
RIEMANN SURFACES, OPERATOR FIELDS, STRINGS.
ANALOGUES OF THE FOURIER–LAURENT BASES

I.M. KRICHEVER AND S.P. NOVIKOV

In the previous works [1-3], started in 1986, the grounds of the operator theory
of the interacting closed bosonic strings were constructed. Our theory is the direct
development of the classical algebraic operator theory of non-interacting bosonic
string of Virasoro. Mandelstam et. al. [4-5]. This theory corresponds to the case of
the Riemann surface of the genus g = 0. The approach which we proposed unifies
the ideas of the operator formalism with the ideas of the geometrical approach of
Polyakov and others [6-8].

This paper is a brief review and an extension of the works [1-3].

1. Fourier–Laurent-type bases on the Riemann surfaces. Almost
graded analogues of the Heizenberg and Virasoro algebras

The classical definition of the ”Heizenberg algebra” (the algebra of the creation
and annihilation operators for the non-interacting bosonic string) uses the Fourier
expansions of the co-ordinates Xµ(σ) and momentums Pµ(σ), 0 < σ 6 2π, µ =
1, . . . ,D. It turns out that this definition can be easily generalized for the case
of the interacting string in which the world sheet can be a surface of an arbitrary
genus. To obtain this generalization it is sufficient to introduce the special Fourier–
Laurent-type bases, which are defined by the surface itself.

Let’s consider a nonsingular Riemann surface Γ of a genus g with punctures Pi

and with fixed real numbers pi such that

(1.1)
m∑

i=1

pi = 0.

The set of data (Γ, Pi, pi) will be called the “multistring diagram”. For any such
diagram there exists a unique differential dk which satisfies the following properties:
a) it is holomorphic on Γ outside the punctures Pi; b) at every point Pi it has a
simple pole with the residue equal to pi; c) the periods of dk over an arbitrary
closed cycle γ on Γ are pure imaginary, i.e.

(1.2) Re
∫

γ

dk = 0

From the last condition it follows that the real part of the multivalued function
k(z) is single-valued. This function τ(z) = Re k(z) is called the “euclidian time”.
We denote the curves τ(z) = const = τ by Cτ and the domains τ1 6 τ(z) 6 τ2 by
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Cτ1τ2 (Riemann annulus). The curves cτ for x→ ±∞ tend to small circles around
the points Pα for which pα < 0 and pα > 0, respectively. The transformation pα →
apα corresponds to the transformation τ → aτ , which preserves the “chronological
ordering” in the case a > 0. That’s why in the simplest case of “one-string” diagram
(Γ, P±) we can always assume that p+ = 1, p− = −1.

For any integer λ 6= 0, 1 and “one-string” diagram (Γ, P±) in the general position,
g 6= 1, for any integer n + g/2 there exists the unique up to a constant factor
tensor fλ

n = fλ
n (z) of the weight λ with the following analytical properties: a) it is

holomorphic on Γ outside the points P±; b) it has the form

(1.3) fλ
n = ϕ±n,λz

±n−S
± (1 +O(z±))(dz±)λ, S = g/2− λ(g − 1),

near the points P±. Here z± = z±(Q) are local co-ordinates in the neighbourhoods
of the points P± respectively.

For the exceptional cases (g > 1, λ = 0, 1; g = 1, λ—arbitrary integer) the tensor
fields fλ

n are defined by the conditions (1.3) for all except the finite number of n
(see [1,2]). For other n ∈ Z − g/2 the definition of fλ

n is slightly more complicated.
We don’t present them here because their exact form is not essential for us now.

The bases fλ
n and fm

1−λ is dual to each other

(1.4)
1

2πi
·
∫

Cτ

fλ
n · fm

1−λ = δn,−m.

Theorem 1.1 ([1]). Let Cτ be non-singular, then for any smooth tensor fλ(σ) of
the weight λ on Cτ the expansion (Fourier-type)

(1.5) fλ(σ) =
∑

n

fλ
n (σ)

1
2πi

∫
Cτ

fλ(σ′)f1−λ
−n (σ′)

is valid. The same expansion is valid for the tensors fλ(z) which are holomorphic
in the Riemann annulus Cτ1τ2 (Laurent-type expansion). (The theorem is valid
for singular contours Cτ but smoothness conditions in this cases are slightly more
rigourous. The theorem is valid independently of whether the Cτ contour is con-
nected or not).

The proof of this theorem is based on the connection of the bases fλ
n with the

“well-known discrete Baker–Akhiezer functions” in the soliton theory (about the
details see [3] and [9]).

Remark. Recently the construction of the Fourier–Laurent-type bases for general
multi-string diagram and the proof of theorem 1.1 for them was obtained by one of
the authors with the help of the discrete Baker–Akhiezer vertor-functions. These
functions appeared in the theory of the commutative difference operators with the
matrix coefficients. ([10]). We shall give in the appendix the definition of the
correspondence bases in the case pi = ±1, i = 1, . . . , 2m.
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The important properties of our bases (which immediately follow from the defi-
nition) are their almost-graded structure in respect to the multiplication

(1.6) fλ
nf

µ
m =

∑
|k|6g/2

Qλµk
n,mf

λ+µ
n+m−k

and in respect to the action of the vector-fields

(1.7) [en, f
λ
m] =

∑
|k|6g0

Rλk
n,mf

λ
n+m−k, g0 =

3g
2
.

(Here and below we shall use the special notations for bases for the λ = −1, 0,
1/2, 1, 2:

(1.8) en = f−1
n , An = f0

n, f
1/2
n = ϕn, f

1
n = dω−n, f

2
n = d2Ω−n.)

