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§1. Introduction. Statement of Results

The dynamics of strings in strong gravitational fields and especially in the vicinity of space-time sin-
gularities has recently attracted special attention. One of the main goals of this paper is to construct
exact solutions of string equations in (2 + 1)-de Sitter space-time. The simplest solutions of this equation
were obtained in [1], which stimulated our work and where the physical motivation and bibliographical

references can be found.
From the geometric viewpoint the problem is to construct minimal surfaces in a pseudosphere, i.e., if
g = {qi(c,7)} is a parametrization of such a surface, then

D
(¢,0) =) migigi=1. (1.1)

i=1

Unless otherwise specified, the constants n; that define the metric are assumed to be given by n =
(~1,1,...). The equations that define embeddings of minimal surfaces in the quadric (1.1) have the form

(040- +u)g=0, 0x =08/0zy, z4 = (7L 0)/2. (1.2)
As follows from (1.1) and (1.2), the Lagrange multiplier v = u(z4,z-) in (1.2) is equal to
u = (d4q,0q). * (13)

Equations (1.2) and (1.3) form a system of nonlinear equations for the functions g¢;(c, 7). They are a
particular case of the general o-models

040_¥ + (6+\I!, 6_\Il)*\Il =0, (14)

where (-, - )« stands for the inner product defined by some matrix (g;). Equations (1.4) can be considered
as linear equations with self-consistent potentials. The well-known nonlinear Schrédinger equation can be
treated in the same manner. It can be represented as the linear equation

(10, — 82 + u(z, 1)) = 0 (1.5)

with the self-consistency condition
u=alypf. (1.6)

Numerous physical models that describe the interactions of long and short waves also have the form of a
system comprising linear equation (1.5) and various self-consistency conditions. For example,

ur+ugs = P2 [2], (L.7)
Ugg — Ugy + QUgzrs T ﬁ(u2)zx = ll/)liz [3] . (18)
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The general construction of exact solutions to the nonstationary Schrédinger equation (1.5) with various
types of self-consistency conditions was proposed in [4] (its realization for the construction of soliton
solutions was presented in [5]). Such a scheme was originally advanced in [6] for the construction of exact
solutions to the nonlinear Schrédinger equation and its vector analogs.

The main goal of this paper is to show that the ideas of this scheme are universal enough to be applied
to many other systems. In particular, for o-models the construction can be considered as an alternative
to the inverse transform method. In the author’s opinion the essential advantage of the scheme is that it
allows us to construct solutions of the o-model which, in addition, satisfy the so-called string constraints.
The string constraints follow from the reparametrization invariance of the world surface of the string.
They have the form

Ty, + =(04+q,049) =0, T- _=(0-q,0-¢q) =0. (1.9)

(Equations (1.9) are the classical analogs of the quantum equations
L,0)=0, n>-1, (0|L, =0, n<1,

that define the vacuum state in the model of a bosonic string. Here L,, are the generators of the Virasoro
algebra.) The basic idea of constructing exact solutions to Eqgs. (1.4) can be presented in the following
form. First we construct “integrable potentials” u = u(z4, ) of the two-dimensional wave operator

(64_6_ +u(m+7$—))¢($+7‘7’~7Q) =0, (1'10)

i.e., potentials such that a set of solutions to (1.10) with spectral parameter which is a point @ of an
auxiliary Riemann surface of finite genus is known. We shall say that the self-consistency conditions are

satisfied if there exist values Q;, 1 = 1,... , 2N, of the spectral parameter such that
u($+7 SE..) = Zgija+'l,bia—'l/1j, ' (111)
i,J
where
Yi(z4,2-) = Yi(z4,2-,Qi). (1.12)
Linear equation (1.10), in conjunction with the self-consistency conditions, implies nonlinear equations
(1.4) for the vector ¥(zy,z_) = (¢1,... ,¥n) with components that are values of the wave function

¢($+a T, Q) at Qi .

