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Liouville operators undertaken in the series of papers by Novikov, Dubrovin,

Matveev, and Its (a survey of which is given in [1], [2]}; some of those

results were obtained slightly later in {3], [4]) has not only enabled us to
construct a wide class of periodic and quasi-periodic solutions of the

(M Also called “finite-zone or “finite-band”. (Editor)
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Korteweg-de Vries equation. It has led to the revaluation of the whole
approach to the development of the spectral theory of arbitrary one-
dimensional linear operators with periodic solutions.

The assertion that the Bloch functions of such operators, considered for
arbitrary complex values of the spectral parameter E, are values on different
sheets of a Riemann surface of a single-valued (on this surface) function,
which now looks self-evident, remained beyond the framework of the
classical Floquet spectral theory. It has turned out that analytic properties
of the Bloch functions on this Riemann surface are crucial for solving the
inverse problem of recovering coefficients of the operators from the spectral
data. In the case when this Riemann surface has finite genus, the solution
of the inverse problem is based on the technique of classical algebraic
geometry and the theory of theta-functions. (A generalization of the
algebraic geometry language and theta-functions to the case of a hyperelliptic
curve of infinite genus, corresponding to the Sturm-Liouville operator with
general periodic potential, was obtained in [5].)

The meaning of the algebraic geometry approach was clarified completely
in [6], [7] where, for the first time, a general construction for periodic
solutions of space two-dimensional equations admitting a commutation
relation (equations of Kadomtsev-Petviashvili (KP) type) was suggested. In
the framework of this construction the inverse problem for operators of
the following form was solved:

] ]
(1) Uay—L, at—A, 6t=—a-t—' 69:79__17’
where the coefficients of L and 4
n m
) , a
(2) L‘_—Z ui(z, y, t) 0L A=Zvj(x1 y, t) 04, ax:'g}'

i=0 j=0

are scalar or matrix-valued functions of their arguments. These coefficients
are uniquely determined by the data that characterize analytic properties on
an auxiliary algebraic curve I' (a Riemann surface of finite genus) of a
function Y(x, v, t, Q), Q €T, called the Baker-Akhieser~Clebsch-Gordan
function. These analytic properties naturally generalize analytic properties
of the Bloch functions of finite-gap one-dimensional periodic operators.
Their specific features are such that for any function that possesses them
there are always operators L and A of the form (2) such that

(3) (Gay - L)"p(xv Y, i, 0) = Ov (at - A)\p("t’ y, L, 0) = 0.
The non-linear equations on u; and v;
(4) 66, — L, 6; — Al = 0<=> Ly — o4, + (L, 4] =0,

equivalent to the comptability condition for the overdetermined system (3),
are just KP type equations.
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From the point of view of the problem of constructing solutions of non-
linear equations it would be sufficient to solve the inverse problem for finite-
gap operators, even without setting the direct spectral problem. (Surveys of
different stages of the development of the “finite-gap theory” can be found
in [1], [8]-[14]1). However, such an approach left completely open the
question of the role and the place of the solutions obtained in the periodic
problem for the space two-dimensional equations of KP type.

In the one-dimensional case of Lax type equations

6)) L+ (L, A1=0

the existence of the direct and inverse spectral transforms for operators L
with periodic coefficients enables us in principle to prove (though this is not
always brought to the level of rigorous mathematical theorems) that the
set of finite-gap solutions is dense among all smooth periodic solutions. In
the two-dimensional case the situation turns out to be considerably more
complicated.

One of the main purposes of this paper is the investigation of this
question on the example of the periodic problem for a KP equation

(6) % o%u,, 40y (u,-——g-uux—i—%u_‘.m) =0, o= 41,
which has a representation (4) (found in {14], [15]), where
(7) L=0dr—u(z, y 1), A= —Bi—{——fj—uc?a—%w(.r, y, 1).

The answer is different in principle for two versions of this equation: the
KP-1 equation (¢ = —1) and the KP-2 equation (¢% = 1).

As shown in [17], the periodic problem for the KP-1 equation is not
integrable even formally. It will be shown below that the same problem for
the KP-2 equation is integrable and any smooth periodic solution of this
equation can be approximated by finite-gap solutions (this was proved
locally in the author’s papers [18}, [19]).

This assertion follows from the spectral theory for the operator

(8) M =00,—0;+u(r, y), Re 040,

with periodic potential u(x, y), to the development of which the first
chapter of the paper is devoted.

In an unpublished paper of Taimanov it was proved by methods completely
analogous to the methods of [30] that the Bloch functions of the operator
M with smooth real periodic potential, defined as solutions of the equation
My = 0, that are eigenfunctions for the operators of translation by the
periods in x and y, can be parametrized (as in the one-dimensional case) by
the points of a KRiemann surface I'.  The multipliers w,(Q) and w,(Q), the
eigenfunctions of the translation operators, are holomorphic functions on
this surface, Q € I". This proof is based on a theorem of Keldysh on the
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resolvents of a family of completely continuous operators holomorphically
dependent on parameters. Unfortunately, in the framework of this
approach we are unable to obtain detailed information on the structure of T,
‘which is necessary for the proof of the main approximation theorem.

The approach to the construction of the Riemann surface of the Bloch
functions, we suggest, has a constructive nature and is more effective. In the
first section of the paper formal Bloch solutions are constructed with the
help of series that are analogous to the series of perturbation theory. In the
next section the convergence of these series is proved in different domains
that “paste” further into a global Riemann surface. It turns out that outside
any neighbourhood of “infinity” this surface has finite genus. Roughly
speaking, it is this fact that enables us to approximate an arbitrary potential
by finite-gap ones, that is by those potentials for which the corresponding
Riemann surfaces have finite genus.

Section 3 of Chapter I is devoted to the spectral theory of finite-gap
operators. In addition to the presentation of the scheme of the solution of
the inverse spectral problem for such operators, we present in the same
section theorems on the completeness of Bloch functions. In Section 5 we
prove a theorem on the completeness of products of Bloch functions and
their conjugates in the space of square-integrable functions periodic in x
and y. This assertion plays a crucial role in the construction of the
perturbation theory of finite-gap solutions u4(x, », ¢) of the KP-2 equation.
In particular, it enables us to prove that the solution given in §2 of
Chapter II of the linearized KP-2 equation

- »

3 3 3 1
(9) Tvyy+6x(vt —'"g‘uovx_f’uoxv'*‘fuxxx\:()

form for each r a basis in the space of square-integrable periodic (in x, y)
functions. Knowing this basis, it is easy to write down an asymptotic
solution of the form

(10) u(z, ¥y 1) =1o (2, ¥ t)+12='1 e'w; (2. y, 1)

both for the KP-2 equation itself and for its perturbations (e is a small
parameter). By analogy with the multiphase non-linear WKB-method (the
Whitham method, see [20], [21]) in the space one-dimensional case, even
the requirement of uniform boundedness of the first term of the series (10)
leads to the fact that the parameters [, ..., Iy of a finite-gap solution must
depend on the “slow” variables X = ez, Y = gy, I = &t. Equations that
describe the slow modulation I, = I(X, Y, T) are called Whitham equations.
For space two-dimensional systems they were obtained for the first time in
the paper [22], the results of which will be presented in the last sections of
Chapter II. For these equations, which represent a system of partial
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differential equations on the Teichmiiller space, we suggest a construction of
precise solutions. In the space one-dimensional case this construction yields
an effective statement of the scheme of [23], where a generalization of the
“hodograph” method for the solution of ‘“‘diagonalizable’” Hamiltonian
systems of hydrodynamic type was suggested. (The theory of Hamiltonian
systems of hydrodynamic type was developed in [24], [25].)

As an important special case of an application of these results we present
separately in the final section of Chapter II a construction of solutions of
the Khokhlov~-Zabolotskaya equation, well-known in the theory of non-.
linear waves,

(11) %qu'yy+ax (u‘—%uux) =0
{a detailed bibliography of papers devoted to this equation can be found in
[26]). We note that the equation (11) is a quasi-classical limit of the KP
equation.

In the final third chapter we again return to the spectral theory of two-
dimensional periodic operators, this time on the example of the two-
dimensional Schrédinger operator

(12) Hy= 024854 u (2, v)-

The inverse problem for the two-dimensional Schrédinger operator with
magnetic field

{13) H = (0, — idi(z. y))* + (0, — idy(z, ¥))* + ul=: y),

based on the spectral data corresponding to one energy level £ = E,, was
posed and considered in {27]. In that paper a class of operators that are
“finite-gap on a given energy level” was constructed, which can be
distinguished from the point of view of spectral theory by the fact that the
Riemann surface of the Bloch functions corresponding to this energy level,
being a “‘complex Fermi-curve”, has a finite genus.

In [28], [29] conditions on the algebraic gecometry data of the construction
of [27] were found that single out smooth real potential (4; = 0) operators
H = H,. Novikov has formulated a conjecture that the corresponding
potentials form a dense family among all periodic potentials u(x, ).

The main aim of Chapter III is the proof of Novikov’s conjecture. Again,
as in the proof of the approximation theorem in Chapter I, we shall need
detailed information on the structure of the Riemann surface of the Bloch
functions of the operator H, corresponding to a fixed energy level £,.

(The existence of such a Riemann surface is proved in [30].) From the
purely technical formula point of view the construction of formal Bloch
solutions of the equation Hy = E 4y differs essentially from the construction
of Bloch solutions of the equation My = 0, where M is an operator of the
form (8). However, in the most essential matters of principle the construction
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of the spectral theory of the operators (8) and (12) proceeds absolutely in
parallel. This enables the author to hope that the approach developed in the
framework of this paper can be applied to the construction of the spectral
theory of arbitrary two-dimensional periodic linear operators.

Before we proceed to the presentation of the main material, we make two
digressions. Up to now we have spoken about Riemann surfaces only in
connection with the spectral theory of linear periodic differential operators.
The points of those surfaces parametrize the Bloch functions, which are
defined non-locally, in terms of the operator of translation by the period.
We called finite-gap operators those operators for which the corresponding
Riemann surface has finite genus. However, the initial definition in [6], [7]
of “finite-gap solutions” of KP type equations was purely local. (Under such
an approach it would be more correct to call such solutions algebro-
geometrical.) They were singled out by the condition that for the
corresponding operators L and A there are operators

ny ~ my ~ .
(14) Li=2 ui(z, y, )8, Ly=2 vi(z, y, t)ai,
i=0 i=o
which commute with each other
(15) [Lly L2] = 0
and commute with the operators (1)
(16) [Li, O'ay - L] = O, [Li, 6t — A] = 0.

This definition of *“‘finite-gap” solutions goes back to the pioneering paper
by Novikov [31], where he considered restrictions of the KdV equation to
stationary solutions of “higher analogues of the KdV equation”, that is, to
the solutions of the commutation equation of the Sturm-Liouville operator
L and an operator A, of order 2n+1

(17 (L, 4,] = 0.

The problem of classification of commuting ordinary linear differential
operators with scalar coefficients was posed for the first time and solved
partially in the remarkable papers {32], [33] by Burchnall and Chaundy in
the early 20’s. They proved that for any such operators there is a polynomial
in two variables R(X, ) such that

(18) H(Lu Lz) =0

In the case of operators of coprime orders (n;, m,;) = 1, to each point Q
of the curve I', defined by the equation R(X, u) = 0, there corresponds a
unique (up to a multiplicative constant) common eigenfunction ¥ (x, @) of
the operators Ly, Ly (¥ = Yo, t = ty):

49 Ll Q) =Mz, Q) Lplz, Q) =iz, Q). @ = O, p).
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The logarithmic derivative ¢, ¢! is a meromorphic function on I' that has in
its affine part g poles y(x), ..., ¥g(x), where g is the genus of I'. The
operaters L, and L, themselves (of coprime order in this case) are uniquely
determined by the polynomial R and by fixing g points yx,) on I'.
Definitive formulae in those papers were not obtained.

The programme of effectivization of the results of [32], [33] was
suggested by Baker [34], who noticed the coincidence of the analytic
properties of ¥(x, @) on I’ with those taken at the end of the last century
by Clebsch and Gordan as the basis of the definition of an analogue of the
“exponential function” on algebraic curves (see [35]). Unfortunately
Baker’s program was not fulfilled and those papers were undeservedly
forgotten for a long time.

In the authot’s papers [6], {7], where the equations (15) were considered
in connection with the problem of constructing solutions of KP type
equations, the results of the 20’s were considerably effectivized and
generalized to the case of operators with matrix coefficients. For the
coefficients of commuting scalar operators of coprime orders explicit
sxpressions in terms of the Riemann theta-function were found, which
showed that the general solutions of the equation (15) in this case were
quasi-periodic functions. This enabled us to connect the local theory of
commuting operators with the spectral theory of the Floquet operators with
pertodic coefficients.

Initially the classification problem was posed in [32], [33] for operators
of arbitrary orders, but it was noted that in the case when the orders are
not coprime there was not even an approach to its solution. The first
progress in this most complicated case was obtained in [36] on the basis of
algebraization of the scheme of [6], [7]. The problem of classification of
commuting operators in general position was solved completely by the
author in [37). (We note that the principal idea of this solution was
suggested in the author’s preceding paper [8], but its realization contained
essential errors.) [t turned out that such operators are uniquely determined
by a polynomial R, a matrix divisor of rank ». and a set of r— | arbitrary
functions wy(z), . . ., w,_o(z). The recovery of the coefficients from these
data reduces to the linear Riemann problem. Here r is a divisor of the orders
of L, and L,. It is equal to the number of linearly independent solutions
of (19).

Let us give a brief description of the principal stages of the proof of the
assertion just formulated, in order to present more completely the different
mechanisms of the appearance of algebraic geometry constructions. (The
reader interested only in the spectral theory of periodic operators can omit
this part of the introduction and proceed to the contents of subsequent
chapters without particular detriment to understanding the main material.)

Any two operators L, and L, with scalar coefficients satisfying (15) can be
reduced, by a change of the variable x and the conjugation i; — g(z)L;g (),
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to the form in which u,, = 1, un, , = 0, vy, (2) = vm, = const. This form
will be assumed in what follows.
The canonical basis c;(x, A; xg) in the n,-dimensional space £ (1) of
solutions of the linear equation
(20) Ly(x) = hy(x)
is usually normalized by the conditions
03& (:1:, }‘; 'TO) |x=xo:6i.jv Oéi, jgni’_i'

By (15) the operator L, induces on L(\) a finite-dimensional linear operator
L,(\) whose matrix entries in the basis ¢; are polynomials in A. Therefore
the characteristic polynomial

21 RO ) = det (u-1 — L,(A))

is a polynomial not only in u but also in A. It follows from its definition
that

(22) R(Lyy Ly) y (2) =0

for any solution of (20). Since R(L,, L,) is an ordinary linear operator, this
can be satisfied only when it is zero. Therefore the first of the assertions by
Burchnall and Chaundy is proved.

The equation

(23) RO, p) =0

determines in C? the affine part of the curve I'. To clarify its behaviour at
infinity, we consider a formal solution of the equation

(24) Lap(x, &) =kmp (@, B,
of the form
(25) ¥(@ =eew( 3 g @ k).
s==~N

Substituting (25) in (24) and finding successively the &, we can easily see
that there is a unique solution normalized by the condition N, = 0, £, = 1,
£.(xg) = 0,5 > 0. We denote it by Y(x, k; xq). Any other solution of the
form (25) is uniquely representable in the form

Yz, k) = AE)p(, k; zo)-
Since the operator L, commutes with L,, it follows that L,y (x, k; xg)
satisfies (24) and has the form (25). Therefore

(26) Loy (x, k5 zo) = p (k) ¥ (2, k5 o),

pk)=vmkm 4 D pk

s=-m+1
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We denote by :?5(1.‘) the n,-dimensional subspace generated by the formal
expressions Y(z, €;k; z,), €;' = 1, over the field of Laurent series in the
variable k7!. In the initial basis ¢(r, €;k; z,)the operator L, is diagonal.
But if we consider in ¥ (k) the basis with the canonical normalization
conditions, then the matrix entries of this operator in this basis coincide
with the matrix entries Li(A, z,)of the operator L, in the basis ¢;{z, A; z),
, = km. Therefore

ny—1

(27) R(h, W= [T (u—n(e;k)).

F=0
We are ready now to discuss the role of coprimeness of the orders of
operators. If (ny, m;) = 1, it follows from (26) that the equation (22) for
large A, and so for almost all A, has distinct roots. Furthermore, this means
that the curve I' is irreducible, and it is completed at infinity by a single
point Py in a neighbourhood of which %-}(Q) = 2" is a local parameter.
In this case, to each point Q@ = (A, ) € I' there corresponds a unique
eigenvector 2(Q, x4 of the matrix L,(X\, x,) normalized by the condition

ho = 1. Its remaining coordinates 4;(Q, xq), i = 1, ..., n;— 1, are meromorphic
functions on I'. The function

ny—1

@28)  W(m @ z)= T h(Q wei(x k@) Q=0 p),

is a unique solution of (19) under the normalization condition
Y(xg, Q5 Xo) = 1.

We consider analytic properties of ¢ on I'. The functions ¢; are entire
functions of the variable A. Therefore ¥ is meromorphic on I' outside the
point P,. Moreover, its poles y,(x,) coincide with the poles of 4; and so do
not depend on x. In a neighbourhood of P, it has the form

(29) b 0wy =eeso (14 D g (@) 5.

In the general case the curve I is non-singular, and the number of poles of
Y is equal to g, the genus of I'. The last assertion follows from an
examination of the function

(30) F (h, z)=[det (@i (z, Q;, 7))I%

where the Q; = (A, g;) € I are the inverse images of A under the natural
projection of T" onto the A-plane. It has poles of multiplicity 2 at the
projections of the poles y,(x,) of . Moreover, it has a pole of multiplicity
(n—1) at the point A = oo, which follows easily from (29). The zeros of F
coincide with the branch points of the covering X\: I" - C!. The equality of
the number of zeros and poles of th2 rational function F(\, x,) and the
formula 2g— 2 = v— 2n, which expresses the genus of an n-sheeted curve in
terms of the number v of branch points, enable us to obtain the desjred
assertion on the number of poles of .
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Thus the common eigenfunction ¢(x, Q; x,) of the commuting operators
Ly and L, is defined on I', outside P, it has poles v, ..., v, not depending on
x, and it can be represented in a neighbourhood of P, in the form (29).
Such functions are called Clebsch-Gordan-Baker-Akhiezer functions (more
often for brevity they will be called simply functions of Baker-Akhiezer
type).

The construction of the inverse correspondence, that is, the recovery of
the whole commutative ring # generated by a pair of commuting operators of
coprime orders from a non-singular curve I" with a distinguished point £, and
a collection of g points in general position, consists of two key stages. The
first is the proof of the fact that for any such collection (T', Py, v1, ..., Yg)
there is a unique corresponding Baker-Akhiezer function. This assertion can
easily be obtained with the help of the usual Riemann-Roch theorem. We
omit it because we can not only prove the existence and uniqueness of
but also obtain explicit expressions for it in terms of the Riemann theta-
function. (These expressions in a more general situation will be constructed
in §3 of Chapter 1.)

The second crucial point is the proof of the fact that for any function
A(Q) that has on I" a pole only at P, (the ring of such functions is denoted
by A(I', P,)), there is a unique operator L, such that

(31) Lap(z, Q5 zo) = A(Q)(x, Q3 Zo)-

The degree of L, is equal to the order of the pole of A(Q). For the proof
of this assertion it is sufficient to prove the existence and uniqueness of the
Baker-Akhiezer function. Since it is typical for finite-gap integration, we
present it briefly.

For any formal series of the form (29) there is a unique operator L 4 such
that

(32) (La—A(O) ¥ (@, ks o) =0 (k) eHs=0),
A(Q) = a_nk™ 4+ a_pp ft . .

The coefficients of L, can be found successively if we substitute in (32) the
formal series (29) and the expansion of 4(Q) in a neighbourhood of P and
equate to zero the coefficients of k%, s = n, n—1, ..., 0, on the left-hand
side. We consider the function $= Lay(x, Q; xo)— AQW(x, Q; xo), where
L 4 is the operator just constructed. Since the poles of  do not depend on
x, it follows that 12] satisfies all but one of the requirements that define a
Baker- Akhiezer function. As follows from (32), the constant term of the
pre-exponential factor in its expansion in a neighbourhood of 2, is equal to
zero. It follows from the uniqueness of ¢ that $ = 0, and (31) is proved.
It follows that all such operators commute with each other. We emphasize
once more that the quasi-periodicity of the coefficients of these operators
and the coincidence of the Baker-Akhiezer functions with the Bloch
functions are consequences of explicit theta-function formulae for Y(x, Q; xo).
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From the technical point of view the problem of classifying commuting
operators of arbitrary orders is considerably more complicated, but it is close
in spirit to the case just treated of operators of coprime orders. In the
general case the series u(¢;k) can take the same values for different &; only
in the case when u(k) = u(k"). Moreover, as follows from (26), the number
r is necessarily a common divisor of the orders n; and m; of the operators
L, and L,. Hence the polynomial R is then equal to

.
n' -1 ~

(33) Ry w= 1] (= (e®) =@M p),
where (gjl::)"' =A, n'r=n,.

