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Abstract. In this paper we construct the operator fields of the Riemann surfaces of
arbitrary genus. The corresponding operator theory of interacting strings can be con-
sidered as the direct development of Virasoro-Mandelstam theory for ¢ > 0 and its
unification with Polyakov-Belavin-Knizhnik theory.

This review sums up the results of three authors’ papers [1-3]. The theory of the
bosonic string in critical dimension D = 26, which was proposed by Polyakov-Belavin-
Knizhnik and others [4-6] is based on the path integral approach. The g-loops contribu-
tion to the partition functions, to the string amplitude can be represented in this approach
in terms of finite-dimensional integrals over the modular space of Riemann surfaces of
the genus g.

On the other hand the «old» bosonic string theory by Virasoro-Mandelstam et al.
[7-8] had existed only for the case of «genus g = 0». This theory was based on the
usual operator’s approach to the quantum theory. The creation and annihilation opera-
tors for non-interacting bosonic string were introduced using the Fourier expansion for
the co-ordinates X#(c),0 < ¢ < 2. Then in the corresponding Fock space the
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«physical» states can be defined using the action of the Lie algebra of the symmetry
group of this theory — the group of reparametrization of the circle S! (more precisely
the Virasoro-Gelfand-Fuks algebra which is its central extention). Each of these states
generates the so-called Verma-module — the infinite-dimensional highest weight repre-
sentation playing important role in the whole theory. All those algebraic objects are not
clearly presented in the Polyakov et al. theory.

The main purpose of our papers is the construction of the operator fields on the Rie-
mann surfaces of arbitrary genus.

The corresponding operator theory of interacting strings can be considered as the
direct development of Virasoro-Mandelstam theory for g > 0 and its unification with
Polyakov-Belavin-Knizhnik theory.

1. TENSORS ON THE RIEMANN SURFACES. ANALOGUES OF
THE FOURIER-LAURENT BASES. ALGEBRAIC FUNCTIONS AND
VECTOR FIELDS. SPINORS.

Let’s consider the simpliest one-string «diagrams» (Riemann surfaces) corresponding
to the world sheet of the string which can in the intermediate moments break up into a few
components, than glue some of them and etc. The admissible processes can be described
in the following way. The triple (I", P,, P_) would be called a «one-string diagram»,
where I“-éompact Riemann surface of the genus ¢ > 0, P,,P_-two pointsonit. The
holomorphic co-ordinates in the neighbourhoods of these points would be denoted by
2,(Q), where 2z, (P,) =0.

There exists the unique differential dk with the following properties:

a) it has simple poles at P, with the residues +1 and is holomorphic on T’
outside P,;

b) the function Re k(2) is single-valued on I' (i.e. all the periods of the differ-
ential dk on y\(P, U P_) are purely imaginary).

The function Re k(z) would be denoted by 7(z) and would be called «time». We
shall denote the curves 7(2) = const = 7 by C,, the domains 1; < 7 < 7, by
C,,, (Riemann annulus). The curves C, for 7 — oo tends to small circles around
the points P,, respectively. In the neighbourhoods of points P, the canonical co-
ordinates z, can be introduced so that the differential dk would have the form:

.1 dk=dz [z, (near P,),
) dk=—dz_[z_ (near P_).

For g=0 wehave: T =CP'=8? 2, =2, 2 =w=2"' P, =0, P_=o00. For
g > 0 the domains of definition of canonical co-ordinates do not intersect.
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REMARK. The general «multistring diagrams» can be represented by the set (T, P,,,

P_j,c},c}), where P,;, P_; are the points of the surface I' and cj, —cj are positive

3
real numbers, such that

a2 i:c;+2m:c;'=0.
i=1 =1

There exists the unique meromorphic differential dk on I" with simple poles at
P, P—i and the residues ¢}, cg.’ at these points and such that the function Re k(z) is
single-valued on I". Again we shall denote this function by 7(2) and call it «time».
The theory of multistring diagrams would be considered in detail in our papers to follow.

Let’s consider the tensors of the weight A on the Riemann surfaces. In local co-
ordinates holomorphic tensor of the weight is defined as the value of the form:

f = f(2)(d2)*

with the following transformation law under the changing of local co-ordinate

dz \*
f(z) — f(z(w)) <d—-)
w
The definition of the tensors of the complex weight ) require the introduction of
some additional structures on the Riemann surfaces. We shall consider them in some
special cases below. The definition and investigation of tensors for the integer A can
be obtained without any difficulties. The important case X = 2l (spinors) requires the
introduction of a spinor structure.
The most important cases which are necessary for the construction of the operator
theory are as follows:

A= —1 (vector fields)

A=0 (scalars)

A= % (spinors)

A=1 (differentials)

A=2 (quadratic differentials)

Let’s denote the value

_9 _
S-—-2 Mg-1

by § = 8(X,g). From the Riemann-Roch theorem it follows that:
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LEMMA 1. For any «one-string» diagram (T', P,, P_) in the general position, any
integer ), integer n+ % (except for the cases which would be listed below) there exists
the unique, up to the constant factor, tensor f> with the following analytical properties:
a) tensor f is holomorphic on T except for the points P, , where it possibly
has the poles of finite orders:
b)  near the points P, it has the form

(1.4) £2 = const 25" (14 0(2,)) (dz,)>.

We shall denote by M, the space of tensors meromorphic on I' with the poles only
at the points P, .
The exceptional cases are as follows:

—

g:], n=

5)
g>1, A=0,1,|n<

T

In these cases we can define f,’l\ using the following asymptotics near P, .

A=0: =0z, 2= 24 o))
(1.5)

-n+ L1

d=1: =0 dz, £1= 0012 dz,,mgg

The nature of these exceptions is very simple. For g = 1 there exists holomorphic
non-zero differential dz on I” corresponding to euclidian co-ordinate z on I'". That’s
why any tensor can be globally presented in the form f* = f(z)(dz)*, where f(z)
is a scalar function. In this case there exists no actual difference between the tensors of
different weights.

For A =1 and g > 1 there exist ¢ holomorphic differentials. These differen-
tials together with the differential dk which was introduced above, generate the (g +
1)-dimensional space, corresponding to the indices |n| < £. The choice of the basis
in this space is non-canonical; below we shall use conditions (1.5). The case A = 0 is
dualto A = 1 and we shall use the conjugate basis.