Thus, the approach described for solving the nonlinear equations (1.4) is to construct integrable linear
problems and then to select those of them whose corresponding potentials satisfy the self-consistency
conditions. ‘

This scheme is developed for the string equations (1.1)-(1.3) and (1.9) in the next two sections. In the
second section the necessary results [8, 9] on the integrable potentials of the two-dimensional Schrédinger
operator are presented. In the third section, the constraints on the construction parameters for such
potentials are imposed to guarantee the self-consistency conditions (1.11) and the string constraints (1.9).

.The algebraic-geometric solutions thus constructed are determined by an auxiliary algebraic curve I'y
of genus go with two marked points Py and by a meromorphic function E(P), P € I'g, with simple poles

O, 4i=1,...,N. Let T be a double covering of Ty with exactly two branch points Pi. The matrix
of the b-periods of the normalized odd (with respect to the permutation of the sheets) differentials on T
defines the Prim theta function 0p.(z), z = (21,... , 2g,). In terms of the Prim theta function the exact

solutions have the form
_ Op:(Aj +Utzy + U z_ + Z)0p:(2) ipFoytipTo_
‘PJ(iIJ+, l‘—) =T 9pr(Aj + Z)Gpr(U+x+ +U-z_+ Z) e J )
o _ 9Pr(—‘Aj + U+.'1:+ +Uz_+ Z)GP,-(Z) —(ipFzyptipre)
80] ($+7 -7:—) =Ty GPr(_A] + Z)GPr(U+SII+ T U-z_ i Z) e J 3 .

(1.13)

Here Z is an arbitrary vector; the constants r;, p;-h and the go-dimensional vectors U%, Aj, J =
1,..., N, are expressed in quadratures via I'; P4, and E(P).
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The functions (1.13) satisfy Eq. (1.10), where

u=0,0_6p,(Utzy + U z_ + Z) + const . (1.14)
Furthermore,
N
D el =1, (1.15)
i=1
N
2u =Y 01007 + 01070 ;. (1.16)
i=1

Hence the functions

a=(p1—¢7)/2, @ = (p1+¢])/2,

= . (1.17)
a2; = (¢; —¢7)/26, @jr1 = (p; +¥])/2, 3=2,..., N,

satisfy system (1.1)—(1.3).

In terms of the original algebraic-geometric data 'y, Py, and E(P) the solutions satisfying the string
constraints can be distinguished as follows. Suppose that the differential of the function E(P) vanishes
at the marked points, i.e., dE(Py) = 0. Then

N
> 01pidsp? = 0. (1.18)

i=1

The solutions of string equations for the (2 + 1)-de Sitter space-time correspond to the case N = 2. The
(2 4 1)-de Sitter space-time can be represented as the one-sheet hyperboloid

l=~q¢+¢+¢+d (1.19)
in the flat Minkowski space with coordinates ¢ = (q1, ¢2, g3, ¢) and metric
45" = B (dg} +dg} + da} + ), (1.20)

where H is the Habble constant. This implies that the original curve I'y should be a hyperelliptic curve.
This case is considered in detail in §4. All the parameters r;j, p;-h, Aj,and U*, j = 1,2, occurring in
(1.13) are expressed by quadratures via the original data formed by the set E_ < E; < --- < Ey, < E.
(n = go) of branching points of the hyperelliptic curve and by an arbitrary n-dimensional vector Z. Each
set of original data determines a solution to the string equations in (2 + 1)-de Sitter space-time. These
solutions are almost periodic functions of o. The closed strings correspond to the 2rx-periodic solutions
of string equations. The periodicity condition is satisfied if

py —py =2n, Uf-Uf =rmmy, mie€l, (1.21)

where U,f, k =1,...,n, are the coordinates of the vector U*. Relations (1.21) form a set of n + 1
equations for 2n + 2 parameters E,. Therefore, for each n we have a 2n + l-parametric (the vector Z
in (1.13) is arbitrary) family of 27-periodic exact solutions of string equations in de Sitter space-time. As
T — oo, the functions ¢;(o,7), i = 1,2, tend to Foo. But it should be emphasized that, as follows
from (1.14), the “internal size” of the string defined by the invariant metric

ds? = u(zy,z_)(do? — dr?)/2H? (1.22)
is an almost periodic function of 7.
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§2. Schrodinger Operators with a Finite-Gap Property on an Energy Level

