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METHOD OF AVERAGING FOR TWO-DIMENSIONAL "INTEGRABLE" EQUATIONS 

I. M. Krichever UDC 517.93 

The Whithammethod of averaging (or, as it is also called, the nonlinear WKB method) is 
a generalization to the case of partial differential equations of the classical Bogolyuhov- 
Krylov method of averaging. This method is applicable to nonlinear equations which have a 
set of exact solutions of the form u(Ux + Wt + ~II). Here u(zl,...,z~ll) is a function with 
unit periods with respect to the zi; U = (Uz,...,Ug), W = (W I ..... Wg)~are vectors which, 
like u itself, depend on the parameters I = (I~,...,IN), U = U(1), W = W(1). These solutions 
serve as a basis for the construction of asymptotic solutions, whose leading terms have the 
form 

~ (~-~s (x, ~) + ~ (x, ~) l~ (x, ~)), (1) 

where the I k depend on the "slow" variables X = ex and T = et, where e is a small parameter, 
and the vector-valued function S(X, T) is defined by the equations 

O.~S = U (~ (X,  ~)) = U ( X ,  r); O~S = W (~ (X,  ~)) = W (X,  ~). (2) 

The equations which describe the "slow" modulation of the parameters Ik(X, T) are called 
Whitham equations. They can be obtained by requiring that the following terms of the asymp- 
totic series have a uniform bound of lower order than that of the leading term. (For details, 
see [i, 2], where a larger bibliography concerning this problem can be found.) 

If the parameters I k are integrals of the original equations with local densities, i.e., 

I~ = ~P~(u, u', ...)dx, OtP ~ = O~Q~, where Pk and Qk(u, u',...) are differential polynomials in 
u, then it is possible to obtain a closed system of equations for the I k (see [3]) by aver- 
aging the last equality with respect to the "fast" variables x and t: 

O~I~ = OxJ~, ~ = IQ ~ (u, u', . . . ) dx .  (3) 

We must note that Eq. (3) is very often postulated as a first principle without further analy- 
sis, and without a precise statement of the connection of the averaged system with the prob- 
lem of constructing the solutions of the original equation. 

The Hamiltonian theory of the averaged.equations (3) has been constructed in [4], where 
a classification of nonsingular, general Hamiltonian systems of "hydrodynamic" type was also 
obtained: ~TIk = v~xI i [here v~(I) depends on I and does not depend on the derivatives]. 
These results served as a starting point for [5], in which a scheme is proposed for the con- 
struction of solutions in general position for "diagonalizable" Hamiltonian systems of hydro- 
dynamic type, i.e., systems.for which there exist Riemann invariants - variables ri(I) in 
terms of which the matrix v~ becomes diagonal. 

The presence of single-phase (g = i) periodic solutions is characteristic of many non- 
linear equations, and the existence of multiphase periodic solutions is the exception. Those 
equations to which we apply the inverse-problem method constitute the largest class of such 
equations. In particular, these are equations which admit a Lax representation ~ = [A, L], 
where L and A are differential operators in x whose coefficients depend on x and t. The 
Korteweg-de Vries equation, the nonlinear Schr6dinger equation, and the sine-Gordon equation 
are among them. Using the methods of algebraic geometry, S. P. Novikov, B. A. Dubrovin, 
V. B. Matveev, and A. R. Its have constructed multiphase periodic solutions, called finite- 
zone solutions, of these and a number of other evolution equations with one spatial dimension-. 
These results are suar~arized in [6, 7]. Some later portions of them were obtained in [8, 9]. 
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The main purpose of the present article is the generalization of the Whithammethod 
to the case of "integrable" equations with two spatial dimensions, for which an analog of the 
Lax representation has been proposed in [i0] in the form 

