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1. Introduction 

Since the middle of the seventies algebraic geometry has become a very powerful 
tool in various problems of mathematical and theoretical physics. In the theory 
of integrable equations the algebraic geometrical methods provide a construction 
of the periodic and quasi-periodic solutions which can be written exactly in terms 
of theta functions of the auxiliary Riemann surfaces. 

All the integrable equations which are considered in the soliton theory can 
be represented as compatibility conditions of the auxiliary linear problems. One 
of the most general types of such representations has the form: 

[dy-L,dt-A]=0, (1.1) 

where L, A are differential operators of the form 
n m 

1=0 1=0 

with scalar or matrix coefficients. 
The most important example of these equations is the Kadomtsev-Petviashvilii 

(KP) equation 
3 / 3 1 \ 
-t72ww, + f ut - -uux + ~uxxx J = 0 (1.3) 

which is equivalent to (1.1), where 
3 

L = o(-d2
x + u(x,y,t)), A = d3

x- -udx-w(x,y,t). (1.4) 

The algebraic geometrical construction of the solutions of integrable equations 
is based on the concept of the Baker-Akhiezer functions which are definded by 
their very specific analytical properties on the auxiliary Riemann surfaces. For 
example, the Baker-Akhiezer functions in the case of the KP equation are defined 
for each smooth algebraic curve r (Riemann surface of finite genus g) with the 
fixed point Po on it, and the local parameter fc-1(P) in the neighbourhood of this 
point, /c~](Po) = 0. For any set of generic points jj, j = l,...,gs there exists a 
unique function W(x,y,t,P), Per, such that: 
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1°. It is meromorphic on P outside the point Po and has no more than simple 
poles at the points y7- (if they are distinct) ; 

2°. The function W has the form: 

W(x,y, t,P) = ( 1 + JT Q(x,y,O^"1 ) exp(zfex + a^k^y + ik3t) (1.5) 

k = k(P), near the point Po. 
For any formal series of the form (1.5) there exist unique operators L and A 

of the form (1.4) such that the following relations 

(dy - L)W = 0(k~l) exp(zfex + o'Wy + ikh) 
(dt -A)W = 0(k~1) Qxp(ikx + G~lk2y + ik3t) 

are valid. From (1.6) it follows that the coefficient u(x,y,t) of these operators is 
equal to 

u(x, y, t) = 2i£Ux(x, y, t). (1.7) 

The left hand sides of (1.6) define the functions which have the same analytical 
properties outside Po as ÎF, and have the form (1.6) near this point. From the 
uniqueness of the Baker-Akhiezer function W, it follows that they are equal to 
zero. Hence, 

(dy-L)W = 0, (dt-A)W = 0 (1.8) 

and u(x,y, t), which is given by (1.7) is a solution of the KP equation. 
The Baker-Akhiezer function W(x,y,t,P) can be exactly written in terms of 

the Abelian differentials and Riemann theta-function. From the corresponding 
formulae it follows that the above constructed solutions of the KP equation have 
the form 

u(x, y, t) = 2d\ ln 6(Ux +Vy + Wt + <P/x) + const. (1.9) 

Here, 6(z\, ..., zg) is the Riemann theta-function which is defined by the matrix 
ry of the fe-periods of the normalized holomorphic differentials on P . The 
vectors 2niU, 2niV, 2niW are the vectors of fc-periods of the normalized Abelian 
differentials of the second kind with the only poles at Po of orders 2, 3, 4, 
respectively. The vector 0 corresponds to the set of the points jj and can be 
considered in (1.9) as an arbitrary vector. 

The construction was proposed in [1, 2] and was developed in different ways 
for various types of integrable equations (see, for example, the reviews [3, 4, 
5, 6]. The analytical properties of the Baker-Akhiezer functions are the natural 
generalization of the analytical properties of Bloch functions of the ordinary 
periodic finite-gap differential operators which were obtained in the remarkable 
works by Novikov, Dubrovin, Matveev, Its in which the algebraic geometrical 
solutions of the KdV equation, sine-Gordon equation and some other Lax-type 
equations were constructed. 

