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O. In t roduc t ion  

Algebraic geometrical methods in the theory o f  nonlinear integrable systems are now 
one of  the most powerful tools in soliton theory. They provide the construction of  peri- 
odic and quasi-periodic solutions of  the corresponding equations which can be explicitly 
represented in terms of  Riemann theta functions of  auxiliary algebraic curves. These 
solutions are the periodic analog of  the multi-soliton solutions of  nonlinear equations. 
The concept of  solitons is the most fundamental feature of  modern nonlinear physics. 

The famous one-soliton solutions of  the Korteweg-de Vries (KdV) equation 

- ~ ~ = 0  ( o . 1 )  

have the form 

2~ 2 
u(~, t) = (0.2) 

c o s h  2 x ( z  - x 2 t  - ~) 
and depend on two parameters. They are particular cases of  the generic cnoidal wave 
solutions which have the form u(z ,  t) = v(x  - Vt,). The function v(z )  should satisfy the 
ordinary differential equation 

1 _ ttt - V v ' + ~ v v '  ~v  = 0 .  (0.3) 

It has been well known since the end of  the last century that all the solutions of  Equation 
(0.3) are elliptic functions, 

v (x )  = 2~(z  + ~,) + e, (0.4) 
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where p(z) = p(x i w, w') is the Weierstrass elliptic function [11. 
In present-day theory, the nonlinear differential equations for Abelian functions are 

considered as the output of the theory rather than its origin. 
All nonlinear equations which are considered in soliton theory are equivalent to the 

compatibility conditions of the auxiliary linear problems. For example, the KdV equation 
is the compatibility condition 

L = [A, L] (0.5) 

of the linear equations 

Lr  = E r  (0, - A) r  = 0, (0.6) 

where 

L=B~-u(x , t ) ,  A=~-~uO~:-~u~:.  (0.7) 

Many other physically important nonlinear equations can be represented in the form (0.5), 
where the linear operators L and A have matrix coefficients and higher orders. 

Equation (0.5) means that the corresponding soliton equations are 'isospectral flows' 
of the auxiliary linear problems. 

The effectivization program of the spectral theory of the Schr~dinger operator with 
periodic potentials was developed in the papers by Novikov, Dubrovin, Matveev, and Its 
(see reviews [2, 3]). It not only provides the construction of the 'finite-gap' solutions 
of the KdV equation but changes the whole approach to the spectral theory of periodic 
linear ordinary differential operators. 

From the modern point of view, the appearance of Riemann surfaces in the spectral 
theory of the linear periodic ordinary differential operator L is absolutely obvious. The 
Bloch solutions of the equation 

Lr = ECi, (0.S) 

which are by definition the eigenfunctions of the monodromy operator 

r  + T, E) = wir E), (0.9) 

become a single-valued function r P)  on the corresponding Riemann surface, P = 
(E, wi) E F. The analytical properties of this Bloch function on the Riemann surface are 
so specific that they uniquely define r t). In the ease when the Riemann surface of 
the Bloch function has a finite genus, the inverse problem of reconstructing the operator 
L from algebro-geometrical data is solved in terms of the Riemann theta functions. 

The corresponding 'finite-gap' or algebro-geometrieal solutions of the KdV equation 
have the form [4] 

u(x,t) = 20~ ln0(Vz + W t  + �9 I B) + const, (0.10) 

where 

O(zl,...,z a [B)  = ~ exp(2ri(m,z)+ ri(Bm, m)) (0.11) 

m E Z  a 



ELLIPTIC SOLUTIONS OF NONLINEAR INrrEGRABLE EQUATIONS 9 

is the Riemann theta function of the hyperelliptic curve r 

29+1 

y 2 =  H ( E -  E , ) =  R(E) .  
i = l  

(0.12) 

This means that the matrix Bij is the matrix of b-periods of normalized holomorphic 
differentials on r .  The vectors 27rU, 2 r V  are the vectors of the b-periods of normalized 
second-kind differentials with poles of 2nd and 3rd orders at infinity (i.e. at the point 
P0, corresponding to E = oc). In the general case, the function u(z,t) which is given 
by (0.10) is quasi-periodic. The branching points Ei, when u(x, t) is periodic in x, are 
simple eigenvalues for periodic and anti-periodic problems for the Schrrdinger equation 
with the potential u(x,t). The segments [E2i,E2i+l], i = 1 , . . . , g ,  are forbidden gaps 
for this operator. 

For the general Lax-type equation (sine-Gordon equation, nonlinear Schrrdinger 
equation, and so on), algebro-geometrical solutions have a structure. They are expressed 
in terms of theta functions as differential polynomials. The argument of theta functions 
contains the linear-dependence Ux  + Vt  + <I) with respect to the variables x, t. The matri- 
ces of the theta functions, the vectors U, V as well, are determined by relevant algebraic 
curves (in the case of the KdV equation, they are hyperelliptic; for the Boussinesque 
equation, they are three-fold coverings of the complex plane, and so on). 

There is more 'freedom' for the parameters of the algebro-geometrical solutions of 
two-dimensional (2+1) integrable solution equations [5, 6] . This means, for  example, 
that the formula 

v, = In o(u  + v u  + w t  + r I B) + const, (0.13) 

defines the solutions of the Kadomtsev-Petviashvili (KP) equation, if matrix B is the 
matrix of b-periods of holomorphic differentials on the arbitrary algebraic curve ([6]). 

Unfortunately, the arbitrariness of the curve r doesn't mean that matrix B is an arbi- 
trary matrix with a positive imaginary part. The problem of selecting Jacobian matrices 
(i.e. the matrices of b-period algebraic curves) is the famous Riemann--Schottky problem. 
(The solution of this problem, with the help of the KP theory, was recently obtained in 
[8].) That's why formulae of the form (0.13) for higher values of g (when B is not 
arbitrary) should be considered together with the expressions of U, V, B through the 
free parameters = { curves r with punctures }. These expressions are quadratures, but 
nevertheless they are too complicated for many physical applications. 