[ 0 ~ - - L ,  0t - .  A] = 0, (4 )  

where  L and A a r e  t h e  d i f f e r e n t i a l  o p e r a t o r s  
~ m 

L~---~u~(x,g,t)O~, A~-~-~vj(x,g,t)O~ ( 5 )  
i=O j=0 

w i t h  s c a l a r  o r  £ x ~ m a t r i x  c o e f f i c i e n t s .  I n  what  f o l l o w s  we assume  t h a t  t h e  l e a d i n g  c o e f -  
f i c i e n t s  o f  L and A a r e  c o n s t a n t  d i a g o n a l  m a t r i c e s  u~ B = u~6a~ ,  v~  B = v ~ a ~  w i t h  d i s t i n c t  
e l e m e n t s  on t h e  d i a g o n a l .  I n  t h i s  c a s e ,  u s i n g  a d i a g o n a l  m a t r i x  g ( x ) ,  i t  i s  p o s s i b l e ,  by 
means o f  t h e  a d j o i n t s  L '  = gLg -1 and A' = gag - 1 ,  t o  a c h i e v e  t h e  r e s u l t  t h a t  v ~  = 0. 

A general scheme for constructing finite-zone solutions of such equations was proposed 
in [ii] (see also [12]; further steps in the development of the theory of finite-zone inte- 
gration are described in the summaries [13-17]). These solutions are given explicitly in 
terms of the Riemann theta-function. Diagonal matrices e = e(I), b = b(1), c = c(1), and ~ 
such that 

L = ggg,~, A = gag -~ (6 )  

are found for the respective operators L and A, where g~exp (ax~y~ct~), and the coef- 
ficients ~i and ~j of the operators L and ~ have the form 

~ = ~ ( U x  + V~ + Wt + ~1~), o ~ = ~ W z  + V~ + Wt + ~ l~). (7) 

H e r e  ~ ( z ~  . . . . .  z=¢[I )  and O~(z~ . . . .  , z~v[ I )  a r e  f u n c t i o n s  w i t h  u n i t  p e r i o d s  i n  t h e  z£ wh ich  
depend analytically on the parameters I = (I~ .... ,IN). The vectors U = U(1), V = Y(1), and 
W = W(1) are real, and like a, b, and c, depend on I. The matrix ~ and the real vector ~ in 
(7) and (8) are arbitrary. 

The proposed method for constructing the Whitham equations is based only on the internal 
self-consistency of the choice of the leading term of the asymptotic series in such a way 
that for the respective operators we have that 

Lo : G ~ G  -~, A~ =GAoG -~, (8 )  

whe re  G = exp ( ¢ - ~ S 0 ( X ,  Y, T) + ¢(X,  Y, T ) ) ,  and t h e  c o e f f i c i e n t s  o f  ~0 and ~0 h a v e  t h e  f o r m  

~, (s-~S (X, Y, T) + ~ (X ,Y ,  T)i I (X, Y, T)), (9 )  

~ (~-~s (x, Y, T) + ~ (X, Y, T)I ~ (X, Y, r)). 

The vector-valued function S(X, Y, T) and the diagonal matrix S0(X, Y, T) must satisfy the 
conditions 

OxS : U ( X , Y ,  T), O~S : V ( X , Y ,  T), OTS : W ( X , Y ,  T), (10)  

OxSo : a (X ,  Y, T), O y S  0 : b(X ,  Y,  T). 0~S0 = c(X,  Y, T), 

which  a r e  a n a l o g o u s  t o  ( 2 ) .  H e r e  ¥ = ¢y ( j u s t  a s  f o r  X and T) i s  a " s l o w "  v a r i a b l e .  

The Whitham equations obtained in Sec. 2 are necessary conditions for the existence of 
an asymptotic solution of Eqs. (4) with leading term of the form (8), (9), such that the 
remaining terms of the asymptotic series admit a uniform bound of lower degree than that of 
the leading term. In Sec. i we present material which is necessary for the subsequent de- 
velopment concerning the construction of finite-zone solutions of equations which admit the 
commutator representation (4). 

In See. 3 we propose a scheme for constructing solutions of the Whitham equations for 
the case of two spatial dimensions. In the special case of equations with one spatial di- 
mension, it gives a more effective formulation of the construction in [5]. In addition, 
this section contains solutions obtained in [18] which describe shock waves in the Korteweg- 
de Vries equation. 

We must note explicitly here that in the simplest case of "zero-zone" solutions, the 
proposed construction allows us to obtain solutions of the Whitham equations which in this 
particular case are none other than the quasiclassical limit of the original equations. For 
systems with one spatial dimension, our construction becomes a scheme for constructing solu- 
tions of quasiclassical limit equations of Lax type, which were proposed in a number of ex- 
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amples by V. A. Geogdzhaev, which, in turn, were developments of the results of ¥. E. Za- 
kharov, who proved the integrability of these equations for the first time. 

