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Introduction

The development of the effective spectral theory of finite-gap Sturm-
Liouville operators undertaken in the series of papers by Novikov, Dubrovin,
Matveev, and Its (a survey of which is given in [ 1 ] , [2] ; some of those
results were obtained slightly later in [3], [4]) has not only enabled us to
construct a wide class of periodic and quasi-periodic solutions of the

(1)Also called "finite-zone or "finite-band". (Editor)
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Korteweg de Vries equation. It has led to the revaluation of the whole
approach to the development of the spectral theory of arbitrary one 
dimensional linear operators with periodic solutions.

The assertion that the Bloch functions of such operators, considered for
arbitrary complex values of the spectral parameter E, are values on different
sheets of a Riemann surface of a single valued (on this surface) function,
which now looks self evident, remained beyond the framework of the
classical F loquet spectral theory. It has turned out that analytic properties
of the Bloch functions on this Riemann surface are crucial for solving the
inverse problem of recovering coefficients of the operators from the spectral
data. In the case when this Riemann surface has finite genus, the solution
of the inverse problem is based on the technique of classical algebraic
geometry and the theory of theta functions. (A generalization of the
algebraic geometry language and theta functions to the case of a hyperelliptic
curve of infinite genus, corresponding to the Sturm Liouville operator with
general periodic potential, was obtained in [5].)

The meaning of the algebraic geometry approach was clarified completely
in [6] , [7] where, for the first time, a general construction for periodic
solutions of space two dimensional equations admitting a commutation
relation (equations of Kadomtsev Petviashvili (KP) type) was suggested. In
the framework of this construction the inverse problem for operators of
the following form was solved:

(1) adv L, dt A, dt^ jL, dy = ~ ,

where the coefficients of L  and A
η m

(2) L = 2 ut(x, y, t)di, 4 = 2 Vj(x, y, t) d>, dx^±
i= 0 ;= 0

are scalar or matrix valued functions of their arguments. These coefficients
are uniquely determined by the data that characterize analytic properties on
an auxiliary algebraic curve Γ (a Riemann surface of finite genus) of a
function φ(χ, y, t, Q), Q G Γ, called the Baker Akhieser Clebsch Gordan
function. These analytic properties naturally generalize analytic properties
of the Bloch functions of finite gap one dimensional periodic operators.
Their specific features are such that for any function that possesses them
there are always operators L  and A of the form (2) such that

(3) (adv   Ζ,)ψ(*. y, t,  (?) =  0, (d,   A)Mx, y, t, Q) =  0.

The non linear equations on ut and V/

(4) \udy L, dt — A]= 0<^>Lt — cAy + [L, A] =  0,

equivalent to the comptability condition for the overdetermined system (3),
are just KP type equations.
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From the point of view of the problem of constructing solutions of non 
linear equations it would be sufficient to solve the inverse problem for finite 
gap operators, even without setting the direct spectral problem. (Surveys of
different stages of the development of the "finite gap theory" can be found
in [1] , [8]  [14] ) . However, such an approach left completely open the
question of the role and the place of the solutions obtained in the periodic
problem for the space two dimensional equations of KP type.

In the one dimensional case of Lax type equations

(5) L t + [L, A] =  0

the existence of the direct and inverse spectral transforms for operators L
with periodic coefficients enables us in principle to prove (though this is not
always brought to the level of rigorous mathematical theorems) that the
set of finite gap solutions is dense among all smooth periodic solutions. In
the two dimensional case the situation turns out to be considerably more
complicated.

One of the main purposes of this paper is the investigation of this
question on the example of the periodic problem for a KP equation

(G)  i. a*uvy + dx(ut ± uux + ± uxxx) =  0, σ* =  ±  1,

wh ic h h a s a r e p r e se n t a t io n ( 4) ( fo u n d in [ 1 4 ] , [ 1 5 ] ) , wh e r e

(7) L = d* u(x,y,i), A= d% + 4 udx + w(x,y,t).

The answer is different in principle for two versions of this equation: the
KP 1 equation (σ2 =   1) and the KP 2 equation (σ2 =  1).

As shown in [17], the periodic problem for the KP 1 equation is not
integrable even formally. It will be shown below that the same problem for
the KP 2 equation is integrable and any smooth periodic solution of this
equation can be approximated by finite gap solutions (this was proved
locally in the author's papers [18], [19]) .

This assertion follows from the spectral theory for the operator

(8) M = ady — di + u(x, y), Re σφΟ,

with periodic potential u(x, y), to the development of which the first
chapter of the paper is devoted.

In an unpublished paper of Taimanov it was proved by methods completely
analogous to the methods of [30] that the Bloch functions of the operator
Μ with smooth real periodic potential, defined as solutions of the equation
M\p =  0, that are eigenfunctions for the operators of translation by the
periods in χ and y, can be parametrized (as in the one dimensional case) by
the points of a Riemann surface Γ. The multipliers wx{Q) and w2((?), the
eigenfunctions of the translation operators, are holomorphic functions on
this surface, β £ Γ . This proof is based on a theorem of Keldysh on the
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resolvents of a family of completely continuous operators holomorphically
dependent on parameters. U nfortunately, in the framework of this
approach we are unable to obtain detailed information on the structure of Γ,
which is necessary for the proof of the main approximation theorem.

The approach to the construction of the Riemann surface of the Bloch
functions, we suggest, has a constructive nature and is more effective. In the
first section of the paper formal Bloch solutions are constructed with the
help of series that are analogous to the series of perturbation theory. In the
next section the convergence of these series is proved in different domains
that "paste" further into a global Riemann surface. It turns out that outside
any neighbourhood of "infin ity" this surface has finite genus. Roughly
speaking, it is this fact that enables us to approximate an arbitrary potential
by finite gap ones, that is by those potentials for which the corresponding
Riemann surfaces have finite genus.

Section 3 of Chapter I is devoted to the spectral theory of finite gap
operators. In addition to the presentation of the scheme of the solution of
the inverse spectral problem for such operators, we present in the same
section theorems on the completeness of Bloch functions. In Section 5 we
prove a theorem on the completeness of products of Bloch functions and
their conjugates in the space of square integrable functions periodic in χ
and y. This assertion plays a crucial role in the construction of the
perturbation theory of finite gap solutions uo(x, y, t) of the KP 2 equation.
In particular, it enables us to prove that the solution given in §2 of
Chapter II of the linearized KP 2 equation

(9) χ vyv +  dx(vt —• §" "o ·̂ ~ §   «W +  T ι>«») =  °

form for each t a basis in the space of square integrable periodic (in x, y)
functions. Knowing this basis, it is easy to write down an asymptotic
solution of the form

(10) u (x, y, t) = uo(x, y, t) +  £ ε*ΐρ,(«. y, t)

both for the KP 2 equation itself and for its perturbations (ε is a small
parameter). By analogy with the multiphase non linear WKB method (the
Whitham method, see [20] , [21]) in the space one dimensional case, even
the requirement of uniform boundedness of the first term of the series (10)
leads to the fact that the parameters I lt ..., IN of a finite gap solution must
depend on the "slow" variables X — ex, Υ — zy, Τ =  tt. Equations that
describe the slow modulation Ik = Ik(X, Υ, Τ) are called Whitham equations.
For space two dimensional systems they were obtained for the first time in
the paper [22], the results of which will be presented in the last sections of
Chapter II . For these equations, which represent a system of partial
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differential equations on the Teichmuller space, we suggest a construction of
precise solutions. In the space one dimensional case this construction yields
an effective statement of the scheme of [23], where a generalization of the
"hodograph" method for the solution of "diagonalizable" Hamiltonian
systems of hydrodynamic type was suggested. (The theory of Hamiltonian
systems of hydrodynamic type was developed in [24], [25].)

As an important special case of an application of these results we present
separately in the final section of Chapter II a construction of solutions of
the Khokhlov Zabolotskaya equation, well known in the theory of non .
linear waves.

( H ) χσ^ 1 , Ι , +  β

(a detailed bibliography of papers devoted to this equation can be found in
[26]), We note that the equation (11) is a quasi classical limit of the KP
equation.

In the final third chapter we again return to the spectral theory of two 
dimensional periodic operators, this time on the example of the two 
dimensional Schrodinger operator

(12) H0 = d* + d* + u{x, y).

The inverse problem for the two dimensional Schrodinger operator with
magnetic field

(13) Η =  (dx   iA,{x. y)Y +  (dy   iA2(x, y))  + u(. f y),

based on the spectral data corresponding to one energy level Ε = Eo, was
posed and considered in [27]. In that paper a class of operators that are
'finite gap on a given energy level" was constructed, which can be
distinguished from the point of view of spectral theory by the fact that the
Riemann surface of the Bloch functions corresponding to this energy level,
being a "'complex Fermi curve", has a finite genus.

In [28], [29] conditions on the algebraic geometry data of the construction
of [27] were found that single out smooth real potential (Α, Ξ θ) operators
Η = Ho. Novikov has formulated a conjecture that the corresponding
potentials form a dense family among all periodic potentials u(x, y).

The main aim of Chapter III is the proof of Novikov's conjecture. Again,
as in the proof of the approximation theorem in Chapter I, we shall need
detailed information on the structure of the Riemann surface of the Bloch
functions of the operator HQ corresponding to a fixed energy level Eo.
(The existence of such a Riemann surface is proved in [30].) From the
purely technical formula point of view the construction of formal Bloch
solutions of the equation Ηοφ — Εοφ differs essentially from the construction
of Bloch solutions of the equation Μ φ — 0, where Μ is an operator of the
form (8). However, in the most essential matters of principle the construction
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of the spectral theory of the operators (8) and (12) proceeds absolutely in
parallel. This enables the author to hope that the approach developed in the
framework of this paper can be applied to the construction of the spectral
theory of arbitrary two dimensional periodic linear operators.

Before we proceed to the presentation of the main material, we make two
digressions. Up to now we have spoken about Riemann surfaces only in
connection with the spectral theory of linear periodic differential operators.
The points of those surfaces parametrize the Bloch functions, which are
defined non locally, in terms of the operator of translation by the period.
We called finite gap operators those operators for which the corresponding
Riemann surface has finite genus. However, the initial definition in [6] , [7]
of "finite gap solutions" of KP type equations was purely local. (Under such
an approach it would be more correct to call such solutions algebro 
geometrical.) They were singled out by the condition that for the
corresponding operators L  and A there are operators

(14) L i =  Σ u, (x, y , t) d<x, L 2 =  Σ  ι?, (χ, y , t) d*,
i=0 t=0

which commute with each other

(15) \LU Lt] =  0

and commute with the operators (1)

(16) [ L h ody   L] = 0 , [ L h dt A]= 0 .

This definition of "finite gap" solutions goes back to the pioneering paper
by Novikov [31], where he considered restrictions of the KdV equation to
stationary solutions of "higher analogues of the KdV equation", that is, to
the solutions of the commutation equation of the Sturm Liouville operator
L  and an operator An of order 2n+ 1

(17) [L, An] = 0.

The problem of classification of commuting ordinary linear differential
operators with scalar coefficients was posed for the first time and solved
partially in the remarkable papers [32] , [33] by Burchnall and Chaundy in
the early 20's. They proved that for any such operators there is a polynomial
in two variables R(K, µ) such that

(18) R(LU Lt) =  0

In the case of operators of coprime orders (nv m x) =  1, to each point Q
of the curve Γ, defined by the equation R(\ , µ) =  0, there corresponds a
unique (up to a multiplicative constant) common eigenfunction \p(x, Q) of
the operators Lv L2 (y = y0, t = t0):

(19) L^(x, Q) =  λψ(*, Q); £ 2ψ(*, Q) =µφ, <?), Q =  (λ, µ).



Spectral theory of two dimensional periodic operators and its applications 151

The logarithmic derivative ψχψ'1 is a meromorphic function on Γ that has in
its affine part g poles Ji(x), ..., yg(x), where g is the genus of Γ. The
operators L l and L2 themselves (of coprime order in this case) are uniquely
determined by the polynomial R and by fixing g points ys(x0)

 ο η Γ.
Definitive formulae in those papers were not obtained.

The programme of effectivization of the results of [32], [33] was
suggested by Baker [34], who noticed the coincidence of the analytic
properties of ψ(χ, Q) on Γ with those taken at the end of the last century
by Clebsch and G ordan as the basis of the definition of an analogue of the
"exponential function" on algebraic curves (see [35]) . U nfortunately
Baker's program was not fulfilled and those papers were undeservedly
forgotten for a long time.

In the author's papers [6] , [7] , where the equations (15) were considered
in connection with the problem of constructing solutions of KP type
equations, the results of the 20's were considerably effectivized and
generalized to the case of operators with matrix coefficients. For the
coefficients of commuting scalar operators of coprime orders explicit
expressions in terms of the Riemann theta function were found, which
showed that the general solutions of the equation (15) in this case were
quasi periodic functions. This enabled us to connect the local theory of
commuting operators with the spectral theory of the F loquet operators with
periodic coefficients.

initially the classification problem was posed in [32] , [33] for operators
of arbitrary orders, but it was noted that in the case when the orders are
not coprime there was not even an approach to its solution. The first
progress in this most complicated case was obtained in [36] on the basis of
algebraization of the scheme of [6] , [7] . The problem of classification of
commuting operators in general position was solved completely by the
author in [37] . (We note that the principal idea of this solution was
suggested in the author's preceding paper [8] , but its realization contained
essential errors.) It turned out that such operators are uniquely determined
by a polynomial R, a matrix divisor of rank r. and a set of r— 1 arbitrary
functions wo(x), . . ., wr_2(x). The recovery of the coefficients from these
data reduces to the linear Riemann problem. Here r is a divisor of the orders
of L l and L2. It is equal to the number of linearly independent solutions
of (19).

Let us give a brief description of the principal stages of the proof of the
assertion just formulated, in order to present more completely the different
mechanisms of the appearance of algebraic geometry constructions. (The
reader interested only in the spectral theory of periodic operators can omit
this part of the introduction and proceed to the contents of subsequent
chapters without particular detriment to understanding the main material.)

Any two operators L1 and L2 with scalar coefficients satisfying (15) can be
reduced, by a change of the variable χ and the conjugation L L  ^g(x)Lig~1(x),
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to the form in which uni =  1, «„ ,_! =  0,vmi(x) =  vm, — const. This form
will be assumed in what follows.

The canonical basis c, (x, λ; xQ) in the «j dimensional space Χ (λ) of
solutions of the linear equation

(20) L,y{x) = %y(x)

is usually normalized by the conditions

dlcj{x, λ; x0) |a;= = Xe =  6 w

By (15) the operator L 2 induces on Ζ,(λ) a finite dimensional linear operator
£ 2(Λ) whose matrix entries in the basis c,· are polynomials in λ. Therefore
the characteristic polynomial

(21) R(X, µ) =  det fo  l  £ 2 ( λ ) )

is a polynomial not only in µ but also in λ. It follows from its definition
that

(22) R ( L U L 2 ) y ( x ) = 0

for any solution of (20). Since R(L1, L2) is an ordinary linear operator, this
can be satisfied only when it is zero. Therefore the first of the assertions by
Burchnall and Chaundy is proved.

The equation

(23) R(l, µ) =  0

determines in C2 the affine part of the curve Γ. To clarify its behaviour at
infinity, we consider a formal solution of the equation

(24) L^(x, Α) =  *».ψ(*, ft),

of the form

(25) ψ (ζ, k)  

Substituting (25) in (24) and finding successively the £,, we can easily see
that there is a unique solution normalized by the condition Λ  =  0, £ 0 =  1,
£s(*o) =  0, s > 0. We denote it by \ jj(x, k; x0). Any other solution of the
form (25) is uniquely representable in the form

• §(x, k) = A(k)ty(x, k; x0).

Since the operator L2 commutes with Lu it follows that L7^{x, k; x0)
satisfies (24) and has the form (25). Therefore

(26) L2^(x, k; x0) =  µ (k) ψ (χ, k; xv),
oo

µ(Α·) =  ι>Β,,Λ""+  Σ µ,*"'·
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We denote by X{k) the «rdimensional subspace generated by the formal
expressions i}i(ar, ejk; x0), ε"' =  1, over the field of Laurent series in the
variable k"1. In the initial basis ty(x, ejk; x0) the operator L 2 is diagonal.
But if we consider in %(k) the basis with the canonical normalization
conditions, then the matrix entries of this operator in this basis coincide
with the matrix entries Lp(K, x0)oi the operator L2 in the basis ct(x, λ; χ0),
λ =  kn>. Therefore

7 1 ,  1

(27) Β (λ, µ )=  Π ( µ  µ (ε,*)).

We are ready now to discuss the role of coprimeness of the orders of
operators. If (n1, τηγ) =  1, it follows from (26) that the equation (22) for
large λ, and so for almost all λ, has distinct roots. F urthermore, this means
that the curve Γ is irreducible, and it is completed at infinity by a single
point Po in a neighbourhood of which k^iQ) =  λ"1·'"· is a local parameter.
In this case, to each point Q =  (λ, µ) G  Γ there corresponds a unique
eigenvector h(Q, xQ) of the matrix L2(k, x0) normalized by the condition
h0 = 1. Its remaining coordinates hj(Q, x0), i = 1, ..., «t— 1, are meromorphic
functions on Γ. The function

τ ι ,  1

(28) ψ (ζ, Q; !„ ) =  Σ M <?· xo)ct{x, λ; x0), £ =  (λ, µ),
t=0

is a unique solution of (19) under the normalization condition
H*o· Q' xo) = 1 

We consider analytic properties of φ on Γ. The functions c,· are entire
functions of the variable λ. Therefore φ is meromorphic on Γ outside the
point Po. Moreover, its poles ys(x0) coincide with the poles of ht and so do
not depend on x. In a neighbourhood of Po it has the form

(29) ψ (χ, Q; x0) =  (
x s = l

In the general case the curve Γ is non singular, and the number of poles of
φ is equal to g, the genus of Γ. The last assertion follows from an
examination of the function

(30) F(X, io) =  [dot ( 5 ^ ( i , Qj, χο)ψ,

where the Qj = (λ, µ, ) e Γ are the inverse images of λ under the natural
projection of Γ onto the λ plane. I t has poles of multiplicity 2 at the
projections of the poles ys(x0)

 O I Φ  Moreover, it has a pole of multiplicity
( «   1) at the point λ =  °°, which follows easily from (29). The zeros of F
coincide with the branch points of the covering λ : Γ  > C 1. The equality of
the number of zeros and poles of the rational function F(X, x0) and the
formula 2g  2 =  v  2n, which expresses the genus of an π sheeted curve in
terms of the number ν of branch points, enable us to obtain the desired
assertion on the number of poles of φ.
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Thus the common eigenfunction φ{χ, Q; x0) of the commuting operators
Lx and L2 is defined on Γ, outside Po it has poles yu ..., yg not depending on
x, and it can be represented in a neighbourhood of Po in the form (29).
Such functions are called Clebsch Gordan Baker Akhiezer functions (more
often for brevity they will be called simply functions of Baker Akhiezer
type).

The construction of the inverse correspondence, that is, the recovery of
the whole commutative ring A generated by a pair of commuting operators of
coprime orders from a non singular curve Γ with a distinguished point Po and
a collection of g points in general position, consists of two key stages. The
first is the proof of the fact that for any such collection (Γ, Po, yu ..., yg)
there is a unique corresponding Baker Akhiezer function. This assertion can
easily be obtained with the help of the usual Riemann Roch theorem. We
omit it because we can not only prove the existence and uniqueness of φ
but also obtain explicit expressions for it in terms of the Riemann theta 
function. (These expressions in a more general situation will be constructed
in §3 of Chapter I.)

The second crucial point is the proof of the fact that for any function
A(Q) that has on Γ a pole only at Po (the ring of such functions is denoted
by d(Y, Po)), there is a unique operator LA such that

(31) LA$(x, Q; x0) =  A(Q)q(x, Q; x0).

The degree of LA is equal to the order of the pole of A(Q). F or the proof
of this assertion it is sufficient to prove the existence and uniqueness of the
Baker Akhiezer function. Since it is typical for finite gap integration, we
present it briefly.

F or any formal series of the form (29) there is a unique operator LA such
that

(32) (LA A «?)) ψ (ζ, k; x0) s* Ο (Α ») £** *·>,
A(Q) = a.nk

n + a_n+lk
n i+ . . .

