
VECTOR ADDITION T ~ O R E M S  AND BAKER--AKHIEZER FUNCTIONS 

V. M.  B u k h s h t a b e r  and  I. M .  Krichever  

Functional equations that arise naturally in various problems of modern mathematical physics are discussed. We introduce the 
concepts of an N-dimensinnal addition theorem for functions of a scalar argument and Cauchy equations of rank N for a function 
of a g-dimensional argument that generalize the classical functional Cauehy equation. It is shown that for N=2 the general 
analytic solution of these equations is determined by the Baker--Akhiezer function of an algebraic curve of genus 2. It is also 
shown that 0 functions give solutions of a Cauchy equation of rank N for functions of a g-dimensional argument with N_<2s in 
the case of a general g-dimensional Abelian variety and N<__g in the ease of a Jacobian variety of an algebra curve of genus g. 
It is conjectured that a functional Cauchy equation of rank g for a function of a g-dimensional argument is characteristic for 0 
functions of a Jacobian variety of an algebraic curve of genus g, i.e., solves the Riemann--Schottky problem. 

In memory of M. K. Polivanov 

1. I N T R O D U C T I O N  

The classical functional Cauchy equation [1] 

r + y) = r162 (1.1) 

which arises in numerous problems, completely characterizes the exponential 

r = exp (kz), (1.2) 

where k is a parameter. Equation (1. t) is one of  the examples of  so-called addition theorems: 

F(f(x) ,  f(y),  f (~  + y)) = O. (1.3) 

The number of  such examples is small. Indeed, in accordance with Weierstrass's theorem, if F is a polynomial of  three 

variables, then in the class of  analytic functions f(x) only elliptic functions (i.e., functions associated with algebraic curves of 
g =  1) and their degenerate forms possess an addition theorem. 

By a vector addition theorem we shall understand an equation of the form 

F(f(x) ,  r r  + y)) = 0, (1.4) 

wheref(x) = 0el(x) . . . . .  fN(x)), ~b(y)=(~bl(y ) . . . . .  6N(Y)), r =(el(Z) . . . . .  ~by(z)) are vector functions, and F is a function of  3N 
variables. 

It should be noted that forms of  such theorems can already be found in Abel 's classical study [2], in which the following 
problem is considered: 

To find three functions ~, f ,  and r that satisfy the equation 

r  U)) = F(~ ,  y, r r  f (y) ,  f ' ( Y ) , . . . ) ,  (1.5) 

where a and F are given functions of  an appropriate number of  variables. In particular, in [2] this problem is solved for the 
equation 

r + y) = r + f (y)r162 (1.6) 

Vector addition theorems important for modern applications were given by Frobenius and Stikelberger [3], who, for 
example, showed that the Weierstrass zeta function satisfies the functional equation 

(((x) + ((y) + ( ( z ) ) '  + ( ' ( z )  + ( ' (y)  + ( ' (z)  = 0, (1.7) 
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where x + y + z =0. 
The main aim of the present paper is to prove vector addition theorems characterizing so-called Baker--Akhiezer functions, 

which are defined on algebraic curves of arbitrary genus. Special cases of such functions were introduced at the end of the last 
century in the Clebsch--Oordan studies as a natural generalization of the exponential concept to the case of Riemarm surfaces 
of arbitrary genus. Baker [4] noted the connection between such functions and the problem of classifying commuting ordinary 
linear differential operators [5]. Subsequently, the remarkable but, unfortunately, forgotten results of  these studies were 
rediscovered and significantly developed in the theory of integrable equations of the type of the Korteweg--de Vries equation. 
A general definition of Baker--Akhiezer functions (many-point and depending on many variables) was given by one of the 
present authors [6,7]. The point of departure of [6,7] was the result of Novikov, Dubrovin, Matveev, and Its relating to the 
construction of periodic and quasiperiodic solutions of the Korteweg--de "Cries, nonlinear Schrfdinger, and sine--Gordon 
equations (for a review of these results, see [8,9]). Beginning with [6,7], the concept of Baker--Akhiezer functions became 
the foundation in the theory of algebro-geometric or finite-gap integration (the further development of which is presented in the 
reviews [10,11,12,13]). 