The generic algebro-geometrical solutions contain in limiting and in particular cases, 
solutions which can be expressed through more elementary objects than generic theta 
functions. From the early days of the 'finite-gap theory', it has been well known that 
multi-soliton solutions of the KdV equation are nothing more than algebro-geometfical 
solutions corresponding to the rational algebraic curves with simplicity singularities - 
the double points. In this case, the theta functions degenerate into the determinants of 
some matrices and such solutions are expressed in terms of elementary functions. 

Of course, it's impossible to express the algebro-geometrical solutions corresponding 
to the smooth algebraic curves of the genus g > 0 through elementary functions, but there 
are no a-priori obstructions for their expressions (in particular cases) in terms of elliptic 
functions. The elliptic functions are the simplest after elementary functions. Moreover, 
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there are remarkable classical results concerning the reduction of hyperelliptic integrals 
to the elliptic ones, and the reduction of theta functions. All of them can be and have 
been applied to the effectivization of some special cases of genetic algebro-geometrical 
solutions (see the review [9]). 

Now we are going to explain the other point of view which makes the theory of 
elliptic solutions especially interesting. At first sight, it has nothing in common with the 
classical and new results of reduction theory, but the reader will later see how all these 
approaches to the theory of elliptic solutions will be married to each other. 

In the pioneering work of Airault, McKean, and Moser [10], it was found that rational 
and elliptic solutions of the KdV equation are connected to the completely integrable 
finite-dimensional Hamiltonian system - the Moser-Calogero system. 

The I-Iamiltonian of this system of one-dimensional pax~icles in the general elliptic 
case, has the form 

1 N 
H = ~ Z p ~ -  2 Z p ( x i -  xj). 

i=1 i# j  

(0.14) 

In the degenerate case (when both the periods of the elliptic function tend to infinity), 
the [o-function becomes x -2 and the Hamiltonian (0.14) transforms into 

N 
n = (0.15) 

We shall call the systems (0.14) and (0.15) elliptic and rational Moser-Caiogero systems, 
respectively. 

In both these cases, the motion equation of Moser-Calogero systems have the Lax- 
type representation (0.5), where L and A are (n x n) matrices with their elements 
being the functions of the variables Pi, xi [11, 12]. It follows from (0.5) that the values 
Hk = t rL k are the integrals of motion (/-/2 = H).  These integrals are in the involution 
and, hence, the systems (0.14), (0.15) are completely integrable Hamiltonian systems. 
The integrals Hk generate the commuting flows on the phase space. 

Any locally meromorphic solutions of the KdV equation, i.e. solutions of the form 

o0 
u(x,t) = Z ak(t) (x - xo(t)) k (0.16) 

k = - N  

may have a singularity only of the following type 

u(x, t) = 2 (x - xo(f))-2 + O(1). (0.17) 

That's why any rational (in respect to the variable x) solution of the KdV equation 
tending to zero at infinity has the form 

N 
1 

l t (x , t )  ---- 2Zi=1 (X- -X i ( t ) )  2" 
(0.18) 
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In the elliptic case, u(x, t) should be 

N 

u(x,t) = 2 E P (x - xi(t)) + const. 
i=1 

(o.a9) 

For N = 3, such solutions were obtained for the first time in [40]. 
As was found in [10], the dynamics of the poles of the rational or elliptic solutions 

of the KdV equation coincide with the dynamics generated by the third integral //3 of 
Moser-Calogero systems restricted to the stationary points of the initial Hamiltonian 
H2 = H. In the rational case 

N 

~TH = 0 r  E 1 = 0. (0.20) 

The stationary points of the elliptic Moser-Calogero system are defined by the equations 

E p ' ( x i - x j )  = 0 ,  i =  1 , . . . , N .  (0.21) 
J 

A complete investigation of the so-called 'locus' described by Equations (0.21) was 
conducted in [10]. It has been proved that it is not empty iff the number of particles 
and, hence, the number poles of the rational solutions of the KdV equation, is equal 
to N = d(d + 1)/2, d are integers. All the rational solutions of the KdV equation are 
obtained with the help of higher KdV flows from the function d(d + 1)x -2. 

In the elliptic case, part of these results can be easily generalized. It has been well 
known since the beginning of this century that the Lam6 potential d(d + 1)p(x) finite- 
gap, and the corresponding Schr0dinger operator has d gaps in its spectrum. Therefore, 
in the elliptic case, again the 'locus' (0.21) is nonempty when N equals d(d + 1)/2. It 
contains the sets {xi}, which are the poles of the elliptic solutions of the KdV equation 
obtained with the help of the higher KdV flows from the Lam6 potentials. 

But unlike the rational case, the question about the existence of other elliptic solutions 
of the KdV equation had remained open until the appearance of Verdier paper [13]. We 
shall return to this question a bit later. 

1. Elliptic Solutions of the KP Equation 

The restricted isomorphism between the elliptic (rational) Moser-Calogero system and 
the elliptic (rational) solutions of the KdV equation becomes complete in the case of the 
'two-dimensional KdV equation' which is a KP equation. 