The coefficients of LA can be found successively if we substitute in (32) the
formal series (29) and the expansion of A{Q) in a neighbourhood of Ρ and
equate to zero the coefficients of ks, s =  n, n— 1, ..., 0, on the left hand
side. We consider the function φ =  LA\p(x, Q, χο)~Α(<2)φ(χ, Q; x0), where
LA is the operator just constructed. Since the poles of φ do not depend on
x, it follows that φ satisfies all but one of the requirements that define a
Baker Akhiezer function. As follows from (32), the constant term of the
pre exponential factor in its expansion in a neighbourhood of Po is equal to
zero. I t follows from the uniqueness of φ that φ = Q, and (31) is proved.
It follows that all such operators commute with each other. We emphasize
once more that the quasi periodicity of the coefficients of these operators
and the coincidence of the Baker Akhiezer functions with the Bloch
functions are consequences of explicit theta function formulae for φ(χ, Q; x0)·
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F rom the technical point of view the problem of classifying commuting
operators of arbitrary orders is considerably more complicated, but it is close
in spirit to the case just treated of operators of coprime orders. In the
general case the series µ(ε;·£) can take the same values for different fj only
in the case when µ(&) =  li(kr). Moreover, as follows from (26), the number
r is necessarily a common divisor of the orders nl and m1 of the operators
Lx and L2. Hence the polynomial R is then equal to

»'  1
(33) R(k, µ)=  ] | ( µ  µ ( ε ; % =  (£ (λ, µ))',

i= o
where (eft)71 =  λ, n'r = nr

We keep the notation Γ for the curve given now by the irreducible
equation if (λ, µ) =  0. At infinity this curve is completed by a single point
in a neighbourhood of which X~1/ 1"(Q) serves as a local parameter. It follows
from (33) that in a neighbourhood of infinity, and so everywhere, to each
point Q of Γ there corresponds the r dimensional space L2(K, x0) of
eigenvectors with eigenvalue µ, Q =  (λ, µ). We choose in this space a basis
h\Q, *o) ' ' =  0' ···>  r~ 1' with the no normalization conditions

(34) h)(Q, *0) =  δ, 7, 0 < i , / < r  l .

All other coordinates h{, j = r, ..., n1— 1, of the vectors h' are meromorphic
functions on Γ. The functions

(35) ψ, fo <?: *o) =  2>*j(C , xo)c,{x, λ, χ0)
j

form a basis in the space of solutions of (19), normalized by

(36) 0ίψ, (χ, Q; a;o)U= ,. =  6lV,

The number r is called the rank of the commuting pair L±  and L2 (or of the
whole commutative ring £ generated by L l and L2).

The vector valued functions h'(Q, x0) determine in the trivial bundle over
Γ an algebraic r dimensional subbundle h(x0). It is the starting point of the
investigations of [36] . How can we find the dependence h(xo)1 For
r = 1 it was determined by differential equations and its properties played
an important role in [1] , [2] , [37] and other papers. For r > 1, as shown
in [38], the situation becomes considerably more complicated. "Possible"
movements of h turn out to be covered by a non integrable r distribution on
the space of modules of r dimensional sheaves over Γ with a fixed flag at Po.
The variation of the normalization point x 0 determines a path tangential to
this distribution. At this point the investigations of [36] , [38] terminate.

Our method consists not in the description of x0 variations of the sheaf
but in finding the eigenfunctions φ{(χ, Q, x0) , x0 =  const, themselves from
their analytic properties. Again, as in the case r =  1, the functions i//,· are
meromorphic on Γ outside PQ. By analogy with the calculation of poles of
the Baker  Akhiezer function, it can be shown that in general position
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the \pi have poles at rg points 7s(x0) · Moreover the residues of these functions
satisfy the relations

(37) asj (x0) res.; ti =asi (x0) resv

where the constants asi(x0) do not depend on χ (but depend on the
normalization point x0). The collection (ys, asi), where asi is an r dimensional
vector defined up to proportionality, that is, as £ CPr'1, are called Tyurin
parameters. They characterize ( [39]) "matrix divisors" determined by stable
r dimensional sheaves over Γ with a fixed "frame", that is, a set of basic
sections.

To determine the behaviour of \ jjt in a neighbourhood of Po we consider
the matrix ty(x, Q; x0) with matrix entries Ψ/  =  δχψ̂ χ, Q; x0). Its
logarithmic derivative does not depend on the choice of a basis in the space
of solutions of (19). Therefore in a neighbourhood of Po it can be computed
with the help of the series (25) ψ(*. ejfc'; x0), (ε})Γ =  1, (k')r = k, j = 0, ...,
..., r~ 1, where k~\Q) is a local parameter. We obtain

(38) ΧΨ) Ψ"1 =

1 Ο
Ο 1

...  ο
,..  ο

ο, ο ...  ο

The functions vv, (x0) are differential polynomials in the coefficients of the
operator Lv

We define an entire function Ψο(Χ k; x0) of the parameter k by requiring
that in a neighbourhood of k = °o it is representable in the form

(39)

The problem of finding Ψο is the Riemann problem of factorizing Ψ on a
contour surrounding a small neighbourhood of PQ. It reduces to a system of
singular integral equations and has for almost all χ a unique solution
normalized by the condition χ 0 = 1. It follows from (38) that

(40) (dx

0
0

0
k+wB

1
0

0
"  

0
1

0

... 0

. . . 0

. . . 0
. . . u v_2

0
0

1
0

For it follows from (38) and (39) that ΨοαΨο' h a s t h e f o r m ( 4 °) i n a

neighbourhood of k = <=° up to 0{k x). Since det Ψο =  det Φ =  1, this
logarithmic derivative is holomorphic outside k = °°. Therefore the equality
(40) holds precisely.
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Inverting the equality (39), we find that the row vector φ with
coordinates i//,· has in a neighbourhood of PQ the form

(41) t (*, Q\  *„) =  ( Σ Is (x, xo) k~s) Ψο (x, A , x0),

where the £, are row vectors, £ 0 =  (1, 0, ..., 0), and Ψο is determined by (40)
and the initial condition Ψ0(χ0, k; x0) = 1.

A vector valued function ty(x, Q; x0) = (ψ0, . . ., ^ r _ x ) , meromorphic
outside PQ, having rg poles γ^, satisfying (37), and representable in the form
(41) in a neighbourhood of Po, is called a vector analogue of Baker Akhiezer
functions corresponding to the set of data

(42) (Γ, Po, ys, cce,  wo(x), . . ., wT_s(x)).

Here the wt(x) are arbitrary functions. (For r =  1 we have the usual Baker 
Akhiezer functions.)

The inverse problem of recovering commuting operators of rank r can be
solved again in two stages. First we can prove that for the data (42) in
general position there exists a unique vector valued function corresponding
to them. Its construction reduces to the Riemann problem on Γ of
factorizing Ψο on a small contour around Po. A method of solving matrix
Riemann problems on arbitrary algebraic curves was developed in [40], [41] .

It follows directly from (40) and (41) that for any function A(Q) there is
a unique operator LA of degree rn, where η is the order of the pole of A(Q),
such that

(43) (£,Λ
It follows from the uniqueness of the vector analogue of a Baker Akhiezer
function that each component \pt satisfies (31).

The correspondence
L: A — LA

determines a homomorphism of the ring ^(Γ, Po) of functions on Γ with a
single pole at the distinguished point Po to the ring of ordinary differential
operators. This homomorphism is determined by a set of data (42) in
general position.

Summarizing what we have said above, we arrive at the definitive
statement of the classification theorem.

Theorem [37] . For any commutative ring Λ of differential operators there
is a curve Γ with a distinguished point PQ such that A(T, Po) is isomorphic
to .4. For almost all rings Jb the curve Γ is non singular. Moreover, there is
a matrix divisor (ys, <xs), s =  1, ..., rg, where g is the genus of T, and a
collection of functions wo(x), . . ., wr i(x) such that the image of the
homomorphism L determined by them coincides with A up to the change of
variable χ = f(x') and conjugation by some function: Jt — φ(ζ)Ιΐη Ζ φ ^τ).
The number r is the greatest common divisor of the orders of operators in d.
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In some cases, as shown in [42] , we can avoid the necessity of solving the
Riemann problem and obtain explicit formulae for the coefficients of
commuting operator of rank r > 1. In particular, an operator L  of order 4
commuting with an operator of order 6 has the form

(44) L  =  (<?; +  u)  + cx (φ (γ.)   <§ (Vl)) +

x (cx (ψ (γ2)   S° (Y,))   S° (T2)   S> (Yi)),
= ί /  — c(x)+cu,

8u =  ( c L — 1) c;2 ( ^

Φ(<τ, y)=  

where c(x) is an arbitrary function: ζ, $ are the Weierstrass functions [43] .
We omit further details of the theory of commuting operators of rank

r > 1, since they will not be used in the main part of the paper (in contrast
with the construction of rank 1). We mention only the paper [44], where
the spectral theory of "finite gap" periodic operators of rank 2 was
constructed, and the papers [10] , [42], [45] , where a multiparametric
generalization of vector analogues of Baker Akhiezer functions was
introduced and with their help solutions of the KP equations were
constructed.

To conclude this section, we characterize briefly a construction of
solutions of equations that belong to the "KP hierarchy", which was
suggested in the series of papers [46] and developed in [47] . This
construction was based on a formal generalization of the "local" approach to
the axiomatics of Baker Akhiezer functions of rank 1.

Consider a formal series ψ(χι, x2, X3, • • • ', k) of the form
00 00

(45) ψ (χ; k) = exp ( 2 x^) (1 +  Σ & (*) ^  ) ·

For any such formal series there are unique differential operators Ln,
η = 2, 3, ..., in the variable χ — xx (whose coefficients depend on all
variables xx, x2, X3, ···) such that

(46) ( ±   Ln) ψ (χ, k) =  Ο (kri) exp ( 2 x,k*).
i—\

The order of Ln is equal to n. Its coefficients (like the coefficients in the
construction of commuting operators of rank 1) can be found by successively
equating to zero the coefficients of ks, s = n, «— 1, :.., 0, of the pre 
exponential factor on the left hand side of (46).

In the case when the series (45) is not arbitrary but satisfies the property
that its pre exponential factor converges to a function holomorphic in a
neighbourhood of k = °° and the function itself extends analytically to some
algebraic curve of genus g and has g poles there, the relation (46) turns into
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the precise equality

(47)

The conditions of compatibility of the linear equations (47)

are just the so called "KP hierarchy".
It turns out that (47) follows from (46) not only when (45) is an

expansion of a multi parametric Baker Akhiezer function but also in a more
general situation. The corresponding series in the construction of [46] ,
[47] were uniquely determined by the points W  of the universal G rassmann
manifold. U nfortunately, in the framework of this approach solutions that
are interesting from the physical point of view with controllable global
analytic properties were not found, except for "finite gap solutions of
rank 1" (which are quasi periodic functions) and their various degenerations
(multi soliton, rational, and others).

We note that the solutions of the KP equation constructed in [48], [49]
are also a special case of general solutions of [46], [47]. It should be
emphasized that their construction, which uses tensor fields of Baker 
Akhiezer type, enables us to prove that they are "asymptotically finite gap".

The question of constructing an analogue of the construction [46] , [47] ,
in the case of vector valued Baker Akhiezer functions that arise in the
theory of commuting operators of rank r > 1, is still open.

The proof of Novikov's conjecture in the Schottky problem is an
important mathematical application of the theory of commuting operators
of rank 1 and of the theory of the KP equation. In the author's paper [7]
the formula

(49) u(x, y, t)=2d$loge(Ux + Vy+Wt + l\B)

was obtained for finite gap solutions of the KP equation. Here 0(Zj, ..., zg\B)
is the Riemann theta function constructed from the matrix Β of ^ periods
of holomorphic differentials on an algebraic curve Γ. The vectors U, V, W
are determined by the distinguished point Po. The vector ξ is arbitrary.

The Riemann Schottky problem consists in describing symmetric matrices
Β with positive definite imaginary part that are the matrices of Z? periods of
algebraic curves. Novikov's conjecture was that the function u{x, y, t) given
by (49) satisfies the KP equation if and only if Β is the matrix of /^ periods
of some curve Γ. Thus all the necessary relations on Β can be obtained by
substituting (49) in (6). This conjecture was already partially proved in
[50], where the corresponding equations on Β were derived and it was
proved that they determine an algebraic variety, one of the connected
components of which coincides with the variety of the matrices of ^ periods.
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Novikov's conjecture was completely proved in [51]. The crucial point in
[51] is the proof of the fact that if u(x, y, t) of the form (49) satisfies the
KP equation, then there are vectors Us, s > 3, such that the function

(50) u (x,, . . . , xn, ...) =  2d| log

determines solutions of the whole KP hierarchy (x = xv y = x2, t = χ$).
Since among the vectors Us there cannot be more than g linearly independent
ones, it follows that among the linear combinations of the operators Ln

there are two commuting operators of coprime orders and so by [7] Β is the
matrix of 6 periods corresponding to these commuting operators of the curve

CHAPTER I

THE SPECTRAL THEORY OF THE NON STATIONARY SCHRODINGER OPERATOR

§ 1 . The perturbation theory for formal Bloch solutions

By Bloch solutions \p(x, y, wlt w2) of the non stationary Schrodinger
equation

(1.1)

with periodic potential u(x, y)   u(x + lv y) = u(x, y + l2) we mean solutions
that are eigenfunctions of operators of translation by the periods in χ and y,
that is,

, y, wx, w«) =  u\^{x, y, wx, w2);
2

yjp(x, y + l2, wx, w2) — w.$(x, y, u\ , w2).
The Bloch functions will always be assumed to be normalized so that
φ(0, 0, wv w2) = 1. The set of pairs Q = (w1( w2) for which there are
Bloch solutions will be denoted by Γ and will be called the spectral Floquet
set. (For brevity the corresponding Bloch functions will be denoted by
Φ(Χ, y, Q), Q e Γ.) The multi valued functions p(Q) and E(Q). on Γ defined
by

(1.3)

are called the quasi momentum and quasi energy respectively. If Γ is a
smooth analytic manifold, then the differentials dp and dE are single valued
holomorphic differentials. Their periods with respect to any cycle on Γ are
multiples of 2π/ Ιλ and 2π/ / 2 respectively.

Suppose that to each point Q =  (Η  , W2) Ε Γ there corresponds a Bloch
solution <//+(x, y, Q) of the equation conjugate to (1.1)

(1.4) ( ody dl + u{x, y))iT =  0
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such that

ψ ( +  ι. y, Q) = w X
i^{x, y, Q),

( } ψ+ ( *
Then the following assertion is true.

Lemma 1.1. The following equality holds:

(1.6) a dE

(Here and in what follows < · >* and < · ) y denote the mean values in χ and y
respectively.)

The equality (1.6) for the case of finite gap operators was obtained for
the first time in [52]. A generalization of it to the case of operators of
arbitrary order with matrix coefficients is contained in [22].

Proof. Let ψ =  φ(χ, y, Q) and φ+ = ψ+(χ, y, Q), where Q and Q are
arbitrary poin ts of Γ. I t follows from (1.1) and (1.4) that

(1.7) °d,,m+) = dx(i\ :A+ Wx)·

Averaging (1.7) in χ and y and making Q tend to Q, we obtain the desired
equality with the help of (1.2) and (1.5).

The gauge transform ψ  *•  <?αΜψ, where dya(y) is a periodic function,
transfers the solutions of (1.1) into solutions of the same equation but with
another potential u = u(x, y)—odyoc. Consequently, the spectral sets
corresponding to the potentials u and u are isomorphic. Therefore in what
follows we restrict ourselves to the case of periodic potentials satisfying the
condition

(1 8) (u(x,y))x = 0.

The main purpose of this section is to construct the perturbation theory
for formal Bloch solutions of (1.1), which enables us to express these
solutions in terms of the basis data ψη(χ, y) of Bloch solutions of the
"unperturbed" equation (1.1) with some potential uo(x, y). More precisely,
we fix a complex number wv The sequence of Bloch solutions

(1.9) ψπ =yn(x, y) =  ψ(ζ, y, Qn), Qn =  (wu w2n) ζ Γυ,

of the equation (1.1) with u = uo(x, y) will be called a basic sequence if any
continuously differentiable function f(x) such that

(1 10) f(x + h) = w

can be represented as a convergent series

(ΐ·ΐΐ) / ( *) = ΣΜ0
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An important example. Let u0 = 0. Then for any complex number ννχ the
functions

(1 12) qn = exV(iknx a *fty)

form a basic sequence, where the kn are the roots of the equation

(1.13) i£., =  e«nilf that is, &n =  /cu +   ^ « .

Besides the φη we shall need a "dual sequence"
(1 14) ψ£ =  ψ+ (*, */, Qn)

of Bloch solutions of the formally conjugate equation

(1.15) (ady + dl u0(x, ί/)Η ί =  0

that satisfy the orthogonality conditions
(1.16) <ψηψίι>» =  <ψ»Ψί> δη . m .

Having at our disposal the sequences >//„ and ψ%, we can easily construct
in the "resonance free case", that is when

(1.17) w20=£w2n, ηφΟ,

a Bloch solution φ(χ, y, Qo) of (1.1) as a formal series

(1.18) ϊ ( ί , y. < ? 0 ) = Σ φ . ( *. y, (Jo)· ?<> = %•

This series describes a "perturbat ion" of the Bloch solution i//0 of the non 
perturbed equation. (Here and in what follows series of the type (1.18) are
taken in powers of the small formal parameter bu.)

Lemma 1.2. / /  (1.17) is satisfied, then there is a unique formal series

(1.19) F(y,  £ ο ) = Σ !^Ο/ , <?0)

such that the equation
(1.20) (adv d* + u0 + bu)W(x, y, Qu) = F(y, (}0)Ψ(χ, y, Qo)

has a formal solution of the form
oo

(1.21) Ψ(χ, y, <?0)=  Σ φ , ( *. ν* Qo)> φο= ·Ψο=Ψ(*. y. Q^

satisfying the conditions

(1.22) <ΨίΨ>« =  <Ψί*ο>*.
W(x+h, y, Q0) = wlV(x, y, Qo),

^ · 2 3 ) Ψ(χ, y+l2, ζ>ο) = υ>ηψ(χ, y, Qo).

The corresponding solution is unique. The terms of (1.21) and the Fs are
given by the recursion formulae (1.25) (1.29).
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We note that it follows from the uniqueness of F and from (1.23) that
the function F(y, Qo) is periodic in y.

Proof. The equation (1.20) is equivalent to the system of equations

(1.24) (adv   d% + «„) φ, =  Σ FiVt.t   διίφ, ., .

Since \ jjn is a basic sequence, the desired functions ψΞ can be represented in
the form

(1.25) <Ρ, =  Σ ^ ( 2Λ <?0)ψη(*, V), 4 =  δη , 0 .

η

The requirement (1.22) is equivalent to the fact that

(1.26) cJ =  O, s > l .
Substituting (1.25) in (1.24) and equating the coefficients in \ jjn, η Φ 0, in
the expansions in φη on the left hand and right hand sides of this equality,
we obtain

5  1

This equation together with the condition winc
s
n(y  j  Z2) =  w2o

cn(i/ ),
equivalent to (1.23), uniquely determines the c* (and so the φ5):

V +  l, s  lJ
V i = l

It follows from (1.26) that the coefficient of φ0 in the expansion of the
right hand side of (1.24) is equal to zero. Therefore

(1.29) F.(y,Qo)=&®^.

The proof of the lemma is completed.

Corollary. The formula (1.30)

(1.30) Ψ (χ, y,  Qo) =  exp (   σ"ΐ ( F {y', Qo) dy') ^ g» g' g j
ο

determines a formal Block solution of the equation (1.1)

(1.31) ψ(χ +  / „ y, Qo) =  ( r ^ , y, ( ; 0) ,
(1.32) ψ(*, ;/  +  Z2, Qo) =  , ; 2οψ( . τ, y , {?„),
Λ<2 corresponding multiplier w20 is equal to

ι,
(1.33) ^ =  w2u cxp (   or» J F (y', Qo) dy').
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In the stationary case, when u does not depend on y, the preceding
formulae turn into the usual formulae of the perturbation theory of
eigenfunctions corresponding to the simple eigenvalues. The condition
(1.17), as we said above, is an analogue of the condition of simplicity of an
eigenvalue of an operator. In those cases when it is violated, it is necessary
to proceed along the same lines as in the perturbation theory of multiple
eigenvalues.

As the set of indices corresponding to the resonances we can take an
arbitrary set of integers /  C Ζ such that

(1.34) w2a φ w2n, α ζ / , nfcl

(up to the end of this section, integral indices belonging to /  will be
denoted by Greek letters, and all the others by Latin).

Lemma 1.3. There are unique formal series

(1 35) F%(y, κ> 4 ) = Σ f%(V^d

such that the equations

(1.36) (ady — d% + uo + 6u) Ψα (χ, y, wt) =  Σ F% (y, wj Ψβ {χ, y,
β
Σ
β

have formal Bloch solutions of the form
oo

(1.37) Ψ α = 2 φ«(ζ, y, wj, φ« =  ψο =  ψ {χ, y, Qa),
5= 0

(1.38) Ψ^ζ +  Ζ,, y, wj^w^i x, y, u>,),

(1.39) Wa(x, y+l2, ινι) = ινζαψ
α(χ, y, wt),

satisfying the conditions

(1 40) <%+Ψα>, =  δα> ρ< ^α |·α> .ν·

The corresponding solutions Ψα are unique and given by ( 1 . 41 )  ( 1. 43).

The proof of the lemma is completely analogous to the proof of Lemma 1.2,
which is a special case of it. Therefore we only give definitive formulae for
the F$s and the coefficients of the series:

(1.41) φ« (χ, y, wj = Σ <*" iff, « ) Vn (*. V),
71CI

We have
V+ l

(1.43, ^ y ,
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We define the matrix Τβ(γ, wx) by the equation

(1.44) oTu + TF =  0, T(0) =  1.