For exceptional cases λ, µ,= 0, 1, |n| or |m| 6 g/2 the sums in (1.6, 1.7) must
include the additional terms. But in any case the sums include the terms only
for |k| 6 N , where N depends on g, λ, µ, and doesn’t depend on the n,m. This
property leads us to the definition of the almost-graded algebras and modules.

Definition. The almost-graded (N -graded) algebra L (or module M over L) is the
algebra (or module) which can be expanded into the direct sum of the subspaces

(1.9) L =
∑

i

Li, M =
∑

i

Mi

so that

(1.10) LiLj ⊂
∑
|k|6N

Li+j−k; LiMj ⊂
∑

|k|6N1

Mi+j−k.

The basis An = f0
n, as it follows from (1.6) with λ = µ = 0, defines the almost-

graded structure in the commutative algebra AΓ of the meromorphy on Γ functions
which are holomorphic everywhere except the points P±.

The functions An with ±n > g/2, as it follows from (1.3), are holomorphic in
the neighbourhood of the points P± respectively and have at least the simple zero
in these points. The choice of the base functions An for |n| < g/2 is not canonical.
But in any case we can do it in such a way that

(1.11) A−g/2 = 1

and the other functions An, −g/2 < n 6 g/2 have the poles in both points P±.
The analogue of the Heizenberg algebra is the algebra which is generated by the

elements αn, t with the following commutative relations

(1.12) [αn, αm] = γnm · t, γnm =
1

2πi

∫
Cτ

Am dAn, [αn, t] = 0.

As it follows from (1.3), we have for |n| > g/2, |m| > g/2 that

(1.13) γnm = 0, |n+m| > g.

For all values of n,m the slightly weak condition is held: γnm = 0 if |n+m| > 2g.
In the particular case: g = 0, P+ = 0, P0 = ∞ the definition (1.12) leads to the
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ordinary Heizenberg algebra of the creation and annihilation operators of the free
closed bosonic string.

In the case λ = −1 we have the almost-graded algebra LΓ, (en = f−1
n )

(1.14) [en, em] =
g0∑

k=−g0

Ck
nmen+m−k.

The analogue of the Virasoro-type algebra is the central extended algebra L̂Γ

with the basis en · t with the commutative relations:

(1.15) [en, em] =
g0∑

k=−g0

cknmen+m−k + χnm · t, [en, t] = 0

where the cocycle χnm = χ(en, em) is defined by the formula

(1.16) χ(f, g) =
1

48πi

∫
Cτ

(f ′′′g − g′′′f)− 2(f ′g − g′f)×R) dz.

Here f = f(z)∂/∂z, g = g(z)∂/∂z vector-fields, R(z)—projective connection which
is holomorphic on Γ except the points P±. (The projective connection is the value
R(z) which is transformed by the following way

(1.17) R(w) = R(z)(w′)2 +

(
w′′′

w′
− 3

2

(
w′′

w′

)2
)
, w′ =

dw

dz

in respect to the transformation of local system of the co-ordinate: w = w(z). If
the projective connection is holomorphic in the points P± also then

(1.18) χnm = 0, if |n+m| > 3g.

Remark. The central extensions of the algebras AΓ and LΓ can be defined for any
closed contour γ on Γ(P+∪P−) by the previous formula if one changes in them the
contours Cτ for γ.

Conjecture.

(1.19) H2(LΓ, R) = H1(Γ \ (P+ ∪ P−), R).

Theorem ([1, 2]). The cohomology class of contours [Cτ ] is one and only one co-
homology class of contours γ such that corresponding central extensions of algebras
AΓ and LΓ are also almost graduated.

2. Riemann analogues of Heizenberg and Virasoro algebras
in string theory

Let Xµ(Q) and P ν(Q), Q ∈ Γ, be the operator-valued scalar function and 1-
form in respect to the variable Q on Γ. They commute with each other in different
moments of time (i.e. τ(Q) 6= τ(Q′)) and satisfy the commutative relations

(2.1) [Xµ(Q), P ν(Q)] = −iηµν∆τ (Q,Q′), if τ(Q) = τ(Q′) = τ.
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Here ∆τ (Q,Q′) is the “δ-function” on the contour Cτ (it is function in respect to
Q and 1-form in repect to Q′; for any smooth function f(Q) we have by definition

f(Q) =
1

2πi

∫
Cτ

f(Q′)∆τ (Q,Q′) ).

ηµν = ηµδν
µ the metric of the physical space (Minkovskii or Euclidean), µ =

1, . . . ,D.
In the work [2] it was proved that the coefficients of the expansion

(2.2) Iµ(σ) = ∂σX
µ dσ + πPµ(σ) =

∑
αµ

n dωn(σ)

(dωn = f1
−n) satisfy the commutative relations of the Heizenberg-type algebra

(2.3) [αµ
n, α

ν
m] = ηµνγnm.

The coefficients ᾱµ
n of the expansion

(2.4) Īµ(σ) = Xµ
σ dσ − πPµ =

∑
ᾱµ

ndωn(σ)

satisfy the commutative relations of the conjugate Heizenberg-type algebra

(2.5) [ᾱµ
n, ᾱ

ν
m] = γ̄nmη

µν .

At the same time ([2])

(2.6) [αµ
n, ᾱ

ν
m] = 0.

That’s why we can restrict ourselves and can consider only the holomorphic part
of the theory. The full Fock space would be as usual a tensor product of the
holomorphic and antiholomorphic parts.