As will be shown in the third section of the present paper, Baker--Akhiezer functions satisfy a functional equation that 
is a "vector analog" of the Cauchy equation (1.1). Before we give this, we transform Eq. (1.1). 

The Cauchy equation is "rigid." The class of functions defined by it hardly changes if one weakens (I. 1) and considers 

the equation 

It follows from (1.8) that 

,(~ + y) = ,(~),(y). (1.8) 

~(~) = ~xp (k(~ + ~o)), ~(~) = ~xp (k(~ + 2~o)). 

Denoting the function ~b-l(x) by c(x), we can represent Eq. (1.8) in the form 

e(z + y)~b(z)tb(y) = 1. 

We shall call the functional equation 

(1.9) 

(1.1o) 

N 

%(x + y)~bk(~)~b~(y) = 1 (1.11) 
k=O 

on the vector functions c(x)=(c0(x ) . . . . .  CN(X)), ~b(x) =(tk0(x) . . . . .  ~N(X)) the vector analog of Eq. (1.1). 
Remark. Note that although formally all the functions ck and 6k are unknowns in Eq. (1.11) the functions c k can, as is 

readily seen, be explicitly expressed in terms of the functions ~b k [see Eq. (3.12)]. Therefore, in what follows we shall, without 

loss of generality, call the vector function 6=(~1 . . . . .  6N) the solution of Eq. (1.11). 
Equation (1.11) arose as a result of attempts to generalize the addition formula for Baker--Akhiezer functions of genus 

1. As was noted in [14], a special case of such functions gives solutions of the equation 

O'(z)O(y) - O(z)O'(y) q (z )O(-x)  = V(x) + const. (1:12) 
* ( ~  + Y) = v ( ~ )  - v ( u )  ' 

The system (1.12) was first proposed in [15] in connection with the problem of constructing a Lax representation for the 
equations of motion of a system of pairwise interacting particles with two-body interaction potential given by the function V(x). 
In [15] particular solutions of (1.12) were found for the case V(x)=~(x) (where ~ is the Weierstrass function). The solutions 
of (1.12) proposed in [ 14] made it possible to introduce in the Lax representation a "spectral parameter" and, as a consequence, 
construct theta-function formulas for the dynamics of the Moser--Calogero system. It was subsequently shown in [17] and [27] 
that the solutions constructed in [14] exhaust all solutions of this equation. The idea of reducing the problem of integrating 
dynamical systems to functional equations proved to be extremely fruitful. We mention [15--19], in which this idea led to new 
results both in the theory of dynamical systems and in the theory of functional equations. 

Another nontrivial field of application of functional equations is the branch of the theory of algebraic topology associated 
with Hirzebruch genera. The separation of classical genera in terms of functional equations was already considered in 
Hirzebruch's pioneering study [20]. In [21], the functional equation (1.12) was used for the proof proposed there of the 
"rigidity" property of elliptic genera. (Elliptic genera were introduced by Oehanine [22]; the hypothesis of their "rigidity" 
was also put forward by Witten [23] and proved by Taubes [24,25].) 

In [26] a universal solution of Abel's equation (1.6) was found and used to construct a cohomology theory corresponding 

to a general arithmetic genus ([20]). It was shown in [27] that the functional equation (1.12) is equivalent to the functional 

equation 
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r  + ~) = r  - r  (~.  13) 
r - ~ ( ~ ) ~ , ( u )  " 

As a consequence there were obtained the structures of  an algebraic two-valued group on the Riemann sphere, and it was shown 
that the moduli space of  such structures is a space of  nondegenerate elliptic curves with marked points. 

