
The theorem is proved. 

THEOREM 2. Suppose P, q~2 are relatively prime integers and the sequence of natural 

numbers kv satisies the condition ~+i~2~ (v = 0,1,2 .... ). Then the numbers 

a~ = ~ = o  P-~wq-~P~'V (k = i,  2, 3 , . . . )  

a r e  a l g e b r a i c a l l y  i n d e p e n d e n t ,  normal  in  base  q, and t h e  c o n t i n u e d  f r a c t i o n  f o r  a k can be 

g i v e n  e x p l i c i t l y .  

Proof. The normality of a k follows from Theorem i. The continued fraction for ak can 

be constructed as in the example given above for the case k = I, X~ = 2 ~, p = 3, q = 2. The 

algebraic independence of the ~k follows from the general theorem of [6] on the algebraic 

independence of values of lacunary series. 
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GENERALIZED ELLIPTIC GENERA AND BAKER-AKHIEZER FUNCTIONS 

I. M. Krichever 

0. Introduction. The classical multiplicative genera of manifolds have, as was shown 

in [i], the wonderful property of what is now called rigidity. These genera (the signature 

and Euler characteristic for orientable manifolds, the A-genus for spinor manifolds, the 

Todd genus and the general Ty-genus for unitary manifolds) coincide with the index of the 

corresponding elliptic operators. If a compact Lie group G acts on a manifold X, then the 

kernel and cokernel of the corresponding operator are finite-dimensional G-modules, which 

allows us to naturally define the concept of an equivalent genus as the character-index 

A6(X): G-+Q. The value of this character at the identity of the group coincides with the 

h(X)-genus of the manifold. "Rigidity" means that if G is a connected compact Lie group, 

then the index-character is constant on the group. It follows that for the A-genus of a 
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spinor manifold which admits a nontrivial action of such a group, A (X) = 0 (i.e., the A- 

genus is an obstruction for the existence of nontrivial actions of connected compact Lie 

groups on spinor manifolds [I]). 

The proof of these assertions in [i] was based on the Atiyah-Singer index theorem. 

The author proposed a different proof of these assertions in [2, 3]. The main idea involved 

the direct investigation of the global analytical properties of the Conner-Floyd expressions 

(these will be presented in Sec. 2). Moreover, it was proved in [3] that if the first Chern 

class of a unitary manifold is divisible by a whole number k, c1(X)=--O (mod k), then the A k- 

genus is rigid. (The generating series for the genus Ak, A = 2, 3, 4 .... , is of the form 

kxeX/(e ~x -- i).) In particular, this implies that if there exists a nontrivial action of S I on 

such a manifold which preserves the almost complex structure, then A~(X) = 0. This result 

was later rediscovered in [4]. 

The theory of elliptic genera and elliptic cohomologies, which arose in recent years 

in the papers of Witten, Ochanine, Landweber, Strong and which continues to attract the 

attention of numerous researchers, was stimulated by Witten's hypothesis [5] concerning the 

rigidity of the index-character of "twisted" Dirac operators acting on sections of the bun- 

dles S(~) Ta~, where S is theprincipal spinor bundle and the TR~ are associated spinor 

bundles corresponding to the series of special spinor representations R, = I, Hi = T, R~ = 

A2T,~ T, R~ = A3Te (T@ T) .~ T .... Here T is the tangent bundle. (We refer to [6] as a 

principal reference for this topic.) 

It turned out that Witten's hypothesis is equivalent to the rigidity of the equivari- 

ant elliptic genus (see [7] for a detailed presentation of the history). An elliptic genus 

was defined by Ochanine [8] to be a ring homomorphism 

~: ~ ~  ~ R 

Its value on the generators is given by the generating series 

gr (Z) = Z I ~ ([Cp2n ]) 22n+1 = Ix dt 
0 z.+1 0 Vk~) ' (0.i) 

where R (t) = 1--26t~nust 4. This series is the logarithm of the formal Euler group 

f (u, v) = g ~  (g~ (u) + g~ (,)) = ~ V~-7;7 + ~ VR (=) (o  2) 
- -  892V2 * 

For spinor manifolds the rigidity of the elliptic genus was proven by Ochanine for the 

case of semifree actions and for actions preserving the almost complex structure [9]. 