There exists the natural scalar product of the tensors of the weights X and (1 — )

(16) (f)\’gl—)\) = Lf fkglv)\.
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From the definitions (1.4, 1.5) it follows that, after the appropriate choice of constant
factors, the bases f> and f1~> are dual

(.7 fo, A =6,

Let’s now consider the so-called Baker-Akhiezer function which is widely used in
the theory of periodic difference operators with scalar coefficients (in particular, in the
theory of periodic Toda lattice, discrete KdV equation [9, 10] and in the theory of general
commutative difference operators [11, 12]). This function Fp(n, 2) is defined for any
triple (I', P,) and any setof g points D = (-, + ...+ ,) in general position. It has
the asymptotics near points

Fp(n,z) = const -2§"(1+ O(z,)), n€ Z,

and outside them — simple poles at the points 1, ,...,7,. If all these poles tend to the
points P, then

for g=2q: Fp(nz) — fi(2) = Fp (n2),Dy = qP, + gP_,
for g=2g+1: Fp(nz2) —-»ff_% = Fp,(n,2),Dy = qP, + (g+ DP_.

Hence for X = 0 our basis f0 is the particular case of the Baker-Akhiezer function
corresponding to the special choice of the set of poles at points P,. For A#0 the
consideration of the values

Fp(m2)= 3/}

reduces the general case to scalar Baker-Akhiezer functions. The divisor D, of the
poles of this function for A# 0,1 in general do not contain the points P, and are not
special. We shall call tensors f2(z) = F*(n,z) the «tensor Baker-Akbieser function».
It is the common eigenfunction of the commutative difference (in respect to the variable
n) operators and the curve T is the curve of «spectral parameter».

The general theta-functional formulae for Fp,(n,z) were obtained in [11). Hence
the exact formulae for our basic tensors f2 can be easily obtained from the soliton
theory. From these formulae it follows that coefficients of the difference operators (the
eigenfunctions of which are f;}(z)) are quasi-periodic functions of the variable =.
Hence, one can use the avaraging procedure and obtain the following analogue of the
Fourie-Laurent expansion.

THEOREM 1. Let C_ be non-singular. For any smooth tensor f* of the weight \ on
C, expansion

(1.8) o) = E (o) x (Zim fc , f*(o’)fl;*(c')dc'>
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is valid. The same expansion is valid for the tensors f>(z) which are holomorphic in
the Riemann annulus C,, . The convergence of this series is the same as in the ordinary
Laurent-Fourier series. =

(The theorem is valid for singulaf contours C, but smoothness conditions in these
cases are slightly more rigorous. The theorem is valid independently of whether the C,
contour is connected or not.)

The important properties of our bases f2 (which immediately follow from the defi-
nition) are their almost-graduated structure in respect to the multiplication

(1.9) fa fh= 30 Qi flh
[kI< %
(1.10) (e fal = ) Rokfove- k)90=3§'
fl<g6

Here and below we use the notations
-1 0 3 ) 2
(1.11) e, =fi A = fo, @, = fn’,dw,. = fl.,d°Q = f°.

For exceptional cases A\, u = 0,1;|n| < § or [m| < £ the sum in (1.9, 1.10) must
include the additional terms with |k| = "27—+ € |kl = g0 + ¢ where e = 1,2 (seeexactly
in[1, 2]).

DEFINITION. An almost-graduated ( N -graduated) algebra L (or module M over L)
is an algebra (or module) which can be expanded into direct sum of the subspaces

L=)L;, M=} M,
7 7

so that
LiL; € Y Lijs
3%
(1.12)
LiM;e ) M,
lkI<N

According to (1.9), we have the commutative almost-graduated algebra A" of scalar
functions on ' with the basis A, and the N = g,-graduated Lic algebra LT withits
basis e,,.
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All the spaces M, of the tensors are N-graduated modules over algebras A (N =
%+ 1) and L'(N =g5,9 > 1).

The other examples of the almost graduated modules in context of the soliton theory
are discussed by the authors in their work [1]. Here we shall briefly consider only the
simplest generalizations of the modules M, which are particularly important in the case
X = 1. The corresponding modules M{*** depend on the set of data (T, P, p, 0, p)
where: o is the line which connects the points P,; p : m;(I') — C~ is the character
of the fundamental group 7;(T"); p is an arbitrary complex number.

The module M{*>® is the space of the (multi-valued) tensors of the weight A which
are holomorphic on T" except for the points P, and the line o. Along this line o the
boundary values of such tensors must satisfy the following relation

fH(2) =™ (2), z€o.

For each closed cycle v € m,(T') the changing of f* € M?°? when moving along
~, is the multiplication f* by the complex number p(~).
The cases p(«y) = £1 correspond to spinor structures on TI".

LEMMA 2. If ) = 1 (v—p) isahalf-integerand p is the representation in the «general
position», there exists the unique, up to the constant factor, spinor ®_(z,p) € MP°P,
which in the neighbourhoods of the points P, has the form of

(1.13) @,(z,p) = const 22T (1+ O(2,))(dz,) ¥

For an integer p the tensor @, does not depend on c. ]

The representation p suchthat p(«) = +1 isin general position iff (for general T')
the corresponding spinor structure is even.
The analogues of the almost-graduated properties (1.9, 1.10) are valid for spinors

(1.14) D,(2,MP (2,07 = Y af,dwy, ,(2),
k<t
(1.15) le,, ®,1= Y Ch@,., ;.
Jk|<g0

Incase p(7) = £1 (spinor structures, p = p~!) spinors @, are square roots from the
meromorphic differentials.
We can unite the data p,e?™ considering them as the character

p:m(T —(P,UP)) —C".
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2. RIEMANN ANALOGUES OF HEIZENBERG AND VIRASORO ALGEBRAS

The reparametrization group —i.e. the group of the diffeomorphisms of the circle —
is a natural group of symmetries of the theory of closed bosonic string. Its Lie algebra is
the algebra of the vector fields on the circle. For each parametrization ¢ of the circle,
the subalgebras Z,,Z_, Z, can be introduced

Q.1 Z=2Z,+2y+2_,

where Z, is one dimensional and generated by the vector field e, = 25"’;, z=¢" and
subalgebras Z, are generated by the vector-fields

n+l _a_

0z’
The algebra Z, as it has been shown by Gelfand-Fuks [13], has a single cohomology
class - central extension, which is defined by the cocycle

en€Z+) e_nez_., n>01 e"=z

1 1 m
@2 X9 = g5 §.(F"0 = 8" Dz,

where f = f(2) 5‘92—, g = g(2) a% are vector-fields on the circle. In this extention the
commutators of the elements have the form

F,61= (o~ o' 5o+ x(1o) 1, 1f,1) =

" This extented algebra would be called «Gelfand-Fuks algebras» and denoted by Z,.