In See. 3, it will be shown that Baker--Akhiezer functions corresponding to algebraic curves of  genus g give solutions 
of Eq. (1.11) for N=g. The explicit expressions for these functions in terms of theta functions of  Riemann surfaces [7] (see 
Sec. 4) show that the corresponding solutions of  Eq. (1.11) have, up to an exponential factor, the special form 

r = ~ (Ux  + Ak) 
~ ( U x  + A . ) '  (1.14) 

where q/(Zl . . . . .  Zg) is a function of a vector argument that is a theta function of  an algebraic curve; U = ( U  1 . . . .  , Ug), Ak=(Ak, l, 
..., Ak,g ) are g-dimensionai vectors, k=0 ,  ..., N or * 

This makes it possible to introduce the concept of  a "functional Cauchy equation of rank N" as a vector addition theorem 
of the following special form. 

Definition. We shall say that a function $(z) of  g-dimensional vector argument z = (z 1 . . . . .  Zg) is a solution of  a Cauchy 
equation of  rank N if there exist g-dimensional vectors U and A., AO, A 1 . . . . .  A N such that 

N 

ck(z + y)r + Ak)r + Ak) = ko(Ux + A,)9(Uy + A,). (1.15) 
k=0 

Impor t an t  Remark--Def in i t ion .  In the general case, one and the same function @(z) can solve functional Cauchy 
equations of  different ranks (by virtue of  special choices of  the vectors U, A 1 . . . . .  AN). We shall define the rank of  such a 
function $(z)  as the minimum 5/, among the possible ranks N of  the equations (1.5) that it satisfies, rk $ =N,. 

In  Sec. 3 it will be shown that all solutions of  Eq. (1.11) for the case N=2 are given by Baker--Akhiezer functions of  
genus 2. This shows that the vector analog of  the Cauchy equation (1.1 l) for N=2 is equivalent to a functional Cauchy equation 
of rank 2. 

In this connection, it is natural to pose the two following questions: 
1. Are the functional equations (1.11) and (1.15) equivalent for N > 2 ?  

2. Is every solution of  a Cauchy equation of  rank N given by theta functions of  Riemann surfaces? 
As is shown in the final section of  the paper, the answer to a rough form of  the second question is negative. It turns out 

that the them functions corresponding to a general Abelian variety of  dimension g give solutions of  a functional Cauchy equation 
of rank N=2g. 

'Therefore, theta functions of  a general g-dimensional Abelian variety determine functions of  rank <2g. Taken together, 
the results of  SecS. 3 and 4 show that in the case of  Jacobian curves the rank of  the corresponding functions does not exceed 
g. This enables us to formulate the following conjecture: 

A theta function has a rank not exceeding g if and only if  it is constructed from a matrix of b periods of holomorphic 
differentials on a Riemann surface of genus g. 

This conjecture can be reformulated as follows: 

Equation (1.15) with N=g for a function of g-dimensional argument is characteristic for the theta functions of Jacobian 
varieties of algebraic curves, i.e., it solves the Riemann--Schottky problem. 

Support for this conjecture is provided by the connection noted above between addition theorems and the theory of 
integrabte systems and the proof  in [28] of  Novikov's  hypothesis that the them-function formulas for solutions of  the 
Kadomtsev--Petviashvili equation are characteristic for Jacobian varieties, i.e., solve the Riemann--Schottky problem. 

2~ P R E L I M I N A R I E S  

Let F be a nonsingular algebraic curve of  genus g with marked points and local coordinates k~- l (a) ,  k~-l(etx ) =0,  or= 1, 

.... t. We fix a set of  polynomials q~(k). As was shown in [6,7], for any generic set o f  points 3'1 . . . .  ,3"g there exists a unique 
(up to proportionality) function r Q) which 

1) is meromorphic on F outside the points P~ and has not more than simple poles at the points )'s (if they are all distinct) 
and 

2) in the neighborhood of  the point P~x has the form 
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,)(2 ) r ~xp (~q~Ck. ~.,~(~)k-" , k.  = k~(O). (2.1) 

Choosing a point P0, we normalize r by 

r  P0) = 1. (2 .2)  

Remark .  The Baker--Akhiezer function ~b(x, Q) is determined by its algebraic properties with respect to the variable Q. 
It depends on the variable x and on the coefficients of  the polynomials qc~ as on external parameters. In ~b we shall not indicate 
its dependence on q~, retaining only the dependence on x, which is important in what follows. 