Consider the two-dimensional Schrodinger operator
H = (0p —idi(z,y))* + (O — ide(x,y))* +u(z,y) (2.1)

in the magnetic field. The inverse problem based on the spectral data corresponding to a single energy
level E = Ep was posed and considered for the operator H in [7]. In this paper a class of operators with
a finite-gap property on a single energy level was constructed. From the viewpoint of spectral theory this
class is distinguished by the condition that the Riemann surface of Bloch functions corresponding to this
energy level (the complex Fermi surface) is of finite genus. Veselov and Novikov [8, 9] found conditions
on the algebraic-geometric data of the construction [7] that distinguish real smooth potential (4; = 0)
operators H = Hy,
Hy=08%+ 03 +u(z,y). (2.2)
Here we present the needed results of the cited papers with slight modifications, allowing for the fact that
the operator (1.10) is hyperbolic in contrast to the elliptic operator (2.2). The complex theory is the same
in both cases. The only difference is in the reality and smoothness conditions on the potentials.
Let I' be a smooth algebraic curve of genus g with two marked points P4 and fixed local coordinates
k:'(Q) in neighborhoods of these points, k3*(Ps+) = 0. Assume that there exists a holomorphic involution

o:I'-T (2.3)
on I' such that P4 are its only fixed points, i.e., ,
o(Py)=Py. (24)
The local parameters are assumed to be “odd,” i.e., |
k+(0(Q)) = —k+(Q). (2.5)
The factor-curve will be denoted by I'g. The projection
m:L—Tg=T/c (2.6)

represents I' as a double covering over I'y with two branch points Pi. In this realization o is the
permutation of the sheets. Since there are only two branch points, we have

9= 290, (2.7

where go is the genus of I'g. Let us consider a meromorphic differential d2(Q) of the third kind on T
with residues F1 at the points P4 and holomorphic outside Py . The differential d§ has ¢ zeros, which
will be denoted by 5;, 1 =1,... ,290 =g, :

dQ(7i) =0. (2.8)
For each i let us choose a point +; on I' such that
(i) = i, i=1,...,9. (2.9)

(In what follows such divisors v, are said to be admissible. )
By definition, the Baker—Akhiezer function ¥ (z4,z—, Q) corresponding to this set of data is the unique
function that has the following analytic properties with respect to the variable @ € I':

1) Outside the points P4 the function ¢ is meromorphic and has at most simple poles at the points

vs (if they are all distinct);
2) In some neighborhoods of P4 the function ¢ has the form

Hor,on, @) = ke 1 +Zsf<m+,x;)k;3), < (2.10)
s=1

ki =k+(Q), @ — Py.
For almost all values of z4+ (which are external parameters in the definition) the function ¢(z4,z_, Q)
exists and is unique.
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Theorem 2.1 [8]. The Baker-Akhiezer function (x4 ,z—, Q) satisfies the equation
(a+a— +u(m+,m_))¢(x+,x_,Q) =0, (211)

where
w(zy,z) =—0_&F = —04¢7, (2.12)

and ¢ = €F(zy,z-) are the first coefficients in the ezpansion (2.10).

In the general case the function u(z4,z_) is a meromorphic function of the variables x4 . Its expression
in terms of the Prim theta function was obtained in [9] (see formula (1.14)). The following conditions on
the set of algebraic-geometric data are sufficient for reality and regularity of the corresponding potential
u(zy,z_).