At the beginning of the 70-ies this algebra was independently discovered by physicists
(Virasoro, Mandelstam and others) in the context of constructing the operator quantiza-
tion of the string. To be more precise, they have found the Z-graduated subalgebra
L, of Z_ which consists of the central element ¢ and all trigonometrical polynomial
vector-fields (i.e. all finite combinations of vector-fields e, and t)

cZ, L, —EL L"=(e,), n#0,LY = (eg,1).

24
2.4) .

[em m] =(m—mn Epom T 1 T6n+m,0

This Z-graduated algebra L, is called «Virasoro algebra». It has the obvious decom-
position, corresponding to (2.1)

L.=L,+Ly+L_.
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The most important representations of the Virasoro algebra are the so-called right « Ver-
ma modules» W . The module W}, has the «highest vector» ¥ ® which satisfies to
the following relations

(2.5) LYE=0, e, ¥R =h¥E t¥B=c¥R

The space of the representation W,fc is the space of the finite sums of the basis vectors
of the form:

e WYE

R
b4 1€ gy €py e €p ,

m>n>...>2n>0.
For the general pairs (h,c) the module W,fc is irreducible. The reducible modules
W,fc correspond to the pairs (h,c¢) such that Pmm(e,h) = 0 where Pﬂ’m is one of
the «Kac-polynomials».

The left Verma module W,f:c has the generating vector ¥ ©

YEL =0, Wle,=h¥!, WYii=cyl

The details of the representation theory of the Virasoro algebra can be found in [14].

The simple and important example of the reducible Verma module corresponds to the
«vacuum sector», where h =0 and c is arbitrary. If A = 0 then the non-trivial vector
PR =¢ PR satisfies the relations:

LYE=0, ¢¥8B=_-9F

If W,fc is reducible then the irreducible representation can be obtained as the factor-
module of W,fc over the ideals which are generated by all the «singular-vectors» l}‘].R €
WE suchthat L,'¥F=0.

The vacuum sector in the string theory is irreducible. Hence, we must have in this
sector the relation e_,' V2 = 0.

Let’s consider now the Heizenberg algebra which is more simple then the Virasoro
algebra. This algebra has the basis a_,a,t,n > 0, with the following commutators

n!n)

le,,e,] =la,,a5] = [t,a,] = [t,a;]1 =0,

la,, a;,] = nS,

2.8)
- 1.

m

This algebra A also has the decomposition

A =A+ + .40 + A_
(a,) (1) (a}).

(2.9)
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The analogues of right Verma modules for this algebra are well-known in the elementary

quantum theory. The generating vector £ in this case is called «in-vacuum»

(2.10) AVYE =0, tYE =vZ.

The space of the representation of algebra A (Verma modules) is called the right (or in)
bosonic Fock space of the scalar theory. Its basic vectors have the form

(2.11) o ..ol Wi
The left (or out-) Fock space can be defined in similar way. As it was shown at the
beginning of 70-ies the physicists, the operators
1 «— .
2.12) L, = 7 E 10,0 . ti0l =0,
n=—00
generate Virasoro algebra with central change ¢ = 1, L, < —e,. Here the «normal
ordering» has been used:
‘a,q, = a
(2.13) . .
. a0, =00, =G, 0,

The geometrical realization of Verma modules over Virasoro algebra has been pro-
posed by Feigin-Fuks [14]. For any complex p the tensors of the weight A on the circle
with the «multiplicator» p

f=F(e)(dp)*, flp+2m) = TP f(p)
can be defined. In the space M} of such tensors the tensors
f:,p = zn—A+p(dz))\

are basic.
The finite linear combinations of the basic vectors generate the module M}. Let’s
consider the right semi-infinite forms — exterior products of the form

(2.16) FaPNFAPANANFXPA

such that the consequence (n,,n,,...,n,,...) becomes stable from some number on.
This means that for some &k and k,,n, = s+ k—1 > k;. The simplest vectors of such
form are

(2.17) YE= PAREANREA..
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The action of the vector ficlds e, on the forms (2.16) can be correctly defined with the
help of Leibnitz rule for n# 0. The attempt to define the action of e, with the help of
the commutator’s relations leads to the representation of the central extention of L, i.e.
to the representation of the Virasoro algebra (2.4) with the central charge

c=—12X24+ 120 —2.

The space of all right semi-infinite forms is the direct sum

Wi, = Z Wik
kez
where Wfp'k is generated by Virasoro algebra from vector ‘I‘kﬂ (2.17). The corre-
sponding highest weight equals h, = 2(p+ k—X) x (1 —p—k—)).
In the same way the space of the left semi-infinite forms can be defined. The space
W,\I:p,,‘ is the space of finite linear combinations of the left semi-infinite form:

(2.20) o NIRP AN RPN fP

where m, = k—s+ 1 for s > k, forsome k.

Wio =D Wipw YE = ARD ARTART
kez

This construction of the representation of the Virasoro algebra is based on special Fourier
basis in the space of tensors on the circle. Our construction of the operator fields on the
Riemann surfaces, the definitions and investigations of their vacuum expectation values
(Green functions) widely used the analogues of the semi-infinite form. At this moment,
especially, the analogues of the Fourier-Laurent bases, which were introduced above,
are necessary.

To begin with we shall introduce the analogues of the Heizenberg and Virasoro alge-
bras in the pure geometrical way.

Let (', P,) be an arbitrary one-string diagram. The commutative algebra AT of
the meromorphic functions on " with the poles at the points P, has the basis A, = f?
which was introduced in § 1. The analogue of the Heizenberg algebra is the Lie algebra
with the basis a,,t the commutators of which have the form of

1
(2.22) [0 O] = Yo 1, (8511 = 05 7y = 5 f A, dA,.
mi C,
From (1.4) it follows that ~,, =0, [n+ m| > const = N,
N=g, lnm >3 N=g+1, o> 2 jm| < £,

N=g+2,ln|,m| < 2.
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For g =0, P, = 0,P_= oo we obtain the ordinary Heizenberg algebra.