The holomorphic parts of the “vacuum-sectors” of in—and out—Fock spaces
are defined as the spaces, which are generated by the left and right actions of the
operators αµ

n from the vacuum-vectors |0〉 and 〈0|

(2.7)
αµ

n |0〉 = 0, n > g/2, n = −g/2,
〈0|αµ

n = 0, n 6 −g/2.
According to the previous definitions this means that the vacuum-vectors are anni-
hilated by the operators, corresponding to the basic functions An which are holo-
morphic in the neighbourhoods of the points P+ (for |0〉) and P− (for 〈0|).

It can be shown that such defined spaces H±
Γ (which of course depend on P±

also) are isomorphic to the vacuum sectors of the ordinary Fock spaces for small
circles around P±. More precisely, let aµ

N,t, N ∈ Z, be the operators with the
ordinary commutative relations

(2.8) [aµ
N,±, a

ν
M,±] = ηµνNδN,−M .

Then it can be easily checked that the operators αµ
n which are defined for |n| > g/2

by both of the formulae (2.9) and in the slightly different form for |n| 6 g/2 satisfy
the commutator relations (2.5).

(2.9) αµ
n =

∞∑
s=0

ξ+s (n)aµ,+
n+s−g/2 =

∞∑
s=0

ξ−s (n)aµ,−
s−n−g/2
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where

An = z
±n−g/2
±

∞∑
s=0

ξ±s (n)zs
±.

The conditions (2.7) do coincide with the ordinary one

(2.10) aµ
N,+ |0〉 = 0, 〈0| aµ

N,−, N > 0

which define the “local” Fock spaces.

Remark. As it was mentioned by A. Polyakov (private talk) the global definition
of the basic function An and the corresponding possibility to express them in terms
of both local systems of co-ordinates z± near the points P± must contain in some
sense the information about the scattering process of the string exitations.

Of course, one can define using (2.9) the formal Bogoluobov transformation

(2.11) aµ
N,− =

∑
n

(U−)−1
N,n(U+)nMaµ

M,+

where matrix elements (U±)nM are given by the right hand side of the equalities
(2.9). But it looks as if even for each N,M the corresponding series in r.h.s. of
(2.11) diverge. Up to now the question of the regularization of (2.11) is not exactly
clear.

In the classical case the densities of the Hamiltonian and momentum are equal
to the sum and difference of the values

(2.12) T (z) =
1
2
I2(z), T̄ (z) =

1
2
Ī2(z).

The definitions of the corresponding quantum operators require, as usual, the defini-
tion of the “normal ordering”, of the products αµ

nα
ν
m. There exists the arbitrariness

in this definition because operators αµ
n, α

ν
m don’t commute for |n|, |m| 6 g/2.

Let’s dissect the integer (or half-integer) plane of pairs (n,m) into two parts
∑±

such that
∑+ differs from tht integer half-plane m 6 n only in the finite number

of points. The definition of the normal ordering depends on the choice of
∑±

(2.13) :αnαm: = αnαm, (n,m) ∈
∑+

; :αnαm: = αmαn, (n,m) ∈
∑−

.

As it follows from (2.7) the operator

(2.14) T (Q) =
1
2

:I2(Q): =
1
2

∑
n,m

:αnαm: dωn(Q) dωm(Q)

is correctly defined. It is quadratic differential on Γ. That’s why it can be expanded
in the form

T (Q) =
∑

k

Lk d
2Ωk(Q). d2Ωn = f2

−n,(2.15)

Lk =
1
2

∑
n,m

lknm :αnαm:, lknm =
1

2πi

∫
Cτ

ek dωn dωm.(2.16)
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If |k| > g0
lknm = 0, |n+m− k| > g/2.

For |k| 6 g0 the width of the strip in the plane of the pairs (n,m), such that lknm

may differ from zero, is slightly larger. But in any case it remains finite.

Theorem 2.1 ([2]). The operators ek = −Lk, where Lk are given by the formula
(3.13), (3.15), satisfy the commutator relations (1.15) of the Riemann analogues
of the Virasoro algebra with the central charge t = D. The cocycle χnm = χΣ

nm

depends on the choice of the normal ordering but his cohomology class does not
depend on this choice.

We shall call the normal ordering admissible if it corresponds to the choice of
∑±

such that
∑+ differs from the half plane n 6 m only in the strip |n+m| 6 g − 2.

The corresponding projective connection RΣ (which defines χΣ
nm) is holomorphic

on Γ everywhere (including the points P±). For admissible normal ordering the
following important conditions of the regularity of vacuum

(2.17) Lk |0〉 = 0, k > g0 − 1, 〈0|Lk = 0, k 6 −g0 + 1

are fulfilled (details see [3]).

Remark. The quadratic expressions of the form (2.16) are well-known in the case
of genus g = 0. They are the special case of the Sugawara-construction of the
Virasoro generators through the generators of the Kac–Moody algebras. The Rie-
mann analogues of the untwisted Kac–Moody algebras was proposed in [1]. The
generalization of the Sugawara construction for the case of the Riemann surfaces
of the genus g > 0 was proposed in [12].

The projective connection RΣ corresponding to the co-cycle χΣ
nm depends, as

well as the tensor T (z) = TΣ(z), on the choice of the normal ordering. But the
operator-valued projective connection

(2.18) T̃ (z) = TΣ(z) +
D
2
RΣ

doesn’t depend on this choice and is a canonically defined pseudo-tensor of the
energy-momentum. The last statement follows from the theorem.

Theorem 2.2 ([3]). The chronological product I(z)I(w) = Iµ(z)ηµνIν(w), where
τ(z) > τ(w) is correctly defined. For z → w the following expansion is valid

(2.19) I(z)I(w) = D dz dw

(z − w)2
+ 2T̃ (z) +O(z − q).