3 0 1 (6~tZt x - -  ,UXxX)) U .  = ~ ( ~  + ~ (1.1) 

The elliptic solutions of this equation have the form: 

N 

u(x,y,t)  = 2 y ~  p (x - xi(y, t)) + const. 
i=1 

(1.2) 



12 L M. KRICHEVER 

The dynamics of the poles x i (y, t) with respect to the variables y and t, coincide with 
the Hamiltonian flows corresponding to the Moser--Calogero system integrals H and H3, 
respectively. This isomorphism [14, 15] can be used in two directions. If one knows the 
solutions of the Moser--Calogero system equations, the corresponding solutions of the 
KP equation can be written in the form (1.2) or 

N 

u(=,v , t )  = 2 F_, (~ - ",(v,t)) -~,  
i = 1  

(here N is arbitrary) in the case of the rational Moser-Calogero system. (The solutions of 
motion equations of the rational Moser-Calogero system were found in [16].) On the other 
hand, if there exists exact formulae for the corresponding solutions of the KP equation, 
their poles give solutions of the Moser-Calogero system. The second direction was 
realized in [14], where the 'algebro-geometrical' construction of the rational solutions of 
two-dimensional integrable equations was proposed. It turns out that such solutions within 
the framework of the general aigebro-geometrical scheme, correspond to the singular 
algebraic curves which are rational curves with 'cusps'. 

In the elliptic case, the isomorphism between tile Moser--Calogero system and the 
corresponding solutions of the KP equation, remained the isomorphism between the 
unsolved problems, until the paper [17] appeared (except for the obvious case N -" 1 
and the case N = 2, which was considered in [18]). 

In the two-dimensional case, the generalization of the Lax-pair representation has the 
form 

0 - L , ~ - M  = 0 .  (1.3) 

The operators L and M for the KP equation are 

L=O2~-u(z,y,t), M = ~ - ~ u O x + w ( z , y , t ) .  (1.4) 

As was shown in [17], Hamiltonian systems of the form (0.14) are connected with the 
existence of special solutions of auxiliary linear equations with elliptic coefficients. 

THEOREM 1 [17]. The equation 

o, - ~ + 2 ~ ~ (~ - ~ ( t )  r - o, (1.0 
i = l  

has a solution r of the form 

n 

r = E ai(t, k, a)q~ (z - zi, a)  e k~+k~t, (1.6) 
i = 1  

where 

#(c~ - r e((a)x ' (1.7) r ~) = ~(~) ~(~) 
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if and only if zi ( t ) satisfies the motion equations of the Moser-Calogero system (0.14) 

x i = 4 Z  p ' ( x i - x k ) '  i = l , . . . , n .  (1.8) 

Here 

are ~- and (-Weierstrass functions. 

The choice of the form (1.6) for the solution ~b is connected with a well-known fact 
that ~(x, t~) is the solution of the Lam~ equation 

(Ox 2 - 2p(x)) ~(x, a) = p(a)~(x ,  a). (1.9) 

The function ~(z,  ~) is two-periodic in relation to the variable 

�9 (x, 2~i + c~) = ~(x, tx), (1.10) 

and has the following monodromy properties in respect to the variable x: 

(x + 2wz, ~) = ~(x, a) exp (((o0wl - ~ la) .  (1.11) 

Let us give a brief sketch of the proof of this theorem. The function ~b of the form 
(1.6) has simple poles at the points x = xj.  Expanding it around these points, one can 
obtain from the singular terms of the left-hand side of (1.9), the equations 

aixi + 2kai + 2 Z ajr (xi - xj, o~) = O, 
j#i 

i q - p ( o O a i + a i Z 2 p ( x i - x k ) + 2 Z a i O ' ( x i - x j , a ) = O .  (1.12) 
k#i j#i 

(They are equivalent to the equality of the coefficients to zero before (x - xi) -2 and 
(x - zi) -1, respectively.) Equations (1.12) have the form 

(L((~) + 2k) a = 0, (0, + T ) a  = 0, (1.13) 

where a is a vector with coordinates a = (al,..., an), and L and T are the corresponding 
matrices 

Lq = Jzi6q + 2 (1 -  69) 0 (xi - xj,oO , 

Tq = 6iJ (-P(~ + 2 Z p ( x i -  zk)) + 2 ( 1 - 6 q )  r ( x i -  (1.14) 

The compatibility conditions of the linear Equations (1.13) 

[L, 0, + T] = 0 ~ L = [L, T] (1.15) 

are equivalent to the motion equations of the Moser-Calogero system. The last statement 
can be checked directly, but it can be obtained in the following way, as well. As has 



14 L M. KRICHEVER 

been proved in [12], the compatibility conditions (1.15) are equivalent to Equations (1.8) 
iff the function (I) satisfies the functional equations 

O ' ( x ) O ( y )  --  O(z)(}t(y) = p ( y )  _ p ( x ) ,  ( 1 . 1 6 )  
r + V) 

r  = p(~)  - p(x) (1.17) 

In [12], particular solutions of these functional equation were found corresponding to 
the values of t~ = wt, ! = 1, 2, 3. The existence of the Lax-type representation (1.15) 
containing 'spectral parameter' ~ is very essential because it makes it possible to apply 
the algebro-geometrical methods. 

Remark. Equations (1.16), (1.17) for (I)(x, or), which is given by formula (1.7), are 
equivalent to the addition formula for a-functions. They will be very important in the 
next section where we will consider the applications of the simplest Baker-Akhiezer 
function (I) for the theory of the multiplicative genera of quasi-complex manifolds with 
rigidity properties. There, we shall propose the generalization of (1.16) for the generic 
Baker-Akhiezer functions in Section 2. 

It follows from (1.15) that the parameters et and k in (1.6) should satisfy the equation 
(see [171). 

n 

R(k, a) = E ri(a)ki = det (2k + L(t, c~)) = O. (1.18) 
i = 0  

The coefficients ri(ot) are elliptic functions with their poles at ~ = 0. Hence, they can be 
represented as linear combinations of the p-function and its derivatives. The coefficients 
of such representations are integrals of the Moser-Calogero system. 