In [7], an explicit theta-function formula for ~b was proposed. Let ai, b i be a basis o f  cycles on F with canonical matrix 
of  intersections: a i o aj=b i o bj=0 ,  a i o bj=~ij. We define a basis of  holomorphic differentials 60 i on F, normalized by the 

conditions 

The matrix 

/ wj = ~ij. 
ai 

(2.3) 

f 
Bij = ~ wi (2.4) 

bj 
is called the matrix of  b periods of  the curve F. It is symmetric and has positive-definite imaginary part. Any such matrix 

defines an entire function of  g variables (called a Riemann theta function) in accordance with 

o ( . , , . . . , . . )  = .xp (z . i ( . ,  m) + m)) (2.5) 
m C g g  

[here m = (m I . . . . .  rag) is an integer vector]. A Riemann theta function possesses the following translational properties: 

O(z + e~) = O(z), O(z + Bt)  = 0(z) exp (-~riBtt  - 21fizz) (2.6) 

(e k and B t are the vectors with coordinates { ~ }  and {B/a}). The vectors e t and B k generate a lattice in cg, the factor with 

respect to which is a g-dimensional torus J(P) called the Jacobian of the curve P. The Abel mapping is the mapping 

A: r - .  J ( r )  (2.7) 

defined by 

I f  we define the vector Z: 

Q 

A~(Q) = f wk. (2.8) 

g 

g = K - E A(7,) (2.9) 
8--1 

(where K is the vector of  Riemann constants, which depend on the choice of  the basis cycles and the initial point Po), then the 

function O(A(Q)+z) has precisely g zeros on I" that coincide with the points 3's, 

0(A(%) + Z) = 0. (2.10) 

Note that the function O(A(Q)+Z) itself is multiply valued on F, but, as follows from (2.6), its zeros are correctly defined. We 

introduce normalized differentials dfl~ such that 
1) the differential dfl~ is holomorphic outside P,~, at which it has a pole of  the form 

diq,, = dq(k~) -I- O(k-~ t ); (2.11) 

2) 

/ d f ~  = 0. 

Qa 

We denote by 21riU~ the vector of  its b periods: Conditions 1 and 2 define dft~ uniquely. 
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t "  
21riU~,k ~b dfl,,. (2.12) 

v d *  

bk 

As was shown in [7L the Baker--Akhiezer function has the form 

where 

O(A(Q) + xU + Z)O(A(Po) + Z) 
r Q) = O(A(Q) + Z)O(A(Po) + zU + Z) ' (2.14) 

I 

U = E U,,. (2.15) 
C t ~ I  

To conclude this section, we give one further proposition, which will be needed in what follows. For any positive divisor 

D =~niQ i, we consider the linear space L(x, D) of functions that outside the points Po~ have poles at the points Qi of multiplicity 
not higher than n i and in the neighborhood of P~ have the form (2.1). For divisors of general position of degree d=~,n i >_g 
the dimension of this space is 

dim L(x, D) = d - g + 1. (2.16) 

. 

Wronsklans" 

A D D I T I O N  FORIVIULAS 

For any set of  non-negative integers S= {n o < n 1 < . . .  < ng} and set of functions {f0, "", fg} we define the "generalized 

(3.1) Ws(fo,-- . ,  fa) = det Ms, 

where the elements of the matrix M S are 

M~ '~ = 0_"' (f~(-)f~(U)), (3.2) 

O_ = O/Ox - OlOy. (3.3) 

The main result of this section is the following theorem. 

THEOREM 3.1. For any set of g + 1 points Qo . . . .  , Qg of generic position on F the functions 

Ck(x) = r Qk) (3.4) 

[where r Q) is a Baker--Akhiezer function] satisfy the equations 

ws(r  r  r = o (3.5) 

for sets S that do not contain zero ( i .e . , / fS={0<no<nl . . .  < ng}). 