The definition of the analogue of the Virasoro algebra requires the introduction of
the «projective structure» on the surface I'\( P, U P_), i.e. the introduction of the
systems of local coordinates, such that they connect each other with the help of projective
transformations from the group SL(2,C)/ 4 1. Let’s define the commutators

9o
[emem] = Z C:men-l-m—k + Xom b
(2.23) Rl
[e,,t]=0,

where the coefficients cf,m in (2.23) are the same as in (1.10). The cocycle x( f,g) for
the pair of vector-fields

9
oz’

in the system of the projective co-ordinates has the form

f=fnd, o= g(z)ga—
z2

1
@.24) X(£,0) = = §(f"9—g" ez,
¥
where v is the arbitrary element of the homology group
[v]l € H(T\(P, UP.); Z).

The formula (2.24) is correctly defined because the value f"'g—g¢" f is trasformed as the
1-form under the projective transformation of the co-ordinate z. The cocycle x canbe
defined in any (non-projective) system of the co-ordinates with the help of the so-called
" projective connection R on I', which is holomorphic on I" outside the points P, .
Such connection is defined in any system of co-ordinates as the function R(z), which
is transformed in the following way under the transformation of the co-ordinate:

dz 2 2" 3 2" 2 dz
(2.25) R(z) — R(2(w)) <au_> + {—27-_5 (7) :‘ 2 = -
The difference between the two projective connections is the quadratic differential.

In the arbitrary system of the holomorphic co-ordinates, where R# 0, the cocycle
(2.24) can be presented in the form of:

1 1 m " !
2.26) x(fr9) = Mf;(f o= g"fx—2R(f'g — ¢'f))de.

The cohomology class of these cocycles does not depend on the choice of the projective
connection (i.e. on the choice of projective structure on I') but for our purpose the
choice of the cocycle is important.



VIRASORO-GELFAND-FUKS TYPE ALGEBRAS 643

THEOREM 2. All almost-graduated central extensions of the algebra LT (i.e. such
extensions of the algebra LT that x(e,,e,) = f, =0 if |n+ m| > const) are
defined by the formulae (2.24) or (2.26), where the class of homology [~] Is the class
of the cycle C,., which separates the points P, and P_ on T". ]

CONJECTURE.
H?>(L',R) = H{(T\(P, UP_),R).

It must be mentioned that the Riemann analogue of the Heizenberg algebra which
was defined above with the help of the formulae (2.22), is also almost-graduated iff the
homology class {~] is the class of the cycle C,.

Below we shall consider only almost-graduated central extensions of L' and AT
because this structures are very important for our futher constructions.

The complex conjugate anti-holomorphic theory can be constructed completely in
the same way. The string theory involves (as for the case g = 0) both the holomorphic
and anti-holomorphic algebras...But we can confine ourselves to the consideration of
holomorphic part only because holomorphic and anti-holomorphic algebras commute
with each other.

The Riemann analogue of the Virasoro algebra has two filtrations which are generated
by the Taylor expansions near the points P, , respectively

ay Ll:..oLi,DL;D ..

b) LL:..DLpDL, ,;D..

The space L is generated by the vector-fields e; where j > go + m (ie. the
expansion of e; near P, begins from 2%,k > n+ 1).

The space L, is generated by the vector-fields e;, 7 < m — gq.

We have

(L3, L7] € Laim-
The adjoint algebras
L =3 "0y/050, B =3 L7/0;
n n

both isomorphic to the ordinary Virasoro algebra.
The similar filtrations have the Riemann analogues of Heizenberg algebra.
The algebra Lf , AT and spaces of tensor and spinor fields have the decompositions:

Ar=A++A0+A_ (>\=0))
LY=L, +Ly+L_ (h=-1),
M)=M+,A+MO,)\+M—,)‘ (A:%,_I,O,]’Z)’
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where A, L, M .+, are generated by the basic tensors (or spinors) f  n, which at the
point P, have the zero of the order > s()\)

s(A=0)=1 for A, (scalars)
s(A=-1)=2 for L, (vector-fields)
s(A=4)=0 for A=1 (scalars)

The subspaces A_,L_,M_  are defined in the same way.
In the dual spaces A — 1 — ) the similar decompositions are dual by definition
according to the scalar product (1.6). For ) = 1,2 we have

My=M,,+My;+M ; (}=1,1-form)
M, =M,,+ My,+ M_, ()=2,quadratic differentials)

The space M, ; consists of the holomorphic differentials and the differential dk which
has simple poles at the points P,. The subspace M, , is the space of the quadratic
differentials holomorphic except for the points P, where they have the poles of the
orders not greater than 1. The dimensions of the spaces M, ;, 4, equalio g+ 1. The
dimensions of the spaces L, and M, , equalio 3g+ 1.

The subalgebras A,, A_ are commutative.

Let’s define the subspaces

M., C M,

as the space of all the tensors of the weight )\ which are holomorphic on I except for
the point P, or P_, respectively. The intersection M,(,AHM_’A consists of the tensors
_which are holomorphic on I" everywhere. The peculiarity of the case X = % (for an
even spinor structure) is the properties that

M+,,1[+M_,%_= M%_,M+’%_HM3:’%_ =
In this case
M:F,% = M;’%.

The spaces M j are dual to each other with respect to the scalar product (1.6).

The analogues of Verma modules for the algebras AT, LE are defined with the help
of the generating vectors and the following conditions

a) A, WE =0, (right (in) Fock space)

vac
L ¥YE=0,e, YE=hYF (right Verma module)

t‘P‘fit = C‘I’f.
b) WYE A =0, (eft(out) Fock space)

vac
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Yi=0,%rte_
Wi=cpl.

The operator belonging to A,(A_) are annihilation operators of «in-» («out-»)
states. A

From the existence of the filtrations of AT, LT which are generated by the Taylor
expansions at the points P, it follows that the closure of these spaces are isomorphic
to the ordinary free Fock spaces and Verma modules but with different basic states and
different Z-graduated structures.

The «free» basic states are defined with the help of the canonical local co-ordinates
(1.1). The transformation matrices U, from the bases 27 to A,, = f5 are triangular.
The powers 2]} correspond to the creation and annihilation operators of the free (in) and
(out) states for 7 — Foo. Hence, formally the matrix

- L
% = Y., (left Verma module)

S=U-'U,

defines the analogue of the Bogolubov transformation from the basis of free in-states
to the basis of free out-states. But for g > 0 the matrix S is ill-defined because the
elements of the product of the infinite matrices U-!, U, are given by the series which
seem to diverge.