EXAMPLE. Let n = 2, then 

R(k, o~) = 4k 2 + 2k (Xl + x2) + xlx2 + 49 (Xl - x 2 )  - 4 p ( ~ ) .  (1.19) 

Equation (1.18) defines the algebraic curve Fn, which is the n-fold covering of the 
elliptic curve of the spectral parameter a. In [17], it was proved that these covering have 
a very specific property (in [13], such coverings were called tangent coverings). In the 
generic case, the curve Fn has n-sheeted over the neighbourhood of the origin (x = 0. 
In this neighbourhood, the function R(k, ix) can be represented in the form 

n - 1  

R(k, ~) = (k - (n - 1)-1~ + b . (~) )  I I  (k + ~-~ + b,(~)) 
/ = 1  

(1.20) 

Therefore, the function k(tx) has simple poles on each sheet at the points P./ over the 
origin, o~(Pi) = 0. Its expansions in the neighbourhood of Pa are given by the factors 
of the right-hand side of (1.20). From (1.20), it follows that one sheet of the covering is 
distinguished. We shall call it the 'uppe r sheet'. 
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The function ~b(x, t, ~, k) of the form (1.6) satisfying Equation (1.5), is the multi- 
valued function of the variable a because the parameter k should be the root of Equa- 
tion (1.18). As is usual in 'finite-gap' theory, it becomes the single-valued function 
~b(x, t, P )  on the algebraic curve rn ,  P = (k, ~) E Fn. (From (1.20), it follows that, in 
general, the genus of Fn equals n.) 

THEOREM 2 [17]. The eigenfunction ~b( x, t, P) of the nonstationary Schrfdinger equa- 
tion (1.5) normalized by the condition ~b(0, 0, P)  - 1, is defined on the n-sheeted cover- 
ing rn of the initial elliptic curve. The function ~b(x, t, P) is meromorphic on Pn except 
for one point Pn. In general, it has n = g (the genus Of Fn) poles "Y1, . . ., "[n, which do 
not depend on x, t. At the neighbourhood of Pn, it has the form 

~ b ( x , t , P ) =  l + y ~ ( s ( x , t ) a '  exp (A(a )x+A2t ) ,  (1.21) 

where )~(~) = not~ - 1  + bn(O). 

Therefore, the function ~b(z,t, P) is a Baker-Akheizer function [5,6]. As has been 
proved in [6], any function ~b(x, t, P)  with the analytical properties which were formu- 
lated above, on an arbitrary smooth algebraic curve is the solution of the nonstationary 
Schrfdinger operator with the potential 

u(x, t) = 20~ 2 lne(Ux + Vt  + W) + const. (1.22) 

Here 0 is the Riemann theta function of the corresponding curve; vectors 27rU, 2rrV 
are the vectors of b-periods of normalized Abelian differentials of the second kind with 
poles of orders 2 and 3 at fixed point Pn, respectively. 

COROLLARY. The coordinates xi(t) of the Moser-Calogero system are solutions of the 
equation 

0(Ux + Vt  + ~) = 0, (1.23) 

where 0 is the theta function corresponding to the curve Fn defined by Equation (1.18). 

The statement of the Corollary means that Equation (1.23), considered for the fixed 
value of t as the equation on x, has n roots in the fundamental domain of the elliptic 
curve with the periods 2wl, 2w2 coinciding with xi(Q. 

The proof of the Corollary follows from a simple comparison of (1.22) and the 
formula of the potential u(x, t )  in (1.5). The poles of u coincide with zeros of 0 on the 
one hand and with xi(t) on the other. From this, it also follows that, in the case of the 
curves Pn, the equality 

N 
O(Ux + V t  + ~) = const H ~ (x - xi(t)) 

i=1  

(1.24) 

is fulfilled. 
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As was shown above, all the algebraic curves Fn corresponding to the elliptic Moser- 
Calogero systems have the property that their characteristic polynomial R(k, a) can be 
represented in the form (1.20). Now we are going to prove the inverse statement that 
any algebraic curve F, which is defined with the help of the equation 

t~ 

R(k, ~) = Z ri(a)ki = O, (1.25) 
i=o 

with the elliptic coefficients ri(~) having the poles at oe = 0, and such that the function 
R(k, c~) has the decomposition (1.20), corresponds to the elliptic integrable potentials. 
Hence, all such functions R(k, ~) are characteristic polynomials of some matrix L of 
the form (1.14). 

Let us consider, on the curve F, the functions 

~' i (P)  = exp ( /r  - r + o ic , ) ,  i = 1, 2,  (1.26) 

(here P = (k , a )  E F is the point of the algebraic curve defined by the equation 
_~(k, c 0 = 0). From the monodromy properties of the theta function, it follows that the 
functions ~i are correctly defined on F. From (1.20), it follows that !oi are holomorphic 
everywhere except for the only point Pn over c~ = 0, which corresponds to the first 
factor in the decomposition (1.20). In the neighbourhood of this point, the functions ~i 
have the form 

~ i (P)  = exp (na  -1 + bn(O))wi (1 + O(a ) ) .  (1.27) 

The Baker-Akheizer function r  t, P )  is uniquely defined on F by its analytical proper- 
ties which were formulated in Theorem 2. Hence, comparison of the analytical properties 
of the left- and right-hand sides proves the following equality 

r  + 2wi, t, P)  = r  t, P)~i(P), i = 1, 2. (1.28) 

It implies that the potential (1.22) of the corresponding nonstationary Schrrdinger oper- 
ator has two periods, 2wl and 2w2, and, hence, is an elliptic function. As was stated 
above, all elliptic solutions of the KP equation have the form (1.2) and the dynamics 
of their poles in relation to the variable V coincides with the dynamics of the Moser- 
Calogero system. Therefore, from the previous results (and after changing the notion 
t ~ V) it follows that all the solutions of the KP equation are given by formula (0.13), 
where the theta function corresponds to the n-sheeted covering Fn, which is defined by 
Equation (1.18) (or, equivalently, by (1.25), where R(k, (x) has the decomposition (1.20) 
near oL = 0). 