Assume that there is an antiholomorphic involution

7: T (2.13)
on I' such that
T(P) = P,  kx(r(Q)) = k+(Q). (2.14)
Lemma 2.1. Let the divisor of the poles 71,... ,7y of the Baker-Akhiezer function be invariant with
respect to the anti-involution 7, that is,
7(D)=D, D=m+-+7. (2.15)
Then
’Q[)(IL'.i.,.’L‘_,T(Q)) = ¢($+?x-—aQ)a (216)

and the corresponding potential u(zy,z_) in (2.11) is real,
u(zy,z-) =ulzy, z-). (2.17)
According to the Hurwitz theorem, the number of fixed ovals of an antiholomorphic involution is not

greater than g + 1. Curves with g + 1 fixed ovals are called M-curves.

Lemma 2.2. Let T be an M-curve with respect to the anti-involution 7 (i.e., 7 has g+ 1 fized ovals
a9, a1, ... ,aq), and let the marked points Py and the points v1,... ,7, be chosen in such a way that

PL€ag, ~s€as. (2.18)

Then the corresponding potential u(z4, z—) is real and smooth for all real =4 .

Remark. It is likely that the cited conditions are not only sufficient, but also necessary for the
algebraic-geometric potentials to be real and smooth.

Both lemmas can be proved in the same way as the corresponding statements for the elliptic equation
(2.2) (see [8, 9]; the proof can also be found in [10]).
83. Self-Consistency Conditions

Let E(P) be a meromorphic function on Ty with simple poles Q? € Ty, i = 1,... , N. The preimages
of these points on I' will be denoted by Q;, Q7 = o(Q:).

1
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Lemma 3.1. Let ¢(z4,z—,Q) be the Baker-Akhiezer function; then

N
ZQO,‘(.’IJ.{_,:Z}_)(,O:-T(:B.*.,:E_) =1, (3.1)
i=1
where
ei(z4,2-) = riv(zy, 2, Qi), (3:2)
‘P7(37+7 IE_) = ri"/’(x-i' yT—, Q?), (33)

and the constants r; are given by the formula

2 _ Teso E(Q)dQ(Q)
t E+ _ E_ b}

Ey = E(Ps). (3.4)

- Proof. Consider the differential

(2,0, 0) = Pz, 2, Q)W%L_’g_’ Q)E(Q) dQ(Q)’

(3.5)

where, by definition,
¢a(w+,w—a Q) = ¢($+,.’I)-,0‘(Q)). (36)
The functions ¥(z4,2-,Q), ¥’ (z+, 2, Q) are meromorphic outside the marked points Py, where they

have essential singularities. It follows from (2.5) and (2.10) that the differential dQ is meromorphic
everywhere on I', including the points Py . Condition (2.8) implies that this differential is holomorphic at

the points v, and ~7. Therefore, dQ can have poles only at the points Q;, Q7 , and P4 . The residues
of this differential at these points are equal to

resg; dQ = res Qe Q= vilz,z) el (z4,2-), (3.7)
Ex

Yo (3.8)

resPigS\lle

The sum of residues of a meromorphic differential on a compact Riemann surface is equal to zero, i.e., the
sum of the right-hand sides in (3.7) and (3.8) is equal to zero, whence follows (3.1).

Lemma 3.2. If u(zy,z_) is the potential of the operator (2.11) corresponding to the Baker-Akhiezer
function, then

N .
2u(z4,2-) = Za+90i(33+,$—)3—¢?(33+, z-)+ 0-pi(z4,2-) 04 ] (z4,2-). (3.9)
1=1
Proof. Consider the meromorphic differential
E(Q)dQ
i(er,2-,Q) = ZDT @,00.47 + 0-90,47). (3.10)

It is holomorphic everywhere except for the points @;, Q7 , and Py. The sum of its residues at the points
Q; and QY is equal to the right-hand side in (3.9). It follows from (2.10) and (2.12) that

Ey

—= . 11
BB " (3.11)

E
res p, d{ = F2 ————_i—EB:FGE = F2

Ey

Again using the fact that the sum of all residues of a meromorphic differential is equal to zero, we
obtain (3.9).
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Lemma 3.3. Suppose that the differential of the function E(Q) is zero at the points Pi, e,
dE(Py) =0. Then