The basic elements of the Riemann analogues of the Virasoro algebra can be rep-
resented in terms of the generators of the quadratic expressions as in free case g = 0
(Sugawara-type construction). Therefore, the Riemann analogues of the Virasoro alge-
bra are acting in the Fock spaces (in- and out-). The different physical states correspond
to the different Verma modules with the different highest weights A. In particular, the
vacuum sectors in the right and left Fock spaces correspond to h = 0 and are generated
by the vectors W2 and WL, respectively. The central charge ¢ would be equal to
the dimension of physical space ¢ = D.

It must be mentioned once again that in vacuum sectors the following relations are
valid:

ego vaIazc =0 ’ ego—l\Pv};c = 0;
v =0, ‘PVI;ce_goH =0.

(We shall call them «the regularity conditions of the vacuum».)

L
vac€_g,

3. THE RIEMANN ANALOGOUS OF THE HEIZENBERG AND
VIRASORO ALGEBRAS IN THE STRING THEORY

The phase space of the classical D-dimensional string in the Euclidean or Minkovsky
spaces is the space of 2 w-periodic functions X#(¢) and 2 n-periodic 1-form P#(o)
with Poisson brackets

(3.1 {p"(c"), X*(0)} = n"*A(0,d),
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where A (o, 0') isthe §-function on the circle (which is a scalar function of the variable
o and 1-form of the variable o) i.e.

(32) (o) = f £(6")A(0,0)do".

This definition is adeguate only in the case of free string because in this case there are
no topological bifurcations of the string.

For aone-string diagram (I", P,) the contour C plays the role of the string position
at the fixed moment 7.

Let X*#(Q), P*(Q) be an operator-valued scalars and 1-forms for Q C T which
commute with each other at different moments of «time» 7. Naive quantization of (3.1)
gives us

(3.3) [X#(Q), PY(Q)] = —in*"8,(Q,Q),

where A_ is the §-function on the contour C,. As it follows from the results of § 1,
this §-function can be represented in the form

! 1 ! !
(3.4) AQ,Q) = Er—iz"jAﬂ(Q)dwﬂ(Q ),Q,Q' cC,.

Let’s expand X# and P* in our analogue of the Fourier series

XHQ) =Y XEALQ),
(3.5)
PH(Q) = ) Ptdw,(Q).

The direct consequence of (3.3), (3.4) is the commutator relations

1
3.7 [Pe,X4] = z—;nﬂu‘sm,w

The coefficients of the expansion of the 1-form dA,, = 3", 7,,.dw, are given by the
formulae (2.22). Tken the operators o which are defined from the expansion

(3.8) (mP*+ 0, X" )do = Ea‘,{dwn

are equal to

(3.9) o= TP+ Yy Xh
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LEMMA 3. The operators o* satisfy the commutator relations of the Heizenberg algebra
(3.10) (a2, 0] = Yo ™. : .

The complex conjugate differentials, scalars, tensors lead to the definition of the op-
erators &% which commute with o :

XHQ) =Y XEAL(Q),PHQ) =) Prdn,(Q),

JHQ) = (3,X* —aP¥)do = Y &dw,(Q),

(6%, &) = 7 %> [oh,80,] = 0.

n'm

The Fock spaces of in- and out-states can be defined using the vacuum vectors ¥ & WL
and the conditions
R _ zuWwR _ -
3.11) ab¥l =Pt =0, n> % n=-1.
. L —wl 5 _
\Pvacan - vaacan - 0’ ng ”%'
In the classical case the densities of the Hamiltonian and momentum are the linear com-

binations of the values

T= 5 (X,,+7rP) = 21 I = 5 (Xc—vrP) = ZI .
The definitions of the corresponding quantum operators require, as usual, the definition
of the«normal ordering». Let’s dissect the integer (or half-integer) plane of pairs (n, m)
into two parts Zi such that }_* differs from the integer half-plane m < n only in

the finite number of points. The definition of the normal ordering depend on the choice

of }°
oo, (mm)ed,
3.12 : = nom ’
(3.12) anor, {amam o € &
In [2] a bit more general definitions of normal ordering were considered. -
We can define the quantum operators

1 1
T(Q=5:1: E‘E Lo, 0, ¢ dw(Q)dw,,(Q),

(3.13) ] 1
0 _ LT2 & & du dw
NQ=5:1:= 52 D E, G, dw, (Q)dw, (Q).
They are quadratic differentials on C,. Hence, they can be expanded in the series
(3.14) T=3 L@, T=3 L.

The quadratic expressions of L, through o follow from (3.13).
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DEFINITION. The normal ordering is admissible if the conditions of the regularity of
vacuum

Lgo\yvlzc = Lgo—l\}lv}azc =0 ‘Pvl;cL—go = \PVI;CL—go =0

are fulfilled.

THEOREM 3. The operators e, = —L,, where L, arc given by the formulac (3.13),
(3.14) satisfy the commutator relations (2.23) of the Riemann analogues of the Virasoro
algebra with the central charge t = D. The cocycle x,, depends on the choice of
the normal ordering but his cohomology class does not depend on this choice. For the
admissible normal ordering the corresponding projective connection is holomorhphic on
I" (for other normal ordering it has the poles at points P,). n

The proof of the theorem is given in [2, 3], where the examples of the admissible
normal ordering are discussed.

Let’s consider the geometrical realization of the modules over the Riemann analogues
of the Heizenberg and Vitasoro algebras which are similar to (2.16-2.21). The bases of
spaces of the right and left semi-infinite forms can be defined by the same formulae (2.16-
2:21) using the bases f,. We shall denote these spaces by W = 5>, WE wl =
S Wf’ . omitting in this denotation the dependence of these spaces on the diagram
(T, P,) and the number p.

The almost-graduated structure of all modules under consideration provides the sim-
ple proof of the following lemma.

" LEMMA 4. The action of the vector-fields e,, on the space of semi-infinite forms can be
correctly defined with the help of the Leibnitz rule (and also the action e, on f,’},) for
|n| > go- This action can be extended (o the representation of our Virasoro-type algebra
with the central charge depending on the tensor weight X

=c=—12)% + 12X —2.