We keep the notation I' for the curve given now by the irreducible
equation ﬁ(k, 1) = 0. At infinity this curve is completed by a single point
in a neighbourhood of which A~V (Q) serves as a local parameter. It follows
from (33) that in a neighbourhood of infinity, and so everywhere, to each
point Q of I' there corresponds the r-dimensional space L,y(A, xg) of
eigenvectors with eigenvalue g, @ = (A, u). We choose in this space a basis

h(Q, xo), i = 0, ..., r— 1, with the no normalization conditions
(34) R0, z)=8;;, 0<i, j<r—1.
All other coordinates #},j = r, ..., n;— 1, of the vectors 4’ are meromorphic
functions on I'. The functions
(35) Vi@ Q5 2) =S5 (Qr m) ¢ (@ Ay 7o)
form a basis in the space of solutions of (19), normalized by
(36) 0 (@, Os 2 lsmne=8i, O<Ti, j<<r—1.

The number r is called the rank of the commuting pair L, and L, (or of the
whole commutative ring # generated by L, and L,).

The vector-valued functions A (Q, x,) determine in the trivial bundle over
I’ an algebraic r-dimensional subbundle A(x). It is the starting point of the
investigations of [36]. How can we find the dependence ﬁ(xo)? For
r = 1 it was determined by differential equations and its properties played
an important role in [1], [2], [37] and other papers. For r > 1, as shown
in [38], the situation becomes considerably more complicated. ‘“‘Possible”
movements of 7 turn out to be covered by a non-integrable r-distribution on
the space of modules of r-dimensional sheaves over I" with a fixed flag at P,.
The variation of the normalization point x, determines a path tangential to
this distribution. At this point the investigations of [36], [38] terminate.

Our method consists not in the description of xgvariations of the sheaf
but in finding the eigenfunctions Y;(x, Q; x,), x, = const, themselves from
their analytic properties. Again, as in the case » = 1, the functions ; are
meromorphic on I outside P,. By analogy with the calculation of poles of
the Baker- Akhiezer function, it can be shown that in general position
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the ¥, have poles at rg points y,(xy). Moreover the residues of these functions
satisfy the relations

(37) 055 (Z,) resy §; =ag, (7o) resy |,

where the constants og;(z,) do not depend on x (but depend on the
normalization point x,). The collection (y,, as;), where ag; is an r-dimensional
vector defined up to proportionality, that is, o, € CP™1, are called Tyurin
parameters. They characterize ([39]) “matrix divisors” determined by stable
r-dimensional sheaves over I' with a fixed “frame”, that is, a set of basic
sections.

To determine the behaviour of {; in a neighbourhood of P, we consider
the matrix W(x, Q; xo) with matrix entries W}/ = 31y;(x, Q; xo). Its
logarithmic derivative does not depend on the choice of a basis in the space
of solutions of (19). Therefore in a neighbourhood of P, it can be computed
with the help of the series (25) Plx, €&'; z,), (&))" =1, (K'Y =k, j=0, ...,
..., ¥— 1, where k71(Q) is a local parameter. We obtain

4] 1 0 ... 0 0
0 0 1 0 0
(38) @) W-1=| + 0 (k).
0 0, 0 ...0 1
kb, 1. Wy ... W O

The functions W;(x,) are differential polynomials in the coefficients of the
operator L,.

We define an entire function ¥y(x, k; x,) of the parameter k by requiring
that in a neighbourhood of & = oo it is representable in the form

(39) o= 3 %) ¥ (=, k(Q); -

The problem of finding ¥, is the Riemann problem of factorizing ¥ on a
contour surrounding a small neighbourhood of P,. 1t reduces to a system of
singular integral equations and has for almost all x a unique solution
normalized by the condition x, = 1. It follows from (38) that

0 1 0 ... 0 0
0 0 i ... 0O 0
(40) (0.%,) ¥y = : :

-

0o 0 0 ..0

ktw, wy wy ... Wr_g

<

For it follows from (38) and (39) that ¥, ¥;* has the form (40) in a
neighbourhood of £ = oo up to O(k~t). Since det ¥, = det ¥ = 1, this
logarithmic derivative is holomorphic outside k& = oo. Therefore the equality
(40) holds precisely.
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Inverting the equality (39), we find that the row-vector ¢ with
coordinates y; has in a neighbourhood of P, the form

(41) CRCESE I RCRESE S AT S

where the &, are row-vectors, £, = (1, O, ..., 0), and ¥, is determined by (40)
and the initial condition ¥y(x,, k; Xo) = 1.

A vector-valued function {(z, Q; z,) = ($gy - - -, Pr_y), meromorphic
outside £y, having rg poles vy,, satisfying (37), and representable in the form
(41) in a neighbourhood of P,, is called a vector analogue of Baker-Akhiezer
functions corresponding to the set of data

(42) (T, Poy Vor Gy Wol2)s - « -, Wrool2)).

Here the w;(x) are arbitrary functions. (For » = 1 we have the usual Baker-
Akhiezer functions.)

The inverse problem of recovering commuting operators of rank » can be
solved again in two stages. First we can prove that for the data (42) in
general position there exists a unique vector-valued function corresponding
to them. Its construction reduces to the Riemann problem on I' of
factorizing ¥, on a small contour around P,. A method of solving matrix
Riemann problems on arbitrary algebraic curves was developed in [40], [41].

[t follows directly from (40) and (41) that for any function 4(Q) there is
a unique operator L4 of degree rn, where n is the order of the pole of A(Q),
such that

(43) (La —AQW = OG Y,

It follows from the uniqueness of the vector analogue of a Baker-Akhiezer
function that each component y; satisfies (31).

The correspondence

L: 4 L,

determines a homomorphism of the ring #(I', P,) of functions on I with a
single pole at the distinguished point P, to the ring of ordinary differential
operators. This homomorphism is determined by a set of data (42) in
general position.

Summarizing what we have said above, we arrive at the definitive
statement of the classification theorem.

Theorem [37). For any commutative ring - of differential operators there
is a curve " with a distinguished point Py such that A(T, P,) is isomorphic
to A. For almost all rings A the curve T is non-singular. Moreover, there is
a matrix divisor (v,, &), s = 1, ..., rg, where g is the genus of T, and a
collection of functions wy(x), . . ., w,-o(x) such that the image of the
homomorphism L determined by them coincides with # up to the change of
variable x = f(x") and conjugation by some function: # = @(z)Im I:(p'l(:c).
The number r is the greatest common divisor of the orders of operators in #.
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In some cases, as shown in [42], we can avoid the necessity of solving the
Riemann problem and obtain explicit formulae for the coefficients of
commuting operator of rank » > 1. In particular, an operator L of order 4
commuting with an operator of order 6 has the form

(44) L=(0i+u)+c . (®(v2) — 9 (y )+
T+ 0, (cx (@ (7)) — P (7)) — 9 (Ya)— @ (v1),

V=c(@)+Y, Ye=y—c(z)+c,
81 = (cte—1) &+ 8y o+ de, (S0 — )

4] —1
— <Cxxalx s

de
D(e, y)=L(—20)+L(c—y) +L(c+y),

where c(x) is an arbitrary function: {, ¢ are the Weierstrass functions [43].

We omit further details of the theory of commuting operators of rank
r > 1, since they will not be used in the main part of the paper (in contrast
with the construction of rank 1). We mention only the paper [44], where
the spectral theory of ““finite-gap’’ periodic operators of rank 2 was
constructed, and the papers [10], [42], [45], where a multiparametric
generalization of vector analogues of Baker-Akhiezer functions was
introduced and with their help solutions of the KP equations were
constructed.

To conclude this section, we characterize briefly a construction of
solutions of equations that belong to the “KP hierarchy’’, which was
suggested in the series of papers {46] and developed in [47]. This
construction was based on a formal generalization of the “local” approach to
the axiomatics of Baker-Akhiezer functions of rank 1.

Consider a formal series Y(xy, x,, X3, ...; k) of the form

oo

(45) ¥ (% k)= exp { > ziki) (1+21 E (@) E)

=
For any such formal series there are unique differential operators L,,,
n = 2, 3, ..., in the variable x = x; (whose coefficients depend on all
variables x;, x,, X3, ...) such that

00

(46) (= —L.)v(@ k=0 (k" exp (3 zk).

T,

i=1
The order of L, is equal to n. Its coefficients (like the coefficients in the
construction of commuting operators of rank 1) can be found by successively
equating to zero the coefficients of k% s = n, n—1, ..., 0, of the pre-
exponential factor on the left-hand side of (46).

In the case when the series (45) is not arbitrary but satisfies the property
that its pre-exponential factor converges to a function holomorphic in a
neighbourhood of & = o and the function itself extends analytically to some
algebraic curve of genus g and has g poles there, the relation (46) turns into
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the precise equality

a -
(47) (5 —L,) ¢ (x, k)=0.
The conditions of compatibility of the linear equations (47)
8 8
(48) [W_'an W_Lm]"'——o

are just the so-called “KP hierarchy”.

It turns out ‘that (47) follows from (46) not only when (45) is an
expansion of a multi-parametric Baker- Akhiezer function but also in a more
general situation. The corresponding series in the construction of [46],
[47] were uniquely determined by the points W of the universal Grassmann
manifoid. Unfortunately, in the framework of this approach solutions that
are interesting from the physical point of view with controllable global
analytic properties were not found, except for “finite-gap solutions of
rank 17 {which are quasi-periodic functions) and their various degenerations
{multi-soliton, rational, and others).

We note that the solutions of the KP equation constructed in [48], [49]
are also a special case of general solutions of [46], [47]. It should be
emphasized that their construction, which uses tensor fields of Baker-
Akhiezer type, enables us to prove that they are “asymptotically finite-gap™.

The question of constructing an analogue of the construction [46], [47],
in the case of vector-valued Baker-Akhiezer functions that arise in the
theory of commuting operators of rank » > 1, is still open.

The proof of Novikov’s conjecture in the Schottky problem is an
important mathematical application of the theory of commuting operators
of rank 1 and of the theory of the KP equation. In the author’s paper [7]
the formula

(49) u(z, y, 1)=26%10g8 Uz + Vy-+ Wi+ T|B)

was obtained for finite-gap solutions of the KP equation. Here 0(z,, ..., z,|B)
is the Riemann theta-function constructed from the matrix B of b-periods
of holomorphic differentials on an algebraic curve I'. The vectors U, V, W
are determined by the distinguished point P,. The vector { is arbitrary.

The Riemann-Schottky problem consists in describing symmetric matrices
B with positive definite imaginary part that are the matrices of b-periods of
algebraic curves. Novikov’s conjecture was that the function u(x, y, 1) given
by (49) satisfies the KP equation if and only if B is the matrix of b-periods
of some curve I'. Thus all the necessary relations on B can be obtained by
substituting (49) in (6). This conjecture was already partially proved in
[50]. where the corresponding equations on B were derived and it was
proved that they determine an algebraic variety, one of the connected
components of which coincides with the variety of the matrices of b-periods.
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Novikov’s conjecture was completely proved in [51]. The crucial point in
[51] is the proof of the fact that if u(x, vy, #) of the form (49) satisfies the
KP equation, then there are vectors US s > 3, such that the function

(50) U(Zyy .., Ty ... =20210g0 ( Y U'z,|B)
s=1

determines solutions of the whole KP hierarchy (x = x;, ¥y = x5, t = X3).
Since among the vectors U® there cannot be more than g linearly independent
ones, it follows that among the linear combinations of the operators L,
there are two commuting operators of coprime orders and so by [7] B is the
matrix of b-periods corresponding to these commuting operators of the curve

CHAPTER |
THE SPECTRAL THEORY OF THE NON-STATIONARY SCHRODINGER OPERATOR
§1. The perturbation theory for formal Bloch solutions

By Bloch solutions Y(x, y, w;, w,) of the non-stationary Schrédinger
equation

(1.1) (09, — & +u(z, y)) ¥ =0

with periodic potential u(x, y) = u(x+1;, y) = u(x, y+1,) we mean solutions
that are eigenfunctions of operators of translation by the periods in x and y,
that is,
1.2) Y@+, ¥, wy, wo) = wP(z, y, wy, wa);
' Yz, y + Loy wy, wo) = wap(x, Y, wy, 1w,).

The Bloch functions will always be assumed to be normalized so that

Y0, 0, wy, wy) = 1. The set of pairs @ = (w,, w,) for which there are
Bloch solutions will be denoted by I' and will be called the spectral Floquet
set. (For brevity the corresponding Bloch functions will be denoted by

v(x, ¥y, @), @ €T.) The multi-valued functions p(Q) and E(Q).on I" defined
by '

(13) w1=eiPlx’ u’z-—_-—_giEl,’

are called the quasi-momentum and quasi-energy respectively. If I'is a
smooth analytic manifold, then the differentials dp and dE are single-valued
holomorphic differentials. Their periods with respect to any cycle on I' are
multiples of 2w/, and 27/, respectively.

Suppose that to each point Q = (w;, w,) € I' there corresponds a Bloch
solution Y ¥ (x, ¥, @) of the equation conjugate to (1.1)

(1.4) (— 00, — B +1(z, y) ¢ =0
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such that

‘p+ (I+l17 y? Q):u.;“q.i. (I’ y9 Q)Y
Y, v+l A =w'y (2, y, Q).

Then the following assertion is true.

(1.5)

Lemma 1.1. The following equality holds:
(1.6) O dE (Ypp*), = dp (Y " — Py,

(Here and in what follows (), and (-}, denote the mean values in x and y
respectively.)

The equality (1.6) for the case of finite-gap operators was obtained for
the first time in [52]. A generalization of it to the case of operators of
arbitrary order with matrix coefficients is contained in [22].

Proof. Let J/l = Y(x, v, é) and y* = Y*(x, v, Q), where Q and Q are
arbitrary points of I'. It follows from (1.1) and (1.4) that

(1.7) 6, (V) = 9, (F " — F)-

Averaging (1.7) in x and y and making @ tend to @, we obtain the desired
equality with the help of (1.2) and (1.5).

The gauge transform { ~— e*¥p, where 0, y) is a periodic function,
transfers the solutions of (1.1) into solutions of the same equation but with
another potential @' = u(x, y)—0d,a. Consequently, the spectral sets
corresponding to the potentials # and % are isomorphic. Therefore in what
follows we restrict ourselves to the case of periodic potentials satisfying the
condition

(1.8) (ulz, y))x = 0.

The main purpose of this section is to construct the perturbation theory
for formal Bloch solutions of (1.1), which enables us to express these
solutions in terms of the basis data ¥ ,(x, ¥) of Bloch solutions of the
“unperturbed” equation (1.1) with some potential uq(x, ¥). More precisely,
we fix a complex number w;. The sequence of Bloch solutions

(19) w" ='¢n(x1 y) = ‘P(% Y, Qn)’ Qn = (wls w27’l) E I‘()v

of the equation (1.1) with u = uy(x, y) will be called a basic sequence if any
continuously differentiable function f(x) such that

(1.10) flz + 1) = wif(x),

can be represented as a convergent series

(1.11) f(z>=;rn (¥) Y (2, ¥)-
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An important example. Let uy = 0. Then for any complex number w, the
functions

(1.12) Pn = exp (ik,x — 071k Y)
form a basic sequence, where the k, are the roots of the equation
(1.13) w, = ehnli that is, kn=ka+§_i‘ n.
Besides the Y, we shall need a “dual sequence”
(1.14) Yn=19" (2, ¥, Qn)
of Bloch solutions of the formally conjugate equation
(1.15) (60, -+ 0% —uy (, ) ¥ =0
that satisfy the orthogonality conditions
(1.16) (PrPmde = (Pr b On, m-

Having at our disposal the sequences ¥, and ¥,, we can easily construct
in the “resonance-free case”, that is when

(1.17) Woy = Wyn, N0,

a Bloch solution $(x, ¥, Qo) of (1.1) as a formal series

(1.18) T(@ g Q=3 ¢l 4 Q) To=1o

This series describes a ““perturbation” of the Bloch solution {4 of the non-
perturbed equation. (Here and in what follows series of the type (1.18) are
taken in powers of the small formal parameter du.)

Lemma 1.2. If (1.17) is satisfied, then there is a unique formal series

(1.19) F(y. 0= F. (s Qv

such that the equation
(1.20) (00, — 82+ u,+8u) ¥ (z, ¥y Q)=7F (y, Qp) ¥(z, y, Qo)

has a formal solution of the form
(1.21) ¥(z, y, Qp)= 20 Qs (2, ¥y Qo)y  @o="Py="9(Z, ¥, Qs

satisfying the conditions

(1.22) (P WD x = (W Wodas
23 ‘P'(‘r_{"liv yv Qo)=wiqr(x1 y1 00)’
(1.29) ¥z, y+ L, Q) =wy¥ (2, y, Qo).

The corresponding solution is unique. The terms of (1.21) and the Fg are
given by the recursion formulae (1.25)-(1.29).
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We note that it follows from the uniqueness of F and from (1.23) that
the function F(y, Q) is periodic in y.

Proof. The equation (1.20) is equivalent to the system of equations

(1.24) (00, -— 024 uy) @, = "_21 Figsi— Sug,_;.

Since Y, is a basic sequence, the desired functions ¢, can be represented in
the form

(1.25) =2 ¢n (s Qo) Vn (2, 1)y &=0,. ¢

n
The requirement (1.22) is equivalent to the fact that
(1.26) =0, s=1.
Substituting (1.25) in (1.24) and equating the coefficients in y,,, n # 0, in

the expansions in y, on the left-hand and right-hand sides of this equality,
we obtain

s—1
i "27) Gayc; = 2 Fic;_i._. _<w<?l6u?;s—1>x . n==0.
1..21 '\pn"‘kll)x

This equation together with the condition wy,cn(y + L) = wycn(y),
equivalent to (1.23), uniquely determines the c¢j (and so the ;):

y+ls s—-1

>, s R Wen -1 ($#0ups—1)x l
(1:28) en (v, QO)'—Giw'zo:w-zn \ (gi Fic; —Tl‘-fﬁ’ni)_:_) dy'.

It toilows from (1.26) that the coefficient of Y, in the expansion of the
right-hand side of (1.24) is equal to zero. Therefore

1.99 F. , oz (Whdugs_1)x
(1 i ) N (y QO/ <1]73¢0>x .

The proof of the lemma is completed.

Corollary. The formula (1.30)
Yy
3 — ¢ ’ ! W ) L]
(130) ¥z, y, Q) =exp (—0 | Fu', Q) dy') g2y

0

determines a formal Bloch solution of the equation (1.1)

(1.31) P+l y Qo) = s, y, Q).
(1-32) Y, y + 1, Qv = weoP(T, Y, 005,

where the corresponding multiplier W, is equal to
1

(1.33) gy = ws exp | —ot | F (', Qo) dy’).
0
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In the stationary case, when u does not depend on y, the preceding
formulae turn into the usual formulae of the perturbation theory of
eigenfunctions corresponding to the simple eigenvalues. The condition
(1.17), as we said above, is an analogue of the condition of simplicity of an
eigenvalue of an operator. In those cases when it is violated, it is necessary
to proceed along the same lines as in the perturbation theory of multiple
eigenvalues.

As the set of indices corresponding to the resonances we can take an
arbitrary set of integers / C 2 such that

(1.34) Wy F=Wyp, a €1, nEl

(up to the end of this section, integral indices belonging to I will be
denoted by Greek letters, and all the others by Latin).

Lemma 1.3. There are unique formal series

(135) F% (y7 wi) = Zl ng (ys wi)
such that the equations

(1'36) (O'ay_aazc+u0+6u) Wa("[v Y, i)—‘ ./7 wi)‘lf (x5 y, wy)
have formal Bloch solutions of the form

(137) Ta:sgo (Pg'(xs Y, wi)s (Poazll?a=¢ (Iv Y, Qa)y

(138) ‘Ira(x‘l‘ll’ ¥, wi)zwiq’a(_m, Y Wy),

(139) Ipa (.’13, y+ lz, wi) = wZaWQ (Iv Uy wi)f
satisfying the conditions

(1.40) (Wi ¥y =84, (Va Yo

The corresponding solutions ¥* are unique and given by (1.41)-(1.43).