As an example, we construct solutions of the well-known Khokhlov-Zabolotskii equation 
in the nonlinear theory of sound beams, 

3 
02uu~ zc- ( ut (ii) - -  4 --  + uu.~),~ = 0 .  

. .  

Equation (ii) is the Whitham equation (38) for "zero-zone" solutions of the Kadomtsev- 
Petviashvili equation. According to the construction in .Sec. 3, it is possible to obtain 
its solution by giving an arbitrary contour ~', in the complex k-plane and a differential 
dh(x) on it. 

We define the function ~ by 

~ (k, k~, k~) = ~ dh (~) 
..e k - -~(~)  ' ~"~ '~ '  

. 
. 

where g('r) is determined by means of the equation 

~ ~.~ - (~.~ + ~)~ - 2~ (~ + ~,~)~- + ~ ~ + 2~= + ~ ~-  w (k~ ÷ k: 0 = ~,  

u : k l k ~ - -  (kx + k ~ )  ~, 
w = 3klk2 (k~ -?, k2). 

Here k~ and k:  a r e  a r b i t r a r y  p a r a m e t e r s .  As a consequence of  Theorem 2, i f  t h e s e  pa rame te r s  
are determined by the system of equations 

~ ( k ~ , k ~ , k ~ . ) = x ?  2 - 5 - k ~ g +  3 k ~ - f f - u  t, j~---l,2, 

which determines k~ and k~ implicitly as functions of x, y, and t, then the function 

u (x, y, t) = k~k~ - -  (k 1 @ k2) ~ 
w i l l  s a t i s f y  (11) .  

A detailed discussion of the construction of solutions of other equations which are 
quasiclassical limits of integrable equations in two spatial dimensions and an anlysis of 
the physical applications of these solutions will be the subjects of a separate article. 

If the periodic problem for the original equation is integrable, then the Whitham equa- 
tions obtained in this article are sufficient for the construction of the entire asymptotic 
series. The integrability of this problem for the Kadomtsev-Petviashvili-2 equation was 
proved in a recent article by the present author; this allows us to prove that, in the case 
of this equation, the Whitham equations are not only necessary but also sufficient. Unfor- 
tunately, the limitations of a single article do not permit a complete exposition of this 
question. A separate article will be devoted to it. 

i. 'NECESSARY MATERIAL FROM THE THEORY OF FINITE-ZONE INTEGRATION 

The initial object in the construction of the finite-zone solutions of Eqs. (4) is a 
nonsingular algebraic curve F of genus g with distinguished points P~ ...... P£, in a neighbor- 
hood of which are fixed the local parameters k~ (P),k~ (Pi) = 0, = = 1 ..... I. In addition, we 
fix a set of polynomials Q~(k) of degree n, R~(k) of degree m, and oil(k) of arbitrary de- 
gree, i = l,...,2g. 

For any set of points ?i ..... ?~+~-1 in general position there exists a unique function 
~ (x, y, t, ~, P), P ~_ F, ~ = (~1, . . . .  ~2¢)i which: 

i °) is meromorphic outside of the points P~ and has poles at the points ~j; 

2 =) is representable in theform 

' ~ = ~ p  ( ~ x  + Q~ (~)  ~ + ~ (~) t + E ~  (~) ~,) ( ~ ~ (x, ~, ~, ~) ~ )  (~2)  
i s := :O 

in  a ne ighborhood of  Pg, where kg = k$(P) ,  and ~ = e*~SuS~ a r e  a r b i t r a r y  c o n s t a n t s .  
(Functions of a similar type are-called Baker-Akhiezer functions.) 

We denote the column vector with components $~, ~ = 1 .... ,£ by ~(x, y, t, ~, P). As is 
shown in [12], there exist unique operators L and A of the form (5) with £ x £ matrix coef- 
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ficients (which depend on the ~i as well as on the parameters) such that 

(a~ - -  L) ~ (x, y, t, ~,P) = 0 ,  (at - -  A)  ~ (x, y, t, ~,P) = 0 .  (13 )  
• . .  