As was proved by Witten [10], the elliptic genus coincides with the index of a Dirac- 

type operator on the loop space ~X, and its rigidity property for general Sl-actions on 

spinor manifolds follows from natural (but at that time not yet proved) properties of the 

supersymmetric nonlinear sigma-model..Witten's program of proving the rigidity of the 

elliptic genus was rigorously realized by Taubes [ii]. 

An important consequence of Witten's approach was the extremely natural (in the frame- 

work of quantum field theory) explanation of the modular properties of the "universal ellip- 

tic genus." These were first discovered directly in [12, 13]. 
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The universal elliptic genus is the homomorphism 

given by Eq. (0.i), in which 6, e are viewed as independent variables. As was shown in the 

above papers, the homomorphism ~ may be viewed as a homomorphism 

~: ~ o  ..~ Q [[ql], q = e,a~, 

whose image is the modular forms of weight 2. Here 6 and r are the generators in the ring 

of such forms and have weights 2 and 4, respectively. 

In a recent paper of Hirzebruch [14], a further generalization of elliptic genera using 

the modular forms of weight N was proposed. It was proved that these "elliptic genera of 

level N" are rigid for the case of unitary actions of S I on manifolds whose first Chern 

class is divisible by N. 

In this paper, we will define a "generalized elliptic genus" for almost complex mani- 

folds, which will contain all the above genera as special and limiting cases. It is impor- 

tant to note that the generating series of this genus [cf. Eqs. (i.I), (1.4), (1.6)] is a 

simplest function of Baker-Akhiezer type, which plays a key role in the theory of nonlinear 

integrable equations. In particular, exactly this function was used in [15] to integrate 

the Moser-Calogero elliptic system. As was shown in [15], it satisfies the functional equa- 

tion (1.9), which generalizes the classical addition formulas for elliptic functions. 

In Sec. 2 we prove that the proposed genus is rigid for unitary Sl-action on SU-mani- 

folds, i.e., almost complex manifolds whose first Chern class is zero. It would be extreme- 

ly interesting to understand to the index of which operator this generalized elliptic genus 

corresponds. 

i. Generalized Elliptic Genus. In the framework of this paper, we always assume, un- 

less stated otherwise, that the categories in question are unitary, i.e., all manifolds are 

assumed to be almost complex, and their group actions and bundles are assumed to be unitary. 

The rational multiplicative Hirzebruch genus, i.e., the homomorphism h: U.--+Q, is given 

by the series x/h (x), h(x)=x + ~L xiz~' %* ~ Q" The value of such a homomorphism on the class 

of bordisms of an n-dimensional manifold X is equal to 

~=1 ~ (xO ' [ X ]  ,. ( 1 . 1 )  

where  t h e  x i a r e  t h e  Wu g e n e r a t o r s ,  whose  s y m m e t r i c  p o l y n o m i a l s  g i v e  t h e  Che r n  c l a s s e s  o f  

t h e  t a n g e n t  b u n d l e  

(I + x,)=1 (1.2) 

S. P. Novikov proved in [16] that h(x) coincides with the series gh1(x), which is func- 

tionally inverse to the logarithm 

/Y1 ~ h ([CP~1) x~+~ ( 1 . 3 )  gz~ (z) 
~ n = 0  n ~ 1 
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of the formal group ~(u,v), which is the image of the formal group of "geometric" cobordisms 

/ (u ,v )=g- l (g(u)  § g(u)), g(x)--~- V ~ [CP=] x n+x 

u n d e r  t h e  h o m o m o r p h i s m  h.  

L e t  r be  an  a r b i t r a r y  e l l i p t i c  c u r v e  w i t h  p e r i o d s  2 ~ ,  2~ e, I m  ~ 2 / ~ > 0 .  D e f i n e  t h e  

f u n c t i o n  4)(x,  z) = 4) (x, z I (~,, e)2) by  t h e  f o r m u l a  

(~ - -  ~) 
4) (x, z) ----- $ ( ~  e~(z) x, ( 1 . 4 )  

where ~ (z), ~(z) are the standard Weierstrass functions (cf. [17]). 