The proof of the lemma is completely analogous to the proof of Lemma 1.2,
which is a special case of it. Therefore we only give definitive formulae for
the Fg, and the coefficients of the series:

(1.41) P2 (, Y, wy) =n>;.1 ex % (yy wy) Yo (24 ¥)y  s>1.
We have
U'H:
S— (‘1'+6”(Pa>x
1.42) % =ot—am Fo TP ) gy,
( ) Wog —Wyp -\ (Zﬁ‘gl (1)+qn>x ) y

(g dugl_ 10x
(1.43 % (Y, W) == —b—3-17
) e N
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We define the matrix T§(y, w;) by the equation

(1.44) of, +TF =0, T0) =1,
A formal solution of this equation can be found in the form
(1.45) Ty, ) ‘“‘ﬁb Ty (y, ), To—1,
where the T, s 2 1, are given by the recursion formulae
s—1
(1.46) Ty=—ot < (Z Ti(y'yw) Fooi (¥ w,)) dy’.
0 =1
The functions
(1.47) g (z, ¥, uq):% TE (y, wy) b (@, y, w,)

are solutions of (1.1). Under the translation by the period in x they are
multiplied by w,, while under the translation by the period in y they are
transformed as follows:

(1.48) W (x, y+ Ly, wy) =2 78 wy) wpe¥P (2, y. w), T (w) =T (ly, wy).

[t is natural to call a finite collection of formal solutions ¥* quasi-Bloch,
since it remains invariant under the translations by the periods in x and y.
The characteristic equation

(1.49) R (wy, wy) = det (,8§ — TF (0,) wpy) =0

is an analogue of the *‘secular equation™ in the ordinary perturbation theory
of multiple eigenvalues.

Corollary. Let hy(w,, W,) be an eigenvector of the matrix f“é(wl)ww,
normalized so that

(1.50) ; e (0) W% (0,0, w) =1, Q= (w,, w,).
Then
(1.51) V(@ Q)= T ha (Q) ¥ (2 g, )

is a formal Bloch solution of (1.1) with multipliers w, and W,, where W, is a
root of the equation (1.47), normalized in the standard way.

By analogy with the above we can construct formal Bloch solutions for
the equation (1.4) formally conjugate to (1.1).
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Lemma 1.4. If the conditions (1.34) are satisfied, then there are unique
formal series

(1.52) F§® (y, w) = 2 FE* (y, wy)
such that the equations

(1.53) (00, + 02 —uy— 6u) ¥+ (z, y, w,) = };- FE% (. wy) V8 (2, v, w,)
have formal Bloch solutions of the form

(1.54) L ARE sgo (P_j'a (z, ¥y, wy), 9F = ‘l’;- =y" (1, ¥, Qg)s

(1.55) V(@4 1y y, wy) =wi W (2, g, 10y),

(1.56) W (2, Yyt Iy w)) = wia V% (2, g, ),
satisfying the conditions

(1.57) (W gy = 8F (Vapddas

The corresponding solutions are unique and given by

(1.58) QFe= 2 o % (y, w) e (@fy), s>1,
ne
y+is s—1; +a
= +s,0_ - w ’ +n-i,ﬁ (‘Pnau‘?;-i)a
59 o=t | ay (3 3 AP — Sepe),
v B =1 n
6 4o

(1-60) Fg;a= (\pﬂ :(Ps_1>x

N’ﬂ '\pﬂ)x

We define the matrix Tg*(y, w,) by the equation
(1.61) —olf +T*F*=0, T*(0, w)=1.
Then the functions

(1.62) ¥ (@ 0 w) = B T8 (g w) WP @, 4, )

are solutions of (1.4). Under the translation by the period in y they are
transformed as follows:

(1.63) ¥ (o, y+ by w) =3 T3¢ (w) wigd ¥*® (2, y, wy), T+ =T* (1, w,).

Corollary. The following equality holds:
(1.64) 7T B = 5P,
b4
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Since ¥* and ¥*P are solutions of formally conjugate equations, the
(F*P¥*) . do not depend on y. Since T(0) = TH(0) = 1, it follows that
(1.65) FHPE), = 8P () e
Therefore
(1.66) 6%F (yivy)y = (U (z, y+ 1y, w) V¥ (@, y + Iy, w)))s =
= 2V I3PT5 (py i e
Corollary. The formal Bloch solutions of (1.4) are defined on the surface
given by (1.49) and have multipliers wi* and L;;‘.

§2. The structure of the Riemann surface of Bloch functions

In this section we shall consider the formal series of the perturbation
theory constructed above by taking for an unperturbed potential uy = O.
The Bloch solutions of the ‘““‘unperturbed” equation (1.1) and its conjugate

(2.1) (60, — %)\ (x, y, k) =0, (00, + %) ¢* (2, y, k) =0
are parametrized by the points of the complex k-plane and have the form
(2.2) Y= T -0TIRY -t g ihx4oTIRIY,

The corresponding eigenvalues of the operators of translation by /; and /, in
x and y are equal to

(2‘3) U/" = (:‘“*ll, 1[72 = e-U-’h’lz_
For any complex k, the functions ¢, = Y(x, », k,), where

(2.4) fp = Ky - 220

!

form, as we said above, a basic sequence for the continuously differentiable
functions f(x) satisfying (1.5) for w;y = wy(ky). The dual sequence
Um = VT (x, v, k,,) satisfies (1.11)

(25) <\In'\l;)x == 6nm

Therefore the formulae (1.21), (1.25), (1.28), (1.29), (1.30), in which 8u
must be replaced by u(x, y), determine a formal Bloch solution of (1.1) if
k satisfies the resonance-free condition (1.17), which we are going to
consider in more detail.

It follows from (2.3) that for uy = 0 the resonances can only be simple,
that is, the equations '

(2.6) wy (k) = wy (), wy(RD) = wy(kh)
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can have at most two roots k™ and %®. The corresponding pairs of
resonance points have the form

(2.7) D =ky n, O =k.y .
where
aN |, Ml .
(2.8) kN'lell_—‘_ﬁ’ where N =£0, M are integers.
So if
(2.9) kyFky, ar

for any integers N # 0 and M, then we have a formal Bloch solution of (1.1).

Anticipating what follows, we note that with the help of estimates
considerably simpler than those we shall obtain below, we can show that for
sufficiently small u(x, ¥) analytically extendable to some neighbourhood of
real x, v, the series of the perturbation theory converge outside some
neighbourhood of the resonance points (2.8) and determine there a function
Ll7(x, ¥, ko) analytic in k4. This is true for any value of . The principal
distinction between the cases Re ¢ = 0 and Re ¢ # 0 even for small u(x, y)
is revealed under an attempt to extend ¢ to the “resonance’ domain. The
impossibility of such an extension (at least by the methods developed in the
paper) for Re ¢ = 0 is connected with the fact that in this case the points
kv are dense on the real axis. It would be very interesting and important
to find a language that enables us to describe the situation in a neighbourhood
of this continuous resonance set. We shall return briefly to this question.

In the case Re o # 0 the resonance points % ,,, have only one accumulation
point k = oo, This fact is crucial for all subsequent constructions. Up to
the end of this section we restrict ourselves to the case o = 1, though all its
assertions (in particular Theorem 2.1) proved for complex potentials u are
valid for all Re ¢ # 0. For ¢ = 1 it is natural to single out the case of real
periodic potentials u(x, ¥), in which general assertions admit an essential
further effectivization.

We denote by Ry the neighbourhoods of the resonance points &y, given by
the inequalities (we emphasize once more that in what follows 0 = 1)

M1
2N 1,

9 e AN e ‘1 e A
(2.10) Re k T ‘< v m <5
where g, is a constant chosen for the time being arbitrarily, so that these
neighbourhoods are disjoint, that is @; < w/20,, a, <!,;/4l,. For each point
kg not belonging to Ry, for any integers N # 0, M the following inequalities

hold:
(2.11) [ 1— eBR=hD | > b, |1 — e(hb=ki)s | >},

where
. . . 2]'[12
(2.12) h=min (1 —e-9, sina,), a;= o
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In what follows we shall assume that the periodic function u(x, y) under
consideration extends analytically to some neighbourhood of real x, ¥y and is
bounded there by some constant U, that is,

(2.13) Ju@, I<U, [Imz | <<, |Imy | <1,
We fix a constant e satisfying the following inequalities:
(2.14) e<min (g, 1), C(e)<—,
where ¢, is a root of the discriminant of the quadratic equation
(2.15) aC24-bC 4-2U =0, a—2U , b=eU—1,

and C(e) in the second of the inequalities (2.14) is the value at € of the
branch of the root of the equation (2.15) which is analytic in a neighbourhood
of & = 0, C(e) = U -+ O(e®) (by the second inequality this branch at ¢ is
well-defined).

Let R, be the rectangular domain in the complex plane

(2.16) [Rek | <Ny, [Imk|<<N, q=e 2™,
where N,, N, are arbitrary fixed numbers such that
llNl
Iy 1l 4l Iy l , 1
(247) & g, e, M‘;‘ log >+ N,<e¥, Npy>-2N,, 2 A

We denote by R the complement to R, and the neighbourhoods R . ,, of
the resonance points.

Lemma 2.1. For ky, € R the series of the perturbation theory constructed
by Lemma 1.2 and its corollary absolutely converge uniformly in R and
determine Bloch solutions a(x, v, ko) of (1.1) (¢ = 1) analytic in the
domain ko € R, IIm x| < 7,, 1Im y| < 7, and non-vanishing there.

Proof. It follows from the translation properties of the ¢5(y, ko) defined by
(1.28) that

(2.18) e (x, k) =5 (y, ky) e®A-RDY,

where the function ¢5(y, k) is periodic in y. Let us prove by induction
that for ko & Ry, |Im kol > N, the following inequalities hold (s = 1):

~ e f ko), ns=ng,
(2.19) Fes (v, o)l<qu'”'><{ Is oo ’

n=mn,.
T 0

Here ng is an integer such that [27n,/l;+ 2Re kol < 1/2. The constants C,
are defined successively by
s-1

(2.20) Ci=1, C=U (Coy+ 22 X C,iCy L), s>2

h~’-—

=
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The non-negative numbers f,(k,) satisfy the condition

(2.21) NS R INES

n=0, fe
Suppose that (2.19) is valid for all s’ < s— 1. Then for the same s’ > 1 the
following inequalities hold:
1 2 | Imx| bmo

(222)  lqewt1<Co (errtber-tde (gt )Y
From this inequality for Im x = 0 and from the fact that /,q!™ /h < e* by
(2.17), it follows that

(2.23) F, =0, [Fe(y, k) |<<2UC, _1e%, s =2

The equality F; = 0 is valid by the normalization conditions (1.3).
It follows trom (2.19) and (2.23) that

l s-1
w§-rhy  VEH
e AN s—1i 1|
(2.24) |\ —z—m \ (;_r Fic 1)dy <
€ 07t —14 'y i=2

S-+1
<20\, (2J Cot) X {8 ) BTy

el n=mn,,

where the constant J, 4 is equal to
| eRe (Bhi=E) Is__q |

(2.25) Tno= .
| Re (45 —Ap)| | eFhhD Iy |
To estimate
(Ri-rhyy ViDL

ARR-RD L _q ¢
14

we estimate the Fourier coefficients of the expansion in x of the function
(L@s—1}0)

(226) In,s = ('q’;uﬂps—i)x dy’

2nin

(2.27) (€ T Tug_h | <

gs2 (—li—}— ez)gs“‘z (—lhz——i—i) , nF=ng,

g’ n=n,.

<UC, (g™ > {

(The summation in (2.27) is taken over k #* 0, since the zero Fourier
coefficient of u is absent by (1.3.) From (2.27) and from the fact that

it = exp (a4 (k3 — k) )

it follows that
(2.28) | oy | <<UT 5000,
g2 (Lht+1), n=ng,
[ L0, | <SUC,_ g v g % {gs, n = My, s=2.
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If ko & Rypr, then
(2.29) J o o<<min (ih"'- . | Re (k% — k)t |) .

Moreover
(2.30) D Jao< D [Re(—k) < [ Rek;* log( 2 | Rek, |).

nH-19s0 NFNoye

It follows from (2.17) that the constants f,, defined by
(231) jn‘:e_s (l_}:' '}'1) Jn,m n#nOs

satisfy the condition (2.21). Summing up (2.28) and (2.24) and taking
(2.31) into account, we obtain the desired inequalities (2.19).

For IRe kol < Ny, Im kol > N, we prove that for all n (including n = ng)
the first of the inequalities of (2.19) holds. Moreover, the constants f,
satisfy the condition (2.21), in which the summation is taken over all #.

We note that by the induction hypothesis the left-hand side of (2.24) is
estimated for all # in terms of the first row of the right-hand side of this
inequality.

We deform the contour of integration in (2.26) in the complex domain so
that it joins first the pointsy, ¥’ £i7, (»' = Re y), then ' tir,, ¥’ tir,+1,
and ' *it,+1,, y + 1, by rectilinear intervals. We denote by If,’s,j =1,2,3,
the integrals (2.26) over each of these intervals. Since # and @, are
analytic for 1Im y| < 7,,

(232) In,s: I:x,s+]121,s+[$1,s'
We have
y+i:
2 2 ,
(2:33) It I = B0 0 ytug, . dy.
v

Taking into account that by the induction hypothesis the left-hand side in
(2.27) can be estimated for all # in the case under consideration in terms of
UC,.q\"e®, s = 2, we obtain
(2.34) | Ih s+ 13,5 | <<Ug™ | Im [(Ic”——kz)"l\'{i’ s=1
.o 7,8 n,8 | == g n 0 . Cs—ies’ S>2.
We have for the second summand
1, s

=1
- . ; =t Im Gh-RD iy
(2.35) [ s | <SUT e i T < {Cs-ies, s=2.

Thus for I, two types of inequalities are valid: the first one follows
from (2.34) and (2.35), while the second one is the inequality (2.28) which
by the induction hypothesis, changed in the domain specified (the first of
the inequalities (2.19) holds for all n), acquires the form

l In,s 1<ch-5«fn,0€sqlinl, n=~ 0.
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We define the quantities f,, by

2Nl 2Nl
— .

k14

(2:36) fo=e2T0g |1 |> g

9 fn=5_2

It follows from (2.17) that they satisfy (2.21). Using (2.34) and (2.35) to
estimate | I, , | for Inl < 2N,l;/m and the modified inequality (2.28) for
lnl> 2N,l,/n, we obtain the desired assertion of the lemma.

It follows from (2.20) that the constants C are the coefficients of the
expansion at the origin

(2.37) C(e)= 21 C et

2nn
7, Im %,

of the analytic branch of the equation (2.15). Hence for & < ¢, this series
converges absolutely. Therefore the series (1.19) and (1.21) determine
analytic functions ¥(x, y, ko) and F(y, ky), ko € R. By the second
inequality in (2.14) and also by (2.22) we have for |Im x| < 7,/2

(2.38) | W(z, y, ko) | =1 — 2C(e) > 0.

Therefore the Bloch function \T/ defined by (1.30) is analytic for k, € R,
IIm x1 < 7,/2, lIm y| < r, and does not vanish. The lemma is proved.

We now construct Bloch solutions in resonance domains. Asin Lemma 1.3,
let 7 be a finite set of resonance indices.

Lemma 2.2. If for all n € I, o € [ the inequalities

239) 3 Juat X

Injz=N In|<N

4nn
L

Im kO)—1+qg_|ImkoHnl)<82

heold for some integer N, where the J, , are given by (2.25) with k, replaced
by k,, then the series (1.35) and (1.37) converge absolutely and determine
analytic functions Fg§(y, wy) and ¥*(x, y, w;) satisfying (1.36).

The proof of the lemma is completely analogous to the proof of
Lemma 2.1. The corresponding estimates for the terms of these series have
the form

(2.40) | e | O e Higln ol oo = e B,
(2.41) 2 Fna<ts

U, _ 8’qla—ﬁl s>2
2.! o (h&—hg)y { 81 1 1 V==&
(2.42) | Fil IS\ugp-v, astp, s=1.

We consider consequences of this assertion. Suppose that ko & R, but it
belongs to one of the neighbourhoods Ry of the resonance points. Then
if we take {0, —2N} for I, the inequalities (2.39) will be satisfied. Therefore
for w, € wy(R ya) the analytic functions ¥*(x, ¥, wy) and Fg(y, wy),

w, € R 1 x.ar1, are defined so that (1.36) holds. The matrix T(y, w,) defined
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by (1.44) is also analytic in the domain IN'\H ~.ary of the complex plane onto
which the function w (k) maps Ry, a and R-x-ar. It follows that the
Bloch solutions of (1.1), defined by (1.50) and (1.51) for any point of the
two-sheeted covering of R 1 B OVEr ﬁ; ~.ar1 given by (2.43), are meromorphic
functions on ﬁ’,N‘m:

(2.43) 12 — 10, Sp (T (wy) wyg) + det (TF (wy) 10y3) =0,
wy=w, (k,), k€ Ry s % p=0, —2N.

The poles of g(x, vy, @) coincide with the poles of 2% and so do not depend
onx, v, Q€R xa.

In what follows we shall assume that the constant e is chosen so that
besides the inequalities (2.14) the following inequality also holds:

h
(244) g < m .

In this case the discriminant of the equation (2.42) can vanish only inside
the domain IA?W' ai- This assertion follows from the fact that on the
boundary of R x ar and R-y —» both the assumptions of Lemma 2.1 and of
Lemma 2.2 are satisfied. It follows from the construction of the Bloch
solutions J(x, v, ko) and U(x, v, ki), wy = wy(kg) = wy(k}), that the passage
to them corresponds to the diagonalization process of the matrix f'g(wl)wzs.
Therefore the eigenvalues of this matrix coincide on the boundary with

Wolky), Wa(ko) defined by (1.33) for the resonance-free domain. Since by
(2.23)

~
"

(2.45) | § F . k) dy| <elUC (o),
0
we have
wy (k) wy (ke) . wy (k)
(2.46) | L2tk —1|> ———“,Q(L_:)—il_Q SH | ehUC (6=

wg (ko)
>h—2eLUD (e) (1 +20)=h (1 — C (¢)) > 0.

Therefore on the boundary of IN?,.\-‘Ml the equation (2.43) has distinct roots
and its discriminant can have zeros only inside the domain.

All the facts proved above are valid for any potential satisfying (2.13), in
particular for the potentials u, = 7u(x, ), 0 <7 < 1. Since under such a
deformation the number of zeros of the discriminant inside the domain is
preserved, and for 7 = (Q it has a zero of multiplicity 2 at the point
ut™ = w,(ky»), wWe arrive at the conclusion that the discriminant of the
equation (2.43) has either two simple zeros or one zero of multiplicity 2.

Definition. A pair of integers (N > 0, M) such that k. € R will be called
distinguished if the discriminant of the equation (2.43) has a zero of
multiplicity 2.
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In this case ffm..\u is reducible, that is, it splits into two sheets. Then
the Bloch function {(x, v, ko) extends analytically to the domains Ry, and

R n -3, which are split sheets of ]Ai’;_\v' ari- For non-distinguished pairs the

two-sheeted surface R, x, 37 iS non-singular.

Lemma 2.3. The Bloch function {,17(x, ¥, Q) has one simple pole on ﬁm,m
( for non-distinguished pairs N > 0, M).

Before we proceed to the proof of the lemma we note that in exactly the
same way as above we can prove that the series of the perturbation theory
for the formally conjugate Bloch function W *(x, ¥, ko) converge in the
resonance-free domain and determine there an analytic function. It follows
from the corollary of Lemma 1.4 that ¢*(x, y, Q) is defined in the same

way as $ on IA?,N,MI, where it is meromorphic and its poles do not depend
on Xx, y.

Proof. We consider an arbitrary periodic variation 6u of the potential u.
By analogy with the proof of (1.6) (see also {22], [52]) we can obtain

(2.47) GO ()< — 18p (hetpt — YA, ++ ((P8up) = 0.

It follows from this equality that the functions (Y J™*), and (¥, ¥+ - ¥i),
cannot have coinciding zeros. For otherwise at this point K $8ug ™) = 0
(where {{+ ) denotes the mean value in x, ¥), which cannot be true for all
Su. Let us now apply (1.6). By what we have proved above the zeros of
(\7 $+)x coincide with the zeros of dp which, in turn, coincide with the
zeros of the discriminant of the equation (2.43). Therefore there are two

of them. Outside the resonance domain ($$+)x # 0. Therefore in f?, NI
the number of zeros is equal to the number of poles, that is, each of the
functions $ and $+ has one simple pole in this domain. The lemma is
proved.

From the topological point of view “pasting” the two-sheeted covering

f?, ~.arp, to which the Bloch function ¥ extends from the resonance-free
domain, instead of two domains R 5 and R-y -j, is the simplest
reconstruction corresponding to ‘“‘adding a handle” between two resonance
points ky y and k- ;.

We consider the extension ¢/ inside the central resonance domain R,
defined by the inequalities (2.16) in which without loss of generality we can
assume that Ny = [;N;/2w is an integer. The function w; (2.3) maps R, as a
2 Ni-sheeted covering of the annulus exp(—N,/l;) < w; < exp(N,/;) in the
wy-plane.

As a set I of resonance indices for w, that satisfy the preceding inequalities
we choose all indices for which |Re k,| < N,. Then the conditions of
applicability of Lemma 2.2 are satisfied. By analogy with the above, we
obtain the result that J(x, », k,) extends from the resonance-free domain to
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the Riemann surface R,, which is defined over the annulus exp(—N,/,;) <
< w; < exp(NV,!I;) by the characteristic equation (1.49) for the 2N x 2N
monodromy matrix of quasi-Bloch solutions constructed as perturbations of
the solutions exp(ik,x —k2y) of the free equation (2.1). By Lemma 2.2

this matrix i’g(wl)wz s is analytic in w; in the domain of its definition. Thus,
we arrive at the following lemma.