Proof. We consider the function Ws(x, y, Qo) = Ws(~bo, r . . . . .  Cg) as a function of the variable Q0, i.e., we fix all a l ,  

.... Qg and vary the point Q0. It follows from the definition of a Baker--Akhiezer function that outside the points P~ the 

function Ws(x, y, Qo) is meromorphic and has poles of order not higher than the second at the points "Y1, .--, 3'g. In the 
neighborhood of the point P~, it has the form 

Ws(z, y, Qo) = exp ((z + y)q~(k.)) Ws,,,(x, y)k-" . (3.6) 

Therefore 

(3.7) Ws(z, y, Qo) E L(z + y, D --" 23,1 + . . .  + 27o ). 

It follows from (2.16) that for fixed x and y the dimension of the space of such functions is g +  1. 
The function Ws(x , y, Qo) vanishes at the points Qk: 
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ws( . ,  y, Qo = Qs.) = 0. (3.8) 

In addition, if no>O, then from the normalization conditions (2.2) we have 

Ws(z, y, Po) = 0. (3.9) 

The vanishing of Ws(x, y, Qo) at g + 1 fixed points of generic position implies that the function is equal to zero everywhere. 
This proves the theorem. 

Corollary. The functions r satisfy the generalized Cauchy equation (1.11). 
Proof. Let S=(I ,  2 . . . . .  g+  1). By the theorem, the functions O_~bo(X)f0(y) . . . . .  O_~b~x)~bg(y) are linearly dependent 

with coefficients constant with respect to the operator O_, i.e., there exist functions bk(x) such that 
# 

b~(~ + y)0_ r162 = 0. (3.10) 
k----0 

Therefore 
g 

~-~ bk(~: + Y)r162 ---- b.(x + y). (3.11) 
k = O  

Denoting ck=bk/b. , we obtain (1.11). 
Remark. Equation (1.11) not only follows from Eqs. (3.5) but is equivalent to them. 
Indeed, applying to Eq. (1.11) the operators 0~_ ~ , . . .  ,0 '~g, we obtain a system of linear equations for ck(x+y ). The 

existence of a solution of this system has the consequence that the determinant of the matrix of coefficients is equal to zero, i.e., 
Eq. (3.5) holds. At the same time 

det M~(x, y) 
c~(z + y) = de tM(z ,y)  ' (3.12) 

where the elements Mi,j, i, j<O . . . . .  g - l ,  of the matrix M are 

M,d --- 0~_r (3.13) 

and the matrix M k is obtained from M by replacing column k by the vector (1, 0, ..., 0) T 

4. EXPLICIT E X P R F ~ S I O N S  AND THE N U M B E R  OF P A R A M E T E R S  

The results of the previous section, in conjunction with formula (2.13), enable us to give explicit expressions for the 
solutions of the vector analog of the Cauchy equation. 

We consider the function ~b(x, Q) given by (2.13), in which the vectors U and Z are arbitrary; then the complete family 
of algebraic solutions of the functional equation (1.1 I) constructed above is given by 

r = r Ok) exp (a~) ,  (4.1) 

where at~ are arbitrary constants. The fact that the vector Z is arbitrary follows from the possibility of varying the divisor of 
the poles 3'1 . . . . .  'yg. The arbitrariness of the vector U and the constants a k is related to the arbitrariness in the choice of the 
polynomials q~. 