The KdV equation is a particular case of the KP equation. Hence, all elliptic solutions 
of the KdV equation are given by formula (0.10), where the theta function corresponds 
to a 'tangent covering' I'n, which at the same time, should be the hyperelliptic curve 
(i.e. there should exists the function E ( P )  on Fn with the only pole of the second order 
at the point Pn over cz = 0 on the 'upper sheet'). 
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The problem of the elliptic solutions of the KdV equation had once again attracted 
the attention of many specialists after the works of Verdier and Treibich [13, 19], where 
an unexpected result was obtained. The new elliptic solutions 

4 

u(x,t) = 2 E p (z - zj(t)) (1.29) 
./=1 

(which are not isospectral deformations of the Lain6 potentials) were constructed. 
The papers of this special issue ofActa ApplicandaeMathematicae contain the latest 

results in the theory of elliptic solutions of the KdV equation. Recent progress in the 
theory is based on the unification of the classical results concerning the reduction of 
the hyperelliptic integrals and theta functions, with the theory of the Moser-Calogero 
system. 

2. The Generalized Elliptic Genera 

The simpliest elliptic Baker-Akhiezer function O(z, t~) is the 'cornerstone' of the theory 
of elliptic solutions. It turns out that O(z, a)  also links the solution theory with topological 
quantum field theory and with the theory of the multiplicative genera of manifolds. 

Since the middle of the 70's, it has become clear that a number of quantum anoma- 
lies have a topological nature. In all such theories, these anomalies are connected with 
different versions of the Atiyah-Singer theorem. 

The 'topological' anomalies in the strings models were considered in [20-22] where, 
in particular, the partition function of the supersymmetric nonlinear string tr-model was 
found. This model is the string analogue of the model of spin-particle M. The parti- 
tion function of the spin-particle model coincides with the topological invariants of the 
manifold M which is the index of the Dirac operator (coinciding with the so-called A- 
genus). After slight modifications of the models, the corresponding partition functions 
will coincide with other topological invariants such as signature, Euler characteristic, and 
SO o n .  

An interpretation of the partition function of the nonlinear sypersymmetric string ~- 
model as the 'index of the Dirac-type operator on the loop space' of target manifold M 
was proposed in [23]. The 'index' of such operators was defined as the 'index-character' 
of the natural S 1 action on the loop space LM. This means the following. The loop 
space is infinite-dimensional. Hence, the kernel and co-kernel of 'elliptic operator D '  on 
it (even if D is well defined) could be infinite-dimensional. Suppose, that the operator 
D 'commutes' with the natural S 1 action on LM. Then the ker(D) and coker(D) are 
invariant under the corresponding S '1 action. They can be expanded into the sums 

k e r D =  E Vk, c o k e r D =  Z Wk, 
k = - o o  k = - o o  

where Vk, Wk are the invariant subspaces, such that the element q = e ~ E S 1 acts on 
them as the multiplication on q~. The index character is defined in the following way: 

OO 

i n d D ( q ) =  E (dimVk-dimWt)q~" (2.1) 
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Let us present here some heuristic arguments concerning the topological invariants, 
which can be obtained in this way. 

A-priori, the index characters should be the invariants of the loop space LM. But, 
according to the Atiyah-Singer equivariant theorem, the index characters of the elliptic 
operator on the finite-dimensional manifold with S 1 action, can be expressed in terms 
of invariants of fixed-point manifolds. The fixed points of natural 5 '1 action on the loop 
space L M  correspond to a trivial loop. Hence, this fixed-point submanifold coincides 
with M C L M  and if the finite-dimensional arguments can be applicable to this case, 
one can expect that the index characters of the Dirac-type operators on the loop space of 
manifold M provide topological invariants of that manifold. Moreover, if the index of 
the elliptic operator on L M  is a really topological invariant, then as was shown in [24], 
the corresponding invariant has a 'rigidity' property, which means the following in the 
situation under consideration. 

Let us assume that there exists S 1 action on M. Then each of the subspaces Vk, Wk 
can be represented as the sums 

Vk = ~ Vk,t, Wk = Z W~,I, (2.2) 
I I 

where Vk,z, Wk,t are eigenspaces of an S 1 x S 1 action on LM. 
The 'rigidity property' means that 

bl(q) = y ~  (dim Vk,l -- dim Wk,l) qk = 0, l # 0. (2.3) 
k 

(The rigidity of all the classical multiplicative genera was proved in [25].) 
The above-formulated heuristic arguments of [23] were made rigorous in [24]. (A 

general reference to the mathematical works within the framework of this theory is 
in [26]. There one can find Ochanin's definition of the elliptic genus and the related 
definition of the elliptic cohomology.) 