Lemma 2.4. The Bloch function $(x, v, ko) extends analytically from the
resonance-free domain to R},, where it is a meromorphic function whose
poles do not depend on x, y. Their number g, does not exceed the number
of pairs (N > 0, M) such that kyu € R,. In the general position when R is
non-singular, g4 is equal to the genus of R,.

Anticipating what follows, we note that for the real potentials u(x, y) the
surface R, is always non-singular.
We denote by I' the Riemann surface obtained from the complex k-plane

by “pasting” Ro instead of R, and ‘““pasting” }}._\-,M; instead of R x ar and
R_~, _yr (for non-distinguished pairs N > 0, M).A This surface is smooth
everywhere except for finitely many points in R,.

Renotation. Up to now Bloch solutions of the equation (1.1) constructed
with the help of perturbation theory have been denoted by $ In what
follows for brevity we shall omit the tilde sign, denoting them by y(x, y, Q).
In a similar way we shall omit the tilde sign over the eigenvalue w,(Q) of the
operator of translation by the period in y.

Theorem 2.1. The Riemann surface I' is isomorphic to “the Floquet spectral
set” for the operator (1.1). The Bloch solutions Y(x, v, Q) of this equation,
normalized by the condition y(0, 0, Q) = 1, are meromorphic on T. The

poles of Y do not depend on x, y. In each domain ]i, ~.arg the function y
has one simple pole. In R, it has g, poles, where g, in the general position

when Ro is non-singular, is equal to the genus of Ry. Outside ﬁ;_\~, a1 and
R, the function  is holomorphic and has no zeros.

Proof. All the assertions of the theorem except for the first one follow
from the construction of T itself. To each point Q € T there correspond
eigenvalues wy(Q) and w,(Q) of the operators of translation by the periods
in x and y. They determine a map of I' into C? with coordinates w, and w,.
The fact that it determines an isomorphism between I' and the “Floquet
spectral set” follows from the next lemma.

Lemma 2.5. For any continuously differentiable function f(x) satisfyving
(1.9) (that is, f(x+ 1) = wof(x)) the series

(2.48) S= y(z, y, Q) e

(bhWn)x
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converges to f(x). (Here, as before, we denote by (, = Q(wy) the point of
T such that wi(Q,) = Wig, ¥n = Y(x, ¥, On).)

The proof of the lemma in the special case of finite-gap operators was
first suggested in [52]. It extends to the general case practically without
changes. From Lemma 1.1 and from the fact that the functions (Y y*),
and (Y, ¥ — YY), have no common zeros it follows that the differential
_dp dE
T T (PPt — i)y

is holomorphic on I and has zeros at the poles of ¢ and ¢ 7.
We consider the integral

(2.49) 1)

A
1 ‘ R T, Yy, b+ (2, y, r
(2.50) SN=-I—1—S \ f (z') 4 %;_legwr(,w;’ D40 dz",
Cy 0
where we take for the contour Cy the boundary of the square |Re kI <
< 72N+ 1)/21, 1Im kI < 72N+ 1)/21,, where N is a sufficiently large
integer. The integrand has poles at the points Q,,, and its residues at these
points are equal to the corresponding terms of the series (2.48). On the
other hand, using (2.22), we can easily see that Sy is equal to the sum of
the first N terms of the usual Fourier series for the function f(x). Making N
tend to infinity, we obtain the desired assertion.
Let (wy0, w;) be an arbitrary point of the Floquet spectral set and ¢/ the
Bloch function corresponding to it. If w} does not coincide with any value
Won = wy(Cx), then

(251) ('\P' (:L', Y, Wypy w;) 1P+ (z, Y, Qn)x=0,

since the left-hand side does not depend on y and on the other hand under
the translation of y by [/, it is multiplied by wwsi. It follows from
Lemma 2.5 that ' = 0. The theorem is proved.

We emphasize once more that it is valid for all (including complex)
potentials satisfying (2.13). For real u(x, y) it can acquire a more effective
form. Before doing this, we give the following definition.

Definition. A potential u(x, y) is called finite-gap if all except finitely many
pairs (N > 0, M) for it are distinguished, that is, I' has finite genus.

For finite-gap potentials the surface I, corresponding to them, coincides
outside some finite domain with a neighbourhood of infinity on the usual
complex plane. Therefore it can be compactified by one “infintely distant”
point Py, = oo, In what follows we keep the notation I" for the corresponding
Riemann surface (algebraic curve).

Corollary. The Bloch solutions y(x, ¥, Q), Q €T, of the equation (1.1) for
finite-gap potentials u are defined on the compact Riemann surface T.
Outside the distinguished point P, the function  is meromorphic and has g
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poles not depending on x, y, where in the general position when T is non-
singular g is equal to the genus of T'. In a neighbourhood of P, the function
V(x, vy, Q) has the form

(2:52) peieow (1433 B (2, 9) ),

where k™1 = E-YQ) is a local parameter in a neighbourhood of P,.

All the assertions of the corollary except for the last one follow directly
from the definition of finite-gap potentials and Theorem 2.1. To obtdin
(2.52) we use the fact that in a neighbourhood of infinity Y(x, y, k) is given
by series of the perturbation theory for the resonance-free case. It follows
from (2.22) that the function

(2.53) Pz, y, k) e—ikx+hiy

which is holomorphic in a deleted neighbourhood of P, is bounded.
Therefore it is holomorphic in this neighbourhood and can be expanded in
the series

o

(2.54) Y(x, y, k)e- etk =2 £ (2, y) k.
1

s=

1t follows from the normalization (1.8) that £¢; = 1, and the corollary is
proved.

We call a set of pairs of complex numbers n = {(p;, p:)}, where s ranges
over a finite or infinite set of pairs of integers (N > 0, M), admissible if

aN

o ’ >’ — : '—1
(235) Reps-_—Repsz o Ips—-ks|=o( ks | )7
- . — l
| Pi—kel =0 (157)

and the intervals [p;, p:l parallel to the imaginary axis are disjoint.
For cach admissible set # we construct a Riemann surface I'(w) by making

vertical slits between the pairs of points p:, p: and — p;, —p; and by pasting
together the left bank of the right slit with the right bank of the left slit and

vice versa. After such pasting, to each pair of slits (p;, p)and (—p, —p3)
there corresponds a cycle non-homologous to zero, which will be denoted
by a,.

Theorem 2.2. For any real periodic potential u(x, v) analytically extendable
to a neighbourhood of real x, vy, the Bloch solutions of the equation (1.1)
with ¢ = 1 are parametrized by the points Q of a Riemann surface I'(n) for
some admissible set m. The corresponding function Y(x, y, Q) is meromorphic
on I'(w) and has one simple pole on each of the cycles ag.
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Proof. For real potentials u the complex conjugation transforms Bloch
solutions of (1.1) into Bloch solutions of the same equation. Therefore the
correspondence

(2.56) T (. Wwe)— (1, W)

is an anti-holomorphic involution of the Floquet spectral set, which by
Theorem 2.1 induces an anti-holomorphic involution of the “spectral curve” I'.
We can verify that such a curve exists directly from the construction of T
In particular, it follows from Lemma 1.2 that in the resonance-free domain 7
has the form k, = —k, and moreover y(x, v, ko) = U(x, ¥, —ko).

We consider the neighbourhoods R y ,; of the resonance points lying

outside the central domain R,. The invariance of f?, ~,3ry under 7 means
that two zeros of the discriminant of the equation (2.43) either both lie on
the straight line Re k = wN/I; or they are placed symmetrically outside this
line. The latter is impossible, because on the intersection of this line with
the boundary of R y, i the signs of the imaginary parts of the eigenvalues of
the operator of translation by the period in y are different (this is seen
directly from (2.3) for. the free equation (2.1) and from (2.46) for the
general operator (1.1)). Consequently, inside an interval of the line there is
a point at which w, is real. Therefore both zeros of the discriminant, which
we have denoted by p;, p., lie on the line Re k = wN/I,. The slit between
them corresponds to the cycle a;, which i§ singled out by the conditions
that on it both multipliers w, and w, are real, s = (v, M). This cycle is a
“forbidden zone™, which appears at the place of the resonance point k.

Let us prove that the pole of the Bloch function lies on the cycle a;. On
this cycle Y and ¢+ are real. Since Y(x, ¥, Q) = ¥(x, y, 7(Q)), the poles of

Y must be invariant under 7. Since on ]An’; ~,ari there is only one pole of ¢,
it must be a fixed point under 7 and so it belongs to the cycle a;.

For sufficiently small potentials u(x, ), when the central domain R is
empty, the theorem is proved. We shall increase u(x, »). The structure of I'
described above is topologically stable and can be destroyed only under the
confluence of cycles g, for different s. (At that moment " will have
singularities.) The condition of periodicity of u is an obstacle to such a
confluence. The condition of periodicity of u in x separates the cycles a;
and a, if N # N'. The periodicity of u in y is an obstacle to the confluence
of cycles over intervals of one line Re k = #N/l;. If we cut " along the
cycles a, and along the line Re k£ = 0, then in the domain Re & > 0 a single-
valued branch of the quasi-energy E(Q) is defined. Since the differential dE
is purely imaginary on a,, the real part of F(Q) extends continuously to a,
and is identically equal there to wM/I,, s = (N, M). Thus, the cycles a, are
sepatated by the values of the real parts of the quasi-momentum and the
quasi-energy and cannot join. Therefore the desired theorem is valid for all
u, not only for small u.
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It follows from the construction of I' that for sufficiently large
Is| = INI+ IM| the points p, and p; are localized in neighbourhoods R, of
the resonance points k,, which is reflected in (2.55). In the case under
consideration of potentials u analytic in a neighbourhood of real x, y, we
can show that

(2.57) | pi— pi] = O (e-aIN1=pIM)).

This relation is not proved in this paper and is not included in the definition
of admissible sets in connection with the following circumstances.

The representation of I' described in Theorem 2.2 is well known (see
{53], [54]) in the spectral theory of the Sturm-Liouville operator with
periodic potential u(x). The corresponding curves I' are hyperelliptic. The
collections p}. py for s = (N, 0) correspond to them. Moreover, p, = p,’.
For independent parameters uniquely determining u we can take d, = Im py
and points v,, one on each of the cycles. In terms of these parameters-the
process of approximation of u by finite-gap potentials u; looks very simple.
The potential u; corresponds to the collection of data in which it is
supposed that d¥ =d,, IsI < G, d¢ =0, Is|> G ([53]).

Such an approach to the proof of the approximability of an arbitrary
perjodic potentiai by finite-gap ones in the non-stationary case is very
complicated, because the parameters p; and p; are not independent (they
were dependent in the stationary case too. but their connection was explicit
there). As will be seen later. to any finite admissible collections there
correspond finite-gap potentijals periodic in x and quasi-periodic in y (see §84).
‘The condition of periodicity in v leads to the fact that among the p, and p;’
only one half is independent (for example, p, or p,—p:). Therefore it we
trv to construct a process of approximation by finite-gap periodic potentials,
it is necessary to ‘‘shut” the zones [p;. pi' ] for large |sl, correcting the
remaining ones at the same time. In principle this way is possible, but
technically it is rather difficult to realize it. Below we shall give a proof of
the approximation theorem based on a different idea, which is also applicable
in the case of the spectral theory of operators for which the poles of the
Bloch functions do not lie on fixed ovals of the corresponding anti-involution
(the spectral theory of operators that are used for the construction of finite-
gap solutions of the sine-Gordon equation or a non-linear Schrédinger
equation with repulsion and so on apply to a number of these cases). Since
in the course of a detailed proof the explicit parametrization of © with the
help of admissible collections m will not be used, we do not specify necessary
and sufficient conditions that characterize the admissible collections.
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§3. The approximation theorem
Suppose that the potential u,(x, ¥) of the equation (1.1) with Re 0 # 0 is
a trigonometric polynomial. Since

2niNx M
(3.1) V(x,y, kym) ¥ (2, ¥s how, ar) = exp ( 1;1 : + 1112 g )

(in this section we adopt the initial definitions and notations of the first
section and the beginning of the second, that is, Y (x, y, k) is a solution of
the free equation (2.1) and $(x, v, Q) are solutions of equations of the type
(1.1)); this means that for some G

(3.2) ({P(z, y, Exoa)OH(z, ¥y, b=y -2y, y))) =0,
IN|+|M|>6.

It follows from the formulae of Lemma 1.2 that under the condition (3.2)
the first-order term ¢,(x, ¥, ky) of the perturbation theory has no poles at
the resonance points k., for INI+ IM|> G and can be extended to them
by continuity. The poles at these points arise in the next order of the
perturbation theory. The main idea of the subsequent construction relies on
the possibility of constructing a formal series U(x, ») with principal term u,,
the subsequent terms of which are chosen so that the corresponding
terms of the series of the perturbation theory have no poles at the

Exan | N+ M|>G6.

Lemma 3.1. Let uy(x, y) be a periodic function satisfying (3.2). Then there
is a unique formal series

irae

(33) U(_’I.', y): > ug (X, )

in which for s = 2
(3.4) u;wu:__ Y (@, y, kxa) W (2, Yy Foy, o) U (2, ) =0,
|N |+ M <G

and such that for any ko 5=k, | N |+ | M| < G, there is a unique
formal series

(3.5) me=;&m%»

for which the equation
(3.6) (00, — 03+ U (z, y)) YV (x, y, ko) =F (y, ko) ¥ (2. y. k)

has a formal solution of the form

(3.7) Wy k)= 2 0@y k) o= § (g A,
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satisfying the relations
(3.8) W(z, y, ko) ¢, ¥y, b))y =1,
. Wi 41y, y, ko) = wy (k)W (@, y, o)k
(-4) Wiz, y + Ly, ko) = walk)¥ (2, y, k).
Proof. The equation (3.6) is equivalent to the system
(3.10) (6dy — 03) ¢, == }E Fi—u)q, .,

FER

For I, 5= &y the terms of the series (3.5) and (3.7) are given by formulae
completely analogous to (1.25)—(1.29):

(3.11) Fi(y, ko) = (‘I’Oulq\—x)u YRt (7, Y k),
s 2
(3.12) (p,:z ¢ ko) b (@ w) by {2y ket )
n==(
11-H s
(3.18) ¢ =07 ‘sz)n '\ D (Fieh T — (g y) dy'

i=1{

Suppose that the terms u; of (3.3) with numbers i < s— 1 are constructed
so that the ¢;(x, ¥, ko) have no poles if &k, = ky, for INI+1MI> G.
Hence, the ¢; can also be defined at these points by continuity. The next
term u,(x, y) of the series (3.3) can be found from

y+los-1
(3.44) uM= \ > (Fuei'—
y =i

- <"l+ (‘T? ylv ]“-N,-M) Ui s-i (17 .U’e k_'\'_‘-I))x) dy'7 ‘ N l + ! M I > G.

The equalities (3.14) together with the normalization conditions (3.4) and
(1.8) determine all the Fourier coefficients of the periodic function u(x, »).
It follows from (3.14) that ¢,(x, v, k¢) has no poles at k., for INI+ IM> G.
The lemma is proved.

Theorem 3.1. Each smooth periodic potential u(x, y) of the equation (1.1)
with Re g # 0, analytically extendable to a neighbourhood of real x, y, can
be approximated by finite-gap potentials uniformly with any number of
derivatives.

The proof of this assertion will be given only for ¢ = 1. It extends to the
general case Re o # O practically without changes (as in the proof of
Theorem 2.1). For any integer G we denote by u§(x, y) and u§(x, v)
periodic functions such that

315  u(z y)=uf(z y+ufley), @H=whH=0
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and such that for the u§ the conditions (3.4) and for the u§ the conditions
(3.2) are satisfied. By Lemma 3.1, to the potential u$ there corresponds the
unique formal series (3.3) U%(x, y).

Lemma 3.2. There is a constant G, depending on the quantities U, 1., 7,
from (2.13) such that for G > G, the corresponding formal series (3.3)
converges and determines a smooth finite-gap periodic potential U%(x, y) of
the equation (1.1).

Proof. 1f u satisfies (2.13), then for IIm x| <7y, ImyI< 7,

(3.46)  |uf (2, ») |SUG=Uexp(— V2 (ar, || +a1,/1) G)
Therefore
(3.17) Luf (2 ) ISTS =00

As in the proof of Lemma 2.1 we represent the coefficients ¢ of the series
(3.12) in the form (2.14). Thenior ko € Ro, ko € 1R xas the inequalities
(2.19) hold with C; replaced by C;, defined recursively by

s—1 1 H
(3.18) C,=1, C,-= I;f N (v Ca )6 = S U,
=2  je-i ' i=1
(3.19) =20, s> 1.
The constants U; in (3.18) bound the terms of (3.3):
(3.20) ug(, y) | <UL

To obtain recursion formulae for the Uy, we note that if the inequalities
(2.19) are valid for ko &€ R, (R, is the central resonance domain) and for

ko € R n», then they also remain valid for ko € Ry, k, € R x»r, because the
functions c3(y, ko) are regular in Ry, and so we can apply the maximum
modulus principle to them. It follows from this remark that if the inequalities
(2.19) are proved up to the order s— 1, then in the relations (3.14) that
determine the Fourier coefficients of u, with numbers N, M, INI+ IMI> G
(the remaining Fourier coefficients vanish by (3.4)) we can apply the
inequalities (2.22) to ¢;(z, y, k) We obtain finally

(3.21) U,=

L i s—1
:(l;—,2 2 ( 2 (]f(Di-—J') Coi =2, Uicps-i) e~V 2w/l + at2/1G,
i j= i=1

It follows from (3.18)-(3.21) that for sufficiently large G the series (3.3)
converges and determines a smooth periodic function U%(x, y). (It is
sufficient to choose G so that the points kpy, with NI+ IM| > G satisfy the
condition ] Re ky,, [ > ﬁo/\/Q, | Im ks | > ]'\70/\/2, where N, can be found
by analogy with N;, N, in Lemma 2.1 from the conditions of convergence of
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the generating series for gs, U,.) At the same time we obtain the result that
for kg, lkol > N, the series (3.7) converges and determines a Bloch solution
of the equation (3.6) which is analytic and does not vanish for any k,,
lkol > ﬁo. Therefore U€ is a finite-gap potential. The lemma is proved.

It follows directly from (3.21) and (3.16) that for |[Imx|<7,, IImy|<r,

(3.22)  Ju(z, ) —US(z, y) <M exp(— V2 {an/l, +a1,/l,) G),

where the constant M depends only on U, 74, 7,. Therefore the sequence
US%(x, y) of finite-gap potentials tends to u(x, ¥) as G = oo uniformly with
any number of derivatives. The theorem is proved.

84. The spectral theory of finite-gap non-stationary Schrodinger operators

The definition of finite-gap potentials given in the second section refers
formally only to the potentials of the equation (1.1) with Re 0 # 0.
However, although when Re o0 = O for a general periodic potential u(x, y)
the Floauet spectral set globally is not a Riemann surface, we can introduce
the notion of finite-gap potentials in this case too. Moreover, the general
definition of finite-gap potentials refers not only to periodic but also to
quasi-periodic potentials with a finite group of periods. Solutions of the
equation (1.1) with such potentials u are called Bloch solutions if the
logarithmic derivatives Y, ¢!, Y, ¥~! have the same group of periods as
u#(x. v). The set of such solutions is exactly the Floquet spectral set. In the
case when it is a Riemann surface I’ of finite genus g < oo the corresponding
potential is called finite-gap. From the solution of the inverse problem of
recovering u from the corresponding algebraic geometry data, which was
posed and solved in [6], [7] and is presented below, it follows that this
definition is non-empty.

Let I be a non-singular algebraic curve of genus g with a distinguished
point Py and a fixed local parameter k1) in its neighbourhood, #-1(7,) = 0.
For any set vy, ..., v, in general position there is a unique function y/(x, », Q)
such that

(4.1) 1° outside P, it is meromorphic and has at most simple poles at
the points 1y, (if all of them are distinct);
2° in a neighbourhood of P, it has the form

oo

(4.2) (2, y, Q)= eh-o (1 4 = E(r, ) 7). k=K (Q).

Sz

We note that ¢ depends only on the equivalence class [k-!], of the local
parameter. (For any positive integer m we call 4=! and ;' m-equivalent
local parameters if k(@) = kQ) + Ok~"(Q)). The equivalence class will be
denoted by [4#-1},,. (In what follows we shall mean by the local parameter
its equivalence class unless otherwise specified.)
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We fix on I' a basis of cycles a;, b; with canonical intersection matrix
a;oa; = b;ob; = 0,a;0b; = §;;. In a standard way we can define (see [7]
or [9]) the basis of normalized holomorphic differentials wy, £ =1, ..., &,
the vectors B3), = (By;) of their b-periods, and the corresponding Riemann
theta-function, an entire function of g complex variables which under the
translations of the arguments by the basis unit vectors ¢, in C# and by the
vectors By is transformed as follows:

(43)  0(T+e)=0(1), 0(1+By)=e TP Ng(x).