In this report we shall present a brief review of the latest results obtained 
in the theory of periodic problems for the two-dimensional integrable systems. 
First of all, why is it algebraic geometry ? What is the meaning of the algebraic 
geometrical solutions for the general periodic (in x and y) initial value problem 
for such equations ? For the one-dimensional evolution integrable equations, the 
algebraic geometrical solutions are dense in the space of all periodic solutions 
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(though this statement has not been proved rigorously for all such equations). In 
the case of the two-dimensional integrable equations the situation is much more 
complicated. 

There are two real forms of the KP-1 (a2 = -1) and KP-2 (a2 = 1). It turns 
out, that the periodic problems for these equations differ dramatically from each 
other. 

The formal non-integrability of the periodic problem for the KP-1 equation 
was proved in [7]. The proof of the integrability of such problem for the KP-2 
equation was obtained by the author [8] and is based on the spectral theory of 
the operator 

M = ady-d2
x + u(x,y) (1.10) 

with the periodic potential. 
The second problem which will be considered in this talk is the perturba-

tion theory for two-dimensional integrable equations. We shall concentrate our 
attention on the so-called Whithem equation which is in our case a system of 
equations on bundles over the Teichmüller spaces. Finally, we shall demonstrate 
how the Whithem theory and other aspects of the perturbation theory of inte-
grable equations will be married to each other in attemps to solve the Heisenberg 
relations 

[L»,Am] = i, (1.11) 
for the ordinary differential linear operators 

n m 
L» = XI M'(*)3i > Am = X Vi(X)dÌ > Un = Vm = 1 . (1.12) 

/=0 /=0 

The latter are the most popular subject in the field of string theory. 

2. The Spectral Theory of Two-Dimensional 
Periodic Linear Differential Operators 

The solutions $(x,y,Wi,wi) of the nonstationary Schrödinger equation 

(ady -d2
x + u(x, y)) *(x, y, wu w2) = 0 (2.1) 

with the periodic potential are called Bloch solutions, if they are eigenfunctions 
of the monodromy operators, i.e. 

W(x + au y, wu w2) = wi W (x, y, wu w2) ß 2) 

Vfay + a^wum) = w2ìP(x,y,wi,w2). 

The set of pairs Q = (wi, wi), for which there exists such a solution is called the 
Floque set, and will be denoted by P. The multivalued functions p(Q), E(Q) such 
that 

wi = exp(/ptfi), w>2 = Qxp(iEa2) 
are called quasi-momentum and quasi-energy, respectively, 

For the "free" operator with zero potential wo = 0, the Floque set is 
parametrized by the points of the complex fe-plane 
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w? = exp(zfcfli), wi, = Gxp(—(T~[k2ai) (2.3) 

and the Bloch solutions have the form 

W0(x, y, k) = Qxp(ikx - a^l^y). (2.4) 

It turns out that if Re er ^ 0, then the Floque set of the operator (2.1) with 
the smooth potential u(x, y) is isomorphic to the Riemann surface P (which has 
in a generic case infinite genus). The corresponding Riemann surface has such a 
specific structure that the theory of abelian differentials, theta-functions and so 
on can be constructed for it as well as for the finite genus case. 

The source of the difference between the two cases Re a = 0 and Re er ^ 0 
is the difference between the structure of the "resonant" points for the free 
operators. The resonant points are the points on the complex fc-plane which are 
the pre-images of the self-intersection points of the imbedding C -> C2, which is 
defined by (2.3). The points k and kf are resonant, if 

wf(fc) = w l V ) , 1 = 1 , 2 . (2.5) 

From (2.3) it follows that such points are parametrized be integers (N > 0,M) 
and have the form: 

k = kNtM, kf = k-N-M 9 (2.6) 
where 

nN . Mai 
kNM = — + W - T T " • ( 2 - 7 ) 

fli Na2 
In case Re a ^ 0, the resonant points tend to infinity and, hence, have no limiting 
points outside infinity. In case Re a = 0, the resonant points are dense on the real 
axis which makes it impossible (at least by means of our methods) to construct 
the global Riemann surface of the Bloch functions. 

For the real smooth potential u the Floque set can be described in the 
following form. Let us call the set of pairs of the complex numbers % = {ps,i,ps,2} 
(where s belongs to any finite or infinite subset of integer pairs (N > 0,M)) 
"adimissible", if 

RepSji = — , \ps,i-ks\ = 0 ( —- ) , î = l,2 

and the intervals \pSiuPs,i[ do not intersect each other. Let us define the Riemann 
surface P (%) for any admissible set %. It is obtained from the complex fc-plane by 
cutting it along the intervals \ps,ì,ps,2Ì and [—p̂ J,— p&] and by sewing after that 
the left side of the first cut with the right side of the second cut and vise versa. 