For the pseudo-tensors of the energy-momentum on the arbitrary Riemann sur-
faces the ordinary operator expansions are fulfilled.

Theorem 2.3 ([3]). The chronological product T̃ (z)T̃ (w), τ(z) > τ(w) is correctly
defined. For z → w we have

(2.20) T̃ (z)T̃ (w) =
D

2(z − w)4
+

2T̃ (z)
(z − w)2

+
T̃z(z)
z − w

+O(1).
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The definition of the in—and out—Fock spaces, the construction of the glob-
ally defined operator fields on Γ, I(z), T̃ (z) is only the first part of our program.
The following important step is the construction of the bilinear product (coupling)
between the spaces H±

Γ . The conformal invariance requires that the operators Lk

must be formally self-adjoint in respect to this coupling, i.e.

(2.21) 〈ϕ|Lkψ〉 = 〈ϕLk|ψ〉 = 〈ϕ|Lk|ψ〉, ϕ ∈ H−
Γ , ψ ∈ H

+
Γ .

It is clear that these conditions would be fulfilled in the case when

(2.22) 〈ϕ|αµ
nψ〉 = 〈ϕαµ

n|ψ〉 = 〈ϕ|αµ
n|ψ〉.

In the case g = 0 the conditions (2.22) and the condition 〈0|0〉 = 1 uniquely define
the product 〈ϕ|ψ〉 of any elements of the vacuum sectors of the in—and out—Fock
spaces. In the general case g > 0, these conditions are insufficient because the
operators αµ

n with −g/2 < n 6 g/2 don’t annihilate neither in—nor out—vacuum
vectors.

3. Bloch’s half-differentials and “fermionization formulae”

Let’s fix the contour σ on Γ, connecting the points P±, and the unitary represen-
tation of the fundamental group ρ : π1(Γ) → S1 = {z ∈ C, |z| = 1}. If we fix on Γ
the canonical basis of cycles ai, bj with the intersection matrix ai ◦ aj = bi ◦ bj = 0,
ai ◦ bj = δij , then this representation can be defined by the real numbers uj ,
j = 1, . . . , g: ρ(aj) = exp(2πiuj), ρ(bj) = exp(2πiug+j).

Lemma 1. For the representation ρ in the general position and for the fixed number
p there exists the unique half-differential ϕν(z, ρ), ν − p ∈ Z + 1/2, such that it is
holomorphic on Γ, cutting along the cycles ai, bj and the contour σ, everywhere
except the points P±. In the neighbourhoods of these points it has the form

(3.1) ϕν(z, ρ) = ϕ±ν,1/2z
±ν−1/2
± (1 +O(z±))(dz±))1/2,

ϕ±ν,1/2 ≡ 1. It is multiplied by ρ(γ) when one goes around the cycle γ. Its boundary
values ϕν,± on the contour σ are connected by the relation

(3.2) ϕν,+(t, ρ) = exp(2πip)ϕν,−(t, ρ), t ∈ σ.

It can be mentioned that the representations ρ such that ρ(γ) = ±1 for any
γ ⊂ Γ correspond to the spinor structures on Γ. The spinor structures are in the
general position (in the sense of the statement of lemma) only if it is an even spinor
structure.

Let’s consider the ordinary Dirac fermionic operators ψν , ψ
+
n , ν − 1/2 ∈ Z, with

the anti-commutator relations

(3.3) [ψν , ψµ]+ = [ψ+
ν , ψ

+
µ ]+ = 0, [ψν , ψ

+
µ ]+ = δν+µ,0.

The Fock spaces H± of the Dirac fermions are generated by the operators ψν , ψ
+
µ

from the vacuum vectors |0F 〉, 〈0F |

(3.4)
ψν |0F 〉 = ψ+

ν |0F 〉 = 0, ν > 0,

〈0F |ψν = 〈0F |ψ+
ν = 0, ν < 0.



RIEMANN SURFACES, OPERATOR FIELDS, STRINGS 9

Let’s introduce the “fermionic” fields

ψ(z, ρ) =
∑

ν

ψνϕ−ν(z, ρ), ν − 1/2 ∈ Z.

ψ+(z, ρ) =
∑

ν

ψ+
ν ϕ

+
−ν(z, ρ), ϕ+

ν (z, ρ) = ϕν(z, ρ−1).

Theorem 3.1. The chronological product ψ(z, ρ)ψ+(w, ρ), τ(z) > τ(w) is correctly
defined. For z → w

(3.5) ψ(z, ρ)ψ+(z, ρ) =

√
dz dw

z − w
+ I(z, ρ) +O(z − w).

The coefficients of the expansion

(3.6) I(z, ρ) =
∑

αn(ρ) dwn(z), n− g/2 ∈ Z

satisfy the commutator relations (1.12) (with t = 1), i.e.

(3.7) [αn(ρ), αm(ρ)] = γnm

of the Riemann analogue of the Heizenberg algebra.

Below we shall define the set of “Szego”-type kernels Sp(z, w, ρ) which are holo-
morphic 1/2-differential in respect to the variables z, w on Γ, cutting along the
cycles ai, bj and contour σ, everywhere except the points P± and the diagonal
z = w. For the fixed w (resp. z) it is multiplied by ρ(γ) (resp. ρ−1(γ)) when one
goes around the cycle γ. The boundary values Sp on σ satisfy the relation

(3.8) S+
p (t, w, ρ) = e2πipS−(t, w, ρ), S+(z, t, ρ) = e−2πip(z, t, ρ), t ∈ σ.