N
Z@icpi(a:+,x_)6igof’(z+,x_) =0. (3.12)
=1

Proof. The left-hand side of (3.12) is equal to the sum of residues at the points @; and @7 of the
differentials
dQx = (E(Q) — E+)0x¢(z+,2-,Q)0x¥% (v4,7-, Q) d2(Q) . (3.13)
Hence, to prove (3.12) it suffices to show that the residues of these differentials at the points Py are zero.
The condition dE(P+) =0 implies that in some neighborhoods of Py we have

E(Q) = Ex + O(k1Y). (3.14)
It follows from (3.14) and from the expansion (2.10) for the Baker—Akhiezer function that
resp, d{dy =0, resp, dQ_ =0. (3.15)

So far, as well as in the beginning of the preceding section, we have considered the complex theory. Let
us now suppose that the conditions of Lemma 3.3 are satisfied. These conditions are sufficient for reality
and regularity of the potential u(z4, z—) corresponding to the algebraic-geometric data

{F’717-"7797P:}:}' (316)
Under these conditions the factor-curve I'y = I'/o is an M-curve with respect to the anti-involution
7o: To — Ty induced by the anti-involution 7: T' = I'. Over each of the fixed ovals a, 1 =1,... , g0,

of 7o there are two fixed ovals a; and a? of the anti-involution 7, o(a;) = a7 . The fixed oval ag of 7o
which contains the points Py is divided by these points into two segments a{)" and ag . The preimage of
one of them, say, ag' , is a fixed cycle ag of the anti-involution 7, i.e.,

T@)=0Q, QE€a. (3.17)
The preimage of ag is a cycle do fixed with respect to the anti-involution 7o, that is,
To(Q)=Q, Q€. (3.18)

In addition to the conditions of Lemma 3.3, we assume that the meromorphic function E(Q) is real and

that )
2 = o
ry = By E. res o E(Q)d2(Q) > 0. (3.19)

Moreover, assume that one of poles @ lies on the curve ag' and all the others are on the curve ay . This
means that

Q1) =1, 7(Q7)=0Q7, (3.20)
(@) =Qf, i>1. (3.21)
It follows from (2.16) that
v1 =91, 90‘1’ = 90_‘177 (322)
pi=9F, i>1. (3.23)

Theorem 3.1. Let (z4,z—,Q) be the Baker-Akhiezer function determined by the curve T', the
pole divisors ;, the points Py, and local parameters in the corresponding neighborhoods, satisfying the
conditions of Lemma 3.2. Let a meromorphic function E(Q) satisfy conditions (3.19)—(3.21). Then the
vector function q = qi(z4,x-) with coordinates gwen by (1.17), where ¢; and ¢ are defined in (3.2)

and (3.3), 1s a real nonsingular solution to the system of equations

(5+8_+u)q=0, <q7q =17
) (3.24)
u = (94¢, 0-q), (0+q,0+q) =0.
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§4. Theta Function Formulas

In this section we present exact theta function formulas for solutions of the string equations in (2+1)-de
Sitter space-time. We begin with an explicit construction of the double covering over the hyperelliptic
curve I'g defined by the equation ’

v*=(E-E_)E-Ey) H(E — E;) = Ryny2(E). (4.1)

=1
We assume that the real roots of the polynomial Ry, 2 are enumerated as follows:

E_<E1<E2<...<E2n_1<E2n<E+. (4.2)

The real ovals of the anti-involution

10: (y, E) — (7, E) | (4.3)

are the cycles a? over the forbidden zones [Eq;-1, Ea;].
As usual we introduce the basis of holomorphic differentials

1 n—1 .
wj=—=Y ;B dE, : (4.4)
VR =

normalized by the conditions

Ea; 1
Egi-1

The b-periods of these differentials define the so-called Riemann matrix

Egj_1
Bkj = 2/ Wk . (4.6)
E_

The basis vectors e; and the vectors B that are the columns of the matrix (4.6) generate a lattice B
in C*. The n-dimensional complex torus