Since (13) is satisfied identically in P, the operators L and A satisfy (4) for all ~. 

Let the function ~0(~, P) be determined by the equality $0 = ~exp (~ --~=)~(0, 0, 0, 

~, P). Then the functions ~= (z, y, t, P) = $= (z, y, ~, ~ P) $~ (~, P) are the Baker-Akhiezer 
! 

functions corresponding to the values of the parameters ~ and ~i = 0 and to the set of 
poles ?~ .... ~ ?~+~-~, which coincide with the zeros of $0- Since the vector-valued function ~ 
with components ~ satisfies the same equalities (13) as ~, it follows that the variation of 
the parameters ~ and ~ is equivalent to the variation of the set of poles 7s . Ordinarily the 
Ys are chosen as the independent parameters which determine the finite-zone operators L and 
A, putting ~ = 0 and ~i = 0 (see [12]). If we fix any set ~ o , ..., ?~+~_~on F, then it is 
possible as independent parameters to take ~, .... 9£-~ (in what foll6ws, we will always sup- 
pose that ~ = 0) and ~i, which are real. We will confine ourselves to this parametrization. 

The operator equation (4) is a system of nonlinear equations for the coefficients u i and 
vj of the operators L and A. It turns out that if ~<m, then this system reduces to a pencil 
of systems only for the coefficients of A, parametrized by the constants h~i , i = 0,...,n; 
~ = i ..... Z (see the details in [12]). In order to express the coefficients of L in terms of 
the vj, it suffices to use the fact, which follows from (4), that the operator [L, A] must 
have degree m - i, and the diagonal elements of the leading coefficient must be equal to 

~l-l+i  zero. If we equate the coefficients of [L, A] to zero for ~ , i : n, n - i, .... I in turn, =~ 
we find 0~u~= and ~-~, ~ (the h~i are constants of integration). As is shown in [12], the 
matrix elements u i are differential polynomials in v~ ~ and A=~, ] < ~, ~ < ~. 

=~ ~ 
If we put R~ = u,~k and Q~ = h~k ~, then the above construction gives solutions of the 

~=~ 

reduced system corresponding to the set of constants h~i. Thus the polynomials Q~ para- 
metrize the nonlinear equations, and, in general, the remaining parameters parametrize the 
solutions of the corresponding equation. 

In what follows, we will describe a choice of the polynomials oi~ such that under changes 
! 

of the local parameter k' = k'(k), the corresponding polynomials satisfy the condition ~i~(~') 
--~ (k) = O (k -~) In this case, it follows from the definition of the Baker-Akhiezer 
function that, under changes of the local parameter such that k~ = ~=-~O (~-~), two local 
parameters related to each other in the above way will be called equivalent, and the set of 
equivalence classes, called m-germs of local parameters, will be denoted by [k~]m . 

Thus the manifold of solutions corresponding to curves of genus g is parametrized by 
the data 

(r, P~, [ ~ ] ~ , . . . ,  P~, [kT~]~) (14 )  

and the  q u a n t i t i e s  ~ ,  . . . ,  ~z_~, and 5i.  

The complex dimension of the space of moduli of curves of genus g is equal to 3g - 3. 
Therefore the dimension of the manifold of data (14), which we will henceforth denote by Mg, 
is equal to N = 3g - 3 + £(m + 2). It is possible to introduce a complex-analytic structure 
on Mg. Let I = (I~, .... I N ) be an arbitrary local system of coordinates on Mg. The depen- 
dence of all quantities on I k in subsequent expressions is complex-analytic. 

In order to establish the statement made in the introduction concerning the form of the 
coefficients of L and A, it suffices to reduce the expression for the Baker-Akhiezer func- 
tion in terms of the Riemann theta-function to a form which is slightly different from the 
standard one [12]. 