Denote by ~ = ~ (z, k0 le h, we) the complex-valued multiplicative genus 

~: u ,  ~ c, (1.5) 

given by Eq. (i.i), where the series i/h(x) (which depends on all the parameters listed 

above) is equal to 

(x, z, k 0 I ~J, ~2) = 4) (x, z ] oz, ~ 2 ) ~ ~  ( 1 . 6 )  

As was already mentioned in the Introduction, the function 4) (x,z) is a simplest Baker- 

Akhiezer function (the general definition of these was given in [18]). It is a solution of 

the Lame equation [19] 

(~ --2~(x))4)(x,z) = ~(z)4)(5, z). (1.7) 

As a function of the variable z, 4) ~,x) is doubly-periodic and has an exponential singular- 

ity at the point z = 0. It follows from the translational properties of the Weierstrass 

o-function that 

The function 4) (x, z) 

points 2n0h + 2me~, 

x=0. 

4) (x -5 2~l,  z) = 4) (x, z) exp (2~ (z)o l - -  2%z), 

l =  t , 2 , 3 ,  o3---- o1"+- ~2, ~]l ---- ~ ( o z ) .  ( 1 . 8 )  

in the variable x is holomorphic everywhere except at the lattice 

where it has simple poles and, moreover, residue equal to 1 at the point 

In [15] it was proved that the function 4)(x, z) satisfies the functional equations 

~b (x + y)[~ (y) - -  p (x)] ---- 4)' (x)4) (y) - -  r  (y) 4) (x), ( 1 . 9 )  

4) (x)4) ( - x )  = ~ (z) - ~ (z).  ( 1 . 1 0 )  

We n o t e  t h a t  t h e s e  e q u a t i o n s  w e r e  p r o p o s e d  i n  [20]  t o  d e t e r m i n e  t h e  Lax  r e p r e s e n t a t i o n  f o r  

t h e  M o s e r - C a l o g e r o  s y s t e m  o f  p a r t i c l e s  w i t h  H a m i l t o n i a n  

We show that Eqs. (1.9), (I.i0) lead to the fact that the functions 4)t ( x ) ~ P ( x ,  ~ [~ i ,~2 )  

generate the Ochanine elliptic genera. The definition of 4)(x, z) implies that for z- 0)l 

these functions are odd as functions of x, i.e., 4)t (x)------4)z (--x). Hence 

4)~(x) = ~  ( x ) - -  el, el =l~((ol) .  ( 1 . 1 2 )  
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Thus, 

(~ (z) e l ) .  

The corresponding formal group is by definition equal to 

i i 
/~ (u, v) = % (gz (~) + gz (~'))' ' (1)z (gz (u)) = -'h- " 

It follows from Eqs. (1.13) and (i.14) that 

r (g, (u)) = 1 / ~  (u) 
y.2 :~ 

where the coefficients of the polynomial Rl = I --2~lu-~ + elu~are equal to 

Expanding Eq. (1.14) with the help of Eq. (1.9), and using Eq. (1.15) 

tain that /l (u, v) coincides with the formal Euler group Eq. (0.2). 

Before working out other special cases, we note that the function �9 (x,z, k01~0 I, 0),), de- 

fined in Eq. (1.6) satisfies the same functional equations (1.9), (i.i0). 

Fix on F a point Znm of order N, i.e., 

2n 2m 
z,.. , ,  = - 7  c01 + ~ o 3, n ,  m = 0 ,  1 ,  �9 . . ,  N - -  t .  

If we define 

then the function 

2n 2m 
k,.~ = - -  .,V ~ - -  - Y "  ~h + ~ (zn~), 

(1.13) 

(i.14) 

( 1 . 1 5 )  

(1.16) 

in the process, we ob- 

(1.z7) 

( 1 . 1 8 )  

~.,,~ (x I ~1, ~2) = ~ (x, znm, k.m I ~1, ~ )  ( 1 . 1 9 )  

transforms as follows under shifts of the variable x: 

~ (x § 2el) = ~ , ~  (x) e 2=~IN, ( 1 .20 ) 

~ , ~  (x § 2~)  = ~ . ~  (x) e ~=i'~/N. ( 1 . 2 1 )  

From explicit formulas for ~ it immediately follows that the function ~,~m =~m ( x } ~ l ,  ~ )  

generates the elliptic genus of level N introduced in [14]. 