J(Fo) = CR/B, B= Zvnkek + mgBy, np,my€Z, . (47)

is called the Jacobian variety of I'g. The vector with coordinates

Ax(P) = / "o (48)

defines the Abel map
- A: Ty — J(To). (4.9)

The Riemann matrix is symmetric and has positive-definite imaginary part. The entire function of n
variables

0(2') = H(ZIB) = Z e2ﬂi(zvm)+"i(3m1m), (4'10)
) mGZ"F
z=(21,-.. y2n), m=(mi,...,my), (z,m)=z21m1+...+ 2aMmy,

determined by this matrix, is called the Riemann theta function. It has the monodromy properties
O(z+ex) =0(z),  O(z+ By)=e 2By (z), (4.11)
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Although the function §(A(P) — Z) is a many-valued function of P, the zeros of this function are well-
defined according to (4.11). For Z in a generic position, the equation

0(A(vs)—2Z) =0, s=1,...,n, (4.12)
has n roots. At the same time,

Zp = Zn:/‘n Wk . (4.13)

It follows from (4.13) and (4.12) that for the vectors Z * with coordinates
Ex
zE = / Wk, (4.14)

the roots of Eq. (4.12) are the points
By, Eg, i=2,3,....n.

Therefore, the function

6(A(P)—ZT)8(A(P)—-Z7) Zt+ 2~
\(P) #(A(P) - 6 , £ 5 (4.15)
has simple zeros at the points E4 and double zeros at the points Ey;, ¢t = 2, ... ,n. It also has double
poles at the points
’/7\060'8’ 32 G(Ig, :7\3 Gag»--- ’ ?nea?z'

(It should be mentioned that it follows from (4.11) that the right-hand side in (4.15) has trivial monodromy
with respect to the lattice B. This means that A(P) is a well-defined function on I's.)

The function A(P) is real on real cycles of I'g. Since its zeros are double, it follows that it has constant
signs on each of the cycles af,... ,a2. Let

s,-:%sgn/\(P)Ipea?, & =3+ si, i=1,...,n. (4.16)

Then the function
~( E—E; \¥
=(=1) \(P —_— .
w2 = o [ (575 ) (@17)

has simple zeros at Ei, double zeros at E; or Eq;—; (depending on the sign of s;), and double poles at
the points 7,, s =0,2,3,...,n. This function is positive on the cycles a?, 1 =1,2,... ,n.
We denote by I' the Riemann surface of the function

f=+/uP). (4.18)

The surface I' is a double covering over 'y with two branch points E4. The holomorphic differentials on
Ty are even differentials on I'" with respect to permutations of the sheets. Also, there is an n-dimensional
space of odd differentials. As a basis of such differentials we shall choose

dE 60(A(P) — a4)0(A(P) —a-)

0! = _
V=D 0AP)IAP) —afz) ) (419)

where -
Y}(P) — G(A(P) _ ej/2)9(A(P) - C]) (4.20)

0(A(P) - §)0(A(P)+é-3)
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The vectors a4 in (4.19) are equal to
ay = A(too) — A(E,), | | (4.21)
Whefe too are the preimages of the point E = oo on the two sheets of I'g. The vector C; in (4.19) is
Cj=—a+—a_—%ej+%el+§+.§——é. | (422)

It is uniquely determined by the condition that the right-hand side of (4.19) is invariant by translation
by periods. In (4.19)—(4.22), e; are basis vectors; é = (0,1,1,...,1); §=(0, s2,... ,8,) (where s; are
given by (4.16)). The basis of normalized differentials w;?d = 3" @;;@?? is defined by the conditions

Eo;
f wd =6;;. (4.23)
Eai-1

(Here and below fg stands for the integral along the cycle lying on one of the sheets of T over a cycle
that surrounds the points P and @.) The matrix

p Ezi-1 q ‘
r (o]
B} = f{ w3 (4.24)

of b-periods of normalized odd differentials defines the Prim theta function
Op:(2) = 6(2|B™")

via (4.10). Let us introduce some more definitions. First of all, for a point ¢ € ' we define