Important Remark. At the first glance, there is a further arbitrary set of parameters. The functions r can be multiplied 
by constants: 

r '--- Ck exp (b~). (4.2) 

However, one can show that such a transformation is equivalent to a shift of the vector Z, i.e., the complete family of 
algebro--geometric solutions can be represented in the form 

r = O(A(Q~) + Uz) 
O(A(Po) + Vz)'" exp (akz + hi), k = 0 , . . . ,  g. (4.3) 

The dimension of the moduli space of the curves of genus g > 1 is 3 g -3 .  Therefore, the total number of parameters 

(curve+vector U+constants a k, b/+points P0, Qo . . . . .  Qg) is 
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R_ = ( 3 9 -  3) + g  + 2(9 + 1) + 1 +  (9 + 1) = 7 9 +  1 (4.4) 

[for genus g = 1, the number of  parameters is given by the same formula (4.4)]. 
We show that in the case of genus g = 2  formula (4.3) gives general solutions of Eq. (1.11) for N=2.  
As we have already said above, Eqs. (3.5) follow from (1.11). We consider these equations for the sets S 1 =(2, 3, ..., 

g+2),  $2=(1, 3 . . . . .  g+2) ,  Sg+l=(1,  2, 3 . . . . .  g - l ,  g, g+2),  and in them we then set y=0 .  The corresponding equations 

Ws, ( r  r = 0 (4.5) 

give a system of g + t equations of degree g +2 for the unknown function ~b 0 . . . . .  r The coefficients of the system depend 
as on parameters on the values of the derivatives ~r j=O . . . . .  g+2 ,  which also give the initial data for the required 
solutions. Therefore, the number of parameters R C on which the general solution of the generalized Cauchy equation can depend 
does not exceed 

For g=2, 

n~ < n§ = {9 + 1)(9 + 3). 

R_ = (Tg + 1)19=2 = R+ - (g + 1)(g + 3)1~=2 = 15, 

and this proves the generality of the solutions constructed above. 

5o A D D I T I O N  F O R M U L A S  F O R  G E N E R A L  T H E T A  F U N C T I O N S  

As we have shown in the previous sections, the formulas 

O(A~ + Ux) 
Ck(x) = o(a, + Ux) exp (akx + bk) (5.1) 

give solutions of  Eq. (1.11) with N=g if the theta function O(z)=O(zlB) is constructed from the matrix of b periods of 
normalized holomorphic differentials of a nonsingular algebraic curve F of genus g and the vectors A k are the images under the 
Abel mapping of certain points of  this curve Ak=A(Qk), A,=A(Po) [i.e., AkE Im A: F~J(F)]. 

part. 
We now consider the case of a theta function (2.5) constructed using an arbitrary matrix B with positive-definite imaginary 
The function 4)(x, A) defined by 

r A) = O(A + Ux)O(A,) (5.2) 
O(A)O(A, + Ux) 

is uniquely determined by the following analytic properties. 

t. For fixed x, U, the function ~b as a function of the variable A possesses the following translational properties: 

r A + ek) = r A), (5.3) 

r A + Bk) = r A) .exp (-Ukx).  (5.4) 

2. The divisor of the poles ~(x~ A) is identical to the theta divisor: 

0(A) = 0. (5.5) 

3. The function .~(x, A) is normalized by the condition 

r A,) = 1. (5.6) 

THEOREM 5.1. For any set A0, ..., AN, N=2g, of points of generic position the generalized Wronskian Ws( ~o . . . . .  ~N) 
f o r  the functions ~k(x)=q~(x, Ak) is zero: 

ws(r  . . . ,  CM) = 0 (5.7) 

for sets S= (0 < n o <... < nN). 
The proof of the theorem is almost a literal repetition of the proof of Theorem 3.1. We consider the analytic properties 

of W4x, y, AO) = Ws(~Po . . . . .  r as functions of the variable A 0 for fixed A 1 . . . .  , A N. They satisfy the translational properties 
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WsCx, y, A o + e ~ ) =  WsCx, Y, Ao), WsC~,y, Ao+ B i ) = e x p ( - U k C x  +y) )Ws(x , y ,  Ao), 

and have a twofold pole on the theta divisor. The dimension of  the space of  such functions is 2g + 1. On the other hand, 

Ws(~,y, Ak)=O, k - - 1 , . . . , N  = 2  a. 

In addition, Ws(x, y, A.) = 0  by virtue of  the normalization condition (5.6). Therefore, Ws(x, y, AO) is identically equal to zero. 
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