A formal solution of this equation can be found in the form

(1 45) T(y,iri)='2T.(y,Wih T0  *i,

where the 7^, s > 1, are given by the recursion formulae
!/  5  1

(1.46) Γ, =   σ » Jj ( 2 T t (y
1, wj F , (t/\  wjjdy'.

The functions
(1.47) Ψα (χ, y, Wl) = Σ η G/> « ) Ψβ (*. y, " )

are solutions of (1.1). Under the translation by the period in χ they are
multiplied by w1: while under the translation by the period in y they are
transformed as follows:

(1.48) Ψα(α·, y + h, wj   =  Σ ^ («;,) ζρ2βΨ
β (χ, y, w,), t(wi) = T(l2, wj.

β

It is natural to call a finite collection of formal solutions Φα quasi Bloch,
since it remains invariant under the translations by the periods in χ and y.
The characteristic equation

(1.49) R [w,, wz) =  det (£>2δβ — f% (wt) u>2|1) =   0

is an analogue of the "secular equation" in the ordinary perturbation theory
of multiple eigenvalues.

Corollary. Let ha(w1, w2) be an eigenvector of the matrix T%(w ^wz^,
normalized so that

a

Then

(1.51) ΐ (x, y, Q) = Σ Κ (Q) Ψ" (x, V, « )
α

is a formal Block solution of (1.1) with multipliers wt and w2, where w2 is a
root of the equation (1.47), normalized in the standard way.

By analogy with the above we can construct formal Bloch solutions for
the equation (1.4) formally conjugate to (1.1).



166 IM Krichever

Lemma 1.4. / /  the conditions (1.34) are satisfied, then there are unique
formal series

(1 52) Fta (y, wt) =  Σ ^β+ " (y, «>,)

such that the equations

(1.53) (ody + dl uo~δ«) Ψ + α (*, y, a»,) =  Σ it fa (y. wt) Ψ
β (a:, y, u>,)

β

formal Bloch solutions of the form

(1.54) Ψ + α =  § φ+« (χ, y, «;,), φ« =  ψ+  =  ψ* (.Γ, y, <?„),
s0

(1.55) V+ e ( a :+ Z , , y, ΐϋ,) =  «'Γ1Ψ+ β(Λ:, », «'ι).

(1.56) Ψ + α (α·, y+l2, Wl)   ^ α ' ψ + α (*, y, «·,),

satisfying the conditions

(1 57) (Ψ+ α%)χ =  δ^<ψαψί> κ.

corresponding solutions are unique and given by

(1.58) φ+« =  S c+ !· ° (y, u;,) ψ+  (art^) f

» , a _   σ

We define the matrix T^a(y, wt) by the equation

(1.61)  o'fi + T+F+ = 0, Γ+ (0, u;,) =  1.

Then the functions

(1.62) Ψ + α (a, y, ίο,) =  Σ T$* (y, wt) Ψ + β (χ, y, wt)
β

are solutions of (1.4). Under the translation by the period in y they are
transformed as follows:

(1.63) y + a ( , y + ,  1) Σ
β

Corollary. The following equality holds:

(1.64)
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Since Ψα and Ψτ β are solutions of formally conjugate equations, the

<Ψ+ Ρ ί ' α> , do not depend on y. Since Γ(0) =  Γ+ (0)   1, it follows that

(1.65) <Ψ4βΨα>* =  δαβ<ψ+ψα) α.
Therefore

(1.66) δαβ <ψU\ ) x =  <Ψ+ Ρ (*, y + h, « ) Ψ" (*. V +  h, « )>χ =

Corollary. The formal Block solutions of (1.4) are defined on the surface
given by (1.49) and have multipliers w^1 and w~l.

§2. The structure of the Riemann surface of Bloch functions

In this section we shall consider the formal series of the perturbation
theory constructed above by taking for an unperturbed potential u0 = 0.
The Bloch solutions of the "unperturbed" equation (1.1) and its conjugate

(2.1) (odv dl)^(x, y, fc) =  0,  (adB +  d%)^*(x, y, ft)= 0

are parametrized by the points of the complex / : plane and have the form

(2 2) 1j" =  eikx~a~'h'y, lh+ =  e ihx+o 'k2y_

The corresponding eigenvalues of the operators of translation by lx and l2 in
λ  and y are equal

(2 3)

For any complex

(2.4)

to

k0 the

 ̂ =  < ?«'. ,

functions φη =  Ηχ, y,

) + h '

kn), where

form, as we said above, a basic sequence for the continuously differentiable
functions f(x) satisfying (1.5) for w10 =  Wj(A:0). The dual sequence
i>m = \p+(x, y, km) satisfies (1.11)

(2.5) <W™>* =  6n m .

Therefore the formulae (1.21), (1.25), (1.28), (1.29), (1.30), in which 8u
must be replaced by u(x, y), determine a formal Bloch solution of (1.1) if
k0 satisfies the resonance free condition (1.17), which we are going to
consider in more detail.

It follows from (2.3) that for u0 = 0 the resonances can only be simple,
that is, the equations

(2.6)
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can have at most two roots fcW and &<2>. The corresponding pairs of
resonance points have the form

(2.7) *l l ) =  ftw.M, hfn = k.N, M,

where

(2.8) kN, M =  i ^  f  ggg , where iV ^ 0, Μ are integers.

So if

(2.9) *0# ftw. if

for any integers Ν Φ 0 and Λ/, then we have a formal Bloch solution of (1.1).
Anticipating what follows, we note that with the help of estimates

considerably simpler than those we shall obtain below, we can show that for
sufficiently small u(x, y) analytically extendable to some neighbourhood of
real x, y, the series of the perturbation theory converge outside some
neighbourhood of the resonance points (2.8) and determine there a function
φ(χ, y, k0) analytic in k0. This is true for any value of σ. The principal
distinction between the cases Re σ =  0 and Re σ Φ 0 even for small u(x, y)
is revealed under an attempt to extend φ to the "resonance" domain. The
impossibility of such an extension (at least by the methods developed in the
paper) for Re σ =  0 is connected with the fact that in this case the points
kNM are dense on the real axis. It would be very interesting and important
to find a language that enables us to describe the situation in a neighbourhood
of this continuous resonance set. We shall return briefly to this question.

In the case Re σ Φ 0 the resonance points kNM)\a\e only one accumulation
point k =  oo. This fact is crucial for all subsequent constructions. Up to
the end of this section we restrict ourselves to the case σ =  1, though all its
assertions (in particular Theorem 2.1) proved for complex potentials u are
valid for all Re σ Φ 0. For σ =  1 it is natural to single out the case of real
periodic potentials u(x, y), in which general assertions admit an essential
further effectivization.

We denote byRNM the neighbourhoods of the resonance points kNM given by
the inequalities (we emphasize once more that in what follows σ =  1)

(2.10) Re/ ,· — h Λ'
I m / i — Μ Ζ,

2N h
"ι
Ν

where al is a constant chosen for the time being arbitrarily, so that these
neighbourhoods are disjoint, that is αΛ < n/ 2llt ax < li/ 4l2  F or each point
k0 not belonging to R XM for any integers Ν Φ 0, Μ the following inequalities
hold:

(2.11) | 1 — e<~h"' hli<> \  >h, |1 —β<Αο ''">'·

where
(2.12) Λ =  m in ( l —e °», sinfl2)i a2 =  ::j 2
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In what follows we shall assume that the periodic function u(x, y) under
consideration extends analytically to some neighbourhood of real x, y and is
bounded there by some constant U, that is,

(2.13) | u(x, y) | < U, | Im χ | < Tlf | Im y | < τ, .

We fix a constant ε satisfying the following inequalities:

(2.14) e < m i n ( e 0 , 1), < ? ( ε ) <  | ,

where ε0 is a root of the discriminant of the quadratic equation

(2.15) aCz +  bC +  F,2U =  0, a =  2U±  , b =  eU—i,

and C(e) in the second of the inequalities (2.14) is the value at ε of the
branch of the root of the equation (2.15) which is analytic in a neighbourhood
of ε =  0, C(e) = & U  f  (?(ε3) (by the second inequality this branch at ε is
well defined).

Let Ro be the rectangular domain in the complex plane

(2.16) | R e A | < . V l 7 | Im k | < N2, qj = e~2nxi'1),

where Nx, N2 are arbitrary fixed numbers such that

(2.17) £ ? ^ ^ ^ h ^ ^

We denote by R the complement to Ro and the neighbourhoods i? . Y i V of
the resonance points.

Lemma 2.1. For ko£ R the series of the perturbation theory constructed
by Lemma 1.2 and its corollary absolutely converge uniformly in R and
determine Bloch solutions φ(χ, y, k0) of (1.1) (σ =  1) analytic in the
domain k0E. R, llm χ I < r l 5 llm y\  < r 2 and non vanishing there.

Proof. It follows from the translation properties of the c*(y, k0) defined by
(1.28) that

(2.18) cn(x, ko) =  e*n(y, k0) e{h"'h")v,

where the function 7£( y, k0) is periodic in y. Let us prove by induction
that for k0 ^ BNM, llm ko\  > Nt, the following inequalities hold (s > 1):

f *'+ 1/ n (fro),
(2 19) I  ̂ k)\ ^C[\ \

Here n0 is an integer such that \2πηο/ 11+ 2Re ko\  < 1/2. The constants Cs

are defined successively by

(2.20) C, =  l, Cs = ( ^
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The non negative numbers fn(k0) satisfy the condition

(2.21)
n= < 0,

Suppose that (2.19) is valid for all s' < s — 1. Then for the same s' > 1 the
following inequalities hold:

(2.22) ( ^ ( " ^ | I m X l ) "*

From this inequality for Im χ =  0 and from the fact that l2Qin°   < ε= by
(2.17), it follows that

(2.23) ^ , =  0, \F,.{y, *0)

The equality Ft = 0 is valid by the normalization conditions (1.3).
I t follows from (2.19) and (2.23) that

(2.24)
2 . 2 . V+lt
o hn)y

V ' = 2
s  l

where the constant / „,,) is equal to

(2.25) / „,„ =

To estimate
Re (>/?, *§

<ψ£κ<ρ. ι>* dy'
t

Jklkhv
(2.26) / ,,,=  ' .

Λϋη— «ο) '« 1 t.

y

we estimate the Fourier coefficients of the expansion in χ of the function

(2.27)
2πίη

(e ' .

=  nn

(The summation in (2.27) is taken over k Φ 0, since the zero Fourier
coefficient of u is absent by (1.3.) F rom (2.27) and from the fact that

it follows that

(2.28) | / n,,
|ε 2(^~ 1 +  1) ' ηφη0,
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If ko£RNM, then

(2 29) / n

Moreover

(2.30) 2 Jn,o< Σ

It follows from (2.17) that the constants/ „ defined by

(2.31) / B =  e 

satisfy the condition (2.21). Summing up (2.28) and (2.24) and taking
(2.31) into account, we obtain the desired inequalities (2.19).

For I Re ko\  < Nh llm ko\  > N2 we prove that for all η (including η — nQ)
the first of the inequalities of (2.19) holds. Moreover, the constants/ „
satisfy the condition (2.21), in which the summation is taken over all n.
We note that by the induction hypothesis the left hand side of (2.24) is
estimated for all η in terms of the first row of the right hand side of this
inequality.

We deform the contour of integration in (2.26) in the complex domain so
that it joins first the points y, y' ±  h2 (y' =  Re y), then y' ±  ir2, y' ±  ir2+ l2

an dy' ±  ir2+12, y + 1 2 by rectilinear intervals. We denote by / £ „ /  =  1, 2, 3,
the integrals (2.26) over each of these intervals. Since u and g ^ a r e
analytic for llm y\  < r 2 ,

(2 32) / „ . . = Λ1,.,+ /?,..+ /5U
We have

y+

(2.33) n (hlhh J

Taking into account that by the induction hypothesis the left hand side in
(2.27) can be estimated for all η in the case under consideration in terms of
UCs^q[nles, s > 2, we obtain

, 1 , s=l,
(2.34) | / , ', s +  / ,3

llS K i / gfl | Iru \ {k\  — /  )"1 | χ '
We have for the second summand

{ 1 i> i

C Es Τ > °
Thus for 7 n s two types of inequalities are valid: the first one follows

from (2.34) and (2.35), while the second one is the inequality (2.28) which
by the induction hypothesis, changed in the domain specified (the first of
the inequalities (2.19) holds for all n), acquires the form
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We define the quantities / „ by

(2.36) / η =  ε 2 / η , 0 , | n | > — ± ±  , fn = ε 2  y   Im k0 ,

It follows from (2.17) that they satisfy (2.21). Using (2.34) and (2.35) to
estimate | / „ ,„ | for In I < IN Jilv and the modified inequality (2.28) for
In I > ΙΝ^/π, we obtain the desired assertion of the lemma.

It follows from (2.20) that the constants Cs are the coefficients of the
expansion at the origin

(2.37) C(e) =  S C.e'+ i

of the analytic branch of the equation (2.15). Hence for ε < ; ε0 this series
converges absolutely. Therefore the series (1.19) and (1.21) determine
analytic functions Ψ(χ, y, k0) and F(y, k0), k0G R. By the second
inequality in (2.14) and also by (2.22) we have for ilm χ I < r t / 2

(2.38) | Ψ(χ, y, k0) | > 1   2C(e) > 0.

Therefore the Bloch function φ defined by (1.30) is analytic for k0E R,
Ilm χ I < 7"i/2, Ilm y\  < r 2 and does not vanish. The lemma is proved.

We now construct Bloch solutions in resonance domains. As in Lemma 1.3,
let /  be a finite set of resonance indices.

Lemma 2.2. If for all η £ /, a £ /  the inequalities

(2 39) £ / n , e + 2
ΜΪ2Λ' |nl<7V

hold for some integer N, where the Jn a are given by (2.25) with k0 replaced
by ka, then the series (1.35) and (1.37) converge absolutely and determine
analytic functions F${y, wj and Φα(χ, y, w{) satisfying (1.36).

The proof of the lemma is completely analogous to the proof of
Lemma 2.1. The corresponding estimates for the terms of these series have
the form

(2.40) | < · " | < Ce!+ igl» al/  J^.a =  ^ V"  *" >v

(2 41)

We consider consequences of this assertion. Suppose that k0 ψ. Ro but it
belongs to one of the neighbourhoods RNM of the resonance points. Then
if we take {0, —2N) for / , the inequalities (2.39) will be satisfied. Therefore
for Wi 6 W^RXM) the analytic functions W*(x, y, wt) and F${y, wj,
W\  € R\X,M\> a r e defined so that (1.36) holds. The matrix T(y, vvt) defined
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by (1.44) is also analytic in the domain R\  s,n\  of the complex plane onto
which the function wt(k) maps RN,M and R K M  It follows that the
Bloch solutions of (1.1), defined by (1.50) and (1.51) for any point of the

A f^

two sheeted covering of / ?, v > w ,over / ?. V > M ! given by (2.43), are meromorphic
functions on  RIN,MI'·

(2.43) w\    ,rc2 Sp (Γ{? (Wj) ^ 2 β) +  det (Τξ {wt) u?23) =  0,
wi — wi(kd), ko£RNiM, α, β= 0 , — 2Λ'.

The poles of φ(χ, y, Q) coincide with the poles of ha and so do not depend
on x, y, Q 6 fi|.v,.vi·

In what follows we shall assume that the constant ε is chosen so that
besides the inequalities (2.14) the following inequality also holds:

(2·4 4) ε < 2(l +  h 2)t2t/  '

In this case the discriminant of the equation (2.42) can vanish only inside
the domain R\ K,M\ · This assertion follows from the fact that on the
boundary of RS,M and R K M both the assumptions of Lemma 2.1 and of
Lemma 2.2 are satisfied. It follows from the construction of the Bloch
solutions \ jj(x, y, k0) and φ(χ, y, k'o), vvx =  Η  ( £ 0 ) = w^k'o), that the passage

A

to them corresponds to the diagonalization process of the matrix Τ^ιν^ιυ^ξ,.
Therefore the eigenvalues of this matrix coincide on the boundary with
w2(k'o), w2(k0) defined by (1.33) for the resonance free domain. Since by
(2.23)

(2 45) | J
ο

we have

(2.46)

> ft — 2ε12ϋΦ (ε) (1 + 2Λ) >Λ (i   C (*)) > 0 .

Therefore on the boundary of ΛΙ.Υ,ΜΙ the equation (2.43) has distinct roots
and its discriminant can have zeros only inside the domain.

All the facts proved above are valid for any potential satisfying (2.13), in
particular for the potentials uT — TU(X, y), 0 < τ < 1. Since under such a
deformation the number of zeros of the discriminant inside the domain is
preserved, and for r =  0 it has a zero of multiplicity 2 at the point
u^IN = Wi(kNM), we arrive at the conclusion that the discriminant of the
equation (2.43) has either two simple zeros or one zero of multiplicity 2.

Definition. A pair of integers (N > 0, M) such that kKyi 6 R will be called
distinguished if the discriminant of the equation (2.43) has a zero of
multiplicity 2.
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In this case R\ K,$t\  is reducible, that is, it splits into two sheets. Then
the Bloch function φ(χ, y, k0) extends analytically to the domains RNtM and
R rt M, which are split sheets of R,y,Ml. For non distinguished pairs the
two sheeted surface / ? , N | M | is non singular.

Lemma 2.3. The Bloch function φ(χ, y, Q) has one simple pole on RiKtM\
(for non distinguished pairs Ν > 0, Μ).

Before we proceed to the proof of the lemma we note that in exactly the
same way as above we can prove that the series of the perturbation theory
for the formally conjugate Bloch function φ+(χ, y, k0) converge in the
resonance free domain and determine there an analytic function. It follows
from the corollary of Lemma 1.4 that φ+(χ, y, Q) is defined in the same

way as φ on R\ NtM]> where it is meromorphic and its poles do not depend
on x, y.

Proof. We consider an arbitrary periodic variation bu of the potential u.
By analogy with the proof of (1.6) (see also [22] , [52]) we can obtain

(2.47) ibE <φϊ+ > .,   ibp <ψχψ+    ψψί>Β +  <Ηδ4 + » =  0.

I t fo l l o ws f r o m t h i s e q u a l i t y t h a t t h e f u n c t i o n s ( φ φ + )χ a n d ( φ χ φ
+   γ

cannot have coinciding zeros. For otherwise at this point ((φδΐίφ+)) =  0
(where « · » denotes the mean value in x, y), which cannot be true for all
5M. Let us now apply (1.6). By what we have proved above the zeros of
(φφ+)χ coincide with the zeros of dp which, in turn, coincide with the
zeros of the discriminant of the equation (2.43). Therefore there are two
of them. Outside the resonance domain < φφ+)χ Φ 0. Therefore in Rf V, .MI
the number of zeros is equal to the number of poles, that is, each of the
functions φ and φ+ has one simple pole in this domain. The lemma is
proved.

From the topological point of view "pasting" the two sheeted covering
R\  K,MU t o which the Bloch function φ extends from the resonance free
domain, instead of two domains Rs< M and R N, M, is the simplest
reconstruction corresponding to "adding a handle" between two resonance
points kN<M and k x~M.

We consider the extension φ inside the central resonance domain Ro

defined by the inequalities (2.16) in which without loss of generality we can
assume that N[ = / 1Λ

Γ
1/ 2π is an integer. The function vvx (2.3) maps Ro as a

2JVi sheeted covering of the annulus exp( / V2/ i) < wx < exp(JV2/ i) in the

As a set /  of resonance indices for wx that satisfy the preceding inequalities
we choose all indices for which I Re ka I < Nx. Then the conditions of
applicability of Lemma 2.2 are satisfied. By analogy with the above, we
obtain the result that φ(χ, y, k0) extends from the resonance free domain to
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the Riemann surface Ro, which is defined over the annulus exp( / V2/ i) <
<wi< exp(iV2/ i) by the characteristic equation (1.49) for the 2N[ χ 2N[
monodromy matrix of quasi Bloch solutions constructed as perturbations of
the solutions exp(ikax — k%y) of the free equation (2.1). By Lemma 2.2
this matrix Τΐ(ιυ^)ιυ1& is analytic in wl in the domain of its definition. Thus,
we arrive at the following lemma.

Lemma 2.4. The Bloch function φ{χ, y, k0) extends analytically from the
resonance free domain to Ro, where it is a meromorphic function whose
poles do not depend on x, y. Their number g0 does not exceed the number
of pairs (N > 0, M) such that kNM £  Ro. In the general position when Ro is
non singular, g0 is equal to the genus of Ro 

Anticipating what follows, we note that for the real potentials u(x, y) the
surface Ro is always non singular.

We denote by Γ the Riemann surface obtained from the complex fc plane
by "pasting" Ro instead of Ro and "pasting" Λ|Λ · ,ΜΙ instead of RK,M and
R .x,  Μ (for non distinguished pairs Ν > 0, Μ). This surface is smooth
everywhere except for finitely many points in Ro.