The highest weight of the restriction of this representation on the subspace W, (W)
generated by vector YE(Y]) Is given by the formulae (4.9) in [1]. "

For our purposes the most important cases are as follows:

A= c=1 (for the physical scalar bosonic fields),

N'ﬁ—l

A= —1,2, c=-26 (for the ghost fields).
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Now we shall consider in detail the first case A = ;— Let’s consider the following
normalization of the basic Fourier-Laurent-type tensors
(3.15) Py = | A+ 0GE),
' " Parz " S(1+0(2))(dz))*, §=80\,9)

We shall call it - «in-normalization». It is unique up to the transformation z, — gz, , f
— g™ S f). Itis natural to call the normalization (3.16) — «out-normalization>.

+ _n-8 A
PNy — o v=1 gy _ ) ParZs (1+0(2,))(dz,)
(3.16) fal2) = (pgy) ™ fo(2) = {z:,,_s (14 O(z2))(dz)>

1 -~ -~
In particular, for A = % we define f =@, f = @, where n is half integer.
The generating vectors ¥ #( lI’,",‘) for any ) inthe geometrical realization have the
form

YE=(FAAFa A = A f],

.1
G- Wi =G Afo AR = A )
Below we shall use only «in-normailization».

Regularity conditions of the vacuum.

The generating vectors of the form (3.17) can play the role of the in- (out-) vacuum
vector only if the numbers &, k' is such that the corresponding semi-infinite form coin-
cides (up to the constant factor) with the exterior product of all the positive powers of
the local parameter

0, >=¥E=(1Az, AZZA..)

(3.18)
<Ol=C.AlAz AD = q’klf'(Hngkr Par) !

(in the latest equality at this moment we consider the product [], ., ¢, as formal).

From the asymptotics (1.4), it follows that

(3.19) k=k(X)=S()g) = % - Mg =1,k =K =-809

LEMMA 5. The vacuum vectors (3.18) satisfy the regularity conditions (2.29). [ ]
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Later we shall discuss the physical motivation of the regularity conditions (which
were given by A. Polyakov and others in the different language). Later we shall con-
sider also the problem of the regularization of the product [] ¢, which formally is

<k

diverging.

There exists the natural scalar product between the spaces of the right and left semi-
infinite forms. For the basic forms f € W}, g € W let’s consider the product f A g.
If this infinite (in both directions) form coincides after the permutation with the standard
form (the exterior product of all basic tensors f,f) then we define

(3.20) (f,9) = (=D, fAg=(=D¢ K 2,

Jj=—o00

where ¢ is the sign of the corresponding permutation. Inother cases the product (f, g} =
0 would be equal to zero. The scalar products of any elements f € W g € WE can
be defined by the linearity. The basic forms are the exterior products of the tensors f
in the «in-normalization».

LEMMA 6. If k and k' are given by the formulae (3.19) (i.e. the corresponding gen-
erating vectors (3.17) can play the roles of the vacuum vectors), their scalar product
(PE,PRY40 iff x =1 k=1 k=-1. .

A few -words should be said about the normalization of the vacuum vectors. It is
natural to define the vector [0 >= WZ using «in-normalization», and vector < 0| =
WL -using «out-normalization». The normalized out-vacuum differs from the vector
b 4 _I_’ s (which is taken in the «in-normalization») up to factor

~1
) _ ) L s
(3.21) <0|= (H @%‘") ¥i= A S,

n<0

By the definition which was introduced above, we have (¥ f{r, b3 ,IR) = 1 Therefore,

—1
(3.22) (0,10,) = (H%) :

n<0
(We still consider the product in right-hand side of this equality formally. It was shown
by lengo (private communication) that after the regularization it coincides with the de-
terminant of Dirac operator).

LEMMA 7. The operators L, acting in the spaces of right and left semi-infinite forms
are self-adjoint in respect to the scalar product {,) which was defined above, i.e.

(3.23) (£,L,9)=(fLn.9), FfEW{ geWs
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Below the normalized in- and out- vacuums would be denoted by |0) (0. ]

Let’s consider the spaces H* of the Dirac fermions. They are generated by the
fermion operators 4,1, with the half-integer indices which satisfy the commutator
relations

(3.24) (4, %), =[¥;,9,1=0, (¥, 93] = 6,0
The «vacuums» |0z}, (Op| are defined by the relations

$,10F) = ¥7105) = 0,v >0,

(Ol = (Opl; = 0,1 < 0.

If we suppose that the operators i, 1, have the «charge» 1 or —1, respectively, then

(3.25)

(3.26) Ht= Y HE,  p-charge

p=—00

The natural isomorphism between H* and Wf, Wi‘ can be obtained, if we consider
the correspondences

Y, — ¢ A (multiplicationon ¢,),
(3.27 V- (differentiation) ,
(0! = (TLeo #3,) <01, 105) = [0).

Let @) = @ (2, p~1) be, by definition, the dual half-differential (spinor). According
to (1.13)

1 +
(328) 2_7” f;‘, q)’uq)u - 6V+#,0 .

Let’s introduce the «fermionic operator-fields»

¥(z,0) = ) $,P_(2,0),

v

V(2,0 = ) 901 (w,p),8}(2,0) = ¢,(2,07)).

(3.29)

THEOREM 4. The chronological ordering product of the operators {(z, p)¢*(w, p),
where 7(z) > 7(w) Is defined correctly. For z — w the operator expansion

Vdzdw

zZ—w

(3.30) Y(z,p ¥ (w,p) =

+TI(z,p) + O(z ~ w)
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is fullfilled. The coefficients of the expansions

(3.31) I(z,p) = ) ap(prdw,(2)

satisfy the commutator relations of the generalized Heizenberg algebra (3.32)

(3.32) [0,(0), 0 (P)] = V- =

Let’s define the analogue S,(z,w,p) of the S6ger kemel. They are uniquely deter-
mined by the following analytical properties. With respect to the variables z,w they
are the multi-valued tensors of the weight % (half-differentials) which are transformed
along the contours on I according to the representations p and p~!, respectively. For
the fixed w the kemel S is

a) holomorphic on I" except for the points P, and 2 = w and the contour ¢
connecting the points P_;

b)  for the boundary values of S, of contour ¢ the relation
S = e2™rPg-
P P

isvalid.
c) in the neighbourhoods of the points P, it has the form

S, = 2370(1)(dz,)*.