It is well known in the theory of finite-zone integration that the degeneracy of the 

potential 2~(x) in the Lame equation to2cosh "2 (x + x 0) corresponds to the aegeneracy of gne 

elliptic curve F to a singular rational curve Fsing with one self-intersection point, the 

normalization C-+rsing of this singular curve takes the function �9 (x,z) to a function of 

the form 

~si,~g (x, k) = (--k + a)e ~x, ( 1 . 2 2 )  

where k = z -I is a point in the complex plane. The coefficient a = a(x) is uniquely deter- 

mined by the equality 

'1)si,~ (x, 1]) = q)s~ng (x, - - q ) ,  (i.23) 
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which reflects the fact that the points q and -q are glued together under normalization. 

Thus, the function @sing depends on the quantity D as on a parameter, which coincides 

with the "discrete spectrum" point of the degenerate Lame equation. Finally, after finding 

from Eq. (1.23) the coefficient a, we obtain 

For different values of the parameters k, ko,~l of the generating function 

~sing (x, k, k o ] ~l) = (--k + ~ cth ~x)e (~-~o)~ 

we get all the classical manifold genera: 

1 ~ k = k0, T ( ~ , b - - g e n u s ,  a = ~ ] - - k o ,  b = q ~ ~'0, 

which for a = I, b =0 coincides with the Todd genus, for a = i,b =] 

the manifold, for a = I, b =--i with the Euler characteristic. 

N--2 
2 e. k =  ~, k0=  ,~ ~]-- AN-- genus of the manifold, 

AN=2 = A- genus of the manifold. 

In [2] for each multiplicative genus h: U.-+0 its equivariant 2. Rigidity Theorem. 

analog was defined: 

( 1 . 2 4 )  

(1.25) 

( 1 . 2 6 )  

with the signature of 

( 1 . 2 7 )  

ha: UG. -~ K (BG) @ Q, ( 2 . 1 )  

where U~ is a ring of bordisms of manifolds with an action of a compact Lie group G. For 

an arbitrary G-manifold X the projection 

p: Xa --- (X x EG)/G --+ BG (2 .2 )  

onto the universal classifying manifold gives the well-defined cobordism class 

Xo ~ (IX, G]) ----p, ( t ) ~  U* (BG), ( 2 . 3 )  

where p! is the Gysin homomorphism (direct image). 

By Dold's theorem [21], to each homomorphism h there corresponds a functor homomorphism 

]7: U* (.) ~ K (.) @ Q. ( 2 . 4 )  

The e q u i v a r i a n t  genus i s  d e t e r m i n e d  by t h e  c o m p o s i t i o n  o f  homomorphisms 

h a 7i G ,a = ~ L . - + U * ( B G ) - . ~ K ( B G ) |  ( 2 . 5 )  

The rigidity of the genus h G on the given class of manifolds means that its value 

ha (IX, G]) ~ Q • IC (BG) @ Q ( 2 . 6 )  

f o r  t h e  c a s e  o f  a c t i o n s  o f  c o n n e c t e d  compact  g roups  G b e l o n g s  t o  t h e  r i n g  o f  c o n s t a n t s .  

From the functorial properties of h G it follows that it is sufficient to prove rigidity for 

the case G = S I, to which we limit ourselves from now on. 

For G----S I the universal classifying spaces BS I is CP ~, and the ring U* (CP ~176 is iso- 

morphic 

U* (CP ~) = U* [[u]] 

to the ring of formal series in the variable u of degree 2 with coefficients in U*. 
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S 1 
The expressions of the class 20 (IX, S~]) in terms of the invariants of fixed points are 

called Conner-Floyd expressions. In the case of SZ-actions with isolated fixed points, they 

have the form 

S' ~ l - [ n  1 
(IX, s,]) 7.0 =/-- '  zJ-i-1, _ [u]4 ~ ( 2 . 7 )  

(cf. [16, 22, 23]; for arbitrary actions they were first derived in [24], whose formulas 

- Z:= [CP~] un+1 is the j-th de- a r e  made more p r e c i s e  in  [25] ) .  Here [zt]i = g 1 (]g (u)); g ( u ) =  n--~-I 
0 

g r e e  in  t h e  f o r m a l  g roup  o f  " g e o m e t r i c "  c o b o r d i s m s  /('~, v ) =  g-1 (g (u)-5  g (v)), The i n t e g e r s  

Li, i =  l . . . . .  n = dimcX, a r e  d e t e r m i n e d  by t h e  d e c o m p o s i t i o n  o f  t h e  r e p r e s e n t a t i o n  o f  S 1 in  

t he  f i b e r  o f  t h e  t a n g e n t  bund le  o v e r  a f i x e d  p o i n t  m s i n t o  a sum of  i r r e d u c i b l e  r e p r e s e n t a -  

t i o n s  ~,; ~lsi. 