Let g be an arbitrary point of I'. The Abel map is by definition the
correspondence which associates with a point Q € I" the vector A(Q) with
coordinates 4,(Q) = _%a)k. For any collection of g points vy, ..., v, in
general position the fu(;lction 0(A(Q)+ 2), where

(4.4) Z=K—A(y) — ... — Alyg)

(K being the vector of Riemann constants) has exactly g zeros coinciding
with the v, (we note that by (4.3) the zeros of a multi-valued function on I"
are well-defined).

We denote by Q®), s = 1, 2, the meromorphic differentials on I"' that have
the only poles at the point P, of the form

Q® = dk(1 + O(k=), QO = i1 + O(k~)

and normalized by the condition

-

(4.3) \ QW= 0.

v

a.
t

The vectors of their b-periods will be denoted by
(4.6) onl, — é‘; QW 2V, = @gm,
by by
A function ¥(x, y, Q) of Baker-Akhiezer type determined by its analytic
properties (4.1), (4.2) has the form

8(A(Q)+Ux-+Vy+-2)8 (A (P) - 2Z)
B(A(Q)+2)0(A(P)+Uz+Vy+2Z) -~

(4.7) q;:-.exp(i xQ<n+yQ<2>)

QD

The proof of (4.7) consists in a direct verification of the fact that the right-
hand side does not change when going round any cycle on I' (that is, the
function ¢ on I' is well-defined) and satisfies all the necessary analytic
properties.
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Theorem 4.1 ([7]). The function Y(x, y, Q) satisfies (1.1) with potential
u(x, v) equal to

(4.8) u(x, y)=20% log 0 (A (Py) +Uz+Vy+ Z) — 2,
where the constant c is determined from the expansion
Q
(4.9) \ QU= k(Q)+ ¢+ k™ (Q)+ O (k2(Q)).

1
Proof. We consider the function

(4'10) Hj:' (o—ay-—ai"‘f U) ll (17 Y. Q)’ 114 (‘Ta y):21’§1x (xv y)1

where £, is the coefficient in (4.2). It possesses all but one of the analytic
properties of Y. The expansion of its pre-exponential factor in a
neighbourhood of P, begins with a term of order k™!, while for ¢ it begins
with 1. It follows from the uniqueness of  that 57 = (0. To obtain (4.8),
it is sufficient to expand the right-hand side of (4.7) in a neighbourhood of
P, using the following relation (a consequence of the bilinear Riemann
relations):

(4.11) A@Q) = A(Po) + 1UKQ) + O((Q)).

For a curve in general position the corresponding potentials u(x, y) are
quasi-periodic. The conditions that single out the curves which correspond
to the periodic potentials can be formulated as follows.

Let dp and dE be meromorphic differentials on I' having the only
singularities at P, of the form

(4.12) dp = dk(l — O(k2)), dE = ioc1dk*(1 + O(k-%))

and uniquely normalized so that their periods along all cycles of I' are real.
If for any cycle Con I’

(4.13) ’{;dp: 2';':C . S;:-dE: ')'-;ftc , where n., m, are integers,
c c

then the potentials u corresponding to such curves I' have periods /; and /,

in x and y respectively. The Baker-Akhiezer functions coincide with the

Bloch solutions of the equation (1.1). The differentials dp and dE are the

differentials of quasi-momentum and quasi-energy, and the corresponding

“multipliers” w,(Q) and w,(Q) are equal to

Q 9
(4.14)  w (@) =exp (il,\ dp). wy(Q)=exp (iL, | dE).
q 1

(The conditions (4.13) guarantee that the w;(Q) do not depend on the path
of integration.) The proof of the above assertions follows from the fact that
(4.15) P& + L, y, @) = w(Q0(z, y, Q),
(4‘16) 1|7(l'1 y _‘T_ l'.‘.v Q) = lU.:(Q)\p(l', y’ Q)v
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since the right-hand and left-hand sides of these equalities have the same
analytic properties.

Formally conjugate or dual Baker- Akhiezer functions being solutions of
(1.4) are defined in the following way. Let dQ be the unique differential
meromorphic on I" with a single pole of the second order at P, and having
zeros at vy;, ..., ¥, Besides the vy, the differential dQ2 also has g zeros,
which will be denoted by 71, ..., v7. A function ¥*(x, y, Q) that is
meromorphic on I' outside P, and has poles at ¥, ..., v will be called a
dual Baker-Akhiezer function. In a neighbourhood of P it has the form

(23

@1T) ey Q= et (e 8 () B,

Lemma 4.1 ([56]). For the coefficients £, and £} of the expansions (4.2)
and (4.17) the following equality holds:

(4.18) & (2 y)+ & (z, ) =0.

Proof. It follows from (4.2), (4.17), and the definition of ~{, ..., v, that
the differential

(4.19) (. y, Q) =@ v, QY+, ¥, Q)dAQ)

is holomorphic ogtside P,, where it has a pole of the second order. Therefore
the residue of df2 at P, is equal to zero. Since it is equal to the left-hand
side of (4.18), the lemma is proved.

Corollary. The dual Baker-Akhiezer function Y is a solution of the
equation (1.4) formally conjugate to the equation (1.1) which  satisfies.

Lemma 4.2. If T, Py, vy, ..., ¥, are such that the potential u corresponding
to them is non-singular, then the differential dS2 is equal to

4.20 oA L S

(4.20) d Py W™ — i)y
Proof. By complete analogy with the proof of Lemma 2.3 it can be shown
that if u is non-singular, then (Y ¢*), and (Y, ¥ "~ Y Y7), cannot have
common zeros. It follows from (1.6) that the right-hand sides of (4.20) are
holomorphic outside P, and have zeros at the poles of ¢, Y* and a pole of
the second order at P,. Since these properties uniquely determine 2, the
lemma is proved.

Theorem 4.2. For a real smooth periodic potential u of the equation (1.1)
the corresponding curve T is isomorphic to the Floquet spectral set.

The proof of the theorem for an arbitrary ¢ completely repeats the
proof of the first assertion of Theorem 2.1, since the relation (4.20) is
sufficient to carry it out.
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The potentials u corresponding to an arbitrary set of data (I", Py, &7, ;)
are complex meromorphic functions. The identification of real and non-
singular potentials in the cases ¢ = 1 and ¢ = i turns out to be different in
principle.

The case 0 = i. For u to be real it is necessary that there is an anti-
holomorphic involution 7 on I" such that 7(P,) = Py. The local parameter
k™! must be chosen so that k(7(Q)) = k(Q). The poles v, under the action
of 7 must be transformed into the dual collection 7(y,) = ¥;, that is, the
¥, T(7g) must be zeros of d§2 with a single pole of the second order at .

If these conditions are satisfied, then by the coincidence of the analytic
properties the following functions are equal to each other:

(4.21) ¥ (2, ¥, Q)= (2, v. T(Q)).
Therefore
(4.22) & (z. y) =% (2, v),

and by (4.18) u = 2it,, is real.

For a potential u to be smooth it is sufficient that the anti-involution 7 is
of splitting type, that is, its fixed ovals a,, ..., @;, I < g, split " into two
domains T'*. If d§2 corresponding to 7y, ..., Y is non-negative on a; with
respect to the orientation given on these ovals as on the boundary of ',
then u has no singularities for real x, y.

The sufficiency of the above conditions for the smoothness of 4 was first
obtained in [12]. Their necessity was proved recently in [57] on the basis
of a detailed analysis of the theta-function formula (4.8). We shall give
below a brief sketch of another method of the proof.

First of all we note that it is sufficient to prove the necessity of the above
conditions for the periodic potentials, because the set of curves with a
distinguished point P, that correspond to them as /;, [, = o= is dense in the
set of all finite-gap potentials.

The correspondence

(4.23) (wy, w,) — (1_‘-’;" a’;’)

for ¢ = i leaves invariant the Floquet spectral set. Since this set is
isomorphic to I', it follows that (4.23) induces an anti-holomorphic
involution 7: " = I'. The fixed ovals 7 split I" into two domains I'", where
lw !> 1, and I, where lw;|< 1. On these ovals dp is positive, and by
(4.20) the differential d€2 is also positive. The assertion is proved.

The fixed ovals aq, ..., a; of the anti-involution 7 are the “‘spectrum” of

the operator (1.1) in the space of square integrable functions on the real
line.
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Theorem 4.3 ([52]). Suppose that the parameters (I, Py, k™', v,) satisfy
the above conditions that guarantee that the corresponding finite-gap
potential u(x, y) is real and non-singular. Then

(428 d(a—a)= | (@ oy Qv (. y, Q) d
(Lan;)\Po

The theorem is proved in [52] in a more general situation with the help
of the standard method of contour integration.

We note that for Q € a, the functions Y(x, ¥, Q) and y*(x, y, Q) are
complex conjugate to each other and bounded, since lw;(Q)!= 1.

The case 0 = 1. Finite-gap solutions of the equation (1.1) with ¢ = 1 are
real and non-singular if and only if their data (T, Py, k!, v,) satisfy the
following conditions: there is an anti-holomorphic involution 7 on the
curve I" that has g+ 1 fixed ovals (such curves are called M-curves); each
fixed oval of 7 contains one of the points Py, v, ..., ¥g; the local parameter
k™! in a neighbourhood of P, must be chosen so that k(1(Q)) = —k(Q).

Remark. On the fixed ovals r'dp = —dp, T°dE = —dE, therefore the
condition that the periods of this differentials are real means that the
integrals of dp, dE along a,, ..., a, are equal to zero. Hence in the case
o = 1 the differentials dp and dE coincide with the differentials QM and
Q) where the Q) are defined at the beginning of the section (see (4.5)).

§5. The completeness theorem for products of Bloch functions

In this section we restrict ourselves to the case of real non-singular finite-
gap potentials of the equation (1.1) with 0 = 1. As shown above, they are
determined by an M-curve I with a distinguished point P, € g, (where
gy, ..., 4, are the fixed ovals of the anti-involution 7:T' = I') and by a
collection of points vy, € a,. Moreover, they depend on the equivalence
class [5-1], of a local parameter such that k(7(Q)) = —k(Q). The real
dimension of the manifold of such data

(5.1) AL = (T, Py, 1713)
is equal to 3g+ 1, where g is the genus of I'. The submanifold Mfg) of data
(5.1), corresponding to the potentials with zero mean value in x, has
dimension 3g and, as seen from (4.8, 9) and from the fact that (for ¢ = 1)
dp = QU is determined by the condition p-1(Q) € |k-'),, where p(Q) is an
arbitrary branch of the quasi-momentum.

The main aim of this section is to construct, from products of Bloch
functions corresponding to finite-gap periodic operators and their dual
functions, an analogue of the Fourier basis in the space of functions
periodic in x and y. Before we present these results we shall need detailed
information on the structure of ‘“‘resonance points” on the curves
corresponding to such potentials.
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Suppose that the set of data (I, Py, 1k-1],) € M} satisfies the conditions
(4.13), which are necessary and sufficient for the periodicity of u. Then the
functions w;(Q), i = 1, 2, being the eigenvalues of the operators of translation
by the periods in x and y, are defined on I'. Two points Q and Q' are
called resonance points if w(Q) = w(Q").

On each of the domains I'* into which the cycles aq, ..., ag split I' we can
choose a single-valued branch of the integrals

Q
(5.2) p(@=\dp, E@Q=

q

.

dE1 (_IE Qp-

[l D

(For I'" we take the domain on which Re p > 0.)
Lemma 5.1 ([18]). For any M-curve T the map

(2.3) I'*3Q — (Re p(Q), Re E(Q))

is a real diffeomorphism of 't onto the right half-space R? with g deleted
points. The curve 1" and P, correspond to the periodic potentials of the
equation (1.1) with 0 = 1 if and only if the coordinates of these points on
I' have the form (N, nMl;'), where Ny > 0, Mg are integers. All the
pairs of resonance points on T are the points Pyxyy such that Py = t(Pia)
and Pipy is the inverse image under the map (5.3) of the point with
coordinates (nN1J*, adI;'), where N > 0, M are integers, (N, M) # (Ny, My),
=1,..8

Proof. The differentials dp and dE are purely imaginary on the fixed ovals
ao, ..., ag. Therefore the map (5.3) extends continuously to these ovals.
Moreover, the cycle a4 is mapped to the origin, while the cycles a; are
mapped to the points with coordinates

(3.4) _';_@dp:nUs, %@d};::ﬂg, s=1,....¢g
bs bS
(the b, are cycles of I' complementing the a; to a canonical basis).

We consider the level curve of the function Re p = r on T't. The
function Re £ has no extrema on this curve. First we shall prove this for
r#aUg, s =1, ..., g Suppose that Re £ has an extremum at a point Q on
the curve Re p = r. Then at this point

(5.5) =1

where A is real.

The differential d¥— Adp has 2g— 1 zeros. It is real on the cycles
ag, ..., ag. Its integrals over ay, ..., a, are equal to zero since, as explained at
the end of the previous section, so are the integrals of dE and dp over these
cycles. Hence dE — Adp has at least two zeros on each of these cycles.
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One more zero belongs to ay. Consequently, this differential cannot vanish at
@, which contradicts (5.5). In a similar way it can be proved that Re F is
monotone on all connected components of the level curve Re p = wlU;. The
first assertion of the lemma is proved, while the second follows from (5.4)
and (4.13).

For the proof of the last assertion of the lemma it is sufficient to consider
the following map on I':

(5.6) Q — (Im pQ), Im E(Q)).

By analogy with the above it can be proved that the inverse image of any
point of R? consists of at most two points of I Since Im p and Im E are
even with respect to 7, the two inverse images are conjugate to each other.
Under conjugation Re p and Re E change sign. The resonance condition for
the two points

2aM
1

(5.7) Bep(me)—Rep(P.‘\-M)=—"“’%f—v—, Re E (Piar)— Re E (Pxay) =

implies the assertion of the lemma.

Let y(x, ¥, Q) be the Baker-Akhiezer function constructed by the data
(5.1) and the collection of poles v,. If the conditions (4.13) of periodicity
of the correspondent potential are satisfied, then the products

(9.8) OFp (2, ¥) = ¢ (. v PRa) ¢* (2, 4, PRar)

are, by the definition of resonance points, periodic functions of x, y. The
products Y(x, ¥, QYT (x, ¥, Q) are periodic functions too. It follows from
the Riemann-Roch theorem that among the latter there are only g+ 1
linearly independent ones. Indeed, for any x, y the function yy*, as a
function of Q, is meromorphic with possible poles at the points v}, v,. By
the Riemann-Roch theorem the dimension of the space of such functions is
equal to g+ 1. (It follows from this reasoning that the dimension of the
space of functions Y(x, y, Q)¢ ¥ (x, ¥, Q) is at most g+ 1. In the proof of
Theorem 5.1 it will be shown that it is equal to g+ 1.)

We denote by ®;(x, ) the periodic functions

+ Yz, Y Pod Tt tr. u, Pay) w
(5.9) (Dl (-Tv y)'— <q (Z, ¥, Pz . v, Pasia ’ § = 1, e-r g

where the P;, j = 1, ..., 2g, are the zeros of the differential dp numbered so
that P,s_,, P,, lie on the oval a;.

Let L9 = LYT?) be the space of square integrable functions periodic in
x, ¥ and with zero mean value in x. We denote the dual space by (L)*.
Let us define elements @7 ¢ (L?)* which, as will be shown below, together
with d3,, and @} form an analogue of the Fourier basis in (Z3)*.
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We define the functions r(x, y) by the formula

a3
‘s

JE 0 (A(va) U Vy--2
(5.10) rg(x, y)=exp (g \ (rdp+uy (]E)) 9((A Eg’n)—i-l"‘:—“’!:+22

o
b

which up to the constant factor 8(A4(Py)+ Z) coincides with the coefficient
of the singular term in the expansion of Y(x, y, Q) in the local parameter
(A(Q)+ 2) in a neighbourhood of its pole. (We recall that 6(A(v,)+ Z) = 0.)
Let Q5 be points of I'" such that wi(y,) = wy(Q5). We consider the series

wa {75 re(x. w) ¢+ (x. v, QF)

G0 O )= 2 e T W v 0 e G

n==0

Lemma 5.2. The series (5.11) for all x and y <, converges and determines
a smooth analytic function ®x, y) periodic in x. For any continuously
differentiable function v(x, y) with periods |, 1, in x, y there is a finite limit
!
(5.12) lim { (@7 (2, y)v (@ ). dy,

1-+1g 'O

which determines the element ®, € (L9)".

Proof. We have k(Q5) = 2wn/l,+ p, as Inl > o. Hence

SN 4nn?] 4minp
(5’13) Wa (011) & CXp ( - 12 2 1 s l’.‘) .

In a similar way, up to a finite factor

< X 2ninz 4n2nly danpgy
(5:44) ¥ (2, y. Q3) & oxp ( — TP S SR )

Therefore for y </, the terms of (5.11) decay exponentially. The periodicity
of &7 in x follows from the fact that by the definition of Q% all terms of
the series are periodic in x. We denote by r? the periodic function

rd = ry(x, y)exp(—ipgx —iE;y), where py and E, are the values of the quasi-
momentum and the quasi-energy at v,. We have

= rS (Iv y) '4’+ (xv yv 0;1) .
(5-15) §lx, g OR) Y (2, 9, QRDx

2inx PR $278 4ntnp .
0 1 I PR T v T iEy
e (]-s + 0 ( - ) e 1 .

Therefore the left-hand side of (5.12) is represented by the sum of a series
whose terms for |nl> N, are uniformly bounded by the Fourier coefficients
of the periodic function r%(x, y)v(x, ¥), which implies the last assertion of
the lemma.

Theorem 5.1. The functions ®dz and ®F,, form a minimal basis in (L)’
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Proof. To prove the completeness of this set, it is sufficient to show that
for any continuously differentiable periodic function v(x, y) it follows from
the equalities
2
(5.16) @) (@) =0, b) \ (D5 (2. y)v(z, Yo dy=0,

u

(5.17) a) (EOFa)) =0, b) @,=0,

that v = 0. (Here and in what follows {*» denotes the mean value in x, y.)
For any point Qg € T such that ,(Qo) == wi(P}), Qy = Vs Qo 7= Piars We
consider the series

y+ileo

(5:48)  q(z 3 Q)= D} (@, y) pon— { lioiv= g,
Yy

netd Wer Wy A

where ¥, (z, ¥) = (=, v, Q) uwy, = w,(Q,), and @, as before is defined
from the condition—w,(Qn) = wy(Qy).- Asymptotically the terms of this series
coincide with the terms of the series ¢,(x, ¥, Qo) considered in §2. Therefore
(5.18) converges and determines an analytic function of the variable Q4. It
follows from (5.17) that it extends analytically to all resonance points P&,.
Let us show that it can also be extended by continuity to points Qo # P;
such that wy(Qo) = wi(P;). We consider ¢(x, ¥, Qp), where Qg is close to Q.
Making @, tend to Q,, we see that among the terms of the series (5.18)
there are two terms tending to infinity. They correspond to the indices
ng, net 1 such that the corresponding points @,,, @n,+: lie in a neighbour-
hood of P;. (These terms tend to zero, since (Y, Pz, )x and Py o4 1Pitert x
tend to zero as Qp —> Q.) The sum of the two terms tends to a finite limit.
In fact, the terms of (5.18) coincide for n # 0 with the residues at the
points @, of the differential
Vit ’ l'l\b(x, L O Y. Qv v, Q) (e, y')da’
619 | dy \ B e = G Gy T 42 (@),

v 0
which locally depends smoothly on Q,. Therefore the sum of the two terms
of (5.18) that tend to infinity tends to the integral of the differential (5.19)
over a small contour surrounding P;.

Thus if v satisfies (5.17a), then ¢(x, ¥, Q) is an analytic function on I
outside the points P;, v, and the distinguished point P,. At the points v, it
possibly has simple poles, while at the points P;,j = 1, ..., 2g, it can have
poles of multiplicity 2. It follows from the equality

y+iz 12

(5.20) g2 (o, ) dy = ;22— L @) dy — \ v dw,
v

2n Wy .

O o2

. {(Pfrdo)x
An= (Frtnde
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that the function

(5.21) E’(Jf, Yy Qo) = @, ¥, Qo) — (0, 0, Qo)¥(z, y, Q)

has no poles at the points P; if v satisfies (5.16a). It follows from (5.16b)
that (0, 0, Qy) has no poles at the points v,. Hence $ is meromorphic on
I" outside P, and possibly has simple poles at the points v,. By analogy with
(2.19) for s = 1 we have

(5.22) 9z, ¥ Q@ ¥y Qo) = Ok(Q0))-

Therefore ¢ is a function of Baker-Akhiezer type, but in the expansion
(4.2) for ¢ the pre-exponential factor begins with O(k-!). From the
uniqueness of the Baker-Akhiezer function we conclude that ¢ = 0.