The analytical properties of S, in respect to w (for the fixed z) are the same as for
z after the interchanging

p——p, z-—W.
Near the diagonal z = w the kemel S, has the form

Vdzdw

zZ—w

(333) Sp(z)wyp) = + dsp(Z,p) + O(Z - 'LU)

LEMMA 8. a) the expansion

S(z,w,p) = Y @,(z2,0P(w,p)
v<p—}

(3.34)
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is valid for 17(z) > 7(w); b) the expansion

(3.35) Sp(zwp) == 3 050, (w,0)
v2pty
is valid for 7(z) < (w). (Here v —  — p € Z in both cases.) .

The main term ds,(z,p) of the regular part of the expansion Sp near the diagonal
z = w is 1-differential, which is holomorphic on T" except for the points P, where
it has simple poles with the residues +p. For p = O this differential is holomorphic on
T.

Using the result of lemma for p = 0 we obtain the equality

(3.36) I(z,0) = 3 9,95t O_ (2, )P, (w,p) + dsy(2,0).

vp

The comparison of (3.36) and (3.31) gives

(3.37 o,(p) = Zaﬁ,p(p) 29,9, +a,(p),
v,
where
1
o O =
3.38) 0= 5 f 4,907, o= 7((; Andss,
9 g
In_V_U|>_, |n|>2
(3.39) ap, = 2
In—v—pl>5+1, <3

The differential ds,, is holomorphic on I". That’s why

(3.40) o, =a,(p)=0, |n>Z, =n= —g.

(recall, that A_ g = 1 according to our choice of the basis 1,3).

DEFINITION. The vacuum expectation value of the operator H is given by the formula

(0,1H10,)
o= 070,
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The vacuum expectation value of the operators equals to ([3])

(3.41) (¥(z,p) 9" (w,p)), = So(2,w,p).

In the modem physical literature the formula (3.41) is playing the role of the definition
of the propagator of the fermionic fields without any construction of the fields proper.
The following equality comes from (3.37)

(3.42) (@n(P), = an(p).

For even spinor structure we have from p = p~! that
So(z,w,p) = —5;(w,z,p)

Therefore, dsy(z,0) =0,p=p~ L.

LEMMA 9. For an even spinor structures
(an(p));; =0

for all integer (or half-integer) n. »

The usual Vick Theorem is valid for the chronological product of the fermionic fields
on any Riemann surface

343) ¥(z)...¥(z,) = z;i JJERZEAR TCR RN J R JENEN

ijEl kgl
where W (z) are the fields 1(z,p) or ¥*(z,p). Here in addition to (3.41) we have

($(z,0)9(w,p)) =0, (¥*(2,0)¢"(w,p)} = 0.

4. THE ENERGY-MOMENTUM PSEUDO-TENSOR AND OPERATORS EX-
PANSIONS

As it was mentioned in § 3, the energy-momentum tensor depends on the choice of
the normal ordering. Now we shall introduce the invariant value — the energy momentum

pseudo-tensor.
Let’s consider the chronological product of the current operators.
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THEOREM 5. The chronological product T#(z)T#*(w), where 1(2) > (w), Is cor-
rectly defined. For z — w the following expansion is valid

dzd i
@.1) ;I"(z)I“(w) =DG—§-'Z)—)2'+2T(Z)+O(z—w),

For any projective connection R, which is holomorphicon I outside the punctures
P, the coefficients of the expansion of the operator-valued quadratic differential

- D
T(2) = T(2) - 3 R(2) = > L, 2 Q(2)
k

have the commutator relations of the Virasoro-type algebra (2.23, 2.26), corresponding
to the projective connection R. .

The proof is given in [3].
DEFINITION. The value T'(z) is called an energy-momentum pseudo-tensor.

THEOREM 6. The chronological product T(z)T(w),7(z) > m(w), is correctly de-
fined. For z — w we have

D 27(2) N T,(2)

2(2—_11‘1)‘4-(2—11))2 z—'w+0(l)' -

4.2) T(2)T(w) =

The vacuum expectation values of the products I( z,-)T( z;),..., can be easily ob-
tained from these definitions and Vick theorem. For example,

(T*(2)T*(w)) = zlir_'[}z 1‘}ir_n.w<(10(3)1”(21) - ) X

z—z
1

x («p(w)vr(w,) o >>
- 1

Using the Vick theorem we obtain that

4.3) (I”(Z)I“(w))p= =Sz, w,p) Sp(w, z,p).
The expansion

dzd
4.4 —So(z,w,p)Sy(w, z,p) = —(-zi—';))z- + Rp(z) +O0(z —w)
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defines the so-called Segue-type projective connection R (z). Itmust be specially men-
tioned that this projective connection does not depend on the punctures P, . The com-
parison of the formulae (4.3), (4.4) and the definition of 7(z2) gives

“.5) (T(2)), = ?Rp(z).

EXAMPLE. Let g = 1. We have 3 even half-periods w,,« = 1,2,3, which correspond
to 3 spinor structures. The Segue kemel have the form

o(z —w+w,)

= ol eTalz-w)
o(z — w)o(w,)

So(z,w,p) =

Finally, we obtain that

ISTRv)

(T(2))g = =Pwy),

where o, P-elliptic Weiershtrass functions. This result coincides with the result of [16]
where it was obtained from the different approach, using the Ward identities.

5. AFEW REMARKS ABOUT «GHOST SECTOR»

The Polyakov-Faddeev-Popov ghost-fields in the string theory have the tensor
weights —1 and 2 and are fermionic. We shall define them by

b(2) = ) b,d2Q,(2), c(2) = Y coe,(2).

n

The coefficients C,,, ¢, have the ordinary commutators
(5.1) [Bpsbunls = L€y Cnls = 0, [B, )y = 65

As it was shown in [17], the definitions of the energy-momentum of the ghost-field and
the operator of the BRST-charge can be easily generalized for the case of the Riemann
surfaces of the genus g > 0 with the help of the bases which were introduced in § 1.

‘We do not consider in detail these definitions but shall make a few remarks.

The full Fock space includes the tensor product of the «physical and «ghost» sec-
tors. In particular, the vacuum vector has to be the tensor product of the «physical» and
«ghost» vacuum vectors. The regularity conditions of the ghost vacuum vector have
(according to the results of the §,3 for A = 2) the form

10,) = ¥R, k=k(2)=—gp+2,
(0, = WE, K =—k(2).
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(52) bnl02>=01 "Zgo-'l: Cn|02)=0: ‘n<go—1:

5.3) (0,16, =0, n<—go+1, (0lc,=0, n>—go+1.

The operators b, can be represented in the spaces of the semi-infinite forms Wi, wi
as the operators of the exterior multiplications on f? and the operators ¢, can be rep-
resented as the derivation with respect to f2.