Equation (2.7) means in part that the Laurent series in its right side contains only 

the regular part, whose constant term coincides with the class of bordisms of the manifold 

IX].  

As was p roved  in  [ 2 ] ,  t h e  g e n e r a t o r  u ~ U 2 (CP ~) unde r  t h e  homomorphism h goes  t o  

(u) = g~l (in ~]), where a], ~]-~ a r e  t h e  g e n e r a t o r  s o f  t h e  r i n g  K (CP~). We i n t r o d u c e  t h e  f o r -  

mal v a r i a b l e  x = In ~. Then i t  f o l l o w s  from Eq. ( 2 . 7 )  t h a t  t h e  e q u i v a r i a n t  genus  ~s, ([X, S']),  

c o r r e s p o n d i n g  t o  t h e  g e n e r a l i z e d  e l l i p t i c  genus  Cp o f  Eqs.  ( 1 . 5 ) ,  ( 1 . 5 )  f o r  a m a n i f o l d  w i t h  

i s o l a t e d  f i x e d  p o i n t s  has  t h e  form 

, =, koj,o,,,o,) ( 2 . 8 )  ~ s , ( [ x ,  s , ] )  = ~ (~) = ~ =, 

( f o r  b r e v i t y  we do n o t  e x p l i c i t l y  s p e c i f y  t h e  o b v i o u s  f a c t  t h a t  in  t h e  l e f t  s i d e  t h e  f u n c -  

t i o n  ~x (x) depends  on t h e  q u a n t i t i e s ,  z, k0, ~1, o2 as  p a r a m e t e r s ) .  

By t h e  d e f i n i t i o n  o f  t h e  e q u i v a r i a n t  genus ,  t h e  f u n c t i o n  %0x (x) i s  r e g u l a r  a t  t h e  p o i n t  

x = 0. Our g o a l  w i l l  be t o  p r o v e  t h a t  i t  i s  a c o n s t a n t  f o r  S U - m a n i f o l d s .  We w i l l  f i r s t  

show t h e  n e c e s s i t y  o f  c o n f i n i n g  o u r s e l v e s  t o  t h e  c a s e  o f  S U - m a n i f o l d s  w i t h  t h e  example  o f  

m a n i f o l d s  w i t h  i s o l a t e d  f i x e d  p o i n t s  and o n l y  t h e n  go t o  t h e  g e n e r a l  c a s e .  

From t h e  d e f i n i t i o n  o f  ~P (x, z) i t  f o l l o w s  t h a t  t h e  f u n c t i o n  ~x (x) c o u l d  have  p o l e s  a t  

a l l  p o i n t  o f  t h e  l a t t i c e  A 2nol + 2m~)~.. I t  f o l l o w s  f rom Eq. ( 1 . 8 )  t h a t  

�9 " - . .  ( 2 . 9 )  
r (x 4- 2{oz) = ~,  e r ,Q~ (z, ~o) H (1:) (i, lx), 

' s i~l 

where  

1% 

r, = ~ i= ,  ]~i, Qz = 2 (~ (z) coz - -  lqlz - -  ko~oz). ( 2 .  i 0 )  

If all the quantities r s are equal, i.e., r s = N, then 

~x (x + 2oz) = (Px (x) "eNQt(z' ~'), (2. ii) 

From this equality and from the fact that ~x is regular at the point x = 0 follows that it 

is regular at all points of the lattice A. 
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It turns out that if X is an SU-manifold, then in fact r s does not depend on s. In [2] 

the following Lemma was proved. 