Q
A‘,’;’(Q):/ wid,  k=1,...,n. (4.25)

This vector is determined up to the lattice of periods of the Prim function. For Z in a generic position

the equation
0p: (A% (1) —2)=0, s=1,...,2n, C(4.26)

has 2n roots. Moreover, for an arbitrary Z they form an admissible divisor. Recall that this means
that the projections of these points 7; = m(v,) on the hyperelliptic curve I’y are zeros of a third-kind
meromorphic differential, d2(7s) = 0. The differential has the form

_ (B_-BydE_ H(@Q)
Q=G E-L) 1E)’ (427)

where E = E(Q) is the projection of @ onto the E-plane and

Op:(A°4(Q) — 2)0p:(A°N(Q) + Z) 0(A(P) — ex/2)

H@) = %,(4°3(Q)) 6 (A(P)) 6 (A(P) - ) - (42)

(Here 6 stands for the Riemann theta function of the hyperelliptic curve I'o and the vector e, is
(1,1,...,1))

The converse statement is also true, i.e., any admissible divisor <, in a generic position can be obtained
as the roots of Eq. (4.26) for the corresponding vector Z. That is why below we consider the components

of Z as free parameters instead of admissible divisors.
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Important remark. The exact construction of the covering T' over the initial curve I'c and the
explicit formulas for normalized odd differentials and the Prim theta function were presented for the case
in which Tg is a hyperelliptic curve. Nevertheless, formula (4.29) below is valid in the general case.

Theorem 4.1 [9]. The Baker-Akhiezer function defined in §2 can be represented in the form

_ 0p:(A°NQ) + Utay + U a— — Z)6p:(4°9(2)) S (Qai+p™ (o)

V= 0o (209(Q) — 2)0re(TFer T U 0 — 2) (4.29)

Here p*(Q) are Abelian integrals of the second-kind normalized differential dp* on T that have poles of
the second order at the points Py, respectively; the vectors 2rUT are the vectors of b-periods of these
differentials.

In our case I'g is a hyperelliptic curve, and the differentials dp4 with second-order poles at the points

E4+ have the form
dpt = h*dE + aFwed (4.30)
P T EEoVuE) |

The constants a;-h are determined by normalization conditions

Eo;
f dpt = 0. (4.31)
Egi-1
Hence L Eaes
Ut = - f dp*. (4.32)

There are two points on I'g over E = co. We denote them by +oco. At one of them, say @9 = 4o0, the
function p(Q3) > 0. According to the results of the previous sections, the values of the Baker—Akhiezer
function at the points Q1, Q¢ and Qz, Q3 that cover the points @} and Q3 = —oo define solutions of
the string equations in (2 + 1)-de Sitter space-time. So let ‘

Q;
A; = A%(Q;), p,*-:/ dp*, =12, (4.33)

and

ri = H(Q;)/H(E-), (4.34)

where H(Q) is given by (4.28). (The constants r? are the residues of the differential (3.5), where d is
given by (4.27).)

Theorem 4.2. Any set (4.2) of real points E,, an n-dimensional real vector Z, and real constants
h* define real smooth solutions of the string equations (3.24) in (2 + 1)-de Sitter space-time with the help
of formulas (1.13) and (1.17) (where the vectors U, A;, the constants p;-& and rj, 7 =1,2, are defined
by (4.32), (4.33), and (4.34)).

In general, since
Im pit #0,

the components ¢;, g2 of the corresponding solutions are unbounded or tend to zero as 7, ¢ — #oco. The
constants pzi are real. Hence, the functions g3, g4 are almost periodic functions of the variables 7 and o.

Corollary. If for given E, the constants h* are chosen in such a way that
pi —pr =0, (4.35)

then the corresponding solutions of the string equations are almost periodic functions of the variable o.

The additional conditions (1.21) specify a 2n + l-parametric family of solutions which are 2n-periodic
mn o.
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