On F, we fix a canonical basis of cycles ~, b7 with intersection matrices =to~ = ~o~7 = 
0,~o~7 = 6~7. We define in the standard way (see ~[12] or [20]) a basis for the normalized 
holomorphic differentials mk, the vectors B k = (Bki) of their b-periods and the corresponding 
Riemann theta-function - an entire function g of the complex variables which is transformed 
under shifts of the arguments by the unit basis vectors e k in C g and by the vectors B k in the 
following way: 

0 (~ + e~) = 0 (~), 0 (~ + B~) = e - ~ % ~ - ~ 0  (~). (15 )  
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Let q be an arbitrary point of r. A correspondence under which the vector A(P) with coor- 
P 

dinates A~=~ is associated with a point P is called an Abel transformation. For any 
q 

set g of points ~s in general position the function 8(A(P) + Z), where 

Z = - - ~  ( % ) -  . . .  - - A  (~g) + K (16)  

(K is the vector of Riemann constants), has precisely g zeros, which coincide with the ~s. 
• 

Let ?~ ..... %~+~-,.be some fixed set of points on r. Agcording to the Riemann-Roch theo- 
rem there exists a unique function h a which has poles at the points ~$ and satisfies the 
normalization condition h~(P~) =6~. 

We define the function.~= (z, P), z = (z~, ..., z~) by means of the expression 

g 

~ 0 (A (~) + z~ + ~ ( ~  + ~ + ~ ) )  0 (~ (~) + z~) 
, 

~=~ 0 (A (P) + Za) 0 (A (Pa) + Z~ + ~, (z~l, + zk+gBk) ) 
k = l  

where 

Z = = K +  Y, A(P~)--Z0, Zo=Y,A(~). (lS) 
~ 8 

From (16) it follows that ~ has unit periods in ali of the variables z i- 

We define the differentials dp, dE, and d~ as meromorphic differentials on F with sin- 
gularities at the Pa of the form dka, dQ~(k~), and dRe(k~), respectively, uniquely normalized 
by the requirement that their periods in every cycle are imaginary. Let U be the real vector 
with coordinates 

t dp, U~+g=---f~- dp, k = l  . . . . .  g. (19)  U~--~--~-f% 

The 2g-dimensional vectors V and W are defined analogously with respect to dE and da. 

Cutting F along the cycles a, and bj, we can choose a unique branch of the integrals 
p(P), E(P), and ~(P) of the corresponding differentials. In a neighborhood of P~ they have 
the form 

. 

p = k a  -- aa + O(k2), E=Q=(ka)- -  b=-]- O(k2), ~=B~(k~)--c~ + O(k2);  (ZO) 
. 

t t  i s  p o s s i b l e  ~o d e f i n e  p ,  E, and fl u n i q u e l y  i f  ~e  r e q u i r e  kha~ a~ = b~ = ct = O. 

~e  l e t  do j  and  d o j + g  d e n o t e  a r b i t r a r y  d ~ f f e ~ e n t ~ a l s  ~ t h  s i n g u l a r t k i e s  a t  t h e  P~ and 
~ h t c h  h a v e  i d e n t i c a l  n o n z e r o  p e r i o d s  2 2 ~ i ,  j = 1 , . . . , g ,  i n  t h e  c y c l e s  a~ and b j ,  r e s p e c t i v e l y .  
T h e i r  p r i m i t i v e s  ~ 1 1  be  d e n o t e d  by  o j ( P ) ,  j = 1 . . . . .  2g.  

L ~  1. The B a k e r - A k h ~ e z e r  v e c t o r - v a l u e d  f u n c t i o n  h a v i n g  p o k e s  in  t h e  s e p a r a t e  se~  
N~ i s  r e p r e s e n t a b l e  ~n t h e  fo~m 

~g 
a ~ f  

~ = ea~+~u+a+~ (Ux + Vy + Wt + ~, p)~+E~+nt+ ~ _ , (21 )  

whe re  @ i s  a v e c t o r  w i t h  c o o r d i n a t e s  d e t e r m i n e d  by ( 1 7 ) ;  a ,  b ,  c ,  and ~ a r e  d i a g o n a l  ma- 
t r i c e s  w i t h  e l e m e n t s  a=; h a ,  c a ,  and ~a on t h e  d i a g o n a l s  ( b y  v i r t u e  o f  t h e  a s s ~ p t i o n s  we 
h a v e  made,  az = b~ = e t  ~ t  = 0 ) ;  p = p ( P ) ,  E = E ( P ) ,  fl = f l ( P ) ,  and  o i = o i ( P ) .  

