a, 
cycle satisfy the relations 

dR& - dS2& = Si,jdE , 
(7.34) 

dR& - d0G.i = Si,jdQ ; 
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2. 

(7.35) i , d f i E , i = i , d R Q , i = O ,  j = 1 ,  ..., g .  

In the same way as was done in Section 2, it can be shown that the number of 
“times” is equal to the dimension of Ng(na) .  Therefore, the “times” tA can be 
considered as new coordinates on Ng(na) ,  i.e., 

N 

N 

THEOREM 7.1 1. For the differential 

(7.37) dS(E,T) = Q(E,T)dE 

the following equalities 

(7.38) 

are fuljilled. 

~ A S ( E .  T )  = RA(E, T )  

Remark. From the definition of the times (7.31), (7.32), (7.33) it follows that 

(7.39) 

We shall give here a brief sketch of the proof (7.38) for A = (Q, k )  only, because 
for all the other A the proof is essentially the same as the proof of Theorem 
2.2. Consider the derivative dQ,&S(E, T) .  From the definition (7.37) it follows that 
dQ,kS(E, T )  is holomorphic everywhere except for the cycle ak. On different sides 
of this cycle the coordinates are E- and EC = E- - tQ,k. Hence, taking the 
derivative of the equality 

(7.40) 

we obtain 

Q(E- - tQ,d - Q(E-) = tE,k , E -  E ak , 

(7.41) 

Therefore, ~ Q , ~ S ( E ,  T )  = R Q , ~ .  

COROLLARY 7.5. The integrals E(p ,T)  and Q(p ,T)  asfunctions of the vari- 
able p = 0 1 . 1  satisfy the Whitham equations (2.50) and the classical string equa- 
tion (2.63). 

(In both the theorems the set of times tA includes all the times ta,i, th,i, 
tE,ir tQ,i.) 
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7.3. The r-Function 

The 7-function of the particular solution of the Whitham equation on NR(na) 
N 

that was constructed above is defined by the formula 

lnT(T) = F ( T ) ,  

(the first integral in (7.42) is taken over the left side of the ak cycle and Ek = E(Pk) 
where Pk is the intersection point of U k  and bk cycles). 

Remark. The differential dS is discontinuous. Therefore, its integral over bk- 
cycle depends on the choice of the cycle. The last term in (7.42) restores the 
invariance (i.e., F depends on the homology class of cycles, only). 

THEOREM 7.12. 
fuljilled. Besides this, 

For the above-defined r-function the equalities (3.8), (3.9) are 

(7.43) 

(7.44) 

The proof of all these equalities is analogous to the proof of (3.8), (3.9) and 
it uses different types of identities that can be proved with the help of usual 
considerations of contour integrals. 

COROLLARY 7.6. For A = (a, i )  the second derivatives dfi,BF are given by the 
formulae (3.16), (3.17). Besides this, 
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We would like to mention that in particular the formula (7.46) gives a matrix 
of b-periods of normalized holomorphic differentials on r, 

(7.49) 

(for the particular case this relation was obtained for the first time in [13]). 

2 
a(h,i);(h,j)F = - h, dRh.j  . 

THEOREM 7.13. The third derivatives of F(T) are equal to 

(7.50) 

where 

7.4. Virasoro Constraints 

In this subsection we present “LQ, L-1” constraints for the .r-function of the 

Consider the differential Q2dE. It is holomorphic on rg outside the punctures 

N 

homogenious solution of the Whitham hierarchy on JV ,̂(n,). 

and cycles ak where it has jumps 

(7.5 1 )  (Q2 dE)+ - (Q2 dE)- = 2t~,k&dE = 2tE.k dS . 
Therefore, 

(7.52) 

The expansion of Q near the puncture Pa has the form (4.7). Its substitution into 
(7.52) gives 

(7.53) 
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In the same way the consideration of the differential Q2E dE proves an analogue 
of L-1 constraint: 

Remark. In order to obtain higher “Ln,0” Virasoro constraints one has to 
introduce p-gravitational descendants of the “fields” dRE,k that are holomorphic 
differentials on r except for the ak-cycle where they have “jumps” that are equal 
to EPdE. 