LEMMA 2.1. Suppose that the representation of the group S I in the fiber of the S l- 

bundle ~ over X over a point of the fixed manifold F s is equal to ~]6~; then if q(~) is 

divisible by k, all the sums r s are equal modK: 

~ = ----- N (rood k). ( 2 . 1 2 )  ~i=l ~si rs 

(Subsequently, this statement was proved anew in [14]). 

In the case where q(X) = 0, it follows from the statement of the Lemma that the sums 

r s do not depend on s: r~ =N. The number N is called the type of the action of the group 

S l on X. 

THEOREM 2.1. For any SU-manifold X the value of the equivariant genus 

~x (x) = ~s, ([X, $I]) ----- ~([X]) C K (CP ~) ~. C (2.13) 

is constant. If the action of S l on X has type N~0s then 

~x (x) ~ ~ ([X]) = O. ( 2 . 1 4 )  

Remark. For SU-manifolds the dependence of generalized elliptic genera on the parameter 

k 0 is trivial: if q(X) = 0, then for an arbitrary series h(x) we have 

i=, ),(z{) e -~~ = ~=, h~i) , (2.15) 

since ~xi = c I = 0. Thus, for SU-manifolds the generalized elliptic genera depend on three 

parameters: 

The proof of the theorem repeats (practically without changes) the proofs found in [i, 

2] and hence will be presented schematically, with the reader being referred to the above 

papers for details. 

First of all, we mention the Conner-Floyd expressions for the general Sl-action. Let 

F s be a connected component of the set of fixed points of the action of S I on X. The normal 

bundle ~s (as any complex SZ-bundle over a trivial St-manifold) is representable in the form 

v s :~jvsi~], where ~J is the j-th tensor power of the standard representation of S I, and 

the action of S I on the bundles Usj is trivial. The set of complex bundles ~sj, of which 

only a finite number is different from zero, determines the class of bordisms belonging to 

the group Rn: 

(< )  = Z G (IIj  o B u  ( 2 . 1 6  ) 

The summation is taken over the sets of nonnegative integers s, nj such that n = s q - 2 ~ z j .  

The sum over all connected components gives the image of the bordism class IX, $I]~ U~ ' and 

induces the homomorphism ~: U~-+R., 

fix, s~]) = Z~ ~ (~). 
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Choose the generators of the U,-module U, (CP ~) = U, (BU (|)) to be the bordism classes 

corresponding to the imbedding (CP ~) ~ U2,~ (CP~ The standard multiplicative structure in 

R, lets us choose the U,-module generators to be monomials 

(cpb x . . .  x (cpi~). 

Denote by Gn(u) the Laurent series 

G,~ (u) = 1 1(u,~.) N [CP"], ( 2 . i 8 )  

where ~ [CP '~] denotes  in t h i s  case  t he  s u b s t i t u t i o n  of  [CP '~-~] f o r  v k. S ince  {,~ Q [CP"] = O, 

k.~ n, the series G n is well-defined and has the form 

G n ( u ) =  %+~ e~ 
u,~+---" V + -- + �9 . . 11, "19, 

P r o p o s i t i o n  ( [25 ] ,  see  a l so  [24] ) .  The composi t ion  of  7.0 and the  imbedding U* (CP ~) C 

U* [[u]] @ C [u -a] c o i n c i d e s  wi th  t he  composi t ion  iron, where the  homomorphism of  U,-modules 

T: R , - ~  U* [[u]]~5 C[u -1] i s  given by the  formula  

'F (I]L=~ (Cpj~:)] = I-i~=l G,,~ ([u]j,,)" (2 .19)  

Suppose that the generalized elliptic genus q is given by the function ~ (x) (depending 

on z, k0, oi, ~2 as parameters). Denote by ~D~ (x) the function obtained from Gn(u) by applying 

the homomorphism ~ to the coefficients of this series and substituting I/4)(x) for the vari- 

able u. Then it follows from Eqs. (2.18) and (1.9) that 

^ 
~ (x) = �9 (x) ~ + ~, (x) 

- -  i -- ~ (x) ~ (-- x) v~ n [CP'~], (2.20) 

where 

(2.17) 

(go (v)) = ilv, F = II~ (--go (v)) (2.21) 

and the symbol ~ [CP n] signifies the substitution of ~ ([CPn-~]) for v k. This implies that 