In the neighbourhoods of the points P± we have

(3.9)
Sp(z±, w, ρ) = z∓p

± O(1)(dz±)1/2,

Sp(z, w±, ρ) = w±p
± O(1)(dw±)1/2.

The last condition, which uniquely defines the kernel Sp, requires that near the
diagonal it has the form

(3.10) Sp(z, w, ρ) =

√
dz dw

z − w
+ dsp(z, ρ) +O(z − w).

It can be shown that dsp(z, ρ) is the single-valued holomorphic differential except
the points P± where it has the simple poles with the residues ±p.

Corollary. The following formula (“ferminization”)

(3.11) αn(ρ) =
∑
ν,µ

an
ν,µ :ψνψ

+
−µ: + an

gives the representation of the Heizenberg-type algebra in the spaces H±. Here the
coefficients

(3.12) an
ν,µ =

1
2πi

∫
Cτ

ϕ−νϕ
+
µAn, an =

1
2πi

∫
Cτ

An ds0
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depend on the representation ρ. From (1.3), (3.1), it follows that

(3.13) an
ν,µ = 0, |n| > g/2, |n− ν − µ| > g/2.

In the case of |n| 6 g/2 the “strip” in the (ν, µ)-plane, outside an
ν,µ = 0, becomes

slightly bigger, but it is less than |n− ν − µ| 6 g.

The differential ds0(z, ρ) is holomorphic. Hence

(3.14) an = an(ρ) = 0, |n| > g/2, n = −g/2.
The “ferminization formulae” give the possibility to introduce the “coupling”

between H±
Γ using the natural coupling between the fermionic Fock spaces H±.

The latter is uniquely defined by the requirements

〈ϕ|ψΨ〉 = 〈ϕψ|Ψ〉 = 〈ϕ|ψ|Ψ〉, ϕ ∈ H−, Ψ ∈ H+,(3.15)

〈0F |0F 〉 = 1.(3.16)

Let the vectors 〈0F |, |0F 〉 have the charge zero and the operator ψ and ψ+ have
the charge +1 and −1 respectively. Then

(3.17) H± =
∑

p

H±
p , p ∈ Z — charge.

For any set of the representations ρµ, µ = 1, . . . ,D in general positions, the
correspondence

(3.18)
αµ

n → 1⊗ · · · ⊗
√
ηµ αn(ρµ)⊗ 1⊗ · · · ⊗ 1

|0〉 =
⊗

|0ρµ
〉, 〈0| =

⊗
〈0ρµ

|

where

(3.19) |0ρ〉 = Z+(ρ) |0F 〉, 〈0ρ| = Z−(ρ) < 0F |
defines the isomorphism

(3.20) H±
Γ
∼= (H±

0 )⊗D.

The product of the constants Z±(ρ) which is the norm of the vacuum vectors

(3.21) 〈0ρ|0ρ〉 = Z+(ρ)Z−(ρ) 〈0F |0F 〉 = Z(ρ)

can be naturally considered as the density of the partition function.
In the next paragraph we shall return to the problem of their definition. The

normalized expectation values, i.e. the values of the form

(3.22) 〈H〉ρ =
〈0ρ|H|0ρ〉
〈0ρ|0ρ〉

=
〈0ρ|H|0ρ〉
Z(ρ)

don’t depend on the constant Z(ρ). Hence, we can consider them just now.
In the previous work ([3]) it was proved that

(3.23) 〈ψ(z, ρ)ψ+(w, ρ)〉ρ = S0(z, w, ρ).

In the modern physical literature the formula (3.23) is playing the role of the
definition of the propagator of the free fermionic fields (in the case ρ(γ) = ±1)
without any constructions of the proper fields.
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The calculations of the normalized expectation values of the products of the
operators can be easily done using the standard Vick-formula, the correctness of
which in our theory was proved in [3].

For example,

(3.24) 〈I(z)I(w)〉ρ = −S0(z, w, ρ)S0(w, z, ρ).

When z → w the r.h.s. of this equality has the form

(3.25) −S0(z, w, ρ)S0(w, z, ρ) =
ds dw

(z − w)2
+ 2Rρ(z) +O(z − w),

where Rρ(z) is the Szego projective connection. The comparison of (3.25, 3.24) and
(2.19) gives immediately

(3.26) 〈T̃ (z)〉~ρ =
D∑

µ=1

Rρµ
(z), ~ρ = (ρ1, . . . , ρD).

Remark. It must be specially mentioned that the projective connection Rρ(z) for
any g does not depend on the punctures P±.

Example. g = 1. Consider the elliptic curve Γ with the periods 2ω = 1, 2ω′ = τ .
The Szego-kernel, corresponding to the representation ρ(1) = exp(2πiu1), ρ(τ) =
exp(2πiu2) has the form

(3.27) S0(z, w, ρ) =
σ(z − w + x)
σ(z − w)σ(x)

ey(z−w)
√
dz dw

where

(3.28)

x = x1 + ix2, y = y1 + iy2,

y1 = −2ηx1, y2 = −2
Im η′

Im τ
x2,

u1 =
x2

Im τ
, u2 = −x1 +

x2

2π

(
Re η′ − Re τ · Im η′

Im τ

)
.

Here and below σ, ζ, ℘—Weierstrass elliptic functions η = ζ(1/2), η′ = ζ(τ/2).
From the substitution of (3.27) into the (3.25) we obtain that in the global plane

system of co-ordinate on Γ

(3.29) Rρ(z) =
1
2
℘(x)(dz)2.