Theorem 1. For any real periodic potentials u(x,y), which can be analytically ex-
tended in some neighbourhood of the real values x, y, the Bloch solutions of the 
Equation (2.1) with G = 1 are parametrized by the points Q of the Riemann sur-
face r(n) corresponding to some admissible set %. The function W(x,y,Q) which is 
normalized by the condition W(0,0,Q) = 1, is meromorphic on P and has a simple 
pole y s on each cycle as which corresponds to the cut \ps,uPs,2Ì- If the admissible 
set % contains only a finite number of pairs, then P (7c) has finite genus and is com-
pactified by only one point Po(k = oo), in the neighbourhood of which the Bloch 
function W has the form (1.5). 
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The potentials u for which P (71) has finite genus, are called finite-gap potentials 
and as it follows from the last statement of the theorem that they coincide with 
the algebraic geometrical potentials. 

Theorem 2. Any smooth periodic potential u of the Equation (2.1) (with Re a ^ 0), 
which can be analytically extended in the complex neighbourhood of the real x,y, 
can be approximated uniformly with any number of the derivatives by means of the 
finite-gap (algebraic geometrical) potentials. 

The Floque set is the "integral" of the KP equation. From the previous 
theorems we have: 

Theorem 3. For any smooth periodic function v(x, y) there exists a unique solution 
of the KP-2 equation u(x,y,t), such that u(x,y,0) = v(x,y). This solution is regular 
for all t and quasi-periodic in t. Any smooth periodic solutions of the KP-2 equation 
can be approximated by means of the finite-gap solutions. 

3. The Perturbation Theory of the Finite-Gap Solutions. 
Whithem Equations 

The non-linear WKB (or Whithem) method can be applied to any non-linear 
equation which has the set of the exact solutions of the form 

uo(x, y, t) = u0(Ux + Vy + Wt + <P\h ,...,IN), (3.1) 
where uo(z\,..., zg\I]) is a periodic function of the variable z/- depending on the 
parameters h. The vectors U, V,W are also functions of the same parameters: 
U = U(I), V = V(I), W = W(I). 

In the framework of the non-linear WKB-method the asymptotic solutions 
of the form 

u(x,y, t) = MoOT1^*, Y, T)\Ik) + mx + . . . (3.2) 
are constructed for the perturbed or non-perturbed initial equation. Here X = ex, 
Y = ey, T = et are the "slow variables". If the vector S(X, Y, T) is defined from 
the relations 

dxS = U(I(X, Y, T) = U(X, Y, T) 
dzS = V(X, Y, T), dTS = W(X, Y,T) { ' ' 

the main term wo in the expansion (3.2) satisfies the initial equation up to the 
first order in e. After that all the other terms of the series (3.2) are defined from 
the non-homogeneous linear equations. The construction of such asymptotic 
solutions even for integrable equations is very important, because when using the 
slow modulation of the parameters of their exact solutions one can sometimes 
solve the integrable equation with "non-integrable boundary conditions". 

For the KdV equation and for some other Lax-type equations, the Whithem 
method was developed and applied to various problems in [9, 10, 11]. For the 
two-dimensional integrable systems the Whithem method was proposed in [12]. 
We shall present here only a part of the corresponding results. 

The asymptotic solutions of the form (3.2) can be constructed with an arbitrary 
dependence of the parameters 1^ on slow variables. In this case the expansion 
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(3.2) is valid on the scales of order 1. The right hand side of the non-homogeneous 
linear equation which defines the first order term u\ contains the first derivatives 
of the parameters J*. Therefore, the choice of the dependence of Ik on slow 
variables can be used for the cancellation of the "secular" term in u\. The 
corresponding equations on Ik are usually called the Whithem equations. 

Let us consider again the KP equation as an example of the two-dimensional 
integrable systems. Its finite-gap solutions have the form (3.1). The set of their 
parameters are the system of local coordinates of the manifold Mg which has 
dimension JV = 3g + 1. 

w,((r,p0[fc-1]2) • (3.4) 
(Two local parameters are m-equivalent if k\ = fc + 0(k~m); the corresponding 
equivalence class of the local parameter is denoted by [fc_1]m.) 