~n (x) is holomorphic outside the points of the lattice A 2no I + 2mo2~on which it has poles 

of order n + i. Moreover, the function ~n (x) has the same translational properties as the 

generating function ~ (x) = ~0 (x), i.e., 

~ (x + 2 ~ )  = ~ (x) e %(z' ~~ ( 2 . 2 2 )  

It follows from Eq. (2.19) that for any Sl-manifold X the function ~x (x)=~s'([X, Sl]) 

has the form 

E ~ (x) = 2 s as ~ ( j~ ) .  (2.23) 

Equation (2.23) generalizes the Conner-Floyd expression (2.8) to the case of general S I- 

actions. 

By definition the function ~x (x) is regular in a neighborhood of x = O. From Lemma 

2.1 and Eq. (2.22) it follows that for SU-manifolds ~x satisfies the relation (2.11). Thus, 

~x (x) is regular at all lattice points 2n~l+2m~ 2. In principle, the function qx could 

have had poles at points of order Jms, i.e., at the points x, for which ]msx = 2n~l~- 2m~=. 
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As in [2, 3], in order to prove the absence of poles of ~x at points of order n, it suf- 

fices to make use of the expressions for ~x in terms of the invariants of fixed submani- 

folds with respect to the action of the subgroup Zn~-S I consisting of n-th-order roots of 

unity. 

Let F s be the connected components of the set of fixed points of the action of the sub- 

group Z n. Then ([2], Theorem i.i) 

where e ((Vs)m) is the Euler characteristic of the bundle (% X ESI)/S I -+ (F~ X ES*)/S I = (Fs)S, 

over the manifold (Fs)s*, and Ps: (fs)s,-+ CP = is the projection map. The normal bundle u s to 

F s in X is representable in the form 

= o j, ( 2 25 ) 

where the Usj are bundles on which the subgroup Z n acts trivially. Since 

t ( 2 . 2 6 )  =II  (LoJ,. b eCCl.)s,) i ~ I . ' 

where the ~,~ are the Wu generators of the bundle ~sj, it follows from Eq. (1.9) that a for- 

mula of the following form holds: 

((<)s ') ' )  = 1-[7~ s (nx), ( 2 . 2 7 )  

where the m are multi-indices, IIo (x) is a holomorphic function outside the lattice points 

2n~I-~ 2m~2, and D~ (nx) is the value of the equivariant characteristic class on the set 

of bundles Vsj (cf. [i, 2] for the definition) corresponding to the multi-index ~. The ex- 

plicit form of these functions is not essential. Only the following is important. From 

the functorial properties of the equivariant characteristic classes ([2], Theorem 1.2) it 

follows that the function D~ (x) is an equivariant characteristic class of the set of S l- 

bundles ~j, where the new action of S I on the bundles is defined to-be the action of the 

quotient-group SI/Z,~S I (note that the action of Z n on ~sj is trivial). By definition 

D~ (x) is regular at the point x = 0. Its explicit form shows that Do (x) behaves like Eq. 

(2.11) under shifts by 2~I Hence Do(x) is holomorphic at all the lattice points. It fol- 

lows from Eq. (2.27) that ~x (x) does not have poles at points of order n. Thus, ~x (x) is 

holomorphic everywhere and satisfies the relations (2.11). In this way we obtain that the 

function ~x (x) is a constant, and, moreover, forN~=0, this constant is equal to zero. 

The theorem is proved. 

In this proof the theorem, the property c~(X) = 0 was used to prove the translational 

properties of Eq. (2.11). By Eqs. (1.20), (1.21) we have that for the case of genera ~ ..... 

which are given by the series ~nm (x), the equality cl(X)~-0(mod N) suffices. In this case 

we can repeat in full the proof of Theorem 1 and obtain the following assertion. 

THEOREM 2 [14]. Suppose that the first Chern class of the Sl-manifold X is divisible 

by N. Then the equivariant genus corresponding to the generating function ~,~m (x), is a con- 

stant: 
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S I 
~:.m ( [ x ,  s q )  - ~. , .  ( [xI) .  

I f  t h e  a c t i o n  o f  S 1 on X has t y p e  Al-,J=O(modN), t h e n , . m  ( [ X ] ) = O .  

(2.13) 
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