There are three even spinor structures on Γ. They correspond to the following
values of x = ωα, (ω1 = 1/2, ω2 = τ/2, ω3 = τ+1

2 ). In these cases the formula
(3.29) coincides with the results of [13], which were obtained with the help of the
conformal Ward identities. This coincidence was briefly mentioned in [3]; it was not
stressed sufficiently that (3.29) coincides with the mean value of energy-momentum
tensor, which was obtained in [13] for the free fermionic field on Γ but not for the
scalar field.

It is well-known that in the c = 1 case there are many different conformal field
theories. The most important question: is there the possibility to introduce the
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coupling between H±
Γ which corresponds to the scalar part of the bosonic string

theory?
The calculations which was made recently by one of the authors [10] makes very

reliable the following conjecture.

Conjecture. The normalized vacuum expectation values 〈H〉0 for the scalar field
theory are equal to the averaging values 〈H〉ρ in respect to all representations
ρ : π1(Γ) → S1 ⊂ C2, i.e.

(3.30)
〈H〉0 =

∫ 1

0

. . .

∫ 1

0

2g∏
i=1

dui 〈H〉ρ,

ρ(aj) = exp(2πiuj), ρ(bj) = exp(2πiuj+g).

We cite here only one example: H = T̃ (z) and g = 1. In that case

〈T̃ (z)〉0 =
D
2

∫ 1

0

∫ 1

0

du1 du2 ℘(x) =
D
2

(
4η − 2π

Im τ

)
.

where x is given by the formula (3.28). The r.h.s. is exactly the same which was
obtained from the Ward identities in [13] for the scalar fields.

4. The semi-infinite forms and “the principle of the normalization”

The formulae (2.15, 3.11) define the structure of the Verma modules over the
algebra L̂Γ in the spaces H±

p . These modules are the particular cases of the general
Verma modules which were introduced in [1,2]. The geometrical realization of these
modules, which was proposed there, is the following (in the case g = 0 it was done
in the work [14]).

Let’s fix the number p and the contour σ, connecting the points P±. In the
general position, for any n, n − p − g/2 ∈ Z, there exists the unique up to the
constant factor tensor fλ

n of the weight λ ∈ Z (if λ is half-integer then it is necessary
to fix also the representation ρ : π1(Γ) → S1) such that a) it is holomorphic on Γ
except the points P± and the contour σ; b) in the neighbourhoods of the points P±
it has the form (1.3); c) its boundary values on a are connected by the following
relation

(4.1) fλ
n,+ = e2πipfλ

n,−.

Consider the right and left semi-infinite forms—exterior products of the form

(4.2)
fλ

S+p+n0
∧ f l

S+p+n1
∧ · · · ∧ fλ

S+p+nk
∧ . . . right-form,

· · · ∧ fλ
−S+p+m−k

∧ fλ
S+p+m−1

∧ f−S+p+m0 left-form.

S = S(λ, g) = g/2−λ(g−1), such that the sequences n0 < n1 < . . . , become stable
from number on. This means for some k0 we have nk = k if k > k0. The spaces
of the finite linear combinations of the basic vectors of the form (4.2) would be
denoted by M±

p,λ = M±
p,λ,σ (the sign + and − for right and left semi-infinite forms

respectively). In [1,2] it was proved that the spaces M±
p,λ are the Verma-modules

over L̂Γ. The generating (singular) vectors |ψ+
λ,p〉 and 〈ψ−λ,p| have the form (4.2)
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where the corresponding sequences of indices are ni = i, i = 0, 1, . . . . They satisfy
the relations

(4.3)
Ln |ψ+

λ,p〉 = 0, n > g0 =
3g
2
, Lg0 |ψ+

λ,p〉 = h+
λ,p |ψ

+
λ,p〉,

〈ψ−λ,p|Ln = 0, n < −g0, 〈ψ−λ,p|L−g0 = h−λ,p〈ψ
−
λ,p|.

The central charge of the corresponding representation is given by the well-known
formula

t = −12λ2 + 12λ− 2

The highest weights equal h±λ,p = 1
2p(2λ+ p− 1).

There exists the natural “coupling” between the spaces of all right and left semi-
infinite form

W±
λ =

⊕
p

W±
λ,p

(may-be it will be better to write the direct integral of these spaces). For the
basic forms f ∈ W+

λ , g ∈ W−
λ let’s consider the product f ∧ g. If this infinite (in

both directions) form coincides after the permutation with the standard form (the
exterior product of all basic tensors:∧

n

fλ
n , n− p− g/2 ∈ Z )

then we define
〈f |g〉 = (−1)ε,

where ε is the sign of the corresponding permutation. In other cases the product
〈f |g〉 = 0 would be equal to zero by the definition. The scalar products between
basic elements define the scalar products of any elements f ∈W+

λ , g ∈W−
λ by the

linearity. It is non-trivial between subspaces W±
λ,p±

when

(4.7) S + p+ + (S + p−) = 1.

Lemma ([1]). The operators Ln acting in the spaces of right and left semi-infinite
forms are self-ajoint in the respect to the “coupling” which was defined above (i.e.
the equalities (2.21) are fulfilled).

In the works [3,9] we have discussed in details the “regularity conditions” for
the vacuum vectors. They require that such vectors |0λ〉, 〈0λ| have satisfied the
equalities

(4.8) Ln |0λ〉 = 0, n > g0 − 1; 〈0λ|Ln = 0, n 6 −g0 + 1

It was proved that they are fulfilled for the vectors |ψ+
λ,0〉 and 〈ψ−λ,0|. Hence these

vectors are proportional to |0λ〉 and 〈0λ|:

(4.9) |ψ+
λ,0〉 = (Z+

λ )−1 |0λ〉, 〈ψ−λ,0| = (Z−λ )−1 〈0λ|.