Renotation. Up to now Bloch solutions of the equation (1.1) constructed
with the help of perturbation theory have been denoted by φ. In what
follows for brevity we shall omit the tilde sign, denoting them by φ(χ, y, Q).
In a similar way we shall omit the tilde sign over the eigenvalue w2(Q) of the
operator of translation by the period in y.

Theorem 2.1. The Riemann surface Γ is isomorphic to "the Floquet spectral
set" for the operator (1.1). The Bloch solutions φ(χ, y, Q) of this equation,
normalized by the condition i//(0, 0, Q) = 1, are meromorphic on Γ. The
poles of φ do not depend on x, y. In each domain / ?, Υι Λ / | the function φ
has one simple pole. In RQ it has g0 poles, where g0, in the general position

when Ro is non singular, is equal to the genus of Ro. Outside / ?i.Y,.vi and
Ro the function φ is holomorphic and has no zeros.

Proof. All the assertions of the theorem except for the first one follow
from the construction of Γ itself. To each point Q Ε Γ there correspond
eigenvalues wx{Q) and w2{Q) of the operators of translation by the periods
in χ and y. They determine a map of Γ into C2 with coordinates w{ and w2.
The fact that it determines an isomorphism between Γ and the "F loquet
spectral set" follows from the next lemma.

Lemma 2.5. For any continuously differentiable function fix) satisfying
(1.9) {that is, Ax + h) = wof(x)) the series

(2.48) 5= Ei(i,».WS 
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converges to f(x). (Here, as before, we denote by Qn = Q(w0) the point of
Γ such that Η (βη) =  w10, φη =  φ(χ, y, Qn).)

The proof of the lemma in the special case of finite gap operators was
first suggested in [52] . It extends to the general case practically without
changes. F rom Lemma 1.1 and from the fact that the functions (φφ+)χ
and (φχφ

 + — φφ$)ν have no common zeros it follows that the differential

J Q r f P  dE

is holomorphic on Γ and has zeros at the poles of φ and φ+.
We consider the integral

(2.50) sK= 4  [ \  f w *< *»*«*^; ·*·< » dQ dx,
CN 0

where we take for the contour CN the boundary of the square I Re k I <
< π(2Ν+ l)/ 2/ l5 \ lmk\< ττ(2Ν+ 1)/ 2/ 1; where Λ̂  is a sufficiently large
integer. The integrand has poles at the points Qn, and its residues at these
points are equal to the corresponding terms of the series (2.48). On the
other hand, using (2.22), we can easily see that SN is equal to the sum of
the first iV terms of the usual Fourier series for the function f(x). Making Ν
tend to infinity, we obtain the desired assertion.

Let (w10, w'2) be an arbitrary point of the F loquet spectral set and φ' the
Bloch function corresponding to it. If w'2 does not coincide with any value
w2n =  w2(Qn), then

(2.51) <ψ'(ζ, y, wu, w'jq+(x, y, <?„)>* =  0,

since the left hand side does not depend on y and on the other hand under
the translation of y by l2 it is multiplied by w'jvln  It follows from
Lemma 2.5 that φ' = 0. The theorem is proved.

We emphasize once more that it is valid for all (including complex)
potentials satisfying (2.13). F or real u(x, y) it can acquire a more effective
form. Before doing this, we give the following definition.

Definition. A potential u(x, y) is called finite gap if all except finitely many
pairs (N  > 0, M) for it are distinguished, that is, Γ has finite genus.

F or finite gap potentials the surface Γ, corresponding to them, coincides
outside some finite domain with a neighbourhood of infinity on the usual
complex plane. Therefore it can be compactified by one "infintely distan t"
point Po = oo. In what follows we keep the notation Γ for the corresponding
Riemann surface (algebraic curve).

Corollary. The Bloch solutions φ(χ, y, Q), Q G  Γ, of the equation (1.1) for
finite gap potentials u are defined on the compact Riemann surface Γ.
Outside the distinguished point Po the function φ is meromorphic and has g
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poles not depending on x, y, where in the general position when Γ is non 
singular g is equal to the genus of Γ. In a neighbourhood of Po the function
\ jj(x, y, Q) has the form

(2.52) ij, =  e ^  " !

where k'1 =  k^iQ) is a local parameter in a neighbourhood of Po.

All the assertions of the corollary except for the last one follow directly
from the definition of finite gap potentials and Theorem 2.1. To obtain
(2.52) we use the fact that in a neighbourhood of infinity i//(x, y, k) is given
by series of the perturbation theory for the resonance free case. It follows
from (2.22) that the function

(2.53) ψ(.τ, !/ , k)e ihx+h*y,

which is holomorphic in a deleted neighbourhood of Po, is bounded.
Therefore it is holomorphic in this neighbourhood and can be expanded in
the series

(2.54) ψ (ζ, y, &)<» "'*+'<• !'=  2 | s ( x , y)k~s.

It follows from the normalization (1.8) that £ 0 =  1, and the corollary is
proved.

We call a set of pairs of complex numbers π =  {(p's, pi)}, where s ranges
over a finite or infinite set of pairs of integers (N  > 0, M), admissible if

η V /  1
(2.55) Re/»i =  Rep; =   ^  r | p't kt

and the intervals [p't, p"s] parallel to the imaginary axis are disjoint.
For each admissible set π we construct a Riemann surface Γ(π) by making

vertical slits between the pairs of points p's, p"s and — p's, —pi and by pasting
together the left bank of the right slit with the right bank of the left slit and
vice versa. After such pasting, to each pair of slits (p's, p"s) and (—/>«, —pi)
there corresponds a cycle non homologous to zero, which will be denoted
by as.

Theorem 2.2. For any real periodic potential u(x, y) analytically extendable
to a neighbourhood of real x, y, the Bloch solutions of the equation (1.1)
with a   1 are parametrized by the points Q of a Riemann surface Γ(π) for
some admissible set π. The corresponding function φ(χ, y, Q) is meromorphic
on Γ(π) and has one simple pole on each of the cycles as.
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Proof. For real potentials u the complex conjugation transforms Bloch
solutions of (1.1) into Bloch solutions of the same equation. Therefore the
correspondence

(2.56) τ: (ιζ·,. ιν,) + (17·,. 17>2)

is an anti holomorphic involution of the F loquet spectral set, which by
Theorem 2.1 induces an anti holomorphic involution of the "spectral curve" Γ.
We can verify that such a curve exists directly from the construction of Γ.
In particular, it follows from Lemma 1.2 that in the resonance free domain r
has the form k0  *•   k0 and moreover \p(x, y, k0) = φ(χ, y,  k0).

We consider the neighbourhoods i?.Yi. v of the resonance points lying

outside the central domain Ro. The invariance of / ?ΙΛ ,.νι under τ means
that two zeros of the discriminant of the equation (2.43) either both lie on
the straight line Re k = πΝ/ Ιλ or they are placed symmetrically outside this
line. The latter is impossible, because on the intersection of this line with
the boundary of R NtM the signs of the imaginary parts of the eigenvalues of
the operator of translation by the period in y are different (this is seen
directly from (2.3) for. the free equation (2.1) and from (2.46) for the
general operator (1.1)). Consequently, inside an interval of the line there is
a point at which w2 is real. Therefore both zeros of the discriminant, which
we have denoted by p's, p's', lie on the line Re k = πΝ/ Ιγ. The slit between
them corresponds to the cycle as, which is singled out by the conditions
that on it both multipliers wx and w2 are real, s = (Ν, Μ). This cycle is a
"forbidden zone", which appears at the place of the resonance point ks.
Let us prove that the pole of the Bloch function lies on the cycle as. On
this cycle ψ and \p+ are real. Since \p(x, y, Q)   φ(χ, y, T(Q)), the poles of

ψ must be invariant under τ. Since on Λ| ν , Μ ι there is only one pole of φ,
it must be a fixed point under r and so it belongs to the cycle as.

F or sufficiently small potentials u(x, y), when the central domain Ro is
empty, the theorem is proved. We shall increase u(x, y). The structure o ff
described above is topologically stable and can be destroyed only under the
confluence of cycles as for different s. (At that moment Γ will have
singularities.) The condition of periodicity of u is an obstacle to such a
confluence. The condition of periodicity of u in χ separates the cycles as

and as· if Ν Φ Ν'. The periodicity of u in y is an obstacle to the confluence
of cycles over intervals of one line Re k = irN/ ϊ^  If we cut Γ along the
cycles as and along the line Re k = 0, then in the domain Re k > 0 a single 
valued branch of the quasi energy E(Q) is defined. Since the differential dE
is purely imaginary on as, the real part of E(Q) extends continuously to as

and is identically equal there to irM/ l2, s = (Ν, Μ). Thus, the cycles as are
sepatated by the values of the real parts of the quasi momentum and the
quasi energy and cannot join. Therefore the desired theorem is valid for all
u, not only for small u.
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It follows from the construction of Γ that for sufficiently large
Is I =  ΙΛ +  ΙΛίΙ the points p's and p'J are localized in neighbourhoods Rs of
the resonance points ks, which is reflected in (2.55). In the case under
consideration of potentials u analytic in a neighbourhood of real x, y, we
can show that

(• 2.07) | p'. — p: | = 0 (

This relation is not proved in this paper and is not included in the definition
of admissible sets in connection with the following circumstances.

The representation of Γ described in Theorem 2.2 is well known (see
[53], [54]) in the spectral theory of the Sturm Liouville operator with
periodic potential u{x). The corresponding curves Γ are hyperelliptic. The
collections p's, p's' for s = (N, 0) correspond to them. Moreover, p's — p".
For independent parameters uniquely determining u we can take ds =  Im p's
and points ys, one on each of the cycles. In terms of these parameters the
process of approximation of u by finite gap potentials uG looks very simple.
The potential uG corresponds to the collection of data in which it is
supposed that df = ds, \ s\<G, df =  0, \ s\> G ( [53]) .

Such an approach to the proof of the approximability of an arbitrary
periodic potential by finite gap ones in the non stationary case is very
complicated, because the parameters p's and p'J are not independent (they
were dependent in the stationary case too. but their connection was explicit
there). As will be seen later, to any finite admissible collections there
correspond finite gap potentials periodic in χ and quasi periodic iny (see §4).
The condition of periodicity in y leads to the fact that among the p's and p'J
only one half is independent (for example, p's or p's — p'J). Therefore if we
try to construct a process of approximation by finite gap periodic potentials,
it is necessary to "sh u t" the zones [p's, p'J} for large Is I, correcting the
remaining ones at the same time. In principle this way is possible, but
technically it is rather difficult to realize it. Below we shall give a proof of
the approximation theorem based on a different idea, which is also applicable
in the case of the spectral theory of operators for which the poles of the
Bloch functions do not lie on fixed ovals of the corresponding anti involution
(the spectral theory of operators that are used for the construction of finite 
gap solutions of the sine Gordon equation or a non linear Schrodinger
equation with repulsion and so on apply to a number of these cases). Since
in the course of a detailed proof the explicit parametrization of u with the
help of admissible collections π will not be used, we do not specify necessary
and sufficient conditions that characterize the admissible collections.
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§3. The approximation theorem
Suppose that the potential u^x, y) of the equation (1.1) with Re σ Φ 0 is

a trigonometric polynomial. Since

(3.1) ψ (*, y, kNM) ^  (*, », * w.  AT) =  e

(in this section we adopt the initial definitions and notations of the first
section and the beginning of the second, that is, φ(χ, y, k) is a solution of
the free equation (2.1) and φ(χ, y, Q) are solutions of equations of the type
(1.1)); this means that for some G

(3.2) (<ψ(3τ, y , k N t M ) y + ( x , y , k  K  u ) u i ( x . ! / ) > > =  0 ,
| iV | +   Μ | > G.

I t follows from the formulae of Lemma 1.2 that under the condition (3.2)
the first order term ψχ(χ, y, k0) of the perturbation theory has no poles at
the resonance points kNt^  for liVl+  \M\> G and can be extended to them
by continuity. The poles at these points arise in the next order of the
perturbation theory. The main idea of the subsequent construction relies on
the possibility of constructing a formal series U(x, y) with principal term uu

the subsequent terms of which are chosen so that the corresponding
terms of the series of the perturbation theory have no poles at the
A .v.v, | Λ* | +  | Μ | > G.

Lemma 3.1. Let ut(x, y) be a periodic function satisfying (3.2). Then there
is a unique formal series

<x>

(3.3) U(x,y)= Σ " s ( * , Vh
s = l

in which for s > 2

(3.4) u?M   «ψ (x, y, kNM) ψ+ (χ, y, k_N, _.v) us (x, y))) =  0.

and such that for any k0 Φ / . · γ ν , | Λτ |  f |  1/  I ̂  0, there is a unique
formal series

(3 5) F(y,k,)=^\FAy.K).

for which the equation

(3.6) (ady  di + U (x, y)) Ψ (a·, y, k0) =  F (y, λ·0) Ψ (.ν. y. k0)

has a formal solution of the form
oo

(3.7) Ψ (χ, y, k0) =  Υ. ψ, (x, y, k0), φ0   ι|· (χ. y, k0),
.«=u
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satisfying the relations
(3.8) (Ψ(χ, y, k0) ψ+ (ζ, //, ko))x   1,

Ψ(.τ  i  llt y, k0) =  ιιφη) ψ(χ, y, k0);

Proof. The equation (3.6) is equivalent to the system

(3.10) (ady   dl) <r., =   Σ (?<   ", ) «f, ,·

For k0 Φ kNM the terms of the series (3.5) and (3.7) are given by formulae
completely analogous to (1.25)—(1.29):

(3 11) F,(y, Α·ο)=  Σ <ψο«/φ, ι>4·. ^5 " ψ* (*, <Λ *ο),
7 = 1

(3.12) φ , =  Σ <* (ί/ , λ·0) ψ,, (χ, !/ ), %Τη   ψ (** ?, *ο +   ^  ) ,

(3.13) 4 =  σ'1 "'"' \  Σ (F& * — ($&,<?,.,)x)dy'.

Suppose that the terms u{ of (3.3) with numbers i < s— 1 are constructed
so that the (£,·(*, j , k0) have no poles if /,·„ =  kXM for l7V Ι Η  \Μ\> G.
Hence, the ψι can also be defined at these points by continuity. The next
term us(x, y) of the series (3.3) can be found from

(0.14) Us — ^ 2J ( Γ icN ~~
y i = l

  < i j  + ( ^ . y ' , λ · _ Λ  , _ Μ ) i i t f , . , (x, y 1 , k s y l ) ) x ) d y ' , \ N \ + \ M \ > G .

The equalities (3.14) together with the normalization conditions (3.4) and
(1.8) determine all the Fourier coefficients of the periodic function us(x, y).
It follows from (3.14) that <ps(x, y, k0) has no poles at kyMfor \N\+ \M\>G.
The lemma is proved.

Theorem 3.1. Each smooth periodic potential u(x, y) of the equation (1.1)
with Re σ Φ 0, analytically extendable to a neighbourhood of real x, y, can
be approximated by finite gap potentials uniformly with any number of
derivatives.

The proof of this assertion will be given only for σ =  1. It extends to the
general case Re σ Φ 0 practically without changes (as in the proof of
Theorem 2.1). F or any integer G we denote by UQ(X, y) and uf(x, y)
periodic functions such that

(3.15) u(x, y) — u%(z, y) \  ί/ ?(.τ. y), (u?\ T —(l'i)x = Q·
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and such that for the uG the conditions (3.4) and for the uG the conditions
(3.2) are satisfied. By Lemma 3.1, to the potential uG there corresponds the
unique formal series (3.3) UG(x, y).

Lemma 3.2. There is a constant Go depending on the quantities U, τχ, r 2

from (2.13) such that for G > Go the corresponding formal series (3.3)
converges and determines a smooth finite gap periodic potential UG{x, y) of
the equation (1.1).

Proof. If u satisfies (2.13) , th en for llm x\ < ru llm y\ < τ 2

(3.16) | uG
a (x, ij) | < ϋ ο =  tfexp (   \ ί2 (πτ. Ζ, +  πτ, / ί.) G)

Therefore

(3.17) |«ι(ΐ,ϊ)Κί:? Γ+ ί,;;.

As in the proof of Lemma 2.1 we represent the coefficients c% of the series
(3.12) in the form (2.14). Then jo r k0 £  Ro, k0 £ RXM the inequalities
(2.19) hold with Cs replaced by Cs, defined recursively by

S   1 1 f

(3.J8) c i  π , £,=• = £ Σ (Σ tyi»,..,)^..: +  Σ ^ φ ,  ( ,

(3.19) Φ ί =  2?Μ s > l .

The constants Ut in (3.18) bound the terms of (3.3):

(3.20) I M * . l / ) l< i / >  i .

To obtain recursion formulae for the Us, we note that if the inequalities
(2.19) are valid for k0 £ Ro (Ro is the central resonance domain) and for
A'o 6 R XM, then they also remain valid for k0 fc Ro, k0 ζ R NM, because the
functions cf,{y, k0) are regular in RXM and so we can apply the maximum
modulus principle to them. It follows from this remark that if the inequalities
(2.19) are proved up to the order s  1, then in the relations (3.14) that
determine the Fourier coefficients of us with numbers Ν, Μ, \N\+ \M\ > G
(the remaining Fourier coefficients vanish by (3.4)) we can apply the
inequalities (2.2Z) to cp,(z, y, kXM). We obtain finally

(3.21) Us =
f 1 i s  i

=  (τ  Σ (Σ  ^ ·Φ   ; · ) ^ . ;  Σ Ϊ '  ΦΗ ) * ^ · · " 1 " 1 ^ "" 1 " '  

It follows from (3.18) (3.21) that for sufficiently large G the series (3.3)
converges and determines a smooth periodic function UG(x, y). (It is
sufficient to choose G so that the points kNM with liVl+  \M\ >  G satisfy the
condition | Re fcx3I | > N0/ y/ 2, \  Im kNM | > NJy/ 2, where iV0 can be found
by analogy with Νγ, Ν2 in Lemma 2.1 from the conditions of convergence of
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the generating series for Cs, Us.) At the same time we obtain the result that
for k0, \ ko\  > No, the series (3.7) converges and determines a Bloch solution
of the equation (3.6) which is analytic and does not vanish for any k0,
\ ko\  > No. Therefore UG is a finite gap potential. The lemma is proved.

It follows directly from (3.21) and (3.16) that for U r n x K r ^ l lm >  l< r 2

(3.22) \u(x, y) UG(z, y) | ^ 7 l / e x p (   ]/ ~2 (:«,/ / , + πτ2/Ζ2) G),

where the constant Μ depends only on U, τ 1 ; r 2 . Therefore the sequence
UG(x, y) of finite gap potentials tends to u(x, y) as G  »•  °° uniformly with
any number of derivatives. The theorem is proved.

§4. The spectral theory of finite gap non stationary Schrodinger operators
The definition of finite gap potentials given in the second section refers

formally only to the potentials of the equation (1.1) with Re σ Φ 0.
However, although when Re σ =  0 for a general periodic potential u(x, y)
the F loquet spectral set globally is not a Riemann surface, we can introduce
the notion of finite gap potentials in this case too. Moreover, the general
definition of finite gap potentials refers not only to periodic but also to
quasi periodic potentials with a finite group of periods. Solutions of the
equation (1.1) with such potentials u are called Bloch solutions if the
logarithmic derivatives φχ φ~χ, φγφ'1 have the same group of periods as
«(.v. y). The set of such solutions is exactly the F loquet spectral set. In the
case when it is a Riemann surface Γ of finite genus g < °° the corresponding
potential is called finite gap. F rom the solution of the inverse problem of
recovering u from the corresponding algebraic geometry data, which was
posed and solved in [6] , [7] and is presented below, it follows that this
definition is non empty.

Let Γ be a non singular algebraic curve of genus g with a distinguished
point Po and a fixed local parameter k~l(Q) in its neighbourhood, A—̂ P,,) =  0.
For any set yu ..., yg in general position there is a unique function φ{χ, y, Q)
such that

(4.1) 1° outside Po it is meromorphic and has at most simple poles at
the points ys (if all of them are distinct);

2° in a neighbourhood of Po it has the form

(4.2) ^ (x, y, Q)   ε^ ο ^ν (1 +  2 ξ5 (*, y) k"), k =  k (<?).
s= 1

We note that φ depends only on the equivalence class [k'1]., of the local
parameter. (For any positive integer m we call A·"1 and A ^1 m equivalent
local parameters if k^Q) — k(Q)  f O(k~m(Q)). The equivalence class will be
denoted by [A· 1],,,. (In what follows we shall mean by the local parameter
its equivalence class unless otherwise specified.)
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We fix on Γ a basis of cycles at, bt with canonical intersection matrix
α,·οα;· =  bj°bj = 0, a^obj = δ,·;·. In a standard way we can define (see [7]
or [9]) the basis of normalized holomorphic differentials ick, k =  1, ..., g,
the vectors Bh =  (Bhi) of their ^ periods, and the corresponding Riemann
theta function, an entire function of g complex variables which under the
translations of the arguments by the basis unit vectors ek in Cg and by the
vectors Bk is transformed as follows:

(4.3) θ ( τ+  <?„) =  θ (τ),

Let q be an arbitrary point of Γ. The Abel map is by definition the
correspondence which associates with a point Q Ε Γ the vector A(Q) with

coordinates Ah(Q) = \  cos. For any collection of g points yu ..., yg in
7

general position the function Q(A(Q)+ Z), where

(4.4) Z = K A(yi)  . . .  A(yg)

(K being the vector of Riemann constants) has exactly g zeros coinciding
with the ys (we note that by (4.3) the zeros of a multi valued function on Γ
are well defined).