7.5. 

In this subsection we present the generalization of the results of Section 5 for 
the case of Riemann surfaces of an arbitrary genus. Let us consider a genus g Rie- 
mann surface rg with fixed canonical basis of cycles and with fixed meromorphic 
normalized differential dE, i.e., a point of the moduli space Ng(na). The same 
formulae (5.19), (5.20), as in genus zero case, define a Frobenius algebra ,%?r,,dE 

Landau-Ginzburg-Qpe Models on Riemann Surfaces 

(7.55) 

where h is a ring of all meromorphic functions that are regular at the zeros qs of 
the differential dE. The formula 

defines a non-degenerate scalar product on ,%?r,.dE. 

where A!!,,, is a union of dsm (that was defined in Section 5) 
For any g a “small phase” space is the space of times ta with indices a E d f ,  

dsm = {a = (a,i)la = 1, i = 1 ,..., n - 1; LY = 2 ,..., N ,  i = 0 ,..., n,} 

and indices (h ,  k), (E, k). In the basis 

(7.57) dQa 4.l = - 
dP 

the scalar products have the form: 

(7.58) 

(7.59) (+E,dh,s)  = bk,s 7 

otherwise it is zero (here [ i ]  is the same as in (4.14)). 
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Let us consider the Whitham "times" t ,  that were defined in (7.31), (7.32), 
(7.33) for the choice dQ = dp,  i.e., 

1 
tqi = :res,(k,'(p)pdE(p)) , C U , ~  > 0 E d s m  ; 

1 

(7.60) 
t,,O = res,(pdE(p)) ; 

Remark. This paper had already been written when the following result was 
proved. Let us consider the one-point case, i.e., N J n )  C and let us suppose 
that we restrict our consideration on the space of real M-curves r. That means that 
we consider curves with anti-holomorphic involution T : r - r and T ( P ~ )  = P I .  
Then the following statement is valid. 

THEOREM 7.14. The restriction of the map 

(7.63) Ng(na)-{ta,a E d f m }  

onto the space of M-curves with one puncture is one-to-one correspondence with 
some domain in real space with real coordinates t,. 

The proof of this statement will be published later. 

Let us fix the values tp,k = t",k and consider the restriction of F = l n ~  on the 
affine space that is d i m  shifted by 

Then from the statement of Theorem 7.7 it follows that 

COROLLARY 7.7. The dependence of the Frobenius algebra corresponding to 
X,(n,) on the coordinates t,, a E d f m  is a potential deformation. 

In [13] the particular case of this statement was proved. It corresponds to the 
Whitham hierarchy on moduli space of genus g curves with fixed function E(P) 
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having a pole of order n at only one point P I .  (This moduli space is a subspace 
of N8(n) that is specified by the conditions t p ,k  = 0.) The differential-geometrical 
interpretation of Whitham coordinates that was proposed in 1131 is valid in a 
general case as well. 

Let us denote a subspace of N8(na) corresponding to the fixed values of t p , k  = 

tB ,k  by N,(n,[t&). A system of local coordinates on its open submanifold 9 is 
given by (7.201, i.e., 

N 
E ,  = E ( q s ) ,  

Submanifold 9 can be defined as a submanifold on which the values E, are dis- 
tinct. The formula 

where dE(qs) = 0 ,  s = 1 ,  ..., D - g  = 2 g - 2 +  c(na + 1 ) .  
a=l 

(7.65) 

defines a metric on 9 C Kg(n,l&). The scalar products of the vector-fields 
8, = 2 a E d f m  with respect to this metric have the form: 

(7.66) 

(7.67) 

otherwise they are zeros. The proof of (7.66), (7.67) is based on the formula (5.1 1) 

(7.68) 

and formulae (7.58), (7.59). Consequently, in the Whitham coordinates t,, a E 
dh the metric (7.65) has constant coefficients he., ds2 is a flat metric and the t ,  
are flat coordinates). 
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