Let us consider the second kind differentials on P with the only poles at the 
point Po of the form 

dp = dk(l + 0(k~2), dE = ia^dk2^ + 0(k~3), dQ = dk3(l + 0(k~4) (3.5) 
which have the real periods for any cycle on P. Their integrals p(Q), E(Q), Q(Q) 
are multivalued functions on the manifold M* which is a bundle over Mg 

M*g = (r,Po,[k-l]2,Qer) . (3.6) 
If (X, Ii,..., hg+i) is a system of local coordinates on M* and h are functions of 
the variables X, Y, T then p = p(X, X, Y, T), E = E(X,X, Y, T), Q = Q(X,X, Y, T) 
become functions of these variables. 

Theorem 4. The necessary conditions for the existence of the asymptotic solutions 
of the equation 

3 3 1 
^(T2uyy + (ut - -uux + -uxxx)x + eK[u] = 0 (3.7) 

which has the form (3.2) with uniformly bounded first-order term are equivalent to 
the equation 

dp fdE_ _ ÔQ\ _ 3£ / dp_ _ dQ\ dQ f dp_ _ dE\ _ (WKW+)X dp 
dX \dT " df) dX \dT dX J + dX \dY ~ dX J ~ (!PÎP+)X dX ' 

(3.8) 

Here K[u] is an arbitrary differential polynomial; W, W+ are the corresponding 
Baker-Akhiezer function and its dual, respectively. 

Remark. It turns out that there are only 3g +1 independent equations among the 
Equation (3.8) which should be fulfilled for any point Q of the curve P. 

For the KdV equation and K = 0 the Equation (3.8) have the form 
dTp = dxQ (3.9) 

which was obtained in [11], The construction of the exact solutions of the 
Equation (3.8) with K = 0 was proposed in the work [12]. We shall present the 
particular case of this scheme in the next section where the Heisenberg relations 
would be considered. 
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4. The Heisenberg Relations for the Ordinary 
Linear Differential Operators 

Great progress has been made recently in non-perturbative two-dimensional grav-
ity coupled to various matter fields. It was shown that the dependence of physical 
quantities (such as specific heat) on scaled coefficients of the models is described 
by the KP-hierarchy on the space of the ordinary linear differential operators 
LmAm such that the relations (1.11) are fulfilled. For pure two-dimensional gravity 
n = 2,m = 3 the Equation (1.11) is equivalent to the Painlevé 1 equation 

1 3 
~^uxxx--uux = 1. (4.1) 

The Equation (1.12) has a simple scaling transformation 

Wl (X) = fiC-Mfi; (e~ßx) , Vi = B^m^Vi (B-PX) (4.2) 

ß = (n + m)-1. For the operators Ln,Am with the coefficients %,% we have 

[L1ì,Am] = B. (4.3) 

The formal asymptotic solutions of the equation (4.3) can be constructed using 
any commuting operators [L^o, Amß] = 0 

L„ = Ln>0 + fiL,?ji + ... , Am = Am,o + 8Anl}i +... . (4.4) 

Unfortunately, these asymptotic solutions are well-defined only in the interval 
x ~ 1. For our purposes it is necessary to have the solutions for x ~ e - 1 /^ '") , It 
can be done in framework of the Whithem theory. 

The commuting operators of co-prime orders (n, m) = 1 are parametrized by 
the coefficients of the polynomial 

wn+Em+ YJ V , £ j = 0 (4-5) 
1n-\-jm<nm—2 

and by the points of the Jacobian of the corresponding algebraic curve [13]. In 
[1, 2] the exact formulae for the coefficients of the generic commuting operators 
in terms of the Riemann theta-function were found. For example, 

w„_2 = -ndl ln 6(Ux + $/x) + const. (4.6) 

Here the matrix T of b-periods of P depends on the values ay. The vector U is 
also a function of the variables ay. The phase vector <P is arbitrary. All the other 
coefficients have the same structure 

Uj = ui}o(Ux + $/z), Vi = Vif0(Ux + $/x). (4.7) 