The indices of natural elliptic operators (Dirac, signature, etc.) are examples of the 
so-called multiplicative genera. The multiplicative genus, by definition, is a ring homo- 

. U , S O ,  �9 �9 �9 morphism h: ~ .  "" ~ A of the bordmm of quasi-complex (oriented, etc.) manifolds. 
According to Hirzebruch, any multiplicative genus of quasi-complex manifolds is defined 
with the help of the formal series 

h(x) = z + ~_a Aizi" (2.4) 
i--1 

The value of the corresponding genus for any manifold is given by the formula 

i=l h -~ i ) '  [M2n] " (2.5) 

Here, a:i are Wu generators. Their symmetric polynomials are Chern classes of the tangent 
bundle of M 

n n 

1"I (1 + ;ei) = 1 + Z ei(M). (2.6) 
i = 1  i = 1  
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The brackets means the evaluation of the corresponding cohomology class on the fun- 
damental class of the manifold. The theory of multiplicative genera is closely related to 
the theory of formal groups. The series F(u, v) in two variables u, v is called a formal 
group if 

(a) F(u, O) = F(O, u) = u, (2.7) 

(b) F(u, F(v, w)) = F(F(u, v), w). (2.8) 

From condition (2.7), it follows that F has the form 

F(u, v) = u + v + E aijuiv'i' (2.9) 
i+j>l 

If the ring of the coefficients of formal group Oqj E A iS a Q-module, then it has the 
logarithm gF(u), i.e. 

F(u, v) = gF 1 (gF(U) + gF(V)) . (2.10) 

As was shown in [27], the formal group of the 'geometrical cobordism' 

f(u, v) = g-l(g(u) + g(v)), g(u) = ~ [CPn]u"+~, 
,~=0 n + 1 

y(u,  v) = u + v + (2.11) 

is universal, i.e. for any formal group F there exists the ring homomorphism 

h r :  f~,tr ~ A, 

from the bordism ring of the quasi-complex manifolds to the ring of the coefficients of 
F, such that the.coefficients of F are equal to 

oqj = hE (ol~ . (2.12) 

Consequently, there exists a one-to-one correspondence between the multiplicative genera 
and the formal groups. Direct connections were found by Novikov [28], who proved that 
the generating series h(~) coincides with the 'exponent' of the formal group 

h(~) = g;~(,:), g;~ (gh(U)) = u, 

--~ h ([Cpn]) 
gh(u) = un+l (2.13) 

n=0 

The classical multiplicative genera correspond to the following formal groups 

V2 1 ~  u2 
-~- + v -~- - A - genus, 
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u + v  
signature, 

l + u v  

u + v + 2uv 

1 -- 11~3 
Euler characteristic. (2.14) 

The index of the signature-like operator on the loop space is the so-called, elliptic 
genus which was introduced by Ochanin [29]. The logarithm of the corresponding formal 
group equals 

gd,(x) = ~ ~ ([CP"])z"+I = "[_~ dt 
n +  1 ao R( t )  112' 

(2.15) 

and 

I 3 
20;  (x)O, (x) = i f (x)  = 2 H ( p ( x ) -  e ,) .  

$=1 

The corresponding formal group is equal to 

= 
r  (g.(u) + g,(v)) '  

~ ,  (g~(11)) 1 
lZ 

From (2.20), it follows that 

a; (g , (11) )  = 
112 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

where R ( t )  = 1 - 26t 2 + 5"~ 4. The formal group by itself is the Euler group 

1 - cu2v 2 (2.16) 

Let r be the elliptic curve with the periods 2wb 2w2. The elliptic Baker-Akhiezer function 
~(x, c~) = (I)(x, a I w, w') has the expansion 

(I)(x, a) = 1 + O(1) 
;g 

in the neighbourhood of x = 0. Hence, it can be used for the definition of the multi- 
plicative genus. Let us define the complex-valued genus ~3 - ~(c~, ko I o~1, w2) [30] 

#: f2. r'r , C (2.17) 

with the help of formula (2.5), where (depending on the parameters (a, k0 I wl, w2)) 
1 / h ( x )  equals 

(I)(g, O/, k 0 I Wl, ~J2) = (I)(g, o~ [ r (02) e-k~ (2.18) 

Using the functional equations (1.16), (1.17), it is easy to show that the function (I)l(x) = 
(I)(x,a = wt [ r generates the elliptic genus. The functions (I)t(x) are odd, i.e. 
~ t ( x )  = - ~ t ( - x ) .  Therefore, 
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where the coefficients of the polynomial R, = 1 - 26,u 2 + Ee~ 4 are  equal to 

26, = Z (e, - ei), r = E (e, - ei). (2.23) 
ir i#, 

From (1.16) and (2.22), it follows that the formal group (2.21) coincide with the Euler 
formal group. Let us consider the functions 

~nra (X [ Wl, W2) "- r (X,O~nrn, knrn ] Wl,W2) , (2.24) 

where 

2n 2m 
anm = - ~ w l  + --~-w2, n, m = 0 , . . . ,  N - 1, (2.25) 

and 

2n 2m 
k..,, = - ~-,71 - --y-,72 + ~ ( ~ , , , , , )  �9 

They have the properties 

~nrn (X -'[- 20)1 [~1 ,~2 )  = enrn (~ [;dl,032) e 27tin/N, 

(2.26) 

'~.,-a (x + .2~2 [ Wl,W2) = r  (x ]Wl,W2) e 2"i~/N. (2.28) 

The function Ohm generate 'the elliptic genera of the level N '  which were introduced 
in [31]. All the classical multiplicative genera correspond to the degenerate cases r 
of the function ~, corresponding to the degeneration of an elliptic curve into a rational 
singular curve with double points. The function Oi.g: 

~ang(x, k [ r]) = ( - k  + r] coth(rlx)) e k~, (2.29) 

depends on the parameters k, 7/and satisfies the Schr6dinger equation with a one-soliton 
potential (0.2). For different values of the parameters k, k0, r /of  the generating function 

r k, ko I o) = ( - k  + ,7 coth(o~)) e(~-k~ (2.30) 

all the classical genera can be obtained: 

(1) k = ko, Ta,b genus [32, 33] 
a = r] - k0, b = 0 + k0, (2.31) 

which coincides with the Todd genus, signature, Euler characteristics for a - 1 and 
b = 0, 1, -1 ,  respectively. 