The p r o o f  o f  t h e  l e n a  c o n s i s t s  i n  a d i r e c t  v e r i f i c a t i o n  o f  t h e  f a c t  t h a t  a l l  o f  t h e  
c o o r d i n a t e s  o f  t h e  v e c t o r  on t h e  r i g h t - h a n d  s i d e  o f  (21 )  a r e  c o r r e c t l y  d e t e r m i n e d  by t h e  
f u n c t i o n s  P w i t h  t h e  r e q u i r e d  a n a l y t i c  p r o p e r t i e s .  

As f o l l o w s  f r o m  t h e  p r o o f  o f  (13 )  ( s e e  [ 1 2 ] ) ,  t h e  c o e f f i c i e n t s  o f  t h e  o p e r a t o r s  i and ~ 
r e l a t e d  t o  L and  A b y  (6 )  a r e  d i f f e r e n t i a l  p o l y n o m i a l s  i n  t h e  m a t r i c e s  ~ 6 ,  whose e l e m e n t s  
a r e  c o e f f i c i e n t s  i n  t h e  e x p a n s i o n  o f  ~= i n  a n e i g h b o r h o o d  o f  PS" S i n c e  ~ (z, P ) i s  p e r i o d i c  in  
t h e  z j ,  t h e  r e l a t i o n s  (7 )  a r e  p r o v e d .  

F o l l o w i n g  ( 2 1 ) ,  we d e f i n e  t h e  c o n c e p t  o f  t h e  d u a l  B a k e r - A k h i e z e r  v e c t o r  f u n c t i o n .  F o r  
any  s e t  ?~ . . . . .  ?~+~-~ in  g e n e r a l  p o s i t i o n ,  t h e r e  e x i s t s  an Abe l  d i f f e r e n t i a l  8 o f  t h e  s e c o n d  
k i n d  w i t h  s e c o n d - o r d e r  p o l e s  a t  t h e  P~ which  v a n i s h e s  a t  a l l  o f  t h e  p o i n t s  7 and wh ich  i s  
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4- 
unique to within proportionality. The set of points ?~, .... ?g+~-~ consisting of the remaining 
zeros of ~ is called the dual. From this definition it follows that the vectors Z and Z + 
which correspond to the divisors {Ts} and {X+s} under an Abel transformation are related by 

Z -~ Z + = 3 F  -4-2~ A (P¢¢). (22)  

The d u a l  B a k e r - A k h i e z e r  v e c t o r  f u n c t i o n  i s  d e f i n e d  t o  be t h e  row v e c t o r  w i t h  c o o r d i -  
n a t e s  ~+a(x, y, t, ~, P), which are meromorphic outside of the P~ and have poles at ~; in a 
neighborhood of P8 they are representable in the form 

_~-Q~(~)~,-n~(%)t- Z z~(~)~ ( ~ .+~ t, ~) k~ ~) ( 23 ) 
+ e ~ ~s (x, g, , ~ ~ S ~  

where ~a~ = ~ a 6 ~ "  

The dual Baker-Akhiezer vector function has the form 
~ 

-px-Eg-~-.~ ~ + 
~+=~ ~=~ ~ (--Ux--V~--~--~,P)~ ..... ~-~-% (24) 

where the components ~ (z, P) are the row vectors of ~+ (z, P)~iven by (17), in which the vec- 
tors Z~ must be replaced by Z +~ = Ze + Z, -- Z~. In addition, it is necessary to replace h~ by 
h + ~, which has poles at the 7~ + and is such that ~ (P~)= 6e~. 

In [21] it is sho~ that ~+ satisfies the equations 

¢ + ( x , y , t ,  ~ ,P )  (O~- -L)  = 0 ,  ~ + ( x , y , t ,  ~ ,2 )  (0 t - A )  = 0 ,  (25)  

where  ~he o p e t a ~ o v s  L and ~ a~e t h e  s ~ e  as  £n (~5). .  