By Lemma 2.4 the sequence ¥, = Y(x, ¥, Q,) is a basic sequence (in the
sense of the definition given in §1). Comparing formulae (1.25), (1.28)
with (5.18), we obtain

(5.23) (9~ 02+ ug)q (Y, Qo) = —vipy+ Iy,
Yo
where 1, is the finite-gap potential corresponding to the Baker- Akhiezer
function Y(x, v, Q). Since ¢ = 0, the left-hand side of (5.23) is equal to
zero. We conclude from (5.16a} that v = 0. The completeness of the family
@t D,y is proved.

The proof of minimality of this family follows from the following
construction of a “dual” basis in L. We consider an arbitrary variation
u(x, y, 1) of a finite-gap potential uy = u(x, y, 0). For any point Qo # FP;,
D%y we denote by @(7) the point of the Riemann surface I, corresponding
to the potential u(x, y, 7), which is determined by the condition
wi(Q(7)) = wi(Qo). We put

(524) 1171; =1PT(I, Y, QO) = (71“9(1\ Y. O(T)) l'r:(\'
By definition this function has Bloch behaviour in x with multiplier wy(Qy)-

Lemma 5.3. For any variation u(x, y, 1) the function p(x, ¥, Qq) defined
by (5.18), where

(5.25) Mz, y) = 0adx, y. 7) |0

is equal to

(5.20)  qu Qo) b= SR ey, Qo).

Proof. The right-hand side of (5.26) is a Bloch function with multipliers
1wy, Wy, and satisfies the normalization condition {py/{), = 0. Differentiating
(1.1) with respect to 7, we see that it is a solution of (5.23). As shown in
§ 1, such a solution is unique and is given by (5.18). The lemma is proved.
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We first consider finite-gap variations u that preserve the periods of u,.
Such variations are those that do not change I' but move the poles vy, of a
Bloch function. We put

0

(5.27) vi (@ Y) =

w(@ y 1T pe o).

(These functions are linear combinations of du/dz;, where u is given by (4.8)
and the z; are the coordinates of the vector Z.) Moreover there are variations
that preserve the vy, but change I'. For example, if we take the endpoints
Py of the slits in the model of I" in §2 for the parameters determining I
(we recall that for variations of I" preserving the periods of u,, among the
endpoints of the slits only half of them are independent), then we can
define the functions

(528) L’;' (‘T* .’/) 26/61725” ('Ta y [ Poy - p?p' Vs oo vy '\’S)-

Lemma 5.4. The functions v} satisfy the following conditions:

(5.29) (CFDR)) = (FDTa)) =0,
(5.30) (@l DEN=0, (WD) =0.
(5'31) ((U:('D;'>> == 655'1 <<U;CD;'>) = ‘75685'9 ag ?l—_ Q.

Proof. For both types of variations under consideration, ¢, (where 7 is
either 4, or p,,) has no poles at the points P5,;. This implies (5.29). The
function 9y//3+v, has a pole at v, of multiplicity 2 and simple poles at vy,

s’ % s. It is analytic at the remaining points. Comparing these properties
with those that follow from (5.18), we obtain the second equalities in
(5.30), (5.31). Under variations of py, the derivatives dy//d p.: have poles
at the points P,,. Hence we obtain the first equalities in (5.30), (5.31). The
lemma is proved.

Its assertions say that the @Zform a basis in the cotangent bundle to the
manifold of periodic finite-gap potentials, corresponding to the curves of
genus g. Below we shall show that @%,; are dual to the variations transversal
to this manifold, which “open a gap’ at the place of the resonance points
P

We consider small neighbourhoods R%,; of some pair of points Pxy. The
function w, identifies each of these neighbourhoods with some neighbourhood

R yyr Of wy(PEy). If for wy € By we put PE(w,) € REyy, wy(PF) = wy, then
wE(wy) = w,(P¥) are analytic functions in ﬁm,. Let ﬁm, be a two-sheeted
covering of ﬁNM given by the equation

(5.32) 22— (w3 (wy) +w; (wy)) 24 (1 — e*) wy (wy) w; (w,) = 0.
For sufficiently small € the boundary of f? ~ i Splits into two circles, each of
which can naturally be identified with the boundaries of R%,,. This

identification enables us to paste the domain f?”, to the complement of
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the domains R&y in . As a result we obtain a Riemann surface of genus

g+ 1. We denote it by 'k The involution 7 extends naturally to I'kas,

where it has besides the old fixed cycles ay, ..., a; a new one ag4q € }A?NM.
We present briefly the necessary information about holomorphic

differentials on Ty [58]. Let G,, C e Z)gﬂ be a basis of normalized
vectors on Ty If wy, ..., w, is a basis of normalized holomorphic

differentials on T and o ~r 18 the normalized differential of the third kind on
[ with residues *1/27i at the points P&y, then we have outside Ry

(5.33) |07 —1]=0(2), i=1,...,g |oyyozii—1]=0(?).

Let B® and B be the matrices of periods of the curves I's,; and T respectively.
Then it follows from (5.33) that
(5.34) By=B,+0(e), 1 i<e,
(5.35)  Bour,i=§ onn = Ai (PR) — 4; (Pivn) = Aken
b;

(the second of these equations is a consequence of the Riemann relations).

We have for the matrix entry BNg_H,gH

~ 1
(5.36) Byo. gra =3 (1088 + Txeag + 0 ().
The theta-function § = 8(z1, . . ., zg4;) constructed from the matrix Btis
equal to

(5.37)  0=0(z)+ee’NM[B (24 Ayy,) ¥ o1 —
—8(z— Any)e” o]+ 0(s3),

where z = (23, . . ., 2g), Aya = (Ajn) and Axy are defined in (5.35).
We consider the finite-gap potential #(x, ») corresponding to the curve
I'%sr and the divisor of the poles vy, . . ., ¥7¢41. It is given by (4.8), in

which the theta-function is 8. The vectors of the b-periods of the differentials
dp and dE on T'ky,, are equal to

U= U, +0(), Vi=Vi+0@2), i=1,...,g,
o~ 2niN

+4 2miM
Ugr= L 4-0(e?), Vg = Tllz -+ 0 (€2).

(5.38)

From (4.8) and (5.37) we obtain
(5.39)  Ou=1u—u =t (Uine e + viye " e 1) 0 (£2),

where the functions vy, are given b
N2

, 2niN_ 12niM
(5.40) vhw = .00y LUt Tyt 2t dwan) =Ty

8 Uzt Vy12)
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Lemma 5.5. The functions vy, satisfy the relations
(5.41) (@) =0,  (RmD) =0,

(5.42) (WanDR a0 =0, (RN D R, a1,)) = Onnv,Onrns,-

Proof. Considering the derivative of the Bloch function with respect to &,
we see that the corresponding function 1, has simple poles at the points v,
and P; and a pole at the pair of points Pxy. Comparing its residue with
(5.18), we obtain (5.42). The equalities (5.41) follow from the fact that the
poles of 4 at the points v, and Py, are simple.

The lemmas proved above enable us to conclude that the basis ®, DR
in (L9)" is minimal. At the same time they prove the following theorem.

Theorem 5.2. The functions v and viy defined by (2.57), (5.28), and
(5.40) form a minimal basis in LY.

CHapPTER I
THE PERIODIC PROBLEMFOR EQUATIONS OF KADOMTSEV-PETVIASHVILI TYPE

As mentioned in the introduction, equations of KP type are a system of
non-linear equations for the coefficients u; and v; of operators L, A of the form
(2) equivalent to the operator equation (4). (In what follows we shall assume
that u2d = u2b,,, V%P = 128, g are constant diagonal matrices, v3%, = 0.) This
definition needs a refinement. It turns out that if # < m, then the system (4)
reduces to a sheaf of systems only on the coefficients of A that are parametrized
by constants hya,-, a=1,..,1;i=0,..,n (See[7] for the details.) In what
follows, by equations of KP type we shall mean reduced systems of equations
for the coefficients of 4.

81. Necessary information on finite-gap solutions

The initial object in the construction of [7] of finite-gap solutions of (4)
is a non-singular algebraic curve I' of genus g with distinguished points P,

o =1, ..., {, in the neighbourhoods of which the local parameters kg'(Q) are
n

fixed, k3'(Py) = 0. We put Ro(k) = X kg k' (Where the hiy; are constants
i=o

parametrizing the systems of equations of KP type together with constants
v%, that are diagonal elements of the leading coefficient of A4).

For any collection of points y;, . . ., Yg+1-1in general position there is a
unique meromorphic function Y,(x, ¥, t, @), @ € I', which

1° is meromorphic on T outside the points P, and has poles at v (at most
simple if the vy, are distinct);
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2° in a neighbourhood of Py is representable in the form
i(hgx+Rg(hy+oba T,
(1.1) ¢m=l1( px+HRgrpY+vm 5t)( 20 Egﬁ (z, y, 1) k5 *),
=

where 2B = §, 4, ky = kg(Q)-

We denote by y/(x, y, ¢, Q) the column vector with coordinates y,. As
shown in [7], there are unique operators L and A4 of the form (2) with
(I x 1) matrix coefficients such that

1.2) @y — LW, v, 1, Q) =0, (0 — AW, y, 1, Q) = 0.

Since the equalities (1.2) are satisfied for all Q, it follows that L and A
satisfy (4) (with ¢ = 1). It follows easily from the uniqueness of , that
they do not change under substitutions of local parameters such that
kg = kp -+ O(kg™). The local parameters related to each other in this way
belong to one equivalence class [kz'],,.

The complex dimension of the manifold of collections

(1.3) M, = (T, P,, [k3')n), T has genus g,

is equal to N = 3g— 3+ (m+ 2).. We can introduce a complex analytic
structure on M,. Let [ = (/;, ..., Iy) be an arbitrary (local) system of
coordinates on M,. The dependence of all magnitudes on [ in the subsequent
formulae is complex-analytic.

We denote by dp, dE, d§0 the meromorphic differentials on I' with poles
at the points P, of the form dk,, dR,(ky), v2dkhT respectively, uniquely
normaliized by the condition that their integrals over all cycles are real. Let
a;. b; be the canonical basis of cycles on I'. We define a g-dimensional real
vector U with coordinates

1 1
(14 Up=g-$dp, Unig=—5r §dp k=1,...,0.
bk ay
In a similar way, starting from dF, dS§2 we can define 2g-dimensional vectors

V., W. Cutting I" along a;, b;, we can choose a single-valued branch of the
integrals p(Q), £(Q), §2(Q). In a neighbourhood of P, they have the form

(1.5)  p=lke—aq+O(), E=Rq(k)—b,+0(ka),
Q= VERY — o+ O (ky),

and p, E, £ can be normalized uniquely by the condition a; = b, = ¢; = 0.
In [22] with the help of explicit theta-function formulae it is proved that

the finite-gap solutions constructed above have the following form. If

a =al), b = b{), ¢c = c(I) are diagonal matrices .80 g, badap, €u0qp, then

(1.8) L=gLgt, A=gdgt,
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where g = exp (i(ax + by + ct + D)), Py = Do, 3, and the coefficients
u;, v; of the operators L and A have the form

A7) wy=u Uz Vy+ Wt Z 1), v;=v;Uz+Vy+Wt+2|1).

Here zli(zl, c ey 296l ﬁj(z,, .« ., Ipg|I) are functions with unit periods in
the variables z;. The real coordinates of the vector Z and the complex
constants @, are determined by the collection vy, . . ., Yg47-. In formulae
(1.6), (1.7) they can be assumed to be arbitrary.

To avoid burdening the presentation with superfluous technical detail, we
refer the reader to [22] for details of the construction of explicit formulae
for u;, v;.

As an example we consider finite-gap solutions of the KP equation [6].
Solutions of this equation are constructed with the help of the Baker-
Akhiezer function Y(x, y, ¢, Q), which is meromorphic on I'" outside Py, has
poles vy, ..., ¥, and in a neighbourhood of P, has the form

(1.8) = eihx-oTIhty i ({4 SV E (7, y, 1) k%), k=k(Q).
s=1

This function has a form similar to (1.4.7) (here and in what follows, in the
triple numbering the first number indicates the number of the chapter)
Q
{(xa® 4 ya® 4100

(1.9) p=e’ B(4(0)-+Uz+Vy+Wi4-2) 0 (4 (Py) +2)

0(A(Q)+2)8(A(P)+Uz+-Vy+Wett2Z)

where QM. Q™ are the same as in Chapter I, and Q® is a normalized Abelian
differential with a pole at P, of the form dk3 The corresponding finite-gap
solution u(x, y, t) is given by

(1.10) wu(x, y, t)= 285 log O (Uzx+Vy+ Wit-+ A (Py)+ Z) + const.

Coming back to finite-gap solutions of the general equations (4), we
define following [56] the notion of a dual Baker- Akhiezer function. For
any collection v,, ..., Yg+1-1 in general position there is a unique (up to
proportionality) differential <5 of the second kind with poles of the second
order at the points P, and vanishing at the points v,. The collection of
points 97, ..., yz+i-1 that are the remaining zeros of « is called dual to
the collection i, . . ., Yo+t

If Y(x, y, t, Q) is a vector-valued Baker- Akhiezer function defined above
by the set of data (1.3) and the poles v,, then the dual vector-valued
function y*(x, y, ¢, Q) is the row vector with coordinates yZ, which are
meromorphic on I' outside P, with poles at the v and have in a neighbour-
hood of P; the form

(141) & =exp (i (—kyz ~ Ro (kg) y — v0kED) (I & (= v, 5.
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It is proved in [56] that ™ satisfies the equations
(1.12) Pr (@, — L) =0, ¢+ (@ —4)=0,

where the operators L and A are the same as in (1.2). The proof of [56] is
based on the fact that by the definition of ¥ and ¢ * the differentials

(1.13) dAep=Vo (2, ¥, £, Q)¥p(, ¥, t', Q) 0 (Q)
are holomorphic outside Py, ..., P;, therefore
!
(114) E rest dAa,g:O.
=1

The bilinear relations, introduced in the papers by Sato, Miva, Jimbo, Date
(see [461, [47], [68]) for the determination of 7-functions, are a
generalization of the relation (1.14).

§2. The perturbation theory for finite-gap solutions of the
Kadomtsev - Petviashvili —2 equation

We consider the problem of constructing asymptotic solutions of the
equation

(2.1) %uw—’r (u, —-% uux—}-%unx)x—{-eK[u]:O,
where € is a small parameter, and K[u] is a differential polynomial. There
are several ways of stating this problem. One of them is related to the
investigation of the influence of the perturbing term on the solutions of the
periodic problem for the KP-2 equation. [n this case an asymptotic series is
constructed for the solution of the Cauchy problem with the initial data
u(x, y, @) that belong to a neighbourhood of a finite-gap solution of the
KP-2 equation. The second way of stating the problem is also meaningful in
the case K = 0. In this, an asymptotic solution of the KP-2 equation is
searched for, the first term of which is equal to

(2.2) uy(z, y, H=2221og8 ('S (X, Y, T)| I (X, Y, T)+¢(X, Y. T).
where
(2.3) u(z)=20310g0(z] 1), 0,=2U,0

is a periodic function of z = (zy, ..., z,) whose parameters (that is, the
matrix of periods of holomorphic differentials on I") depend on the slow
variables X = ez, Y = ¢y, T = ¢t. The vector-valued function S is
determined by the equations

239

(2.4 0xS =UX, Y, T), 0yS=V(X, Y, 1), 0§ = WX,Y,T),
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where U, V, W are the vectors of the periods of the differentials dp, dE, dS1.
They depend on X, Y, T by means of the dependence of the main parameters
(I', Py, k') on these variables.

For space one-dimensional systems, in particular for the KdV equation,
the main attention has been given to the second way of stating the problem
[21], [22], [59]}. Combining the two problems, we shall search for a
solution of the equation (2.1) in the form

(2.5) u(x, y, D=uy(z, y, t| X, Y, N+ D elu,;(x, 4, t | X, Y, T).
i=1

In the case when u, is a periodic function of x, v, to construct the series
(2.5) it is sufficient to construct a set of solutions of the linearized equation
2.1

3 3 3 1
(2.6) T Ot (V= e — 5 U Vs ) =0,

that for all r form a basis in the space of functions periodic in x, y.
Moreover, it is necessary to have a dual basis of solutions of the conjugate
linear equation

3 .
(27) Tq)yb‘_*—(—‘(bf_'%uoq)x"l"'[i—cpxxx)x:o'

To construct solutions of the equation (2.6) we use the fact that if there
is a family of solutions of a non-linear equation, then the derivatives of these
solutions with respect to the parameters are solutions of the linearized
equation. Therefore the functions

+ I} - a
(28) Vs (1‘, u, t)= ET Uy (.T, Y, t)v Us (.Z', Y, t) ::Wuo(zf Y t)v

where u,(z, ¥, 1) = uolx, ¥y, t]vs Pss) are finite-gap solutions given by
(1.10), are solutions of (2.6).

Considering variations of I' analogous to those used in §5 and which
correspond to ‘“‘adding a handle” between the points O and 7(Q), we obtain
the following assertion.

Lemma 2.1. The functions (2.9) are solutions of the equation (2.6)
B9 e 1 Qo[ ML g0 ),
3 exp {1 (P(Q) — P (* (@) 2+ (E (Q) — E (T (Q))) ¥ +(2(Q) — 2 (1 (Q))) 1}-

Here r(Q) is a real function defined in the following way. Let wg be the
normalized differential of the third kind with residues +1/2#i at the points
0, 7(Q). As Q = Q' we have

@
(210)  \ og=1log|p(Q') —p(Q)]+2r (Q)+O0(Ip(Q)—p(t(ON)™).
Q")
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By the definition of resonance points, the functions Uiy = vz, y, L, Pia)
are periodic solutions of the equation (2.6).

We denote by dZ(x, y, t) the functions constructed with the help of
Y(x, ¥, t, Q) and ¥*(x, », t, Q) in the same way as the functions ®z(z, y)
were constructed in the last section of Chapter I. Moreover we define
periodic functions ®&Fu(z, y, t) = O(z, y, t, PNn), where

Pt Qv w t Q)
@11) Q@Y b O =y OV G v E O

By complete analogy with the results of §5 of Chapter I we obtain the
following theorem.

Theorem 2.1. The functions vk, vy for any t form a basis in LY. Moreover
for them and for the ®E, OFyy the orthogonality relations (1.5.27, 28) and
(1.5.40, 41, 42) hold.

Corollary. The functions O, @i, are solutions of (2.7).

The formulae for v(x, v, ¢, @) and ®(x, y, ¢, Q) obtained above enable us
to determine easily all the terms of the series (2.5) in the case of a periodic
solution u,. A direct analysis of the resulting expressions shows that the
corresponding series can be defined for all finite-gap solutions by
approximating the latter on any compact set by finite-gap periodic (in x, y)
sclutions with periods /;, /, & ec. Under such an approximation the limit of
the subset of the resonance points that gives non-trivial contributions to u; is
the set of points Q € a, such that there are integers p = (ry, ..., r,) for which

(2.12) Rep@) =nr U, + ... +rUg ReEQ) =nV, 4+ ... 4 rgV,.

Let R be the subgroup of Z¢ formed by those collections of integers for
which the right-hand sides in (2.12) are equal to zero, R = R(U, V). For
any collection p € Z8 we denote by p the element of the quotient group
Z8/R. The points described 'in (2.12) are uniquely determined by the class
p (and are denoted in what follows by Q), which is not equal to zero or to
any of the classes p;, where p; is a collection in which r; = =+ 8;,. We
denote by F;lu,, . . ., u;—] the “discrepancy” of order &t that is obtained
by substituting the corresponding partial sum of the series (2.5) in (2.1).

Theorem 2.2. The term u;(x, y, t|X, Y, T) of the series (2.5) is equal to

(243) u;=

b

i(C?s(t)Ué'(I, Y, )i (1) s (x, ¥, 1)+

T2 e Qv gt Q) i1

p=20, pZ
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Here
1
ct()=cz— | (DFIF Y dr,
0
- t
ci(t, Q=i (@) —\ «D(z, y, t', Q;) .F; ) dt'.

0

(2.14)

We note that in formulae (2.14) only the dependence of all terms on the
“rapid” variables x, y, t is reflected, though all of them are also functions of
the slow variables X, Y, T that enter the definition of vE, v, ®%, @ by
means of the dependence on these variables of the parameters (I', P, £7%).

Moreover, the integration constants ;ﬁ, ;i(Q;) in (2.14) can also be functions

of X, Y, T. Equations determining their dependence on X, Y, T can be

obtained from the requirement of uniform boundedness in ¢ of the term u;,.
The most interesting point is the determination of the dependence on

X, Y, T of the main parameters (', P,, k1) of finite-gap solutions, proceeding

from the requirement of uniform boundedness in ¢ of the first correcting

term u;. The next section of the paper is devoted to this question.