(2) k = r/, k0 = ((N - 2 ) / N ) r / -  AN genus [32, 34], AN-2  = A genus. 

In [33] the equivariant analog of any multiplicative genus h: U. = f2~ - ,  Q was 
defined: 

ha: U, a , K ( B G )  | Q, (2.32) 

(2.27) 
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where U a is the ring of the bordism of manifolds with the action of compact Lie group 
G. For any G manifolds M, the projection 

p: m a  = (M x EG) /G  ---* BG (2.33) 

on the universal classifying space BG defines the cobordism class 

Xao([X, a l )  = p,(1) e U*(BG), (2.34) 

where 

p,: U*(Ma) , U*(BG) (2.35) 

is a Gisin homomorphism (direct image). 
According to the Dold theorem [35], each homomorphism h has a unique extension 

as the homomorphism of the functors 

h: U ' ( . )  , K( . )  | Q. (2.36) 

The equivariant genus is, by definition, the composition 

h a = h.  Xao: U, a , U*(BG) ~ K*(BG) | Q. (2.37) 

The rigidity property of h a for some special classes of manifolds means that its values 
belong to the ring of constants 

ha(Ix ,  G]) e Q C K(BG)  | Q (2.38) 

in the case of connected compact Lie groups. 
The universal classifying space in the case G = S 1 is CP ~176 and the ring U*(CP ~ 

is the ring of formal series in relation to the degree 2 variable u with the coefficients 
from the ring U*: 

U* (CP ~ )  = U* [[u]]. (2.39) 

The expression of the cobordism class X0a([X, $1]) in terms of the fixed point's subman- 
ifolds are called Conner-Floyd expressions. In the case of the S 1 action with isolated 
fixed points, they have the form 

" 1 (2.40) x0 = YI [u]j., 
~=1 

(see [28, 36, 37], for the generic action they were found in [38] and some formulas of 
which slightly corrected in [39]). Here [u]j is the jth power in the formal group of the 
'geometrical cobordisms' (2.11) 

[u]j -" g-1 (jg(w)) ; 

the integers jsi, i ---- 1 , . . . ,  n = dim.r X, are 'the exponents' of the S 1 action in the fiber 
of a tangent bundle over the fixed point xs. 
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Each term in the right-hand side of (2.40) is singular. The equality (2.40) means, in 
particular, that the sum of them is regular. This generates a lot of relations for the local 
exponents. 

The rigidity property of some genus means that, after the application of this genus to 
the coefficients of the series (2.40), the only constant term will be obtained. 

The basic cobordism class u E U* (CP  ~176 is transformed under the homomorphism 
into h(u) = ghl(ln r/), where r/, r/-1 are generators of the ring K(CP~r Let us introduce 
the formal variable z = lnr b Then, from (2.40), it follows that the equivariant genus 
~sl([X, S1]) corresponding to the generalized elliptic genus (2.7) for the S 1 manifold 
X with the isolated fixed points has the form 

r$ 

~sI([X, S1]) = r = E H • (jsi . z , a ,  ko I Wl,W2). (2.41) 
8 i=1 

By definition, the left-hand side is regular at the origin z = 0. The main idea of the 
proof [33, 34] of the rigidity property is the investigation of global analytical properties 
of the function ~. It turns out that the function ~Px(z) is regular at all points of the 
lattice Znr n " -  2nwl + 2rnw2 in the case of SU manifolds (i.e. manifolds with zero first 
Chern class, Cl(X) = 0). Indeed, from the monodromy properties (1.22), it follows that 

n 

~X (z + 2wl) = E e"Q' H '~ (J,i" z),  (2.42) 
8 i=1 

where 
n 

r, = E j , i  , Qt = 2 (r - Oza - kow 0 �9 (2.43) 
i=1 

If the values rs do not depend on s, i.e. r, = N, then 

~Ox(~e + 2wl) = Tx(~a)e NQ' (2.44) 

and, hence, ~Px is regular at all the points of the lattice 2gnr n (because it is regular at 
z = 0). It turns out that the values r8 do not depend on s in the case of S 1 actions on 
the SU manifolds [30]. (In [31], the number N = r8 was called a type of action.) 

In [30], it was proved that 9~x(x) has no poles at the points x such that jsix -- 0 
(mod 2wl, 2w2) (it was proved for an arbitrary S 1 action and not only for actions with 
isolated fixed points). Consequently, 

THEOREM 2.2 [30]. For any SU manifold X the equivariant genus 

~ X ( ~ )  "-  ~ S I ( [ X ,  S1])  ---~ ~ ( [ X ] )  C K ( C P  ~)  | Q 

is a constant. I f  the action of S 1 on X has the type N ~s O, then 

= = o .  

The 'addition formula'-type relations (1.16), (1.17) for the elliptic Baker-Akhiezer 
function ~(x, a ] wl, r play an extremely important role in the proof of this theorem. 
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Finally, at the end of this paper we would like to mention another application of this 
remarkable functional equation and its solutions. It turned out that they lead to universal 
algebraic two-valued formal groups. 

The definition of the n-valued formal group is the natural generalization of the ordi- 
nary one-valued formal group. 

The algebraic function z = z(x, y), which is defined by the equation 

n--1 

zn + E ri(x ,  y)z i -- 0 (2.45) 
i=O 

where ri(x ,  y) are formal series with respect to the variables x, y, is called an n-valued 
commutative formal group if the following relations hold: 

(1) z(~, Y) = z(Y, ~), 
(2) z(~, ~(V, t)) = ~(~(~, V), t), 
(3) r / (z ,0)  = ( - 1 ) i ( n ) z  i (i.e. for y = 0, Equation (2.45) has the form (z - z) n = 0) 

are fulfilled [41]. 