Yn t h e s e  e x ~ r e s s Y o n s ,  as  i n  wha~ f o l l o w s ,  t h e  r i g h t  a c t i o n  o f  any o p e r a t o r  D = . ~  w~0~ cn 
t h e  row v e c t o r  f~  ~s e q u a l  t o  t h e  ack£on  o f  ~he f o c a l  a d j o i n ~  o p e r a t o r ,  £ . e . ,  ~=0 

k 

I +D = ~ ( -  ~,./(/+~'~). (26) 
i~O 

I n  c o n c l u d i n g  t h £ s  s e c t i o n ,  f o r  any d i f f e r e n k $ a l  o p e r a t o r  D w i t h  r e s p e c t  ~o x o f  o r d e r  
k we g i v e  t h e  d e f i n i t i o n  o f  t h e  o p e r a t o r s  D ( J ) ,  j = 0 , . . . , k ,  o f  o r d e r  k - j " a s s o c i a t e d "  
wi~h i t .  They  a r e  u n i q u e l y  d e f i n e d  by t h e  r e q u i r e m e n t  t h a t ,  f o r  any row v e c t o r  f~  and 
c o ~ n  v e c t o r  f 2 ,  

(]:D) 1, = ~ ~ (]: (D<~>A)). (27) 
J = 0  

Hence it follows in~nediately that D (°) = D, 

~WiOx ~ D(~) -~- --  Z " i-~ 
i= l  

and so f o r t h .  

D(=) = Z ~ (~ g-- t) wiOx~_~. 
{=2 

I t  i s  c o n v e n i e n t  t o  d e f i n e  D(J )  be t h e  e q u a l  t o  z e r o  f o r  j ) k .  

(28)  

2. THE WHITHAM EQUATIONS 

As stated above, we consider (4) (for n~m) as a system of nonlinear equations for 
the coefficients of A, parametrized by a set of constants. In addition, the coefficients of 
L can be expressed in terms of the coefficients of A and the h~i, which we write in the con- 
vential form L = $ (A,h=i). Once more we note that if we fix these expressions, then for any 
operator with the same leading coefficient as A, the operator L' = ~ (A',hei) has the same 
property that [L', N'] is an operator of order m - I with zero diagonal elements in the 
leading coefficient. 

We consider the problem of the construction of asymptotic solutions in a more general 
setting than in the introduction. Let K(A) be a differential operator of order m - i with 
zero diagonal elements in the leading coefficient. Its coefficients are differential poly- 
nomials in the coefficients of the operator A. The only requirement that these polynomials 
must satisfy is that if A has the form (6), (7), then K(A) must also have this form (in the 
case of scalar operators, this condition is automatically satisfied). 

We consider the problem of constructing asymptotic solutions 

~ = A0 + e A 1  + . . . ;  E = ~ ( ~ , h ~ )  = L 0 - t - e L , +  . . . .  (29)  
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(where A i are differential operators of order m - 1 with zero diagonal elements in the lead- 
ing coefficients) for the equations 

OtL -- O~,A + [L, A] -- eK(A) = O, (30) 

which for k ~ 0 are weak perturbations of the original equation (4). 

We let A m-z ----- A 'n-~ (a, b, c, U, V, V~) denote the space of differential (with respect to x) 
operators of order m - 1 which have the form D = gOg-~, where ~ = exp (~z + by + c~), and the 
coefficients of ~ are quasiperiodic functions with vector period~ U, V, and W in the corre- 
sponding variables, i.e., ~i = ~i (Ux + Vy + Wt), where ~i(z~,....,z=g) is a function with unit 
period in z i. For any operator D c A m-~, we define the operator DE to be exp(e-~S0)~Sexp 
(g-~S0), where the coefficients of the operator 6 S are ~i(e-~S(X, Y, T)). Here S0(X, Y, T) 
is a diagonal matrix, S is a vector, and E = (S 0, S). In this notation, the operators L 0 
and A 0 given by (8) and (9) are L 0 = L Z and A 0 = A E. 

Suppose that S 0 and S satisfy the conditions (I0). Then the operators ~ and ~, the 
principal parts of which are L~ and A0, satisfy (30) to within O(e). In order to write the 
equations which define L~ and A~ we must introduce the following definition. 

Suppose that the quantities I, ~, and @ which par~etrize~the finite-zone operators L 
and A depend on some parameter T. Then the operators 8TL and 8TA obtained by differentiating 
(6) and (7), in which it has been ass~ed formally that the vectors U, V, and W and the ma- 
trices a, b, and c are constants, are called the "truncated derivatives" of the operators 
L(T) and A(~) along ~. From this definition it follows that 

~ 

O~A = ~A + [O~a . x ~ yO~b + tO,c, A] @ ~ (xO~U + yOW +tO,W) OA (31) 
~=1 O~i 

(the s~e equality holds for ~rL). 