§3. Whitham equations for space two-dimensional ““integrable systems”

The problem of constructing asymptotic solutions of general space two-
dimensional equations (4) and their perturbations is posed in the following
way. Let K(A) be a differential operator of order m — 1 whose coefficients
are differential polynomials in the coefficients of A. We search for asymptotic
solutions

(3.1) A=A, +ed,+ ..., L=L,+ el + ..
of the equation
(3.2) 0.L — 8,4 + (L, A] — eK(d) = 0.

In the first section of this chapter we have found the general form of
finite-gap solutions of the equations (4). In accordance with the general
ideas of the Whitham method (the non-linear WKB method), we shall
consider asymptotic solutions (3.1), the leading term of which has the form

(3.3) A, =GAG, L,=GL,G™,

where G = exp(ie”Sy(X, Y, T) + i®(X, Y, T)), and the coefficients of
the operators Ay, L, are equal to

(3.4) v (etS(X, Y, )+ 2(X, Y, T)| [ (X, Y, T)),
(3.5) u (etS(X, Y, Y+ 2Z(X, Y, )| [ (X, Y, T)).
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The vector-valued function § and the diagonal matrix S, must satisfy the
conditions

56 { 0xS=UX,Y, T), 05S=V(X, Y, T), 0,8=W(X, Y, T),

0xSy=a(X, Y, T), 05S,=b(X, Y, T), 0p8,=c(X, Y, T),

where U, V, W are vectors of the periods of the differentials dp, dE, df2,
defined on the curve I', that correspond to the collection of data (1.3),
parametrized by /(X, Y, T); the diagonal matricesa, b, ¢ are defined in (1.5).

A complete solution of the problem of constructing the whole series (3.1)
requires, as in the example of the KP-2 equation treated above, constructing
a basic collection of solutions of the linearized equation (4). It turns out
that the equations of the dependence of the magnitudes I(X, Y, 7) can be
obtained without constructing this basis from the requirement that u, is
bounded.

We consider the manifold

(3.7) My=(T, Py, [ka'lm, Q€T),

naturally fibered over M,. Let (A, I;, ..., Iy) be a local coordinate system on
Mg such that for fixed I, the function A(Q) parametrizes some domain of
the curve I' = I'(J). Any such system will be called a local connection of
the bundle Mg — My, since for any path /() in My and a point Qo € T'({(7,))
we can locally define the lifting of this path in M, by defining a point
Q(7) € T'(7)) by the condition A(Q(7)) = AMQy).

The multivalued functions p, E, £ defined on each curve are multivalued
functions on M,, that is, p = p(\, I); E = EQ\, ), & = Q(\, D). If I depends
on X, Y, T, then p, E, & are functions of A, X, Y, T.

Theorem 3.1 [22]. The following equations are necessary conditions for

the existence of an asymptotic solution (3.1) with principal term of the
form (3.3)-(3.5) and bounded terms L,, A;:

op ¢ E 99 oE , dap 1o® %Q [ ap  OE
38 (o —57) 9 (7 5% ) tor (5% —o%)

_ (PR op
W¥*)e A C

The equations (3.8) can be represented in an invariant form not depending
on fixing a local connection \. 1If the I’s depend on X, Y, T, then the
inverse image I(X, Y, 7) in Mg is a four-dimensional manifold «#* < filg.

We consider on of* the 1-form w = pdX+ EdY + QdT. Then the equations
(3.8) in the case K = 0 are equivalent to the requirement that on #* the
exterior square of the differential dw (which is a 4-form) must be equal to
zero, that is,

(3.9) do A do = 0.
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The construction of solutions of the equations (4) given in §1 contains,
in particular, a construction of solutions of the Lax equations L, = [A4, L].
We consider a submanifold M of data (1.3) for which the corresponding
differential is exact, that is, £ = E(Q) is a single-valued function on I'. In
this case the coefficients of L and A do not depend on y, and (4) turns into
the Lax equation. The function £(Q) can be used as a local connection. In
this case p = p(E, X, T), Q = Q(F, X, T) and the equation (3.8) turns into

(3.10) Orp—0,Q= ). 9E
For K = 0 the equation (3.10) coincides with the equation drp— 052 = 0
first obtained in the special case of the KdV equation in [59] as a consequence
of the averaged conservation laws.

84. The construction of exact solutions of Whitham equations

Let n, = m+ 1 be integers such that Y} n, = g + I(m + 1). For any
curve I" of genus g with distinguished points P, in general position and with
local parameters kg' fixed in their neighbourhoods there is a unique (up to
addition of constants) function A(Q) having poles of multiplicity #n, at P,,
holomorphic outside them and such that in a neighbourhood of P,

A (Q) = kg (Q) + O (ke ™ (Q))-

In the case of general position we can assume that the zeros q;, i = 0, ..., N,
of the differential d\ are simple. There are N+ 1 of them, where

N =3g—3+1(m+2). We can define the function A(Q) uniquely (that is,
fix the indefinite constant) if we require that A(q,) = 0. In this case we can
choose as the local coordinates on M, the magnitudes X; = A(g,),1 = 1., N
The collections Q\(Q), Ay, ..., Ay) form local coordinate systems on M,. The
connections on M, given in this way will be called canonical.

On an arbitrary curve I'y in general position we fix some piecewise smooth
contour Z, (not necessarily closed or connected). Using the connection
A(Q), we can carry over this contour to the curves I' sufficiently close to I'y.
In a similar way we can define a differential d# on each such contour £ €T
if we define a piecewise smooth differential d# on the initial contour £, < I',.

In the standard way with the help of Cauchy integrals it can be proved
that there is a unique differential dA on I' that is meromorphic outside £
with a unique pole in g and continuously extendable to £. Moreover, its
limit values on £ must satisfy the “jump’ condition

(4.1) dA*+(1) —ldA~(1) = dh(T), TE€L.

In addition, the periods of dA over all cycles on I must be real.
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Theorem 4.1 ([22]). Suppose that \; = Mq;) depend on X, Y, T so that
forany i = 1, ..., N one of the following two conditions is satisfied:

1
(4.2) §>TV_:_TI(dA+Xdp+YdE+TdQ)=O or %= const.

Thenp =p(\ X, Y, ), E=E\ X, Y, T),Q =8Q, X, Y, T)satisfy the
equations

(4.3) 0Tp = 5XQ, ayp = axE, aTE = 51-9.

The integrals in (4.2) are taken over small contours around the points g;.
If the g; do not lie on £, then the first of the conditions (4.2) means that
the differential in the integrand vanishes at the points g;.

Proof. We consider the differential dS = dA+ Xdp+ YdE+ TdS2. Since its
jump on £ is constant, it follows that the differential aXdS‘ is meromorphic
on I'. The conditions (4.2) guarantee that aXdS’ has no poles at the points g;.
Therefore the differential BXdS’—dp is holomorphic on I" (it could have a
(simple) pole at g, but this is impossible by the theorem on residues). Since
by the normalization conditions the periods of this holomorphic differential
over any cycle is real, it is equal to zero. In a similar way it can be proved
that dE = ade', dQ) = aTdS. The equality (4.3) is a consequence of the
equality of the mixed derivatives for dS. The theorem is proved.

Given X, Y, T, the equations (4.2) are a system of N equations with N
unknowns A;. Its solutions A;(X, Y, T) determine special solutions of the
Whitham equations for the unperturbed equations (4) (K = 0). These
solutions depend on dh and on the choice of a canonical connection. The
class of these solutions can be enlarged by admitting constant poles of dA
(see [22]). As we see from the proof of the theorem, it remains valid if all
violations of the analyticity of dA do not depend on X, Y, T. Apparently,
the most general class of exact solutions can be obtained by defining dA as
a solution of the d-problem with a constant right-hand side. We are planning
to return to this question in another publication. Besides generalizations of
the definition of dA we can also enlarge the ways of choosing canonical
connections.

Let I < M, be a submanifold of M, (possibly coinciding with it). We

say that on the bundle i)f?-»sm, which is the restriction of Mg to M, an
admissible connection is given if on each curve I' in the collection of data
I, P,, k%', determining a point of M, a function A(Q) is defined such that
for any number A, in a neighbourhood of A(P,) the magnitudes ki(Q),

i =1, .., m, where Q is determined from the condition A(Q) = A,, are well-
defined functions of Ay, that is, they do not depend on I'. We note that
the canonical connections are admissible. The points g; at which d\ = 0
are singularities of the connection.
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Theorem 4.1'. Suppose that (T, Py, [k3'lm) € M depend on X, Y, T so that
at each of the singularities of an admissible connection one of the conditions
(4.2) is satisfied. Then the corresponding Abelian integrals p, E, § satisfy
the equations (4.3).

In the special case of the submanifold of data Mg C M, that determine
solutions of Lax type equations and the connection on MQ given by the
function E(Q), the above theorem leads to the following equations (if all
\; = E(q;) # const):

(44) wi(hyy ooy Ay)+vi(Ay, o Ay)T+HX =0, N,=dim Mg,
where

- a9 dp__ \-!

(4.5) vy == (@), =) ()
The equations (4.4) were suggested in [23] as a generalization of the
“hodograph” method. It should be noted that in [23] there was no
effective construction of the functions w;. The second formula in (4.5)
complements the scheme of [23].

In contrast with the general space two-dimensional case, where our
construction gives only special solutions of the corresponding Whitham
equations, the equations (4.4) enable us to solve the Cauchy problem for the
Whitham equations for the parameters of finite-gap solutions of Lax type
equations. The differential dh from the definition of dA and the contour &
are expressed in terms of the initial values A;(X, 0).

We give a brief sketch of the construction of d# in the case of the KdV
equation (the general case of Lax type equations differs very little in
principle fromi this special case). The real finite-gap solutions of the KdV

equation are given by a hyperelliptic curve I':  y* = R(E) = U(E — ),

i =0, .., 2g, where the A; are real, and by a collection of poles vy,. The
differentials dp and d€2 have the form

dE|
4.6 d Eé 4 r E&t
(4.6) p=(Bf+r Bt .. 4r) —SEL h
— S+d . g ofad |
dQ=(E s, E —}—riE +... 4+ g) V—HET
where the constants r;, 7; are determined by the normalization conditions
Eoy Ezy
@n | dp=0, [ de=0, 1=1,....¢ si=—3 2 M
E;j-l Egja1
We consider the differential

X
(4.8) dS(X, E)= g dp (X', E)dX' +dS,, dS,=dS,(E).
b
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If dSo = (, then this differential is analytic outside the real axis and has a
jump on the inverse image of the real axis, which we denote by dh(E). The
existence of this jump is related to the fact that on the real axis we cannot
choose a single-valued brarch of dp(X, E) for all X. By Theorem 4.1’ the
differential dh determines a solution of the Whitham equations

(4.9) hir + vihix =0,

which by the construction of dh has the desired initial value.

In some cases we can, by choosing a constant differential a'S’o (with jumps
and poles), arrange that ds is meromorphic. As an example of such a
situation we give a construction of ‘“‘average n-gap’ solutions of the
equations (4.9).

Let dQCY be a normalized differential on I' with the only singularity at
infinity of the form dQ®™ == dk"(1 + O(k™™).

Corollary. The equations (4.4), where w; = (dQQ™/dp)(\;) determine the self-
similar solutions .; = tvA;(x/t1 V) of the Whitham equations (4.9) with self-
similar exponent v = 2{(n— 3).

In [62] a self-similar solution with exponent y = 1/2 for g = 1 was found
numerically that satisfies the boundary conditions A,(z1) = N\;(z1),
MNGEY) = uy, M(ET) = N20), N3(27) = u_, z* = u.—ud. This solution
describes for ¢t > 0 the structure of a shock wave appearing after the
“overturn moment”’. In recent work of Potemin it was shown that the
average 7-gap solution constructed by the above corollary satisfies the
required boundary conditions. The boundaries of the oscillation domain
turned out to be z* =/10/27, z~ = —/2 (approximate values of these
magnitudes found numerically in [62] were z* ~ 0.117, z7 ~ 1.41; the
equality z© = —/2 was mentioned in {64]). An important consequence of
this result is the smoothness of the self-similar solution in the whole domain
2~ <z <:z%, though it followed from the scheme of the numerical solution
of [62] that this solution possibly had a weak discontinuity inside the
domain.

§5. The quasi-classical limit of two-dimensional integrable equations.
The Khokhtov-Zabolotskaya eouation

The simplest solutions of the non-linear equations (4) are “‘zero-gap”
solutions corresponding in our construction to the curves I' of genus g = 0.
They have the form (1.6), where #; and 13]- are constant matrices. It turns
out that the Whitham equations even in this case are non-trivial and, as will
be seen from what follows, in some cases are of independent physical
interest. These equations coincide with the classical limit (4). It follows
from the results of §3 that they can be represented in the form

6 (G-5) % (F—7)F5+(HF—%)w=0
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where p = p(k, x, ¥, t), E = E(k, x, y, t), Q = &k, x, y, t) are rational
functions of the variable k.

Example 1. Letp =k E = o0 '(k*~u), & = k*—3uk/2—w. In this case
the equation (5.1) is equivalent to the system

3 : 3
(52) u'x=0'Tuy, O'wy: ut+7 uu .

Eliminating w from (5.2), we obtain the Khokhlov-Zabolotskaya equation.

Example 2. Inthe case p = k

N
(5.3) E=k+ ) kjfvi , Q=k4u,
i=1

and the equation (5.1) leads to the system
{ Vip— 20055 — U =0, 1, —2@©M;):=0,

N
\1 —
ux—uy'—_’_ 1’];:\.——0.

i=1

(5.4)

The solutions of (5.4), not depending on y, correspond to the quasi-classical
limit of the vector non-linear Schrodinger equation which, as noticed for the
first time in [60], describes N-fibre solutions of the Benney equation. In
[60] the classical limits of the general Lax equations were considered and it
was shown that they are compatibility conditions of an algebraic and an
ordinary differential equation. This implied a construction of integrals of
these equations. However, the question of construction of solutions
remained open. The scheme of the solution of the Cauchy problem for the
system (5.4), based on a development of the ideas of [60], was suggested in
[61]. We note that this scheme can easily be obtained as a special case of
our construction of solutions of the equations (5.1), which follows from the
result of the preceding section.

As an example we consider the construction of solutions of (5.2). It is
given in closed form without tracing the literal correspondences between its
elements and those of the construction of the preceding section.

We define the polynomial

(5.5) A (R) = b — 2uk? — 5 wh— Dy,

where the constant Ag = Ay (%, v) can be chosen so that A(g,) = 0, where g,,
q., q, are zeros of the differential dA\. It is convenient for what follows to
pass from u, w to the variables g,, g, with the help of the relations

(5.6) u = g9, — (@1 + 92)% w = 39:9:(q1 + o)
Then

(5.7) ho = (g1 + 82) — 21 (g4 + 05)2 -+ — w (g, + g)-
2 3
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(We note that the choice of A(k) in the form (5.5) corresponds in the
terminology of §4 to fixing a canonical connection.) In this case

p=MA(R)+O(K"), E=M/2(k)+0 (K1), Q=A¥ (k)40 ().

We take an arbitrary contour £ in the k-plane and a smooth differential
dh(7) on it. We define a function & (k) by

dh (T
(5.8) 7= [ 28,
Zz
where £(r) is one of the roots of the equation A(§) = 7% This function
depends on gy, q, as parameters. We reflect this in writing 7 = #(k | ¢;, ¢o)-
In the case under consideration the equations (4.2) have the form

- 8 ! 3 .
(5.9) 0=—§—(qilqu g2)+ 2407 (29, —u)y + (3qi-—?u) t, i=1, 2.
The system (5.9) determines implicitly the functions q,(x, v, 1), g.(x, v, t).

Corollary. If the functions q;(x, ¥, t), i = 1, 2, are determined by (5.9),
then u = u(x, y, t) and w = w(x, y, t), given by (5.6), satisfy (5.2).

The equations (5.2) have self-similar solutions
Y oux/tiy, /ey,

and in a similar way for w. Similar solutions can be obtained by taking
F (kg q) = ®,, where @, is a polynomial of k of degree n uniquely
determined by the relation

q)n(k i 14 C]z) = }"n/‘l(k | 91, Qo) + 0(1\3_1).

The self-similar exponent of the corresponding solutions is equal to
vy = 2/(n—3).

To obtain solutions of (5.4) that do not depend on y, we should proceed
in the following way. We define a function # by (5.8), where AN(k) = E(k)
and £ is defined from the relation A\(§) = ¢(7) (¢(7) being a parametrization
of the contour Z£). The function #(k | v;, v;) depends on 7;, v; as
parameters. If the n;(x, ), v;(x, ) are determined from the system of
equations

(510) 22 (yin,, v)Fa+2n;=0, j=1,...,2V,

where the »; are roots of the equation

N
(511) dE(%,):.—.O@ 1=2 i

: 1 ""—( ”j—_'—-_”i_)-z 1
i=1

then they satisfy (5.4).
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CHapTER Il

THE SPECTRAL THEORY OF THE TWO-DIMENSIONAL PERIODIC SCHRODINGER
OPERATOR FOR ONE ENERGY LEVEL

The main aim of this chapter is to develop the spectral theory of the
operator

(0.1) H= —0:—0;+u(z, y)
with smooth periodic potential u. It follows from the results of [30] that

the Floquet spectral set M? C C? (defined as the set of triples of complex
numbers for which the equation

(02) Hlp(xv Y, t7 Q) = E"P(If Yy tv Q)’ 0 = (E’ Wy, wz);

has a Bloch solution y(x, y, ¢, Q), Q C M?, with “multipliers” w;, w,) is an
analytic submanifold of C3. The complex Fermi-curve Ig, corresponding to
the “‘energy level E = E," is by definition the section of M? C C3 by the
hyperplane E = E,. As in the case of the operator (1.1.1), an explicit
construction of I'r and a detailed description of the structure of this
Riemann surface, following from it, is based on a construction with the help
of the perturbation theory of formal Bloch solutions of (0.2).

81. The perturbation theory for formal Bloch solutions

Let uy(x, ¥) be an arbitrary smooth periodic potential. We fix a complex
number wy,. A collection of solutions y,(x, ¥) of the equation

(1.1) (—0x— 0+ uy(z, Y)¢y=0
will be called basic if
(1-2) 1P\(I =+ llv y) = wlowv(x’ .I/); wv(xv y + lz) = wzv‘q‘v(xv y)7
and if the following conditions are satisfied:
1° there is a “dual” collection of solutions Y; (x, y) of the same equation
such that
(1.3) ¢ @+, Y=wi Py (@ ¥ W (@ g+ L) =wi v (= ),
(1 4) ("-I"vy'\l‘l:_ ‘l’v"l’ﬁy)x = rvsv, nr Ty =0
(since Y, \D:{ satisfy (1.1, 2, 3), it follows that r, does not depend on y);
2° for any continuously differential function f(x) such that

(1.5) fl@ + 1) = wyf(x),
the series (1.6) and (1.7) converge and are equal to
Wy h~
(1.6) 0=2 ——,
b
3D S Y PR .

(1.7) fla) =2 v =, 2t

b
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Example. Let uy = 4. Then for any k the functions
(48 vz v B=exp (k) ati{b—p) )
are Bloch solutions of (1.1) with multipliers
(1.9 wm=exp ((k+—4)4), w@=esp(i (k=) k).
It can be verified directly that for any
(1.10) wyy = wy(ky) = exp(£2L,)
the sequence
(1.11) V(@ ) = P> ¥, k)

is a basic sequence. Here the k, are determined from the equation
wy(k,) = wy, and are equal to

110 w3 () 21/ P (b))

(the indices ¥ numbering k,, form a pair (n, %) that consists of an integer and
a sign). The dual collection consists of the functions

(1.13) Yulz, YW=v(z, ¥, —Fk).

Remark. By the definition itself the collection of basic functions is
“overdetermined’, and so it is impossible to expand f(x) uniquely in 4, or
P+y. However, for any pair of functions f(x), g(x) satisfying (1.5) there are
unique constants ¢, (») such that

(1.14)  f(2)= z_zcv (¥) by (2, 1), g($)=;cv(y) Py (5 Y)-

It follows from (1.14) that these constants are equal to
Ty ¢

We denote one of the indices v by “0” and assume that
(1.16) Wop = Wiy, v 5= 0.
Lemma 1.1. If (1.16) is satisfied, then for any continuously differential

functions du(x, ¥) (with the same periods as uyx, v)) there are unique
formal series

(1.17) F(y, Q)= 21 Fo (4, Qo)

(1.18) Y(z, y, Q)= 2 (, ¥, Qo)s Po="1p (2, ¥)
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such that
(1.19) (—0:— 0+ ug+0u)¥=2F¥, 4+ (F,+F) ¥

as well as the following conditions:

(1.20) Yz + Ly, Qo) = w¥(z, y, Qp)y Yiz,y -+ 1, Qp) =
= wy¥(z, y, Qo)s
(121) <Ipy,q; _ W‘W)y)x + F <qf¢’g>x =Tp= <¢Oy¢:— 11.0117.611};:

(for the time being Q4 conditionally denotes the pair (wwyy, wy)).