We denote by Ω(ί>, s =  1, 2, the meromorphic differentials on Γ that have
the only poles at the point Po of the form

Ω'1' =  dk{i  f O(k 2)), Ω<2> =  J o  W( l +  0(k~s))

and normalized by the condition

(4.5) \Ώ<'>=0.
'ai

The vectors of their δ periods will be denoted by

(4.6) 2nUh =  φ Ω<», 2nVh =  & Ω<2).

A function φ(χ, y, Q) of Baker Akhiezer type determined by its analytic
properties (4.1), (4.2) has the form

(4./ ) t|, =  e x p ( i j ζΩθ +  yQM) ^  / 4^ ^f

The proof of (4.7) consists in a direct verification of the fact that the right 
hand side does not change when going round any cycle on Γ (that is, the
function ψ on Γ is well defined) and satisfies all the necessary analytic
properties.
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Theorem 4.1 ( [7]) . The function φ(χ, y, Q) satisfies (1.1) with potential
u(x, y) equal to

(4.8) u (x, y) = 23| log 0 (A (Po) + Ux+Vy+Z) 2c,

where the constant c is determined from the expansion
Q

(4.9) jj
Proof. We consider the function

(4.10) y^(adv d*x+u)$(x,y.Q), u (x, y) = 2illx (x, y),

where %x is the coefficient in (4.2). It possesses all but one of the analytic
properties of φ. The expansion of its pre exponential factor in a
neighbourhood of Po begins with a term of order k"1, while for φ it begins
with 1. It follows from the uniqueness of φ that φ = 0. To obtain (4.8),
it is sufficient to expand the right hand side of (4.7) in a neighbourhood of
Po using the following relation (a consequence of the bilinear Riemann
relations):

(4.11) A(Q) =  A(P0) + iUk ^Q) + O(k~*(Q)).

F or a curve in general position the corresponding potentials u{x, y) are
quasi periodic. The conditions that single out the curves which correspond
to the periodic potentials can be formulated as follows.

Let dp and dE be meromorphic differentials on Γ having the only
singularities at PQ of the form

(4.12) dp =  dk(l   O(k~ )), dE =  i o  W( l +  O(k'3))

and uniquely normalized so that their periods along all cycles of Γ are real.
If for any cycle C on Γ

(4.13) \) dp =  ^ " c . § dE— ~ ')"'C * where nc, mc are integers,
c ' x c

then the potentials u corresponding to such curves Γ have periods / x and l2

in χ and y respectively. The Baker Akhiezer functions coincide with the
Bloch solutions of the equation (1.1). The differentials dp and dE are the
differentials of quasi momentum and quasi energy, and the corresponding
"multipliers" wt(Q) and w2(Q) are equal to

Q Q

(4.14) Wi (Q) =  exp (i!, \  dp) , w2 (Q) = . exp (iZ2 j[ d £ ) .

(The conditions (4.13) guarantee that the w,(Q) do not depend on the path
of integration.) The proof of the above assertions follows from the fact that

(4.15) q(x  f llt y, Q) =  uh{Q)^{x, y, Q),
(4.1(3) ψ(α·, y +  /.,, ζ)) =  «;.2«?)ψ(α:, .ι/, ρ) ,



186 LM. Krichever

since the right-hand and left-hand sides of these equalities have the same
analytic properties.

Formally conjugate or dual Baker-Akhiezer functions being solutions of
(1.4) are defined in the following way. Let d€l be the unique differential
meromorphic on Γ with a single pole of the second order at Po and having
zeros at yx, ..., yg. Besides the ys, the differential άΩ, also has g zeros,
which will be denoted by 7Ϊ", ..., yg. A function φ+(χ, y, Q) that is
meromorphic on Γ outside Po and has poles at γ | , ..., 7^ will be called a
dual Baker Akhiezer function. In a neighbourhood of Ρ it has the form

(4.17) ψ*(*, y, Q) = c ihx^ lh2y(l+ Σ ξ; (χ, ;/ )/ ,  ').

Lemma 4.1 ( [56]) . For the coefficients \ x and £ j of the expansions (4.2)
and (4.17) the following equality holds:

(4.18) \ x(x,

Proof. I t follows from (4.2), (4.17), and the definition of y\ , ..., 7+  that
the differential

(4.19) dd_(a; y, Q) = ψ(*,  y, QW(x, y, Q)d9.(Q)

is holomorphic outside Po, where it has a pole of the second order. Therefore
the residue of ύ?Ω at Po is equal to zero. Since it is equal to the left hand
side of (4.18), the lemma is proved.

Corollary. The dual Baker Akhiezer function ψ+ is a solution of the
equation (I A) formally conjugate to the equation (1.1) which φ satisfies.

Lemma 4.2. If Γ, Po, yu ..., yg are such that the potential u corresponding
to them is non singular, then the differential d£l is equal to

(4.20) dp a dR

Proof. By complete analogy with the proof of Lemma 2.3 it can be shown
that if u is non singular, then (φφ + )χ and (φχφ

 + ~ ψψχ)γ cannot have
common zeros. It follows from (1.6) that the right hand sides of (4.20) are
holomorphic outside Po and have zeros at the poles of ψ, φ+ and a pole of
the second order at Po. Since these properties uniquely determine Ω, the
lemma is proved.

Theorem 4.2. For a real smooth periodic potential u of the equation (1.1)
the corresponding curve Γ is isomorphic to the Floquet spectral set.

The proof of the theorem for an arbitrary σ completely repeats the
proof of the first assertion of Theorem 2.1, since the relation (4.20) is
sufficient to carry it out.
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The potentials u corresponding to an arbitrary set of data (Γ, Po, k~l, ys)
are complex meromorphic functions. The identification of real and non 
singular potentials in the cases σ =  1 and σ =  /  turns out to be different in
principle.

The case a = i. For u to be real it is necessary that there is an anti 
holomorphic involution r on Γ such that τ(Ρ0) = PQ. The local parameter
k~l must be chosen so that k(r(Q)) = k(Q). The poles ys under the action
of r must be transformed into the dual collection r{ys) =  γ/ , that is, the
7s, Tils) must be zeros of d£l with a single pole of the second order at Po.

If these conditions are satisfied, then by the coincidence of the analytic
properties the following functions are equal to each other:

(4.21) ν|·+ (ζ, y, Q) =  V\   (χ, υ. τ (<?)).

Therefore

and by (4.18) u =  2illx is real.
For a potential u to be smooth it is sufficient that the anti involution r is

of splitting type, that is, its fixed ovals aQ, ..., a,, I < g , split Γ into two
domains T±. If c?i2 corresponding to γΐ 5 ..., yg is non negative on as with
respect to the orientation given on these ovals as on the boundary of Γ+ ,
then u has no singularities for real x, y.

The sufficiency of the above conditions for the smoothness of u was first
obtained in [12]. Their necessity was proved recently in [57] on the basis
of a detailed analysis of the theta function formula (4.8). We shall give
below a brief sketch of another method of the proof.

First of all we note that it is sufficient to prove the necessity of the above
conditions for the periodic potentials, because the set of curves with a
distinguished point Po that correspond to them as lx, 12  *•  °° is dense in the
set of all finite gap potentials.

The correspondence

(4.23) K, w2) — (ι7 ·, α ')

for σ = i leaves invariant the F loquet spectral set. Since this set is
isomorphic to Γ, it follows that (4.23) induces an anti holomorphic
involution r : Γ  *•  Γ. The fixed ovals τ split Γ into two domains Γ+ , where
\wx I > 1, and Γ", where \wx I < 1. On these ovals dp is positive, and by
(4.20) the differential άΩ, is also positive. The assertion is proved.

The fixed ovals a0, ..., at of the anti involution r are the "spectrum" of
the operator (1.1) in the space of square integrable functions on the real
line.
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Theorem 4.3 ( [52]) . Suppose that the parameters (Γ, Po, k~\  ys) satisfy
the above conditions that guarantee that the corresponding finite gap
potential u(x, y) is real and non singular. Then

(4.24) 6 (x x·) =  jj t (x, V·. Q) V (*', y, Q) <K2 
(Uo,)\ Po

The theorem is proved in [52] in a more general situation with the help
of the standard method of contour integration.

We note that for Q Ε as the functions ψ(χ, y, Q) and 4>+(x, y, Q) are
complex conjugate to each other and bounded, since lw;(Q)l =  1.

The case σ =  1. Finite gap solutions of the equation (1.1) with σ =  1 are
real and non singular if and only if their data (Γ, Po, k'1, ys) satisfy the
following conditions: there is an anti holomorphic involution τ on the
curve Γ that has g+ 1 fixed ovals (such curves are called M curves); each
fixed oval of τ contains one of the points Po, y1} ..., j g ; the local parameter
k'1 in a neighbourhood of Po must be chosen so that k(r(Q)) =  ~k(Q).

Remark. On the fixed ovals r*dp —  dp, r*dE =   dE, therefore the
condition that the periods of this differentials are real means that the
integrals of dp, dE along ait ..., ag are equal to zero. Hence in the case
σ = 1 the differentials dp and dE coincide with the differentials Ω(1) and
Ω<;), where the oc) are defined at the beginning of the section (see (4.5)).

§5. The completeness theorem for products of Bloch functions

In this section we restrict ourselves to the case of real non singular finite 
gap potentials of the equation (1.1) with σ =  1. As shown above, they are
determined by an M curve Γ with a distinguished point Po £  a0 (where
a0, .... ag are the fixed ovals of the anti involution r : Γ  >•  Γ) and by a
collection of points ys £ a r Moreover, they depend on the equivalence
class Ik'1], of a local parameter such that k{r{Q)) = ~k{Q). The real
dimension of the manifold of such data

(5.1) Μβ.  (Γ,Ρ0, l/ r']2)
is equal to 3g+ 1, where g is the genus of Γ. The submanifold Mg of data
(5.1), corresponding to the potentials with zero mean value in x, has
dimension 3g and, as seen from (4.8, 9) and from the fact that (for σ = 1)
dp = Ω*1*, is determined by the condition p^iQ) ζ l/ c"1)2, where p(Q) is an
arbitrary branch of the quasi momentum.

The main aim of this section is to construct, from products of Bloch
functions corresponding to finite gap periodic operators and their dual
functions, an analogue of the Fourier basis in the space of functions
periodic in χ and y. Before we present these results we shall need detailed
information on the structure of "resonance poin ts" on the curves
corresponding to such potentials.
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Suppose that the set of data (Γ, Po, [k 1]^  ζ Μ\  satisfies the conditions
(4.13), which are necessary and sufficient for the periodicity of u. Then the
functions w, ( 0 , /  =  1,2, being the eigenvalues of the operators of translation
by the periods in χ and y, are defined on Γ. Two points Q and Q' are
called resonance points if Wj(Q) =  νν, (β').

On each of the domains Γ* into which the cycles a0, ..., ag split Γ we can
choose a single valued branch of the integrals

9 Q
(5.2) ρ (Q) =  _\  dp, Ε (Q) = jj dE, q ζ α0.

« η

(For Γ+ we take the domain on which Re ρ > 0.)

Lemma 5.1 ( [18]) . For any M curve Γ the map

10.3) Γ+  3 Q  + (Re p(Q), Re E(Q))

is a real diffeomorphism of Γ+  onto the right half space R2 with g deleted
points. The curve Γ and Po correspond to the periodic potentials of the
equation (1.1) with a = 1 if and only if the coordinates of these points on
Γ have the form (nNgl'1, nMsl~'), where Ns > 0, Ms are integers. All the
pairs of resonance points on Γ are the points ΡχΜ such that Ρ$Μ =  τ(Ρ^Μ)
and P?ni is the inverse image under the map (5.3) of the point with
coordinates (jtJV7~\  ziMl~l), where Ν > 0, Μ are integers, (Ν, Μ) Φ (Ns, Ms),
s = I, ..., g.

Proof. The differentials dp and dE are purely imaginary on the fixed ovals
a0, .... ag. Therefore the map (5.3) extends continuously to these ovals.
Moreover, the cycle a0 is mapped to the origin, while the cycles as are
mapped to the points with coordinates

(5.4)

(the bs are cycles of Γ complementing the as to a canonical basis).
We consider the level curve of the function Re ρ = r on Γ+ . The

function Re Ε has no extrema on this curve. First we shall prove this for
r Φ nUs, 5 = 1 , ..., g. Suppose that Re Ε has an extremum at a point Q on
the curve Re ρ = r. Then at this point

(5 5) ΐ | ^ ) =  λ>

where λ is real.
The differential dE—\dp has 2g— 1 zeros. It is real on the cycles

a0, ..., ag. Its integrals over av ..., ag are equal to zero since, as explained at
the end of the previous section, so are the integrals of dE and dp over these
cycles. Hence dE~Xdp has at least two zeros on each of these cycles.
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One more zero belongs to a0. Consequently, this differential cannot vanish at
Q, which contradicts (5.5). In a similar way it can be proved that Re Ε is
monotone on all connected components of the level curve Re ρ = TTUS. The
first assertion of the lemma is proved, while the second follows from (5.4.)
and (4.13).

For the proof of the last assertion of the lemma it is sufficient to consider
the following map on Γ:

(5.6) Q  v( lm ; H 0 , 1m E(Q)).

By analogy with the above it can be proved that the inverse image of any
point of R2 consists of at most two points of Γ. Since Im ρ and Im Ε are
even with respect to r, the two inverse images are conjugate to each other.
Under conjugation Re ρ and Re Ε change sign. The resonance condition for
the two points

(5.7) Re ρ (P+
NM)   Re ρ {P~SM) = ·=£  , Re Ε (ΛΥΜ)   He Ε (ΡϊΜ)  =

ι,
implies the assertion of the lemma.

Let φ(χ, y, Q) be the Baker Akhiezer function constructed by the data
(5.1) and the collection of poles ys. If the conditions (4.13) of periodicity
of the correspondent potential are satisfied, then the products

(5.8) Φ%Μ (a·, y) = ψ (χ. <,. Pjhi) if (*, y, 1>%M)

are, by the definition of resonance points, periodic functions of x, y. The
products φ(χ, y, Q)\JJ+(X, y, Q) are periodic functions too. It follows from
the Riemann Roch theorem that among the latter there are only g + 1
linearly independent ones. Indeed, for any x, y the function φφ+, as a
function of Q, is meromorphic with possible poles at the points y£, ys. By
the Riemann Roch theorem the dimension of the space of such functions is
equal to g+ 1. (It follows from this reasoning that the dimension of the
space of functions i//(x, y, Q)\p+(x, y, Q) is at most g+ 1. In the proof of
Theorem 5.1 it will be shown that it is equal to g+ 1.)

We denote by Φ^(χ, y) the periodic functions

(5.9) Φ . (x, y)   ( i |. {X ^  p^  r ( i ^  Pis))x , s i,...,g,

where the Pj, /  =  1, ..., 2g, are the zeros of the differential dp numbered so
that P2s i, Pi& lie on the oval as.

Let L\  = L^{T2) be the space of square integrable functions periodic in
x, y and with zero mean value in x. We denote the dual space by (LV)*.
Let us define elements Φι   (LI)* which, as will be shown below, together
with Φ.̂ Λ! and Φ ; form an analogue of the Fourier basis in (L°)*.
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We define the functions rs(x, y) by the formula

(5.10) r, (z, j, ) =  e X p ^ (x dp  f y dE)

which up to the constant factor Θ(Α(Ρο) + Ζ) coincides with the coefficient
of the singular term in the expansion of ψ(χ, y, Q) in the local parameter
θ(Α(ζ)) + Ζ) in a neighbourhood of its pole. (We recall that 6(A(ys) + Z) = 0.)
Let Qs

n be points of Γ such that Wi(ys) =  w^Q^). We consider the series

i s m Φ (x u) = y, w  m ) r s ( r · ! ; ) r ( J · "•  Q'!i)

Lemma 5.2. The series (5.11) for all χ and y < l2 converges and determines
a smooth analytic function Φ^(χ, y) periodic in x. For any continuously
differentiable function v(x, y) with periods lv l2 in x, y there is a finite limit

ι
(5.12) lim [ (Φ7(χ, y)v(x. y))xtly,

' '» ο

which determines the element Φ~ Ε (L^Y 

Proof. We have k(Qs
n) =  2 πηΙΙλ + ρ8 as \n\   »· °°. H ence

(5.13) wz {(?n) « exp ( _  * = ^ i !  _

In a similar way, up to a finite factor

(5.14) r (*, „. ft) ft cxp ( _ J

Therefore for y < l2 the terms of (5.11) decay exponentially. The periodicity
of Φ^ in χ follows from the fact that by the definition of Q% all terms of
the series are periodic in x. We denote by r° the periodic function
r° =  rs(x, y)exp( ipsx iEsy), where ps and Es are the values of the quasi 
momentum and the quasi energy at ys. We have

Therefore the left hand side of (5.12) is represented by the sum of a series
whose terms for In I > No are uniformly bounded by the Fourier coefficients
of the periodic function r°(x, y)v(x, y), which implies the last assertion of
the lemma.

Theorem 5.1. The functions φ±  and Φχ^ίοηπ a minimal basis in (L°Y.
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Proof. To prove the completeness of this set, it is sufficient to show that
for any continuously differentiable periodic function v(x, y) it follows from
the equalities

(5.16) a) «ΓΦ ; » =  0, b) \' (Φ" (.r. y) ν (χ, y))x dy =  0,
ο

(5.17) a ) «i*D &u »= 0, ^ < Γ > , =  0,

that ν = 0. (Here and in what follows « · » denotes the mean value in x, y.)
F or any point Qo Ε Γ such that ΙΓΧ((?0) = t Wi(Pj), Qn Φ Ysi <?o ̂   Ρ^υ» we

consider the series

(5.18) q (*, , ,  Qu) =

where ·ψη(ζ, y) =  \j?(a:, w, <?„), u. 
2n =  ii'2(^,,), and Qn as before is defined

from the condition Μ  ( (2Π) =  Η  ( 0 Ο ) . Asymptotically the terms of this series
coincide with the terms of the series ψ\ {χ, y, Qo) considered in §2. Therefore
(5.18) converges and determines an analytic function of the variable Qo. It
follows from (5.17) that it extends analytically to all resonance points JP.VJJ.
Let us show that it can also be extended by continuity to points QQ Φ Pj
such that Wi(Q0) =  w^Pj). We consider φ(χ, y, Q'o), where Q'o is close to Qo.
Making Q'o tend to Qo, we see that among the terms of the series (5.18)
there are two terms tending to infinity. They correspond to the indices
n0, no+ 1 such that the corresponding points (?„„, <?„„+! lie in a neighbour 
hood of Pj. (These terms tend to zero, since {• ψη.'ψηο̂  a n d (ψηο ίίψη,+ ι ~>χ

tend to zero as Q'o  *•  Qo.) The sum of the two terms tends to a finite limit.
In fact, the terms of (5.18) coincide for η Φ 0 with the residues at the
points Qn of the differential

which locally depends smoothly on Qo. Therefore the sum of the two terms
of (5.18) that tend to infinity tends to the integral of the differential (5.19)
over a small contour surrounding Pj.

Thus if υ satisfies (5.17a), then ψ(χ, y, Qo) is an analytic function on Γ
outside the points Pj, ys and the distinguished point Po. At the points ys it
possibly has simple poles, while at the points Pj, j = 1, ..., 2g, it can have
poles of multiplicity 2. It follows from the equality

y+ H h ν
( 5 · 2 0 > ί ^  ̂ S *  ( S
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that the function

(5.21) φ , y, Qo) =  φ(.τ, y, Qo) ~ φ(0, 0, Q0)$(x, y, Qo)

has no poles at the points Pj if υ satisfies (5.16a). It follows from (5.16b)
that φ(0, 0, Qo) has no poles at the points ys. Hence φ is meromorphic on
Γ outside Po and possibly has simple poles at the points ys. By analogy with
(2.19) for s — 1 we have

(5.22) φ(ζ, y, QoH+(x, V, Qo) =  Ο(^^0)).

Therefore φ is a function of Baker Akhiezer type, but in the expansion
(4.2) for φ the pre exponential factor begins with O(k~*). F rom the
uniqueness of the Baker Akhiezer function we conclude that φ =  0.