Again as in the previous paragraph it arises the problem of the definition of these
normalizing constant.



14 I.M. KRICHEVER AND S.P. NOVIKOV

We assume that the vacuum vectors, as in the case g = 0, are equal to the
exterior product of all non-negative powers of the local parameters. Then

(4.10)
|Oλ〉 = 1 ∧ z+ ∧ z2

+ ∧ . . . “in-vacuum”,

〈Oλ| = · · · ∧ z2
− ∧ z− ∧ 1 “out-vacuum”.

The basic tensor-fields fλ
n are defined by the conditions (1.3) up to the factor. There

are two different types of their normalization. In the case of in-normalization when
we fix ϕ+

n,λ ≡ 1

(4.11) Z+
λ = 1, (Z−λ )−1 =

∏
n6−S(λ)

(ϕ−n,λ)

and

(4.12) Zλ = 〈0λ|0λ〉 = Z+
λ Z

−
λ 〈Ψ

−
λ,0|Ψ

+
λ,0〉.

(In the case of out-normalization when ϕ−n,λ ≡ 1 we have Z−λ = 1, but as it can
be seen below the product Z+

λ Z
−
λ does not depend on the choice of in—or out—

normalization. Below we shall always fix the innormalization.)
From (4.7) it follows that

(4.13) 〈0λ|0λ〉 = 0, if λ 6= 1
2
.

In the case λ = 1/2 (the only case when 2S(λ, g) = 1 all the quantities depend on
the representation. For the brevity we shall denote vectors |01/2,ρ〉, 〈01/2,ρ| by |0ρ〉
and 〈0ρ| respectively. From (4.11, 4.12) it follows that

(4.14) 〈0ρ|0ρ〉 = Z(ρ) =
∏

n6−1/2

(ϕ−n,1/2(ρ))
−1.

Remark. Here and below (till the end of this paragraph) the infinite products of
the form (4.11) are considered formally. Later we shall argue the problem of their
regularization.

The operators ψν , ψ
+
ν , ν−1/2 ∈ Z have the representation in the spaces W±

k,1/2,
k ∈ Z

(4.15) ψν → ϕν ∧

(the exterior multiplication of the semi-infinite form by ϕν)

(4.16) ψ+
ν → ∂

∂ϕ−ν

(the differentiation of the semi-infinite form in respect to ϕ−ν). This correspon-
dence gives the isomorphism of W±

1/2 and H± which is consistent with the coupling
between the right and left spaces.
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A few remarks about the ghost sector. The Polyakov–Faddeev–Popov ghost-
fields in the string theory have the tensor weights −1 and 2 and are fermionic. We
shall define them by

(4.17) b(z) =
∑

bn d
2Ωn, c(z) =

∑
cnen(z).

The coefficients bn, cn have the ordinary anti-commutators

(4.18) [bn, bm]+ = [cn, cm]+ = 0, [bn, cm] = δn,m.

As it was shown in [15], the definitions of the stress-energy operator of the ghost-
fields and the operator of the BRST-sharge can be easily generalized for the case
of the Riemann surfaces of the genus g > 0 with the help of the bases which were
introduced in §1.

The full Fock space includes the tensor product of the “physical” and “ghost”
sectors. In particular, the vacuum vector has to be the tensor product of the
“physical” and “ghost” vacuum vectors. The regularity conditions of the ghost
vacuum have the form (see [3,9])

(4.19)
bn |0gh〉 = 0, n > g0 − 1, cn |0gh〉 = 0, n < g0 − 1,

〈0gh| bn = 0, n 6 −g0 + 1, 〈0gh| cn = 0, n > −g0 + 1.

Let’s define the action of the operators bn, cn in the spaces W±
λ=2 with the help

of multiplication and differentiation of the semi-infinite forms

(4.20) bn → fλ=2
n ∧ . . . , cn →

∂

∂fn
λ = 2.

This representation with the correspondence |0gh〉 = |02〉, 〈02| = 〈0gh| defines
the isomorphisms between W±

2 and H±
Γ,gh. Hence the “coupling” between W±

2

defines the “coupling” between the in—and out—ghost’s Fock spaces. From (4.13)
it follows that 〈0gh|0gh〉 = 〈02|02〉 = 0. The most simple non-zero expressions can
be obtained only in the presence of the insertions. For example

(4.21)

g = 0, 〈02|c−1c0c1|02〉 = 1

g = 1, 〈02|b1/2c−4/2|02〉
=

−g0−1∏
n=−∞

(ϕ−n,2)
−1 6= 0

g > 1, 〈02|b−g0+2 . . . b−g0−2|02〉

The operators bn for |n| 6 g0−2, g > 1 correspond to the holomorphic quadratic
differentials which are the basis of the co-tangent bundle over the modular space
of the genus g surfaces. That’s why the square of the modulus of the value (4.21)
defines the measure on the modular space. The connection of this measure with
Polyakove–Belavin–Knizhnik measure is under consideration now.

Remarks about the states with non-zero momentum. The ground states
with the momentums p± = (pµ

±) at the points P± are defined by the following
conditions

(4.22)
αµ

n |~pµ
n 〉 = 0, n > g/2, αµ

−g/2 |~p+〉 = pµ
+ |~p+〉,

〈~p−|αµ
n = 0, n < −g/2, 〈~p−|αµ

−g/2 = pµ
−〈~p−|.
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The corresponding spaces would be denoted by H±
Γ . Let’s introduce for the fixed

real number p the spaces H±(p) which are generated by the operators ψν , ψ
+
−µ,

ν, µ ∈ Z±p+1/2. The generating vectors are defined by the conditions

(4.23)
ψν |pF 〉 = 0, ν > p, ψ+

−µ |pΓ〉 = 0, µ < p,

〈pF |ψν = 0, ν < −p, 〈pF |ψ+
−µ = 0, −m > −p.