Proof. The equation (1.19) is equivalent to the system
(1.22) (— 02 —07+ uy) @, = ‘
= —duq,+ 21 (QFiCPs-i.y‘i'Fiy‘Ps-i +j§: Finq‘s-i-z) .
We shall search for a solution of (1.22) as a sum
(1.23) =13 (1) Yo (2, ¥),
by assuming that the ¢ are chosen so that

(1.24) Q‘sy"""g cy )] Pyy (=, y).

It follows from the above remark that this can be done in a unique way.
It follows from (1.23) and (1.24) that

(1.25) Z sty = 0.
Substituting (1.24) and (1.23) in (1.22), we obtain
(1.26) —2 CoyPvy.= Rs,

where R, is the right-hand side of (1.22). It follows from (1.25) and (1.26)
that

(1.27) - c:'y = (R 3} 2/ Ty

These equations together with the condition

(1.28) ey (Y + ) = 2 ¢ (y)

Way

enable us to determine the ¢§ uniquely for v # 0. The condition (1.21) is
sufficient for the existence of a periodic solution of (1.27) for v = 0. This
condition uniquely determines F,. The final formulae have the form

s—1 §~-1

(1.29) F, =_<‘l’°‘;“f’_t>_ ~ 3 (Fgi=3 FiFy (¢i-i—l¢3>x) :
’ i=1 1=1 0
(130) L‘g=1, €= "“,172 F, «Ps—-i‘m)xv s=1.

d=1
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For v # 0, ¢ = 0, and for s = 1 we have

+1.
v (P30uPsr)x

(1.31) e§= —ry! (2 F; <cps-z¢$>x+;;:’—_"”wj 5 dy'(——',v—"'—
i v

i=1
s—1

_Z;: (F,-C‘:,.i—-— Z FiFy <(Psr-vi-l¢$>x ) ) ) ]

i=1 =1

Corollary. The formula
4
(1.32) Dz, v Q)=exp (| F(y', Q) dy') ¥(z, y, 0)¥(0, 0, Qo)
0

determines « formal Bloch solution of the equation

(— i —03+u(z, ¥)) p=0, u=u,-+du,

’lj’(x+l11 Y, Qo)zwm:i)(x’ Y QO)’
q«(;r_. y..*_lz, OO):{‘T;ZOE:’ (.’13, Y, Qo)v

where
i
~ 4’

(100 Uy = Wy, EX] ( % Fly', 0 (]g/') .

0
or the resonance case (that s, when the condition (1.16) is not satisfied)
we proceed aiong the same lines as in Chapter I. We denote by [ an
avpitrary subset of indices » such that
{1.385) Wog 75 Way, @ €1, v 1.
Lemma V.2, There is a unigue matrix formal series

o0

(1.37) Fly, wye)= 21 F (y, wy), F:(ﬁ%)’ o, BeJ,

such that the equation (1.19) (where F is now a matrix and ¥ is a vector)
has a formal solution ¥, whose components satisfy the conditions

qra(z + Ly Yy w1 = wloqfa(zr Y, W),

(1.38 o
) ) Iym("ﬁ? Y + l*’zl» wlo) = w‘Zaq, (:E, Y wlo)v
{1.39) (Povh— LA RN ?;,1 F3 (W 50 ¢ == Bopra-

The proof of the lemma is analogous to that of Lemma 1.1. We omit for
brevity the corresponding recursion formulae for the coefficients £, and ¢$%,
since they are complete matrix analogues of the formulae of the resonance-

free case.
We define the matrix 7(y, wyo) from the equation

(1.40) 8,T+TF=0, T%(0, w,) =8¢
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Then the components W of the vector ¥ = TV are solutions of (1.33).

As in Chapter I it can be proved that the assertion of the corollary to
Lemma 1.1.3 is valid, that is, to each point of the surface given by the
characteristic equation (1.1.49) there corresponds a unique Bloch solution a
of the equation (1.33).

Remark. The assertions of §1 of Chapter I on the construction of the
“dual” functions ¥ *(x, v, Qp), which are defined on the same surfaces as
U(x, v, Qo). go over completely to the case under consideration.

§2. The structure of complex *'Fermi-curves’

Let ug = 4. Then, as we said earlier, for any w,, % %24 the equation
(1.1) has a basic sequence of Bloch solutions. Therefore the formulae of
Lemma 1.1 define formal Bloch solutions @J(x, v, ko) of the equation (0.2)
if we put in them du = u— E—4 and if k, satisfies the resonance-free
condition (1.16). It follows from (1.8) that the resonance pairs of points

have the form (kxnr, kwm), (%fvm %R'M), where

(2.1) knm= =+ Zya (12 V I+ lznp ™),
(2.2) %1%:M= + 2yae (L F VI 2yy] ),
iN M . .
(2.3) Ty == %’ll——{—%;— , N, M being integers.

The set of such points has only two limit points kK = 0, k = oo,

Further constructions and assertions practically completely repeat their
analogues in §2 of Chapter I. Therefore we restrict ourselves to brief
statements of them, indicating if necessary those minor changes which
should be inserted into the proofs and constructions of §2 of Chapter I.

Fixing &, we can choose neighbourhoods R, and R, of the resonance
points (2.1), (2.2) so that for any k4 not belonging to them the following
inequalities hold:

(2.4) lwoqwiy —1] >, |w2'01w2v-—-1| > h.

We can assume that % is chosen small enough in order that these
neighbourhoods be disjoint. Suppose that a periodic function u(x, y) is
analytically extendable to a neighbourhood of the real variables x, y (that is,
it satisfies the inequalities (1.2.13) for some U, 7y, 7,).

Lemma 2.1. There is a constant N, such that for k, not belonging to Rin
and R¥»y and satisfying the condition |kol+ 1koI™t > N, the series of the
perturbation theory constructed by Lemma 1.1 (for ug=4,0u =u—FE—4)
and its corollary converge uniformly and absolutely and determine a Bloch
solution {F(x, v, ko) of the equation (0.2) analytic (in x, ¥, ko) and non-
vanishing.
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Remark. By complete analogy with the above we can construct series of
the perturbation theory for the formally conjugate function J *(x, ¥, ko)
which is analytic, like y, in the res~onance-free domain.

We now consider ko € Ria (or Riar) and lkgl+ lkol™ > Ny, As a set of
resonance indices we choose v = 0 and v, such that k,, € RNM (or RNM
respectively). Then for wuy, € Waar = wy(R¥a) (o1 wy, € Woaar = w, (R¥a))
the series of the perturbation theory of Lemma 1.2 determine a two-
dimensional quasi-Bloch solution of the equation (0.2). The corresponding

monodromy matrix 7 = T(ls, wy,) determines a two-sheeted covering of

IA?_VM or J?I_\-M over the domains ¥ »; and ﬁ’m,. Again we call a pair N, M
distinguished if the discriminant of the characteristic equation for T has a
zero of multiplicity two.

Lemma 2.2. For non-distinguished pairs N, M the Bloch function if extends
o HANM(ﬁNM) and has one simple pole there.

To repeat the gist of the proof of Lemma 1.2.3, it is sufficient to apply
the following assertion instead of Lemma 1.1.1.

Lemma 2.3. Suppose that Y(x, v, Q) and Y*(x, y, Q) are Bloch solutions
of the equation (0.2). where Q is a non-singular point of the surface T'g:
then

(2.5) dpx (¥ — Y2y + dpy (pypt — Y. =0.

The functions (p At — Y30, and N+ — §§; ), have no common zeros in
the non-singular part of Ug.

The equality (2.5) can be proved by analogy with the proof of (1.1.6).
The second assertion of the lemma follows from the fact that under the
variation du of the potential u of the operator (0.1) we have

(2.6) 18Py (YY" — YRy 10D, (P — pigde = (g Bu)).

By analogy with Lemma 1.2.4 we can construct an extension of J/(x, v, ko)
inside the ‘“‘central resonance domain”ﬂ]{oz [ g} 4+ | Fo 71K N, which is
replaced by a finite-sheeted covering R, of the domain W, = w(R,).

We denote by I'g the Riemann surface obtained by “‘pasting™ R~ and

a~

7?”, instead of the deleted neighbourhoods of the non-distinguished
resonance points and ““pasting” R, instead of R,.

Theorem 2.1. The Riemann surface T'g is isomorphic to the “spectral
Fermi-curve” of the operator (0.1). The Bloch solutions ¥(x, y, Q). Q €T,
of this equation normalized by the condition Y(0, 0, Q) = 1 are meromorphic
on I'g. The poles of Y do not depend on x, y. In each of the domains

R NAS i ~a (N, M being a non-distinguished pair)  has one simple pole.
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In the domain Iéo it has g, poles, where gq, in the general position when Iéo

is non-singular, is equal to the genus of Iéo. Outside R, f?NM, ﬁm, the
function  is holomorphic.

All the assertions of the theorem except for the first one follow from the
construction of I'g itself. To each point Q of I'y there correspond the
multipliers w;(Q), i = 1, 2. They determine a map of I'y to the corresponding
“Fermi-curve”. The fact that this map is an isomorphism follows from the
assertion of the following lemma.

For any complex number w,, we denote by Q, € I'g the solutions of the
equation

(2.7) wy (Q4) = wy,
and by ¥, (x, ¥) the functions y(x, y, Q,).

Lemma 2.4. If the equation (2.7) has simple roots, then the collection of
functions Y ,(x, y) is basic (in the sense of the definition given at the
beginning of §1).

Proof. It follows from Lemma 2.3 that the differential
(2 8) dQ= — dp.u (<\l’y¢+ - \NE);)" = dpy (("¥x'¢+ - \l’\l‘§)y)"

is holomorphic on 'y and has zeros at the poles of ¢ and y*. The assertion
of the lemma follows from the examination of the contour integrals

l

9 - FRONRACIE TR ULk (G TR I
(2.9) Sux CS 017 ST
N
1
’ ‘; (.1,', v, Q) 117+ (x’4 v, Q) J
(2.10) Syx =C§ aQ E fo) S QEL 0D gy,
N

where Cy is the union of two contours surrounding the points P, that have
radii of order N and N™! and do not intersect the resonance domains. These
integrals tend to zero and f(x) respectively, as NV = oo. Since the residues of
the integrands coincide with the terms of the series (1.6) and (1.7), the
lemma is proved.

Corollary 1. The correspondence
(2.11) (wy, wy)—(uy', uy)
derermines a holomorphic involution o : 'y = 'y of the Fermi-curves.

Proof. To each point Q € I'g there correspond a Bloch solution y(x, y, Q)
with multipliers w,(Q), wo(@) and the “dual” function ¢*(x, y, Q) with
multipliers wi(Q), w3}(@). Since Y * is a Bloch solution of the same
equation (0.2) and the points of I'; parametrize all Bloch solutions, it
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follows that the pair wi(Q), w>'(Q) belongs to the Fermi-curve, and the
lemma is proved. At the same time we obtain

(2.12) Yt (z, ¥, Q) = v, o@Q)).
Corollary 2. If the potential u(x, y) is real, then on the curve I'g an anti-
holomorphic involution 1 is defined that is induced by the correspondence

(2.13) (., w,)— (i, w),
and
(2.14) Tz, ¥, Q) = (=, y, 1Q)).

Definition. A potential u is called finite-gap with respect to the level E if
all except finitely many pairs N, M for it are distinguished when constructing
I'g,, that is, when T'g, has finite genus.

By the definition of distinguished pairs, for finite-gap potentials with
respect to the level E, the surface T'g, outside some finite domain
lkol+ 1kl < Ny coincides with neighbourhoods of the points & = 0 and
k = oo on the usual complex plane. Therefore it can be compactified by
two “‘infinitely distant” points P,. In what follows we shall keep the
notation T'g, for the corresponding compact Riemann surface.

Theorem 2.2. The Bloch solutions of the equation (2.2) for E = E, for
potentials u that are finite-gap with respect to Ey are defined outside two
points P. of the compact Riemann surface Ty, on which there is a
holomorphic involution ¢, o(P.) = P.. In a neighbourhood of P. this
function Y(x, ¥, Q),Q € I'g,, has the form

(245) ¢ (z, y, Q)= exp((z = i) ki)(1+:jj§f (%, ¥) A-::),

where the k7' = k31 (Q)are local parameters in neighbourhoods of P+
(moreover k. (0(Q)) = —k,(Q)). Outside P.the function Y is meromorphic
and has g poles not depending on x, y, where in the general position when Tt is
non-singular g is equal to the genus of Tg,. In this case the poles v, and

v§ = a(y,) are zeros of a differential dS) of the third kind with simple poles
at the points P.and holomorphic outside them. If the potential u(x, y) is
real, then there is an anti-holomorphic involution T on 'y, commuting with
o and such that t(P.) = Pz, k-(1(Q)) = k=(Q). Moreover, the set of poles
of y is invariant with respect to T.

By complete analogy with Theorem 1.3.1 the following assertion can be
proved.

Theorem 2.3. For any E, the smooth periodic potential u(x, y) of the
operator (0.1), analytically extendable to some neighbourhood of real x. v,
can be approximated uniformly with any number of derivatives by potentials
uUg(x, y) that are ‘finite-gap with respect to the level E,".
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83. The spectral theory of “finite-gap operators with respect to the
level £y”" and two-dimensional periodic Schrédinger operators

An important distinction between the spectral theory of the non-stationary
Schrodinger operator (1.1.1) with 0 = 1 and the two-dimensional Schrodinger
operator in the case of smooth periodic potentials u(x, y) is that in the first
case the corresponding spectral curve I' is always non-singular, while in the
second case the “complex Fermi-curve” T'g, can have finitely many singular
points. A complete description of possible types of singularities has still not
been obtained.

We begin this section with a brief presentation of the inverse problem of
the recovery of ““finite-gap with respect to the level E,” potentials u(x, y) in
the case of non-singular “Fermi-curves” T’z ([28], [29]).

Let I' be a non-singular algebraic curve of genus g with two distinguished
points P,, in neighbourhoods of which the local parameters k2'(Q) are fixed,
k3 (P.) = 0. For any collection of g points ¥,, . .., ¥, in general
position there is a unique Baker-Akhiezer function Y (x, y, @) meromorphic
on I' outside P, having poles at the points j; and asymptotics

(3.4) Yp=eh (1 + 521 E(z, v ]‘":“) v ke =Fks (Q)y Q— Py,

(3.2) 'qa=e"—;c(x, y)(i-}-ZiE;(:c, y)k:‘), s=gx4iy, z=a—Iiy.

It was proved in [27] that such a tunction { satisfies the equation

(3.3) Hy=0, H=—0%+40-+u,
where
(3!’) A;(x’ y)=20,logc(z, ¥), u(z, y)=a;§; (z, ¥)-

For the function ¥ and also for 4; and u explicit theta-function formulae
have been obtained.

n [28], [29] sufficient conditions on the data (T, P., k., v,) were found
for the operator H corresponding to them to be purely potential, that is,
As = 0. These conditions are the following:

1) there is an involution ¢ : " = I" on I" with two fixed points P,;

2) the local parameters k3! must satisfy the condition k.(0(Q)) = —k.(Q);

3) the points v, and ;" = o(7,) form a divisor of the zeros of a differential
d$2 of the third kind with single simple poles at P..

The sufficiency of these conditions follows from the fact that if they are
satisfied, then the differential (3.5) is holomorphic outside P., where it has
simple poles.

(3.5  dQ = (z, y, QVH(z, ¥, Q)QQ), Y+, y, Q) = Pz, ¥, o(@)).
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The equality to zero of the sum of the residues of this differential leads to
the fact that ¢? = 1 (since ¢(0, 0) = 1, it follows that c(x, ¥y) = 1). The
latter is sufficient for the equality 4; = 0.

Theorem 3.1. The above conditions (1-3) on the data of the inverse
problem (T, P,, k., v,) are necessary for the operator (0.3) corresponding to
them to be potential (that is, to have the form (0.1)), and the potential

u(x, y) to be smooth. If the potential u is periodic, then T is isomorphic to
the “complex Fermi-curve” T'g_,.

Proof. In the general case the operator H corresponding to the data

(T, P., k., y,) is quasi-periodic. The periodicity conditions are formulated
in exactly the same way as for the case of finite-gap non-stationary
Schrodinger operators. We define the differentials of the quasi-momenta
dp,., dp, as differentials of the second kind on I' with single poles at the
points P, of the form

(3.6)  dpi=—idk (1 +0(kY)), dpy= = dks (140 (k%))

and uniquely normalized by the conditions that their periods over all cycles
on I are real. If these periods are multiples of 2#n/l, for dp, and 2n/l, for
dp,, then the operator H has periods /5, [, in x and y respectively. For the
periodic potential operators the last assertion of the theorem can be proved
in exactly the same way as the first assertion of Theorem 2.1. After this the
necessity of the conditions (1-3) for the periodic operators follows from
Theorem 2.2. The real matrices of the periods of the differentials dp,, dp,
are non-degenerate functions of the parameters (I', P., [kZ']}). Therefore
the set of periodic operators as /;, /; > oo is dense among all finite-gap
operators with respect to a fixed level of operators (corresponding to smooth
curves). This enables us to complete the proof of the theorem.

In a similar way it can be proved that for u(x, ) to be real it is necessary
that there is an anti-involution 7 on I' such that 7(P,) = P;, k (7(Q)) = k_(Q)
and that the divisor of the poles v, ..., 7, is invariant under 7.

In [29] sufficient conditions on the parameters (I, o, 7, P., k., y,) were
formulated that guarantee the smoothness of the potential u of the operator
(0.1) corresponding to them. Besides the above requirements, it is sufficient
that T" is an M-curve with respect to 7, and among its g+ 1 ovals aq, ..., a,
there are g ovals such that o(a;) = ag,+: (here g, is the genus of the curve
I'/o; since o has two fixed points, it follows that g = 2g4), i = 1, ..., g,.

If the points <y, are chosen so that there is one point in each oval ag,
s =1, ..., g, then the corresponding potential # will be smooth.

Besides these conditions there is another type of sufficient conditions.

If the anti-involution 7o is an anti-involution of splitting type, and the
differential d€2 is positive on all fixed ovals of 7¢ with respect to the
orientation given on these ovals as on the boundary of one of the domains
into which they split I, then the potential # will be smooth.
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The two types of sufficient conditions given above are analogous to the
conditions that guarantee the smoothness of the finite-gap potentials of the
operator (1.1.1) with 0 = 1 and ¢ = i respectively. The proofs of these
assertions are also completely analogous.

In a recent paper [64] a series of sufficient conditions was found, among
which the ones given above occupy diametrically opposite positions. The
method of [64] is based on an analysis of theta-function formulae for
u(x, ¥) and differs in principle from the approach developed here. There is
still no reformulation of the whole series of conditions of [64] into the
form that we need. As shown in [64], the conditions obtained are not only
sufficient but also necessary for the smoothness of the potentials u
corresponding to the smooth curves I'p__,. These potentials have the form

(3.7 u(r, y)= —2(926; log 6 (U,:+U2':’-+§0)+c,

where the constant ¢ depends on I, P, (its explicit form was found in [65})
and the theta-function 0 is a Prym theta-function, that is, it is constructed
from the matrix of the periods of the holomorphic differentials that are odd
with respect to 0. For certain types of degeneration of I" the Prymian of
the curve can remain non-degenerate (in contrast with the Jacobian, which is
always degenerate). It is this fact that causes the possibility of the existence
of smooth finite-gap quasi-periodic potentials corresponding to singular
curves. The most interesting case, which gives the principal state of the
corresponding operator H, is considered in [29], [66]. More general
examples can be constructed by using the well-known technique of the
construction of ‘“multi-soliton against a background of finite-gap potentials”
(see [52] for the case of operators of the type (1.1.1)). We omit a detailed
description of these examples, since at present we do not know a complete
description of admissible types of degeneration. To answer this question, we
need a more detailed investigation of the direct spectral problem which has
been considered in the preceding section. We turn the reader’s attention to
the fact that a related question of the description of possible types of
degeneration ‘is discussed in the letter of Shiota included at the end of the
Russian edition of the book [67].

It is seen from the results of the preceding section that the potentials
corresponding to smooth curves, that is, having the form (3.7), are dense
among all finite-gap potentials (corresponding to curves with possible
singularities), therefore the assertion of the theorem on the density of the
finite-gap potentials means that the potentials of the form (3.7) are also
dense.

In conclusion we note that the restriction on the length of the paper
forces us to give up a discussion of applications of the spectral theory of
two-dimensional periodic Schrédinger operators in the theory of non-linear
equations. The creation of the perturbation theory for the periodic solutions
of the Novikov-Veselov equations and the derivdation of the Whitham
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equations for them (which, by the way, have the same form (2.3.8) after the
change dp = dp,, dE = dp,) is completely analogous to the constructions of
Chapter II. By analogy with §5 of Chapter I we can prove the completeness
in the space of functions periodic in x, ¥ of the products of the Bloch
solutions , Y™ at the resonance points and the products of Y(x, y, Q),
Yt (x, ¥, Q), as well as a number of other assertions.
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