By Lemma 2.4 the sequence φη = φ(χ, y, Qn) is a basic sequence (in the
sense of the definition given in §1). Comparing formulae (1.25), (1.28)
with (5.18), we obtain

(5.23) {dB  di + u0) <t (x, y,  <?p) =    ( g ^

where u0 is the finite gap potential corresponding to the Baker Akhiezer
function \p(x, y, Q). Since ψ = 0, the left hand side of (5.23) is equal to
zero. We conclude from (5.16a) that ν = 0. The completeness of the family
Φ *. Φ%Λ, is proved.

The proof of minimality of this family follows from the following
construction of a "dual" basis in L\ . We consider an arbitrary variation
u(x, y, r ) of a finite gap potential u0 = u(x, y, 0). For any point Qo Φ Pj,
P ?, , we denote by Q(T) the point of the Riemann surface ΓΤ corresponding
to the potential u(x, y, τ), which is determined by the condition

(5.24) ψ, =i\ (x, y, Qo) =  djlp(x. y, Q(T)) | T = 0 .

By definition this function has Bloch behaviour in χ with multiplier

Lemma 5.3. For any variation u(x, y, r) the function ψ{χ, y, Qo) defined
by (5.18), where

(5.2Γ.) v(x, y) =  a,M(z, y, τ) |τ= ..ρ,

ίο

(5.2G) <,, ( Ϊ , «/, ζ)0)  =  χ| τ   ^ §

Proof. The right hand side of (5.26) is a Bloch function with multipliers
!(·,„. »• „„ and satisfies the normalization condition {φφ$)χ =  0. Differentiating
(1.1) with respect to r, we see that it is a solution of (5.23). As shown in
§ 1, such a solution is unique and is given by (5.18). The lemma is proved.
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We first consider finite gap variations u that preserve the periods of uQ.
Such variations are those that do not change Γ but move the poles 7,5 of a
Bloch function. We put

(5.27) v; (.r, y) =   ^ — u(x, y\  Γ, yv . . . . γ?) .

(These functions are linear combinations of du/ dzh where u is given by (4.8)
and the z,· are the coordinates of the vector Z.) Moreover there are variations
that preserve the 7̂  but change Γ. F or example, if we take the endpoints
p2s of the slits in the model of Γ in §2 for the parameters determining Γ
(we recall that for variations of Γ preserving the periods of u0, among the
endpoints of the slits only half of them are independent), then we can
define the functions

(5.28) vi (x, y) =  d/ dp2su (x, y \  p2, .. ., p2g. γ,, . . ., yg).

Lemma 5.4. The functions vf satisfy the following conditions:

(5.29) «^ΦΝΛΓ» =  «νίΦ ί , ν» =  0,
(5.30) «ι ;, Φ ?» =  0, «ϋ7Φί, »= ,ο.
(5.31) <<ι>;Φί'»   δ,,., <<ΐ;;Φ7'» =  «Α. ' . α,ΦΟ.

Proof. For both types of variations under consideration, φτ (where τ is
either ys or p2s) has no poles at the points Ps n  This implies (5.29). The
function d\p/ dys has a pole at 7S of multiplicity 2 and simple poles at 7^,
s' Φ s. It is analytic at the remaining points. Comparing these properties
with those that follow from (5.18), we obtain the second equalities in
(5.30), (5.31). U nder variations of pZs the derivatives 3ψ/ 3 Ρα have poles
at the points P2S. Hence we obtain the first equalities in (5.30), (5.31). The
lemma is proved.

Its assertions say that the Of form a basis in the cotangent bundle to the
manifold of periodic finite gap potentials, corresponding to the curves of
genus g. Below we shall show that Φ\Μ are dual to the variations transversal
to this manifold, which "open a gap" at the place of the resonance points

We consider small neighbourhoods R^M of some pair of points PNM  The
function Wj identifies each of these neighbourhoods with some neighbourhood
RXM of U<\(PXM)· If for ΐί   ζ. R^M we put P^(wi)£ R JM, ith(P ) — u\ , then
w± (u\ ) =  «.^(Ρ*) are analytic functions in RNM. Let RNM be a two sheeted
covering of RNM given by the equation

(5.32) z   (w\  {rvi) +  w  (wt)) z + (i  B ) w\  (wt) wZ (u\ ) =  0.

For sufficiently small ε the boundary of ΛΛ·Μ splits into two circles, each of
which can naturally be identified with the boundaries of 7?.v,v· This
identification enables us to paste the domain RNM to the complement of
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the domains RNM in Γ. As a result we obtain a Riemann surface of genus
g+ 1. We denote it by Γ% Μ. The involution r extends naturally to Γ^Μ,
where it has besides the old fixed cycles a0, ..., ag a new one οβ + 1 £  RNM·

We present briefly the necessary information about holomorphic

differentials on T%M [58] . Let ωχ, . . ., a>g+i be a basis of normalized
vectors on Γ^ΛΙ  If <*>i> ..., ωε is a basis of normalized holomorphic
differentials on Γ and ω ί Μ is the normalized differential of the third kind on
Γ with residues ± 1/ 2π/  at the points Ρ mi, then we have outside R^M

(5.33) Ιω ,ωΤ '  l |  Ο( ε 2 ) , i = i,...,g, \  ωΝΜΖ̂ +ι   1 |   <?(e2).

Let Ζ?ε and 5 be the matrices of periods of the curves Γ^Λί and Γ respectively.
Then it follows from (5.33) that

(5.34) 'Bh = Bl} + O(e*), t,

(5.35) B i + l i ,· =  ,J) ωΝΜ =  ̂

(the second of these equations is a consequence of the Riemann relations).
We have for the matrix entry Bg+lig+1

(5.36) Bg+l.e+t =  ±  (\ogB + rjTU + 0^)).

The theta function θ =  0(zlt . . ., z g + 1 ) constructed from the matrix Bz is
equal to

(5.37) θ =  θ (z) +  ee'NAf [θ (z +  ^ W S i ) *
2 π ί ζ*+ 1  

 e ( z  4 W i f ) e  2 n f a « « ] + 0 ( t 2 ) ,

where s =  (zlt . . ., zg), ^4jVM =  (Al
NM) and ^4^Λί are defined in (5.35).

We consider the finite gap potential u{x, y) corresponding to the curve
Γ]ν·ΛΙ and the divisor of the poles yu . . ., γ^+ ι· It is given by (4.8), in
which the theta function is Θ. The vectors of the £> periods of the differentials
dp and dE on T%SI are equal to

(5 38) ^

From (4.8) and (5.37) we obtain

(5.39) 6u =  u — u — ε (fjvjje π ΐ 2 £

where the functions v%i are given by

(5.40) ^ M  
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Lemma 5.5. The functions v%M satisfy the relations

(5.41)

(5 42) «^ΛΙΦΝ ,Λ/ , » =  Ο,

Proof. Considering the derivative of the Bloch function with respect to ε,
we see that the corresponding function ψε has simple poles at the points ys

and Pj and a pole at the pair of points Ρ$Μ. Comparing its residue with
(5.18), we obtain (5.42). The equalities (5.41) follow from the fact that the
poles of i\ \  at the points ys and Ptl are simple.

The lemmas proved above enable us to conclude that the basis Φ± , ΦχΜ
in (Lf)* is minimal. At the same time they prove the following theorem.

Theorem 5.2. The functions vf and V^M defined by (2.57), (5.28), and
(5.40) form a minimal basis in L%.

CHAPTER II

THE PERIODIC PROBLEM FOR EQUATIONS OF KADOM TSEV PETVIASHVILI TYPE

As mentioned in the introduction, equations of KP type are a system of
non linear equations for the coefficients iit and Vj of operators L, A of the form
(2) equivalent to the operator equation (4). (In what follows we shall assume
that u«P =  u°6aP , v$ — ν?ηδα& are constant diagonal matrices, v™, =  0.) This
definition needs a refinement. It turns out that if η < m, then the system (4)
reduces to a sheaf of systems only on the coefficients of A that are parametrized
by constants hai,a= 1, ..., / ; i = 0, ..., n. (See [7] for the details.) In what
follows, by equations of KP type we shall mean reduced systems of equations
for the coefficients of A.

§ 1. Necessary information on finite gap solutions
The initial object in the construction of [7] of finite gap solutions of (4)

is a non singular algebraic curve Γ of genus g with distinguished points Pa,
a. — 1, ..., /, in the neighbourhoods of which the local parameters &„'((?) are

η

fixed, Κι(Ρα) = 0. We put Ra{k) =  2 h ^  (where the hai are constants

parametrizing the systems of equations of KP type together with constants
v% that are diagonal elements of the leading coefficient of A).

For any collection of points γι, . . ., ye+i i in general position there is a
unique meromorphic function φα(χ, y, t, Q), Q G  Γ, which

1° is meromorphic on Γ outside the points Pa and has poles at ys (at most
simple if the ys are distinct);
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2° in a neighbourhood of P@ is representable in the form

(1.1) ψα =  Ζ «V+ i ¥ V* + ^? "( 2 |? p (a:, y,
«= o

We denote by i//(x, >>, i, Q) the column vector with coordinates φα. As
shown in [7] , there are unique operators L  and A of the form (2) with
(/  χ / ) matrix coefficients such that

(1.2) (dv   L)Mx, y, t, Q) =  0, (dt   Aft(x, y, t, Q) =  0.

Since the equalities (1.2) are satisfied for all Q, it follows that L  and A
satisfy (4) (with σ =  1). It follows easily from the uniqueness of \ jja that
they do not change under substitutions of local parameters such that
/, p =  A p  f  O(A pm). The local parameters related to each other in this way
belong to one equivalence class [ ^ ' ] m .

The complex dimension of the manifold of collections

(1.3) Mg= (Γ, Pa, [*£·]„,), Γ has genus g,

is equal to Λ" =  3g— 3 + (m + 2)1. We can introduce a complex analytic
structure on Mg. Let /  =  (71; ..., IN) be an arbitrary (local) system of
coordinates on Mg. The dependence of all magnitudes on /  in the subsequent
formulae is complex analytic.

We denote by dp, dE, Ω   the meromorphic differentials on Γ with poles
at the points Pa of the form dka, dRa(ka), i^dkj? respectively, uniquely
normalized by the condition that their integrals over all cycles are real. Let
a, , bj be the canonical basis of cycles on Γ. We define a g dimensional real
vector U with coordinates

(1.4) Uh =  ^ ^
bh

In a similar way, starting from dE, dQ, we can define 2g dimensional vectors
V, W. Cutting Γ along ah bj, we can choose a single valued branch of the
integrals p(Q), E(Q), Ω(β) . In a neighbourhood of Pa they have the form

(1.5) p = ka a

and ρ, Ε, Ω can be normalized uniquely by the condition at = bx = c, = 0.
In [22] with the help of explicit theta function formulae it is proved that

the finite gap solutions constructed above have the following form. If
a = a(T), b = b(I), c — c(I) are diagonal matrices οαδα β , £> αδαΡ, c a 6 a f l , then

(1.6) L 



198 IM Krichever

where g =  exp (i(ax  f  by +  ct +  Φ)), Φ α Ρ =  Φ α δ α β , and the coefficients
Uj, Vj of the operators L  and A have the form

(1.7) ύ ; =  ^ ( ί / χ +  7ί/  +  ^ +  Ζ | / ) , ^ =  ^(^7χ +  7ΐ/  +  ^ +  Ζ | / ) .

Here Uj(zi, . . ., z2g\ I), Vj{zu . . ., c 2 g |/ ) a re functions with unit periods in
the variables zt. The real coordinates of the vector Ζ and the complex
constants Φα are determined by the collection γΐ 7 . . ., γί + ι_ ι · I n formulae
(1.6), (1.7) they can be assumed to be arbitrary.

To avoid burdening the presentation with superfluous technical detail, we
refer the reader to [22] for details of the construction of explicit formulae
for z?,·, Vj.

As an example we consider finite gap solutions of the KP equation [6] .
Solutions of this equation are constructed with the help of the Baker 
Akhiezer function φ(χ, y, t, Q), which is meromorphic on Γ outside Po, has
poles 7i, ..., yg, and in a neighbourhood of Po has the form

(1.8) ψ =  ί «χ . ) ) (Q)
s=  1

This function has a form similar to (1.4.7) (here and in what follows, in the
triple numbering the first number indicates the number of the chapter)

Q(A(Q)+Ux + Vy +  Wt +  Z) 0 (A (Po) +  Z)

where Ω(1>. Ω<Γ) are the same as in Chapter I, and Ω'3) is a normalized Abelian
differential with a pole at Po of the form dk3. The corresponding finite gap
solution u(x, y, t) is given by

(1.10) u(x, y,t) = 2d% log θ (Ux+ Vy + Wt + A (Po) + Z) +const.

Coming back to finite gap solutions of the general equations (4), we
define following [56] the notion of a dual Baker Akhiezer function. F or
any collection γχ, . . ., γβ+ ι_ ι in general position there is a unique (up to
proportionality) differential ώ of the second kind with poles of the second
order at the points Pa and vanishing at the points j s . The collection of
points y*, . . ., γ^+ ΐ ι that are the remaining zeros of ώ is called dual to
the collection γχ "tg+i i 

If φ(χ, y, t, Q) is a vector valued Baker Akhiezer function defined above
by the set of data (1.3) and the poles j s , then the dual vector valued
function ψ+(χ, y, t, Q) is the row vector with coordinates ψ£, which are
meromorphic on Γ outside Pa with poles at the γ^ and have in a neighbour 
hood of Ρβ the form

(1.11) ψ* =  exp (i (   V   Rfi (ftfl) V ~ νίΦ) ( S |. + α β (χ, y, t) A p 5) .
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It is proved in [56] that φ+ satisfies the equations

(1.12) ψ+  {dy   L) =  0, ψ+  (5,   A) =  0,

where the operators L  and 4̂ are the same as in (1.2). The proof of [56] is
based on the fact that by the definition of φ and φ+ the differentials

(1.13) ίίΛβρ =  ·φα(χ, y, t, Q)Tft{x', y', t', Q)u(Q)

are holomorphic outside Plt ..., Ph therefore
ί

(1.14) Σ resp rfAaP 0.
V = l ^

The bilinear relations, introduced in the papers by Sato, Miva, Jimbo, Date
(see [46], [47], [68]) for the determination of τ functions, are a
generalization of the relation (1.14).

§2. The perturbation theory for finite gap solutions of the
Kadomtsev Petviashvili  2 equation

We consider the problem of constructing asymptotic solutions of the
equation

(2.1) ^Uuy

where ε is a small parameter, and K[u] is a differential polynomial. There
are several ways of stating this problem. One of them is related to the
investigation of the influence of the perturbing term on the solutions of the
periodic problem for the KP 2 equation. In this case an asymptotic series is
constructed for the solution of the Cauchy problem with the initial data
u(x, y, 0) that belong to a neighbourhood of a finite gap solution of the
KP 2 equation. The second way of stating the problem is also meaningful in
the case Κ = 0. In this, an asymptotic solution of the KP 2 equation is
searched for, the first term of which is equal to

(2.2) u0 (x, y, t) =  23| log θ (ε 'S (Χ, Υ, Τ) | /  (Χ, Υ, T)) + c(X, Υ. Τ).

where

(2.3) u{z) = 2dl\ogQ(z\J), <5* =  Σ ^ , ,
is a periodic function of ζ =  (zlr ..., zg) whose parameters (that is, the
matrix of periods of holomorphic differentials on Γ) depend on the slow
variables X — ear, Υ = fy, Τ =  ε/ . The vector valued function S is
determined by the equations

(2.4) dxS =  U(X, Y, T), dYS = V(X, Y, T), 0TS =  W(X,Y, T),



200 I.M. Krichever

where U, V, W  are the vectors of the periods of the differentials dp, dE, <2Ω.
They depend on Χ, Υ, Τ by means of the dependence of the main parameters
(Γ, Po, k'1) on these variables.

For space one dimensional systems, in particular for the KdV equation,
the main attention has been given to the second way of stating the problem
[21], [22] , [59] . Combining the two problems, we shall search for a
solution of the equation (2.1) in the form

oo

(2.5) u (x, y, t) =  u0 (x, y, t \  X, Y, T) + 2 ε«ΐ/, (χ, y, t | Χ, Υ, Τ).

In the case when u0 is a periodic function of x, y, to construct the series
(2.5) it is sufficient to construct a set of solutions of the linearized equation
(2.1)

(2 6)  §  i>ra 

that for all t form a basis in the space of functions periodic in x, y.
Moreover, it is necessary to have a dual basis of solutions of the conjugate
linear equation

(2 7) \Φυ

To construct solutions of the equation (2.6) we use the fact that if there
is a family of solutions of a non linear equation, then the derivatives of these
solutions with respect to the parameters are solutions of the linearized
equation. Therefore the functions

(2.8) v+
t(x, y, t)= ^ uo(x, y, t), v~s (x, y, t)^ ^—uo(x, y, t),

where uu(x, y, t) — uo(x, y, t | ys, p2s) are finite gap solutions given by
(1.10), are solutions of (2.6).

Considering variations of Γ analogous to those used in §5 and which
correspond to "adding a handle" between the points Q and T(Q), we obtain
the following assertion.

Lemma 2.1. The functions (2.9) are solutions of the equation (2.6)

(2.9) V(x, y, t, <

X exp {i (p (Q)  p(x (<?))) x+(E(Q) E (τ (<?))) y + (9. (Q)   Ω (τ «?))) ί}.

Here r(Q) is a real function defined in the following way. Let ώ β be the
normalized differential of the third kind with residues ± 1/ 2π/  at the points
Q, T(Q). AS Q  + Q' we have

< ?;
(2.10) \  t»Q = \o
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By the definition of resonance points, the functions v%M = v(x, y, 1, P§M)
are periodic solutions of the equation (2.6).

We denote by Φ^(χ, y, t) the functions constructed with the help of
φ(χ, y, t, Q) and ψ+(χ, y, t, Q) in the same way as the functions Φ^(χ, y)
were constructed in the last section of Chapter I. Moreover we define
periodic functions ΦΝΛΙ(# Ι ίΛ ί) =  Φ(ζ> !/> t, ΡΝΜ), where

( 2 . 11) Φ (χ, y, t, Q) =• •  ^ (*' ·"' *' g ) ψ +  ( *' y> '*' τ ( < ? ) )

By complete analogy with the results of §5 of Chapter I we obtain the
following theorem.

Theorem 2.1. The functions y± , v^Mfor any t form a basis in L\ . Moreover
for them and for the Φ^, Φ ^ Μ the orthogonality relations (1.5.27, 28) and
(1.5.40, 41, 42) hold.

Corollary. The functions Φ± , Φ ^ Μ are solutions of (2.7).

The formulae for v(x, y, t, Q) and Φ(χ, y, t, Q) obtained above enable us
to determine easily all the terms of the series (2.5) in the case of a periodic
solution u0. A direct analysis of the resulting expressions shows that the
corresponding series can be defined for all finite gap solutions by
approximating the latter on any compact set by finite gap periodic (in x, y)
solutions with periods lv l2  + °°. Under such an approximation the limit of
the subset of the resonance points that gives non trivial contributions to u, is
the set of points Q fc as such that there are integers ρ =  (rv ..., rg) for which

e·(2.12) Re/?(<?) =  rxl\  +  . . . +  rgUg, ReE(Q) = r1V1 + . . . + rgV

Let R be the subgroup of Zg formed by those collections of integers for
which the right hand sides in (2.12) are equal to zero, R = R{U, V). For
any collection ρ £  Zg we denote by ρ the element of the quotient group
Zg/ R. The points described in (2.12) are uniquely determined by the class
ρ (and are denoted in what follows by Q ^), which is not equal to zero or to
any of the classes p |, where p* is a collection in which r, =  ±  δ,·5. We
denote by F^u^ . . ., u; J the "discrepancy" of order ε' that is obtained
by substituting the corresponding partial sum of the series (2.5) in (2.1).

Theorem 2.2. The term ut{x, y, t\X, Υ, Τ) of the series (2.5) is equal to

g

(2.13) ui = '9! (cts(t)vt(x, y, t) + cu{t)v~{x, y, i)) f
s = i

Σ ct(t, Q D)v(x, y, t, #  ), ; > i .
,  ρ±
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Here

(2.14) ° t

ct(t, Q ) ~~c, ((? )   jj «Φ ( χ , y, t', QJdxFiVdt'.
η

We note that in formulae (2.14) only the dependence of all terms on the
"rapid" variables x, y, t is reflected, though all of them are also functions of
the slow variables Χ, Υ, Τ that enter the definition of t>±, ν, Φ± , Φ by
means of the dependence on these variables of the parameters (Γ, P o , Ar1).
Moreover, the integration constants c± , c;((?")in (2.14) can also be functions

of X, Y, T. Equations determining their dependence on Χ, Υ, Τ can be
obtained from the requirement of uniform boundedness in t of the term ui+1.

The most interesting point is the determination of the dependence on
Χ, Υ, Γ of the main parameters (Γ, Po, Ar1) of finite gap solutions, proceeding
from the requirement of uniform boundedness in t of the first correcting
term uv The next section of the paper is devoted to this question.