As it was emphasized in § 3 the scalar product of the ghost-vacuum must be equal
to zero

(5.4) (0,10,) = 0.

The non-zero expressions can be obtained only in the presence of the insertions. For
example

(0yc_yc0610,) =1, ¢g=0,

(Ozlb_xc%|02), g=1,
(5.5)

—go+1 -1
(O31b_gyuz - - by _210) = H Pn2 #0, ¢g>1.
n=—00

The operators b, for |n] < go —2,g > 1, cormrespond to the holomorphic quadratic
differentials which are the basis of the cotangent bundle over the modular space of the
surfaces of the genus g. That's why the square of the modulus of the value (5.6) de-
fines the measure on the modular space. The connection of this measure with Polyakov-
Belavin-Knizhnik measure will be considered in our paper to follow.

One of the main questions is the definitions of the ghost vacuum expectation value
for arbitrary operators. The same arguments as for (5.4) show that

{0, [740,) = 0.

The value

90 —2
<02|T"'° II b,.|02>#o.

n=—go+2

is non-zero, but there exists ambiguity in such definition of the ghost-vacuum expectation
value of T%¢, because we can arrange the operators T%¢ and b, in a different way.
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6. REMARKS ABOUT THE STATES WITH NON-ZERO MOMENTUM

Here we shall consider only the characters p, which correspond to the even spinor
structures, and the integer values of momentum.

Let’s define the states with the momentum p for a one-component bosonic field.
Consider the space of the spinors with the character p and the multiplicator exp(2 wip)
along the line connecting the points P, . This space was denoted by AM#°P and the
spaces of the semi-infinite forms, which had been built using their Fourier-type basis,
were denoted by Wﬁp,m, W{f,p’
spaces on the line ¢ is absent.

Below it will be shown that the states with integer momentum p which we denote

by [p), (p| areequal to

o In the case of integer p the dependence of these

6.1 D=¥E = A @,
, ) p+}l. u>p+;— 14
-1
(62) (pl: H ‘0;,., pL_’}
v<p-%

Here the generating vectors W&, W/} belonging to the spaces Wf, W’f were defined
in (2.17).

The motivation of the factor in (6.2) is the same as in case of the definition (0|. It
follows from the difference between the «in-» and «out-» normalization. The correspon-
dance

10) — ip),

6.3)
' (0] — (x|

and the structure of the modules over LT allow us to plot the so-called «vertex operator»

R R L L
W w Wi S w )
M TYTIME! $pop

In [3] the following properties

a,lp)=0, n>%, o lp)=plp),

6.4
( ) (plan':o) n< _%1 <p|01_§ =p<pl

have been proved. These equalities are the consequence of the representation of the
current operator Z(z, p) in the form

6.5) I(z,0) = ) 9,4, 5, O (2,0 P2, (2,0) +ds,(2,0),
vip
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where : : -the normal ordering in respect to the vector |p). The vectors |p) and (p|
are annihilated by the operator for n > g, and n < —g,, respectively, and are the
eigenvectors for the operators L, and L_g,

P ' P
(6.6) Ly, Ip) = 512}, (PIL g, = 71, - (Pl
The equalities (6.6) mean the following

LEMMA 10. The equality

ACkp, P, Py = APl =;ﬁ%( L), p>0
p1 +1 4 - (p p) V=:F% ﬂo%y ;p

takes place. The value A(+p, P,,P_) dependson P,,P_ as the tensor of the weight
2
p/2. -

REMARK. If we redefine the vertex operator as the operator corresponding to the shift
of the indices in out-normalization and redefine respectively the normalization of the
vectors we obtain that

A(p,P,,P.) - A (p,P,,P.)

and the tensor weight of the amplitued in respect to the variables p, will be equal to

p2

%:rom the results of the soliton theory the formula

ol o] ((u —3) (AP - A(P.)))

(6.7) ©1 1 E_ZV(P-Q-: P_)
81 ] <<u +2) (AP, - A(P_)>>

b -

follow, where 6 p]-theta-function with even characteristic; E(P,, P_)-Prym-form

6% [m](A(P,) — A(P.))
(Ew,-(Pge,-[m]) <Ew,.(P_)o.~[m1)

Let’s choose the local co-ordinates z, so that EZ(P+, P ) = 1. Then the natural
regularization gives

©.8) [1¢e3.) ™" = (0,00,) = 6L01(0).

ug%

E*(P,,P) =
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For the inmteger p we obtain

8[pl(p(A(P,) ~ A(P)))
6(p1(0)
Here and above the value A(P) is the Abelian map from the devisor to the Jacobian
torus of the curve.
This is the situation for a one component bosonic field and the integer p. In the
D-dimensional space we have

(6.9 A(p,P,,P_) =

(6.10) ﬂp H A(p*, P

(in the Euclidean metric 7, = 7,6,,,7, = 1).

The question how to define the amplitude in the case of the Minkovsky space is yet
not absolutely clear for the authors. There are two possibilities which were briefly con-
sidered in [3].

In the first version the definition of A(p, P,,P_) goes through a few steps. The am-
plitude must be defined first for rational and then for all the real values of momentum.
And finally one can extend the result on the imaginary values after the transformation
p — ip°. For the realization of this program it is necessary to introduce into the consid-
eration the contour o between the points P, and P_. There are different possibilities
at this point as well. One can consider all possible contours ¢ or non-intersecting «time-
like» contours. In any case it is necessary to take the avarage value with respect to the
choice of o. In the case of all possible contours ¢ we obtain

2
- 0 A(P) — A(P_)\?
6.11) Ap,P,,P) = (—LQ]U—'-L )
PP = (5P, Pyer61(0)
" This formula can be extended over all complex (for integer p we shall choose the for-
mula (6.11) instead of (6.9)). Therefore, in the Minkovsky case the amplitude has the
form

(6.12) —-)> H A(PuyP+,P~))n",7lo=—1:771=---=1,
u=0

where A is given by the formula (6.11).

The second version of the definition of A(p, P, ,P_), which was briefly discussed
in [3] is based on other definition of the vertex operator (or normalized state (p|). If
such operator corresponds to the shift of indices of basic form @, in out-normalization’
for zero component then we obtain even in the case of integer n* the formula

(((1)7:? H (A(p*,P,,P))™.

We hope that our future studxes will show which of the two versions is correct.
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