The substitution of one n-valued function into another m-valued function defines n, 
m-valued functions. In this sense, relation (2) means that its right- and left-hand sides 
coincide with each other as hi-valued functions. 

In [42], it was proved that functional equation (1.16) corresponds to the 'algebraic' 
two-valued formal group. (The multi-valued formal group is called algebraic if the defin- 
ing relation (2.45) is polynomial in all the variables.) It turns out that a three-parametrical 
set of solutions of the functional equation (1.16), which are given by the formula (1.7), 
generates the universal two-valued formal group which is quadratic in all variables [42]. 
This formal group has the form [42] 

(z  + y + z - a2zcyz) 2 = 4 + a3zyz ( zy  + z~z + yz + a l zyz ) .  

References 

1. Batemen, G. and Erdely, A.: Higher Transcendental Functions, v. 2, McGraw-Hill, New York, 1953. 
2. Dubrovin, B. A., Matveev, V. B., and Novlkov, S. P.: UspekhiMat. Nauk 31(i) (1976), 55. 
3. Zakharov, V. E., Manakov, S. V., Novikov, S. E, and Pitaevskii, L, P.: in S. E Novlkov (ed.), Soliton 

Theory: Inverse Scattering Method, Nauka, Moscow, 1980. 
4. Its, A. B. and Matveev, V. B.: Teor. Mat. Fiz. 23(1) (1975), 51. 
5. Krichever, I. M.: Soviet Math. Dokl. 17 (1976), 394. 
6. Krichever, I. M.: Funlasional. Anal. i Prilozhen. 11(I) (1977), 15. 
7. Krichever, I. M.: Uspelchi Mat. Nauk 32(6) (1977), 100. 
8. Shlota, T.: Invent. Math. 83 (1986), 33. 
9. I~Iokolos, E.D., Bobenko, A. I., Enolskii, V. Z., and Matveev, V. B.: Russian Math. Surveys 4I(2) (1986), I. 

10. Airault, H., McKean, H. E, and Moser, J.: Comm. PureAppl. Math. 30 (1977), 94. 
11. Moser, J.: Adv. in Math. 16 (1976), 197. 
12. Calogero, E: Lett. Nuovo Cim. 13 (1975), 411. 
13. Verdier, J. L: New elliptic solitons, in Algebraic Analysis 2, special volume dedicated to Prof. M. Sato on 

his 60th birthday, Academic Press, New York, 1988. 
14. Krlchever, I. M.: Funk~ional. Anal. i Prilozhen. 12(I) (1978), 76. 
15. Chudnovsky, D. V. and Chudnovsky, G. V.: Nuovo Cim. 40B (1977), 339. 
16. Olshanelzky, M. A. and Perelomov, A. M.: Lett Nuovo Cim. 17 (1976), 9'7. 
17. Krichever, I. M.: Funktsional. Anal. i Prilozhen. 14 (1980), 45. 
18. Chudnovsky, D. V.: J. Math. Phys. 20(12) (1979), 2416. 



ELLIPTIC SOLUTIONS OF NONLINEAR INTEGRABLE EQUATIONS 25 

19. Treibich, A.: DukeMath. J. 59(3) (1989), 611. 
20. Alvarez, O., Killingbaek, T., Mangano, M., and Windy, P.: Nuclear Phys. B. I A  (1987), 189. 
21. Schellekens, A. and Warner, N.: Phys. Lett. l17B (1986), 317. 
22. SeheUekens, A. and Warner, N.: Phys. Lett. 181B (1986), 339. 
23. Witten, E.: Comm. Math. Phys. 109 (1987), 525. 
24. Taubes, C. H.: Comm. Math. Phys. 122 (1989), 455. 
25. Atiyah, M. and Hirzebrueh, E: Spin-Manifolds and Group Action, Essays on Topology and Related Topics 

197, Springer, Heidelberg, p. 18. 
26. Landveber, P. S. (ed): Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Math. 

1326, Springer, Heidelberg, 1988. 
27. Quillen, D.: Bull. Amer. Math. Soc. 75(6) (1969), 1293. 
28. Novikov, S. P.: Izv. Akad. NaukSSSR, Ser. Mat. 32 (1968), 1245. 
29. Ochanin, S.: Topology 26 (1987), 143. 
30. Krichever, I. M.: Mat. Zametki 47(2) (1990), 34. 
31. Hirzebruch, E: Elliptic genera of level N for complex manifolds, Preprint MPI 89-24. 
32. Hirzenbrnch, E: TopologicalMethods in Algebraic Topology, Springer, Heidelberg, 1986. 
33. Krichever, I. M.: Izv. Akad. Nauk SSSR, Set. Mat. 38 (1974), 1289. 
34. Krichever, I. M.: Izv. Akad. Nauk SSSR, Ser. Mat. 40 (1976), 828. 
35. Dold, A.: Relations Between Ordinary and Extraordinary Cohomology, Colloq. Algebraic Topology, 

Aarhess, 1962. 
36. Mischenko, A. S.: Mat. Zametki 4(4) (1968), 381. 
37. Kasparov, G. G.: lzv. Akad. Nauk SSSR, Ser. Mat. 33 (1969), 735. 
38. Mischenko, A. S.: Mat. Sbornik 80, (1969), 307. 
39. Gusein-Zade, S. M., and Kdchever, I. M.: Uspekhi Mat. Nauk 27(1) (1973), 245. 
40. Dubrovin, B.A. and Novikov, S. P.: JETPh 67 (1974), 2131. 
41. Bukhshtaber, V. M.: lzv. Akad. Nauk SSSR, Ser. Mat. 39(5) (1975), 1044. 
42. Bukhshtaber, V. M.: Uspekhi Mat. Nauk 45(3) (1990), 185. 