§3. Whitham equations for space two dimensional " integrable systems"

The problem of constructing asymptotic solutions of general space two 
dimensional equations (4) and their perturbations is posed in the following
way. Let K(A) be a differential operator of order m— 1 whose coefficients
are differential polynomials in the coefficients of A. We search for asymptotic
solutions

(3.1) A =A0 + eAt+ . . ., L  =  Lo + iLx + . . .

of the equation

(3.2) dtL   dyA + [L, A)   sK(A) = 0.

In the first section of this chapter we have found the general form of
finite gap solutions of the equations (4). In accordance with the general
ideas of the Whitham method (the non linear WKB method), we shall
consider asymptotic solutions (3.1), the leading term of which has the form

(3.3) A0 = GA0G t, L0 = GL0G i,

where G =  exp(i6 ^50(X, Υ, Τ) + ΐΦ(Χ, Υ, Τ)), and the coefficients of
the operators Ao, LQ are equal to

(3.4) vt (β  »5 (Χ, Υ, Τ) + Ζ (Χ, Υ, Τ ) \ Ι (Χ, Υ, Τ)),

(3.5) u, ( ε  »5 (Χ, Υ, Τ) + Ζ (Χ, Υ, Τ ) \ Ι (Χ, Υ , Τ)).
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The vector valued function S  and the diagonal matrix SQ must satisfy the
conditions

dxs=U{x, Y, T), dYs=v(x, Υ, τ), dTs=w(x, γ, τ),
dxS0 = a(X, Υ, Τ), dYS0 = b(X, Υ, Γ), dTS0 = c(X, Υ, Τ),(3.6) {

where U, V, W  are vectors of the periods of the differentials dp, dE,
defined on the curve Γ, that correspond to the collection of data (1.3),
parametrized by I(X, Υ, Τ); the diagonal matrices a, b, c are defined in (1.5).

A complete solution of the problem of constructing the whole series (3.1)
requires, as in the example of the KP 2 equation treated above, constructing
a basic collection of solutions of the linearized equation (4). It turns out
that the equations of the dependence of the magnitudes I(X, Υ, Τ) can be
obtained without constructing this basis from the requirement that ux is
bounded.

We consider the manifold

(3.7) Μ , =  (Γ, Ρα

naturally fibered over Mg. Let (λ, Ιν ..., IN) be a local coordinate system on
Mg such that for fixed Is the function X(Q) parametrizes some domain of
the curve Γ =  Γ(/ ). Any such system will be called a local connection of
the bundle Mg  *•  Mg, since for any path / (r) in M_g and a point Qo £ r ( / ( r 0) )
we can locally define the lifting of this path in Mg by defining a point
Q(r) e Γ(/ (τ)) by the condition \ (Q(r)) = λ(β 0 ) .

The multivalued functions ρ, Ε, Ω defined on each curve are multivalued
functions on Mg, that is, ρ = p(k, I), E = Ε(λ, Ι), Ω =  Ω(λ, Γ). If / depends
on X, Y, T, then ρ, Ε, Ω are functions of λ, Χ, Υ, Τ.

Theorem 3.1 [22] . The following equations are necessary conditions for
the existence of an asymptotic solution (3.1) with principal term of the
form (3.3) (3.5) and bounded terms Lx, A\ .

C\K\  dP I dE 6Ω \  dE , dp idQ \  &Q. ι dp dE \  _
' > dl { dT dY ) dk \  dT dX I  "> dk \  ΟΥ ΰΧ Ι ~

) dp

The equations (3.8) can be represented in an invariant form not depending
on fixing a local connection λ. If the Ps depend on Χ, Υ, Τ, then the
inverse image I(X, Y, T) in Mg is a four dimensional manifold G44 CZ Mg.
We consider on J{i the 1 form ω =  pdX + EdY+SldT. Then the equations
(3.8) in the case Κ = 0 are equivalent to the requirement that on e)ii the
exterior square of the differential du> (which is a 4 form) must be equal to
zero, that is,

(3.9) άω Λ d<a =  0.
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The construction of solutions of the equations (4) given in § 1 contains,
in particular, a construction of solutions of the Lax equations L t = [A, L].
We consider a submanifold Mg of data (1.3) for which the corresponding
differential is exact, that is, Ε = E(Q) is a single valued function on Γ. In
this case the coefficients of L  and A do not depend on y, and (4) turns into
the Lax equation. The function E(Q) can be used as a local connection. In
this case ρ =  p(E, Χ, Τ), Ω =   (Ε, Χ, Τ) and the equation (3.8) turns into

F or Κ = 0 the equation (3.10) coincides with the equation dTp— 9ΧΩ =  0
first obtained in the special case of the KdV equation in [59] as a consequence
of the averaged conservation laws.

§4. The construction of exact solutions of Whitham equations

Let na > m+ 1 be integers such that 2 na =  i +  Km +  1)· F or any
curve Γ of genus g with distinguished points Pa in general position and with
local parameters &ά' fixed in their neighbourhoods there is a unique (up to
addition of constants) function X(Q) having poles of multiplicity na at Pa,
holomorphic outside them and such that in a neighbourhood of Pa

In the case of general position we can assume that the zeros qt, i = 0, ..., N,
of the differential d\  are simple. There are N+ 1 of them, where
iV =  3g— 3 + l(m + 2). We can define the function \ (Q) uniquely (that is,
fix the indefinite constant) if we require that \ (q0) Ξ 0. In this case we can
choose as the local coordinates on Mg the magnitudes λ,· =  λ(^ () , i = 1, ..., Ν.
The collections (k(Q), Xh ..., XN) form local coordinate systems on Mg. The
connections on Mg given in this way will be called canonical.

On an arbitrary curve Γο in general position we fix some piecewise smooth
contour Xo (not necessarily closed or connected). Using the connection
X(Q), we can carry over this contour to the curves Γ sufficiently close to Γο.
In a similar way we can define a differential dh on each such contour Χ ξ_ Γ
if we define a piecewise smooth differential dh on the initial contour Xo a To.

In the standard way with the help of Cauchy integrals it can be proved
that there is a unique differential dA on Γ that is meromorphic outside X
with a unique pole in q0 and continuously extendable to X. Moreover, its
limit values on X must satisfy the "jum p" condition

(4.1)

In addition, the periods of dA over all cycles on Γ must be real.
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Theorem 4.1 ( [22]) . Suppose that λ,· =  λ(^,·) depend on Χ, Υ, Τ so that
for any /  =  1, ..., Ν one of the following two conditions is satisfied:

YdE+TdQ) = 0 or λ,· =  const.

Then ρ = p(\ , Χ, Υ, Τ), Ε = E(k, Χ, Υ, Τ), Ω =  Ω(λ, Χ, Υ, Τ) satisfy the
equations

(4.3) dTp =  6ΧΩ, dYp = dxE, dTE =  dYQ.

The integrals in (4.2) are taken over small contours around the points qt.
If the qt do not lie on X, then the first of the conditions (4.2) means that
the differential in the integrand vanishes at the points qt.

Proof. We consider the differential dS = dA + Xdp + YdE + TdQ,. Since its
jump on X is constant, it follows that the differential dxdS is meromorphic
on Γ. The conditions (4.2) guarantee that dxdS has no poles at the points qh

Therefore the differential dxdS — dp is holomorphic on Γ (it could have a
(simple) pole at q0 but this is impossible by the theorem on residues). Since
by the normalization conditions the periods of this holomorphic differential
over any cycle is real, it is equal to zero. In a similar way it can be proved
that dE = dYdS, dQ, — dTdS. The equality (4.3) is a consequence of the
equality of the mixed derivatives for dS. The theorem is proved.

Given X, Y, T, the equations (4.2) are a system of Ν equations with ΛΓ

unknowns λ(·. Its solutions λ,·(Χ, Υ, Τ) determine special solutions of the
Whitham equations for the unperturbed equations (4) (Κ Ξ 0). These
solutions depend on dh and on the choice of a canonical connection. The
class of these solutions can be enlarged by admitting constant poles of dA
(see [22]) . As we see from the proof of the theorem, it remains valid if all
violations of the analyticity of dA do not depend on Χ, Υ, Τ. Apparently,
the most general class of exact solutions can be obtained by defining dA as
a solution of the 3 problem with a constant right hand side. We are planning
to return to this question in another publication. Besides generalizations of
the definition of dA we can also enlarge the ways of choosing canonical
connections.

Let 9ft cr Μg be a submanifold of Mg (possibly coinciding with it). We
say that on the bundle 5J!—> Sft, which is the restriction of Mg to 3JI, an
admissible connection is given if on each curve Γ in the collection of data
Γ, Pai fe1, determining a point of 9JI, a function X(Q) is defined such that
for any number λ0 in a neighbourhood of λ(Ρα) the magnitudes kl

a(Q),
/  =  1, ..., m, where Q is determined from the condition \ (Q) — λ0, are well 
defined functions of λ0, that is, they do not depend on Γ. We note that
the canonical connections are admissible. The points qt at which d\  = 0
are singularities of the connection.
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Theorem 4.Γ. Suppose that (Γ, P o , [Λ 1]»,) 6 ?tt depend on Χ, Υ, Τ so that
at each of the singularities of an admissible connection one of the conditions
(4.2) is satisfied. Then the corresponding Abelian integrals ρ, Ε, Ω satisfy
the equations (4.3).

In the special case of the submanifold of data Mg C Mg that determine
solutions of Lax type equations and the connection on Mg given by the
function E(Q), the above theorem leads to the following equations (if all
λ,· =  E(qt) Φ const):

(4.4) κ;, (λ,, . . . , λ*

where

(4.5, , ,  i

The equations (4.4) were suggested in [23] as a generalization of the
"hodograph" method. It should be noted that in [23] there was no
effective construction of the functions w,·. The second formula in (4.5)
complements the scheme of [23] .

In contrast with the general space two dimensional case, where our
construction gives only special solutions of the corresponding Whitham
equations, the equations (4.4) enable us to solve the Cauchy problem for the
Whitham equations for the parameters of finite gap solutions of Lax type
equations. The differential dh from the definition of dA and the contour X
are expressed in terms of the initial values λ,·(Χ, Ο).

We give a brief sketch of the construction of dh in the case of the KdV
equation (the general case of Lax type equations differs very little in
principle from this special case). The real finite gap solutions of the KdV
equation are given by a hyperelliptic curve Γ: \β =  R(E) =  \ ](E — λ,·),

i
/  =  0, ..., 2g, where the λ,· are real, and by a collection of poles ys. The
differentials dp and <2Ω have the form

dQ={Es*i — i

where the constants r,·,?,  are determined by the normalization conditions

(4.7) ( dp

We consider the differential
E2/  l

(4.8) dS(X, E)= \  dp(X', E)dX' + dS0,
ο
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If dS0 = 0, then this differential is analytic outside the real axis and has a
jump on the inverse image of the real axis, which we denote by dh{E). The
existence of this jump is related to the fact that on the real axis we cannot
choose a single valued branch of dp{X, E) for all X. By Theorem 4. Γ the
differential dh determines a solution of the Whitham equations

(4.9) λίτ + ViXix =  0,

which by the construction of dh has the desired initial value.
In some cases we can, by choosing a constant differential dS0 (with jumps

and poles), arrange that dS is meromorphic. As an example of such a
situation we give a construction of "average « gap" solutions of the
equations (4.9).

Let ίίΩ("> be a normalized differential on Γ with the only singularity at
infinity of the form dQ<">   dkv(i + O(k~n)).

Corollary. The equations (4.4), where w,· =  (d£l^ldp)(\ i) determine the self 
similar solutions / .i — tfXi(x/ ti+'v) of the Whitham equations (4.9) with self 
similar exponent γ =  2/ (« —3).

In [62] a self similar solution with exponent γ =  1/2 for g   1 was found
numerically that satisfies the boundary conditions λ2 (ζ

+ ) =  λ3(ζ
+ ) ,

Aj(z+) = u + , Xj(z") =  λ2(ζ~), λ3(ζ~) =  M_, z±  = u± ~u± . This solution
describes for t > 0 the structure of a shock wave appearing after the
"overturn moment". In recent work of Potemin it was shown that the
average 7 gap solution constructed by the above corollary satisfies the
required boundary conditions. The boundaries of the oscillation domain
turned out to be z + =  >/ 10/ 27, z~ =   y/ 2 (approximate values of these
magnitudes found numerically in [62] were z+ « 0.117, z~ « 1.41; the
equality z~ =   \ / 2 was mentioned in [64]) . An important consequence of
this result is the smoothness of the self similar solution in the whole domain
ζ" < ζ < ζ+ , though it followed from the scheme of the numerical solution
of [62] that this solution possibly had a weak discontinuity inside the
domain.

§5. The quasi classical limit of two dimensional integrable equations.
The Khokhlov Zabolotskaya eouation

The simplest solutions of the non linear equations (4) are "zero gap"
solutions corresponding in our construction to the curves Γ of genus g = 0.
They have the form (1.6), where «,· and u,· are constant matrices. It turns
out that the Whitham equations even in this case are non trivial and, as will
be seen from what follows, in some cases are of independent physical
interest. These equations coincide with the classical limit (4). It follows
from the results of §3 that they can be represented in the form

t*> \ \  I — — 0Ξ.\  lL_ / _ £ P _ _ i5 . \  M—L( dP _  dE \  dQ —n
^ ' \  at dy 1 dk [at dxldk^~[~dj 'd7)~dF~v'
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where ρ   p(k, χ, y, t), Ε = E(k, χ, y, t), Ω =  Ω(λτ, χ, y, t) are rational
functions of the variable k.

Example 1. Let ρ = k, Ε = o~\k2 u), Ω =  k3  3uk/ 2  w. In this case
the equation (5.1) is equivalent to the system

3 3
(5.2) wx = o — uy, owy=ut+ Y uux.

Eliminating w from (5.2), we obtain the Khokhlov Zabolotskaya equation.

Example 2. In the case ρ =  k
Ν

(5.3) £ = ^ + Σ * ^ 7   Ω =  *» +  «,

and the equation (5.1) leads to the system

vit — 2vtvix—ux=0, η, j — 2 µνη,·)* =  0,

»« «,  ί η,, =  0.
The solutions of (5.4), not depending on y, correspond to the quasi classical
limit of the vector non linear Schrodinger equation which, as noticed for the
first time in [60] , describes N fibre solutions of the Benney equation. In
[60] the classical limits of the general Lax equations were considered and it
was shown that they are compatibility conditions of an algebraic and an
ordinary differential equation. This implied a construction of integrals of
these equations. However, the question of construction of solutions
remained open. The scheme of the solution of the Cauchy problem for the
system (5.4), based on a development of the ideas of [60] , was suggested in
[61 ] . We note that this scheme can easily be obtained as a special case of
our construction of solutions of the equations (5.1), which follows from the
result of the preceding section.

As an example we consider the construction of solutions of (5.2). It is
given in closed form without tracing the literal correspondences between its
elements and those of the construction of the preceding section.

We define the polynomial

(5.5) Jl(ft) =  ft4 2ufc2  | u>ft — λ0,

where the constant λ0 =  X0(u, v) can be chosen so that X(q0) =  0, where q0,
qx, q2 are zeros of the differential d\ . It is convenient for what follows to
pass from u, w to the variables qlt q2 with the help of the relations

(5.6) u =  qtft — {qx + ρ2)
2, w =

Then

(5.7) ^0 = (
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(We note that the choice of \ {k) in the form (5.5) corresponds in the
terminology of §4 to fixing a canonical connection.) In this case

We take an arbitrary contour X in the £>plane and a smooth differential
dh{r) on it. We define a function ^(k) by

(5.8) «Γ«Λ_ Ι dh(x)
•  Ι(τ) '

Χ

where £(r) is one of the roots of the equation λ(£) =  τ4. This function
depends on qh q2as parameters. We reflect this in writing F =  ̂ {k | qlt q2).

In the case under consideration the equations (4.2) have the form

(5.9) 0 = ̂ (gi\qi,q2) + x + a l(2qi u)y+{3q\  lu)t< f =  l, 2.

The system (5.9) determines implicitly the functions qx{x, y, t), q2(x, y, t).

Corollary. If the functions q^x, y, t), i =  1,2, are determined by (5.9) ,
then u =  u{x, y, t) and w   w(x, y, t), given by (5.6) , satisfy (5.2) .

The equations (5.2) have self similar solutions

and in a similar way for w. Similar solutions can be obtained by taking
JF(k j qlt q2) = Φη,  where Φη is a polynomial of k of degree η uniquely
determined by the relation

The self similar exponent of the corresponding solutions is equal to
7 =  2/ (n  3).

To obtain solutions of (5.4) that do not depend on y, we should proceed
in the following way. We define a function J2" by (5.8), where X(k) = E(k)
and £ is defined from the relation λ(ξ) =  φ(τ) (φ{τ) being a parametrization
of the contour X). The function jf(k | η,·, ζ;,·) depends on r?,, y,· as
parameters. If the η,·(χ, ί), ϋ,·(χ, ί) are determined from the system of
equations

where the KJ are roots of the equation
Ν

(5.11) ό£'(κί) =  0<=> 1 =  2 ."7—ΤΓΤΤ2   · · 

then they satisfy (5.4).
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CHAPTER III

THE SPECTRAL THEORY OF THE TWO DIMENSIONAL PERIODIC SCHRODINGER
OPERATOR FOR ONE ENERGY LEVEL

The main aim of this chapter is to develop the spectral theory of the
operator

(0.1) H=  dl d%
y + u{x, y)

with smooth periodic potential u. It follows from the results of [30] that
the F loquet spectral set M2 C C 3 (defined as the set of triples of complex
numbers for which the equation

(0.2) H$(x, y, t, Q) =  Ey(x, y, t, Q), Q = (E, wu w2),

has a Bloch solution φ(χ, y, t, Q), Q C M2, with "multipliers" wv w2) is an
analytic submanifold of C 3. The complex Fermi curve TEo corresponding to
the "energy level Ε = Eo" is by definition the section of M2 C C 3 by the
hyperplane Ε — Eo. As in the case of the operator (1.1.1), an explicit
construction of ΓΕ and a detailed description of the structure of this
Riemann surface, following from it, is based on a construction with the help
of the perturbation theory of formal Bloch solutions of (0.2).

§1. The perturbation theory for formal Bloch solutions
Let uo{x, y) be an arbitrary smooth periodic potential. We fix a complex

number w10. A collection of solutions ψν(χ, y) of the equation

(1 1) ( d% dl + uo(x, !/ )H\  =  0

will be called basic if
(1.2) ψν(ζ +  h, y) = W1OT\ \ ,(X, y); tyv(x, y + L) = w2j\ \ .(x, y),

and if the following conditions are satisfied:
1° there is a "dual" collection of solutions (// (̂χ, y) of the same equation

such that
(1.3) Hr+ ijc+ Zj, y) =  ΐι?Γοψί (*, .'/ ); ψί (*> ν +  ί2) =  «^ψ+ ( χ , y),
(1 4) < Μ ί — ·ψν·ψί!/>* =  rv8v,  µ, rv Φ 0

(since φν, φµ satisfy (1.1, 2, 3), it follows that rv does not depend on y);
2° for any continuously differential function f(x) such that

(1.5) f(x + h) = wlof{x),
the series (1.6) and (1.7) converge and are equal to

(1.6) 0 = 2 ^",
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Example. Let u0 =  4. Then for any k the functions

(1.8) ψ(χ, y, £) =

are Bloch solutions of ( !. 1) with multipliers

(1.9) iP,(A) =  exp ( (Λ+ 4 ) / , ) , «>2(ft) =  exp (i ( ft —J  K ) ·

It can be verified directly that for any

(1.10) u>io =  «>i(fro) = * exp(± 2Z,)

the sequence

(1.11) ψν(ζ, y) =ty(x, y, fcv)

is a basic sequence. Here the kv are determined from the equation
u;x(/ rv) =  ir10 and are equal to

(1.12) kv = ?£ + ± (k0 +  L

(the indices ν numbering kv form a pair (/?, ± ) that consists of an integer and
a sign). The dual collection consists of the functions

(1.13) ψ;(x, y) = ^{x, y, — ft,).

Remark. By the definition itself the collection of basic functions is
"overdetermined", and so it is impossible to expand fix) uniquely in ·ψν or
ψνίί· However, for any pair of functions fix), gix) satisfying (1.5) there are
unique constants cv(y) such that

(1.14) /  (*) =  Σ <\> (0) * M * . V), 8 (x) =  Σ cv (y) ψν (χ, y).
ν

It follows from (1.14) that these constants are equal to

(1.15) cv(y) =  v / v
 νυ Χ •

We denote one of the indices ν by "0 " and assume that

(1.16) w20 φ w2v, ν φθ.

Lemma 1.1. / /  (1.16) is satisfied, then for any continuously differential
functions bu{x, y) {with the same periods as uo(x, y)) there are unique
formal series

(1 17) F(y, ρ ο ) = Σ F*(y, Qo),

(1.18) ψ (a:, y, Qo) =  2 φ4 (x, V, Qo), Φο =  ·ψο(^ U)
s=0
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such that

(1.19) ( d* d2
y + u0 + 8u)Y

as well as the following conditions:
(1.20) ψ(χ + lx,y, Qo) = ιι>10Ψ(χ, y, Qo), Ψ(χ, y +  U_, Qo) =

=  wi0W(x, y, Qo),
(1.21) <Ψ^ .0

+   ΨγΟυ)χ + F <ψψο*>, =  r0 =  <tpOwr|:J   ^vl'Oy)*

(/ or /7ze //me being Qo conditionally denotes the pair (w10, wi0)).