If the vectors |pF 〉 and 〈pF | have the charges p and the operators ψν , ψ
+
ν , as before,

have charges ±1 respectively then

(4.24) H±(p) =
∑

κ

H±
κ (p), κ− p ∈ Z.

The spaces H±
κ (p) and H±

κ (p′) are naturally isomorphic to each other if p− p′ ∈ Z.
Hence, we can use the notation H±

k .
Let’s define the operators αn(p) in the spaces H±

p

(4.25) αn,p(ρ) =
∑

an
ν,µ :ψνψ

+
−µ:p + αn,p, ν, µ ∈ Z − p− 1/2

where the coefficients an
ν,µ again are given by the first of the formulae (3.12), and

(4.26) αn,p =
1

2πi

∫
Cτ

An dsp.

The symbol : :p means the normal ordering in respect to the vectors |p〉, 〈−p|.

Theorem 4.1 ([3]). The operators αn,p(ρ) satisfy the commutator relations (3.7).
Their actions on H±

κ (ρ),H±
κ (p′), p− p′ ∈ Z are the same as

(4.27) αn,p(ρ) = αn,p′(ρ).

Their actions on the vectors |pF 〉, 〈pF | satisfy the conditions (4.22).

The vectors |pF 〉 and 〈pF | are annihilated by the operators Ln for n > g0 and
n < −g0, respectively and are the eigenvectors for Lg0 and L−g0 with the eigenvalues
corresponding to the conformal weights p2/2.

Corollary. The spaces (H±
ρµ)⊗D and H±

Γ (~p ) are isomorphic. This isomorphism
can be defined using the representations (4.25) for the set of characters ρ1, . . . , ρD
and the correspondence

(4.28)
|~p 〉 →

⊗
|pµ

ρ 〉, 〈~p | =
⊗

〈pµ
ρ |,

|pρ〉 = Z+
p (ρ) |pF 〉, 〈pρ| = Z−p (ρ) 〈pF |.

The constants Z±p (ρ) can be defined from the normalization principle. We obtain
(for in-normalization) that Z+ ≡ 1 and

(4.29) Zp(ρ) = Z−p (ρ) =
∏

n6S+p

(ϕ−n,1/2(ρ))
−1.

Hence, we obtain the following formula

(4.30) A(p,Γ, P±) =
〈−pρ|pρ〉
〈0ρ|0ρ〉

=
1

Z(ρ)

∏
n6−S+p

(ϕ−n,1/2(ρ))
−1.
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For general p the quantity (4.29) must be regularized, as well as (4.11). For
the integer p all factors in the ratio (4.30) except the finite number are cancelled.
Hence, for p > 0-integer

(4.31) Aρ(±p,Γ, P±) =
±p±1/2∏
ν=±1/2

(ϕ−ν,1/2(ρ))
±1, p > 0.

From the definition of ϕ−ν,1/2 it follows that the quantity (4.31) depends on P±

as the tensor of the weight p2/2.
From the results of the soliton theory the formula

(4.32) ϕ−ν,1/2 =
θ[ρ]((ν − 1/2)(A(P+)−A(P−)))
θ[ρ]((ν + 1/2)(A(P+)−A(P−)))

E−2ν(P+, P−)

follows, where θ[ρ]-theta-function with characteristic corresponding to the repre-
sentation ρ; E(P+, P−) — Prym-form

E−2(P+, P−) =
θ2[m](A(P+)−A(P−))

(
∑

i ωi(P+)θi[m])(
∑

i ωi(P−)θi[m])
.

Let’s consider now the infinite product (4.14). Using the ζ-funcitonal regulariza-
tion for the product of the factors E−2ν(P+, P−) we obtain the ordinary conformal
anomaly which cancels the corresponding conformal anomaly for the ghost sector
(it appears after the regularization of the (4.21)). Hence, we can introduce (with-
out loss of generality) the local co-ordinates z± near P± such that E2(P+, P−) = 1.
In the product (4.14) the numerator of each factor cancels the denominator of the
next factor. That’s why it naturally regularizes the infinite product (4.14) so that

(4.33) 〈0ρ|0ρ〉 =
∏

ν6−1/2

(ϕ−ν,1/2)
−1 = θ[ρ](0).

The same regularization for the quantity (4.29) gives

(4.34) 〈−pρ|pρ〉 = θ[ρ](p(A(P+)−A(P−))).

For integer p the ratio of (4.34) and 4.33) coincides with (4.31).
The regularization, which was proposed above, using the exact theta-functional

formulae looks naturally but not the usual one. Their exist two ways for obtaining
this regularization without using the exact formulae. First of all one can com-
pute the logarithmic derivative in respect to the deformation along the modular
space. In [10] these computations were done and it was proved that after the usual
regularization the logarithmic derivatives of (4.14) satisfy the Ward identities.

The second way of the regularization, which is also discussed in [10], is based
on the computation of the logarithmic derivatives in respect to the changing of the
representation ρ. It must be specially emphasized that according to the variables ui

(which define ρ) the values ϕ−n,1/2 satisfy the equations of the hierarchy of the two-
dimensional Toda lattice. It gives us the hope that the quantity of the form (4.14)
can be expressed in terms of the spectral theory of the two-dimensional Schrödinger
operators [6]. This possibility is under considerations now.
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