Let me consider the operators Lf,Afj with the coefficients 

uf = uUo ßs(X)/T(X)\ , vf = t̂ o (~S(X)/T(X)\ . (4.8) 
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If the vector S(X) is defined by the relation dxS = (7(aypf)) then the operators 
Lf,A* commute up to the order s. As was shown in [12] in more general 
situation the requirement that the first order terms in the expansion (4.4) should 
be uniformly bounded for all x leads to the equations on the variables ay. They 
are particular cases of (3.8) and have the form 

dw(E,X) dp(E,X) ' 
dX dE ' K } 

It turns out that they are integrable and we present the construction of their 
solutions below. Our conjecture (which is partly proved now for n = 2, m = 3) is 
that all the other terms of the asymptotic solutions (4.4) are also bounded and 
the series (4.4) are convergent. If this is true, it is possible to make the inverse 
rescaling and find the limit for s —> 0. To begin with we shall give the final 
answer for the KdV equation with the "string" boundary conditions (1.12) n = 2, 
m = 2fc + 1. 

Let us consider an arbitrary hyperelliptic curve P 

2fc+l 2k 

y2=Y[(E- E) = E2k+i + H ci£i = R(E) • (4-10) 
ï=I i=i 

As is well-known, this curve defines the solutions of the KdV equation which 
have the form (1.9) (with V = 0). 

For any given set of the parameters: the complex constants c/C)o, Q+1,0, ..., c2k$, 
the real constants hi, hf

t,i = 1,..., fc, we shall consider the hyperelliptic curve which 
is defined by the polynomial R with the coefficients 

Q = c/,0, i = fc + 2,..., 2fc ; ck = x + ckio \ ck+i = t + c/cH-i>0 (4.11) 

and such that 
/*£2»+l i fun 

I m / VRdE = ht, I m / VRdE = H9 i=l,...,k. 
J E2i J Ei 

(4.12) 

The Equation (4.12) are the set of 2fc real equations which define fc unknown 
complex coefficients ct, i = 0, ..., fc — 1 of the polynomial R(E). They become 
functions of the variable x, t. The T matrix of the corresponding curve becomes 
a (known) function of the variables x, t. Let us define the vector 

i / pEii * fE2j+i \ 
Si(x,t) = - / VKdE - ^ T y / y/RdE . (4.13) 

The Main Conjecture. The functions 

u(x, t) = -2d\ln 0(S(x, t) + #/T(JC, t)) - 2n(x, t) (4.14) 

are the exact solutions of the KdV equation with the "boundary conditions" (1.12). 

Here r\(x,t) is the coefficient of the differential 
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2VR JE2ì 

Thus the Equations (4.12) are the only transcendental equations in the definition 
of u(x,t). 

Let us consider now the general Heisenberg relations. Any equation of the 
form (4.5) has the formal solution 

00 

w = km+ Y ^ r ' > kn=E. (4.15) 
/=-m+2 

This means that the affine curve (4.5) is compactified by a single point Po. Let us 
fix a first few coefficients of the expansion (4.15) and denote them by 

an-j = 3-tj, j = 1, ..., m + n-2. (4.16) 

They uniquely define the following coefficients of (4.5) 

ay, im + jn ^ (m - l)(n - 1) = 2g. (4.17) 

For any given real numbers hi,h\, i = 1,..., g, all the other coefficients of the 
polynomial (4.5) can be defined (at least locally) as functions of the parameters 
tj with the help of the relations 

Im f wdE=hi, Im / wdE = h\. (4.18) 
Ja\ Jbj 

They give 2g real equations on g complex variables ay,/*/i + jm < (n — l)(m — 1). 
Therefore, the curve P and the algebraic function w(E) become functions of the 
variables tj. 

Theorem 5. The function w(E,ti, ...) satisfies the Whithem equations (4.9) if h = x. 

Let us define the differentials dQj, j = 1, ..., m + n — 2, whose only poles at 
infinity have the form 

dQj = dkj (1 + 0(k"J'1)) (4.19) 
and such that 

Im [dQj = 0, ye H^r). (4.20) 
Jy 

Corollary. If the relations (4.18) are fulfilled, then 
dp dQj dQj dQj 
dtj dx dtj dti 

Remark. It can be shown that the conjecture which was proposed recently in [14] 
leads to one particular solution of the Painlevé 1 which belongs to our set of 
solutions. 
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