Proof. The equation (1.19) is equivalent to the system
(1.22) ( dl dl+ujq,^

We shall search for a solution of (1.22) as a sum

(1.23) Φ* =  Σ  cv (y) ψν (ζ, y),
V

by assuming that the c$ are chosen so that

(1 24) (jpiV =  2 Cv (?/) il'vp (# . .V)·
V

It follows from the above remark that this can be done in a unique way.
It follows from (1.23) and (1.24) that

(1.25) Σ ^ ν ι | \  =  0.
V

Substituting (1.24) and (1.23) in (1.22), we obtain

(1.26) "
V

where Rs is the right hand side of (1.22). It follows from (1.25) and (1.26)
that

(1.27) — Cvy=<i?eo|)i>K/ rv.

These equations together with the condition

(1 28) c'v(y + l2) = ^ c'v{y)

enable us to determine the c£ uniquely for ν Φ 0. The condition (1.21) is
sufficient for the existence of a periodic solution of (1.27) for ν = 0. This
condition uniquely determines Fs. The final formulae have the form

i l s i

(1.29) Fs = —2— x—'  2J [Ficl — 2J
' 0 *

(1.30) cj =  l, c o ' = —1  
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For ν Φ 0, c%    0, and for 5 > 1 we have

(1.31, · ;    ? ( ! ' . < < *  * » . +  ̂ J *
i= l V

s ί

_ Σ ( , Λ . _ Σ5ϋ:
Corollary. The formula

ν
(1.32) ψ ( i , </, <?o) =  exp( J F(y\  Q0)dy') Ψ (x, y, Qo) Ψ"' (0, 0, <?„)

ο
determine·, a formal Bloch solution of the equation

f'1.33) { — 5; — <9£ +  u(a:, ι/ ) )ψ= 0, u =  uo4 6ii,

^ M "^{x+h, y,  <?o) =  « οΨ ( ^ y. <?o) 

'·. J  ^ ) W 20 =  "'20 P (
6

For the resonance case (that is, when the condition (1.16) is not satisfied)
we proceed along the same lines as in Chapter I. We denote by /  an
ubiiiiiy subset of indices ν such that

(i.30) w2a Φ w2v, a £ I, v j? / .

Lemma t .2. There is a unique matrix formal series

(1.37) F (y, wi0) . =  f] F s (y, u;<0), F =  ( ί^) , α, β ζ / ,
l

the equation (1.19) {where F is now a matrix and Ψ is a vector)
has a formal solution Ψ, whose components satisfy the conditions

Μ QQN  ψα(χ +  *ι> Σ/  ιριο) =  "" οΨα(2. ί/, " ο) ,
il.OOJ lira/  i i . \   >τι·α/  ν

τ (X, !/   t" <^, t^io^ — " ^ a ^ V*' ί/ ι "' ΐοΛ

The proof of the lemma is analogous to that of Lemma 1.1. We omit for
brevity the corresponding recursion formulae for the coefficients Fs and Cv'a,
since they are complete matrix analogues of the formulae of the resonance 
free case.

We define the matrix T(y, w10) from the equation

(1 40)
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Then the components Ψα of the vector Φ = ΤΨ are solutions of (1.33).
As in Chapter I it can be proved that the assertion of the corollary to
Lemma 1.1.3 is valid, that is, to each point of the surface given by the
characteristic equation (1.1.49) there corresponds a unique Bloch solution φ
of the equation (1.33).

Remark. The assertions of § 1 of Chapter I on the construction of the
"dual" functions ψ +(x, y, Qo), which are defined on the same surfaces as
Φ(Χ, y, QoX 1° o v e r completely to the case under consideration.

§2. The structure of complex "Fermi curves"

Let u0 — 4. Then, as we said earlier, for any w10 φ e± 2li the equation
(1.1) has a basic sequence of Bloch solutions. Therefore the formulae of
Lemma 1.1 define formal Bloch solutions φ(χ, y, k0) of the equation (0.2)
if we put in them 5u — u E— 4 and if k0 satisfies the resonance free
condition (1.16). It follows from (1.8) that the resonance pairs of points
have the form (k^M, / ^ M ) , (k+

NM, %χΜ), where

(2.1) k%M=  ±  zNM (1 ±  1/ 1
(2.2) k%M=  ±  zNM (1 H V

(2.3) zNM =  ^  + ~ , Ν, Μ being integers.

The set of such points has only two limit points k = 0, k =  °°.
F urther constructions and assertions practically completely repeat their

analogues in §2 of Chapter I. Therefore we restrict ourselves to brief
statements of them, indicating if necessary those minor changes which
should be inserted into the proofs and constructions of §2 of Chapter I.

Fixing h, we can choose neighbourhoods R^M and RKM of the resonance
points (2.1), (2.2) so that for any k0 not belonging to them the following
inequalities hold:

(2.4) \ufu>l\>h |u>5

We can assume that h is chosen small enough in order that these
neighbourhoods be disjoint. Suppose that a periodic function u(x, y) is
analytically extendable to a neighbourhood of the real variables x, y (that is,
it satisfies the inequalities (1.2.13) for some U, TU T 2 ) .

Lemma 2.1. There is a constant Nosuch that for k0 not belonging to
and RAM and satisfying the condition \kQ\+ \ko\~l > No the series of the
perturbation theory constructed by Lemma 1.1 {for u0 = 4, 8u = u E—4)
and its corollary converge uniformly and absolutely and determine a Bloch
solution ψ(χ, y, k0) of the equation (0.2) analytic (in x, y, k0) and non 
vanishing.
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Remark. By complete analogy with the above we can construct series of
the perturbation theory for the formally conjugate function ψ+(χ, y, k0)
which is analytic, like φ, in the resonance free domain.

We now consider A o 6 i?.yM (or RNM) and \ ko\+ Ik^"1 > No. As a set of
resonance indices we choose ν =  0 and v0 such that /cVo 6 RNM (or RNM
respectively). Then for u 10 ζ WKM =  U\ (RNM) (or w10 £  WyM =  wl (RKM))
the series of the perturbation theory of Lemma 1.2 determine a two 
dimensional quasi Bloch solution of the equation (0.2). The corresponding
monodromy matrix f = T(L, w10) determines a two sheeted covering of

RXM or / ?Λ·Μ over the domains ΐΓΛ Λί and WNM. Again we call a pair Ν, Μ
distinguished if the discriminant of the characteristic equation for f has a
zero of multiplicity two.

Lemma 2.2. For non distinguished pairs Ν, Μ the Bloch function φ extends

to R NM(R NM) and has one simple pole there.

To repeat the gist of the proof of Lemma 1.2.3, it is sufficient to apply
the following assertion instead of Lemma 1.1.1.

Lemma 2.3. Suppose that φ(χ, y, Q) and ψ+(χ, y, Q) are Bloch solutions
of the equation (0.2). where Q is a non singular point of the surface ΓΕ:
th. en

(2.5) dPx (ixr   ^ 4 > y 4  dPy (ψ^ +   wl)s =  0.

The functions (ψαψ+  — ψΗ"ΐ)^ and {·ψν\ |'
+  — ^Ψΐ )* have no common zeros in

the non singular part of TE.

The equality (2.5) can be proved by analogy with the proof of (1.1.6).
The second assertion of the lemma follows from the fact that under the
variation hu of the potential u of the operator (0.1) we have

(2.6) ibPx <^ ,4+   n*)y  

By analogy with Lemma 1.2.4 we can construct an extension of φ(χ, y, k0)
inside the "central resonance domain" Ro: | / r0 | 4  | kn l " 1 ^ No, which is
replaced by a finite sheeted covering Ro of the domain Wo = W^RQ).

We denote by TE the Riemann surface obtained by "pasting" flM and

li SM instead of the deleted neighbourhoods of the non distinguished
resonance points and "pasting" Ro instead of Ro.

Theorem 2.1. The Riemann surface TEis isomorphic to the "spectral
Fermi curve" of the operator (0.1). The Bloch solutions ψ(χ, y, Q), Q £  ΓΕ,
of this equation normalized by the condition ψ(0, 0, Q) = 1 are meromorphic
on YE. The poles of φ do not depend on x, y. In each of the domains

A
A r**

ii Ν Μ W Μ being a non distinguished pair) φ has one simple pole.
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In the domain Ro it has g0 poles, where g0, in the general position when Ro

is non singular, is equal to the genus of RQ. Outside Ro, RNM, RNM the
function φ is holomorphic.

All the assertions of the theorem except for the first one follow from the
construction of YE itself. To each point Q of YE there correspond the
multipliers wt{Q), i =  1, 2. They determine a map of YE to the corresponding
"Fermi curve". The fact that this map is an isomorphism follows from the
assertion of the following lemma.

For any complex number w10 we denote by Qv € YE the solutions of the
equation

(2.7) Wl (Qv) = w10,

and by φν{χ, y) the functions φ(χ, y, Qv).

Lemma 2.4. If the equation (2.7) has simple roots, then the collection of
functions φν(χ, y) is basic {in the sense of the definition given at the
beginning of § 1).

Proof. It follows from Lemma 2.3 that the differential

(2.8) d£l= —dpx {{^y^* — Ψ 'ί)*)"1 — ̂ .Py ((• ψ'κ'Ψ'1' — "ΨΨί^)"1

is holomorphic on YE and has zeros at the poles of φ and φ+. The assertion
of the lemma follows from the examination of the contour integrals

(2.9) c _ f ΛΟ ( . / ~'\  V' (*' y» Q) $ (χ', y, Q)

Λ J ,' i—wlow[i (Q)

where CN is the union of two contours surrounding the points P+ that have
radii of order Ν and ./V"1 and do not intersect the resonance domains. These
integrals tend to zero and f(x) respectively, as ,/V  *•  °°. Since the residues of
the integrands coincide with the terms of the series (1.6) and (1.7), the
lemma is proved.

Corollary 1. The correspondence

(2.11) (ifj, u:2) » (u'I\  «7l)
determines a holomorphic involution a :TE  *•  ΓΕ of the Fermi curves.

Proof. To each point β £ Γ £ there correspond a Bloch solution φ(χ, y, Q)
with multipliers wx{Q), w2(Q) and the "dual" function φ+(χ, y, Q) with
multipliers w\ x{Q), w~~2

x{Q)  Since φ+ is a Bloch solution of the same
equation (0.2) and the points of TE parametrize all Bloch solutions, it
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follows that the pair w'^iQ), w~2
1{Q) belongs to the Fermi curve, and the

lemma is proved. At the same time we obtain

(2.12) ψ+  (x, y, Q) =  # r . y. o(Q)).
Corollary 2. If the potential u(x, y) is real, then on the curve TE an anti 
holomorphic involution τ is defined that is induced by the correspondence

(2.13) (u·., ug —(i7, . J??).

and
(2.14) ψ{χ, y, Q) = ψ(*. !/ , τ(<?)).

Definition. A potential u is called finite gap with respect to the level Eo if
all except finitely many pairs Ν, Μ for it are distinguished when constructing
ΓΒο, that is, when ΓΕο has finite genus.

By the definition of distinguished pairs, for finite gap potentials with
respect to the level Eo the surface YEt outside some finite domain
\ ko\+ I&QI"1 ^ Μ coincides with neighbourhoods of the points k = 0 and
k =  °o on the usual complex plane. Therefore it can be compactified by
two "infinitely distant" points P±. In what follows we shall keep the
notation Γ£ ο for the corresponding compact Riemann surface.

Theorem 2.2. The Bloch solutions of the equation (2.2) for Ε =  EQfor
potentials u that are finite gap with respect to EQ are defined outside two
points P± of the compact Riemann surface ΓΕο, on which there is a
holomorphic involution σ, σ(Ρ±) =  P+. In a neighbourhood of P± this
function \p(x, y, Q), Q £ ΓΕο, has the form

(2.15) ψ (χ, y, Q) =  exp ((x ±  iy) k±) ( l +  ^ I f (*, y) A Jl

where the k±  = k~± (Q)are local parameters in neighbourhoods of P+
{moreover k±(a(Q)) = —k ± (Q)). Outside Ρ±the function φ is meromorphic
and has g poles not depending on x, y, where in the general position when TEJs
non singular g is equal to the genus of ΓΕο. In this case the poles ys and
7i" = o(ys) are zeros of a differential dQ, of the third kind with simple poles
at the points Ρ±and holomorphic outside them. If the potential u(x, y) is
real, then there is an anti holomorphic involution τ on ΓΕο commuting with
σ and such thatt(P±) =  P+, k±(x(Q)) = k=(Q). Moreover, the set of poles
of \p is invariant with respect to τ.

By complete analogy with Theorem 1.3.1 the following assertion can be
proved.

Theorem 2.3. For any EQ the smooth periodic potential u(x, y) of the
operator (0.1), analytically extendable to some neighbourhood of real x, y,
can be approximated uniformly with any number of derivatives by potentials

y) that are "finite gap with respect to the level Eo".
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§3. The spectral theory of " finite gap operators with respect to the
level Eo" and two dimensional periodic Schrodinger operators

An important distinction between the spectral theory of the non stationary
Schrodinger operator (1.1.1) with σ =  1 and the two dimensional Schrodinger
operator in the case of smooth periodic potentials u(x, y) is that in the first
case the corresponding spectral curve Γ is always non singular, while in the
second case the "complex Fermi curve" ΓΕ can have finitely many singular
points. A complete description of possible types of singularities has still not
been obtained.

We begin this section with a brief presentation of the inverse problem of
the recovery of "finite gap with respect to the level £ 0 " potentials u(x, y) in
the case of non singular "Fermi curves" ΓΕο ( [28] , [29]) .

Let Γ be a non singular algebraic curve of genus g with two distinguished
points P±, in neighbourhoods of which the local parameters /»·+'((?) are fixed,
k^}(P±) — 0. For any collection of g points y}1 . . ., ye in general
position there is a unique Baker Akhiezer function φ(χ, y, Q) meromorphic
on Γ outside P±, having poles at the points j s and asymptotics

(3.1) ψ =

(3.2) ψ = β* 

It was proved in [27] that such a function φ satisfies the equation

(3.3) Η ψ =  0, Η     <% +  A d  + u,

where

(3.4) A (x, y) = dz]ogc(x, y), u(x, y) = 5 ξ* (χ, y).

For the function \ jj and also for A ^ and u explicit theta function formulae
have been obtained.

In [28], [29] sufficient conditions on the data (Γ, P±, k±, ys) were found
for the operator Η corresponding to them to be purely potential, that is,
A~, =  0. These conditions are the following:

1) there is an involution σ : Γ  *•  Γ on Γ with two fixed points P+;
2) the local parameters &+1 must satisfy the condition k+(a(Q)) =  k+(Q);
3) the points ys and 7+  =  σ(γ^) form a divisor of the zeros of a differential

ύ?Ω of the third kind with single simple poles at P+.
The sufficiency of these conditions follows from the fact that if they are

satisfied, then the differential (3.5) is holomorphic outside P+, where it has
simple poles.

(3.5) άΩ =  ψ(«, y, 0)ψ+ (*, V, Q)dQ(Q), ψ+ (χ, y, (?) =  ψ(ζ, y,
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The equality to zero of the sum of the residues of this differential leads to
the fact that c2 Ξ l (since c(0, 0) =  1, it follows that c(x, y) = 1). The
latter is sufficient for the equality A z =  0.

Theorem 3.1. The above conditions (1 3) on the data of the inverse
problem (Γ, P±, k+, ys) are necessary for the operator (0.3) corresponding to
them to be potential (that is, to have the form (0.1)), and the potential
u(x, y) to be smooth. If the potential u is periodic, then Γ is isomorphic to
the "complex Fermi curve" ΓΕ= = 0.

Proof. In the general case the operator Η corresponding to the data
(Γ, P±, k+, ys) is quasi periodic. The periodicity conditions are formulated
in exactly the same way as for the case of finite gap non stationary
Schrodinger operators. We define the differentials of the quasi momenta
dpx, dpy as differentials of the second kind on Γ with single poles at the
points P+ of the form

(3.6) dPx= i dk± (1+0 (k J)), dPy =  ±  dk±  ( 1 + 0 (k~±*))

and uniquely normalized by the conditions that their periods over all cycles
on Γ are real. If these periods are multiples of 2π//χ for dpx and 2π/ / 2 for
dpy, then the operator Η has periods lx, l2 in χ and y respectively. For the
periodic potential operators the last assertion of the theorem can be proved
in exactly the same way as the first assertion of Theorem 2.1. After this the
necessity of the conditions (1 3) for the periodic operators follows from
Theorem 2.2. The real matrices of the periods of the differentials dpx, dpy

are non degenerate functions of the parameters (Γ, P ± , l/ i'I'lj). Therefore
the set of periodic operators as lx, l2 ~* °° is dense among all finite gap
operators with respect to a fixed level of operators (corresponding to smooth
curves). This enables us to complete the proof of the theorem.

In a similar way it can be proved that for u(x, y) to be real it is necessary
that there is an anti involution r on Γ such that τ(Ρ±) = Ρτ, k+(r(Q)) — k_(Q)
and that the divisor of the poles γ 1 ; ..., yg is invariant under r.

In [29] sufficient conditions on the parameters (Γ, σ, τ, Ρ+, k+, ys) were
formulated that guarantee the smoothness of the potential u of the operator
(0.1) corresponding to them. Besides the above requirements, it is sufficient
that Γ is an Λί curve with respect to τ, and among its g + 1 ovals a0, ..., ag

there are g ovals such that σ(α;) =  aga+t (here g0 is the genus of the curve
Γ/σ; since σ has two fixed points, it follows that g = 2g0), i — 1, ..., g0.
If the points γ^ are chosen so that there is one point in each oval as,
s = 1, ..., g, then the corresponding potential u will be smooth.

Besides these conditions there is another type of sufficient conditions.
If the anti involution τα is an anti involution of splitting type, and the
differential c/Ω is positive on all fixed ovals of τα with respect to the
orientation given on these ovals as on the boundary of one of the domains
into which they split Γ, then the potential u will be smooth.
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The two types of sufficient conditions given above are analogous to the
conditions that guarantee the smoothness of the finite gap potentials of the
operator (1.1.1) with σ =  1 and σ =  ζ" respectively. The proofs of these
assertions are also completely analogous.

In a recent paper [64] a series of sufficient conditions was found, among
which the ones given above occupy diametrically opposite positions. The
method of [64] is based on an analysis of theta function formulae for
u(x, y) and differs in principle from the approach developed here. There is
still no reformulation of the whole series of conditions of [64] into the
form that we need. As shown in [64], the conditions obtained are not only
sufficient but also necessary for the smoothness of the potentials u
corresponding to the smooth curves TE=0. These potentials have the form

(3.7) u (x, y)=  2dzd  log θ (U,z  f U2l +  ζ0) +  c,

where the constant c depends on Γ, Ρ+ (its explicit form was found in [65])
and the theta function θ is a Prym theta function, that is, it is constructed
from the matrix of the periods of the holomorphic differentials that are odd
with respect to o. For certain types of degeneration of Γ the Prymian of
the curve can remain non degenerate (in contrast with the Jacobian, which is
always degenerate). It is this fact that causes the possibility of the existence
of smooth finite gap quasi periodic potentials corresponding to singular
curves. The most interesting case, which gives the principal state of the
corresponding operator H, is considered in [29], [66] . More general
examples can be constructed by using the well known technique of the
construction of "multi soliton against a background of finite gap potentials"
(see [52] for the case of operators of the type (1.1.1)). We omit a detailed
description of these examples, since at present we do not know a complete
description of admissible types of degeneration. To answer this question, we
need a more detailed investigation of the direct spectral problem which has
been considered in the preceding section. We turn the reader's attention to
the fact that a related question of the description of possible types of
degeneration is discussed in the letter of Shiota included at the end of the
Russian edition of the book [67] .

It is seen from the results of the preceding section that the potentials
corresponding to smooth curves, that is, having the form (3.7), are dense
among all finite gap potentials (corresponding to curves with possible
singularities), therefore the assertion of the theorem on the density of the
finite gap potentials means that the potentials of the form (3.7) are also
dense.

In conclusion we note that the restriction on the length of the paper
forces us to give up a discussion of applications of the spectral theory of
two dimensional periodic Schrodinger operators in the theory of non linear
equations. The creation of the perturbation theory for the periodic solutions
of the Novikov Veselov equations and the derivation of the Whitham
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equations for them (which, by the way, have the same form (2.3.8) after the
change dp = dpx, dE =  dpy) is completely analogous to the constructions of
Chapter II. By analogy with §5 of Chapter I we can prove the completeness
in the space of functions periodic in x, y of the products of the Bloch
solutions ι/ / ,·ψ+  at the resonance points and the products of φ(χ, y, Q),
ψ+(χ, y, Q), as well as a number of other assertions.
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