If the parameters L and A depend on X, Y, and T, then we define F = F(L, A): 

F = bTL - -~yA + {L, A}, (32) 

~ ~ ~ ~a '~u'a~+~-'~ (33) {L, A} = u, , k C~a~ -~ (gzv A a~2 ~ - ~ -  v~ kCya~ -~, x ,, ~ • 
i ~ O  ~;=0 ~ : 0  

We o b t a i n  t h e  o p e r a t o r  {L, A} from [L, A] by r e p l a c i n g  8 x by 3x + ¢~x in  a l l  of  the  d i f f e r -  
e n t i a l  expressions in the coefficients of the latter and taking the terms of the first degree 
in e. Hence it follows that F has degree m - 1 with zero diagonal elements in the leading 
coefficient. From the definition of truncated derivatives we have that F ~ A~ ~-* (here and in 
what follows A~-~ A~-~ is the subspace of operators with the above leading coefficients). 

Substituting (29) into (30) and setting the coefficient of e equal to zero, we get that 
. 

L~, -- A~ + [Lo, A~] + [L~, A o] ~ F z -- K z = O (e). (34) 

Suppose t h a t  ~ an4 #+ a re  t h e  B a k e r - h k h i e z e r  f u n c t i o n s  co r re spond ing  to  L and A. Then 
the  f u n c t i o n s  ~o and ~ ob t a ined  by replacing~ Ux + Vy + Wt by e-~S(X, Y, T),  t he  d i ag o n a l  
ma t r ix  a z + b y + e t  by e-~So(X, Y, T) ,  and px + Ey + fit by -g-~a~S~(X,Y,  T) ( t h e  S i a re  t he  

components of  S) in  (21) and (24) s a t i s f y  (13) and (25) ,  in  which L and A have been r ep l aced  
by L o and A0, t o  w i t h i n  0 (¢ ) .  

Using the  r e s u l t i n g  e q u a l i t y  and (3~) ,  we ge t  t h a t  
. 

~+ + • ~, (~o (n~¢0)) - o~ (~'o (A~¢0)) + Z 0~ ( ~  ((L~)A~ - -  A~)Ld¢O)) + 0(~) = - -  ( ~ ( ( ~ .  ~ ) ~ o ) .  ( ~ )  
~>1 

Consequently, if (34) has a uniformly bounded solution, the mean with respect to x, y, 
and t (in what follows, we will denote it by <'>0) of the right-hand side of (35) must be 
equal to zero. Hence it follows that 

<~+F~>0 -- <#÷Kg>0 = O. (36) 

This equation must be satified identically in P. From the Riemann-Roch theorem it fol- 
lows immediately that, among the equations'(36), for various P, not more than ~rz=g+Im--I 
are independent. Indeed, the left-hand side of (36) is a meromorphic function on r which has 
poles at the poles of ~ and-~ + and poles of multiplicity m - 2 at the points P~. According 
to the Riemann-Roch theorem, the dimension of the linear space of such functions is N I. 
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where A~ 
we get 

In order to obtain a complete system which describes the dynamics with respect to X, Y, 
and T of the parameters I of the finite-zone solutions, we must adjoin to (36) the conditions 
of compatibility with Eq.. (i0), which define S o and S: 

OyU~OxV,  O~U---- OxW, OrV =OyW,  
Ora=Oxb, OTa~OXC, O~b--~vc. (37) 

We c o n s i d e r  t h e  m a n i f o l d  ~g of  p a i r s  (P,  ~) ,  ~here  ~ ~s t he  s e t  o~ da ta  (14) and P ~s 
a point of F in this set. This-manifold is naturally stratified over Mg. Let (~, I~, .... I N) 
be a local system of coordinates on M~ such that, for fixed Ik, I(P) par~etrizes some region 
~ = F(I). We will call any such system of coordinates a connection of the stratification 
Mg + Mg since~ for every pat~ I(~) in ~g and any point Po ~ F (I (Y0)) , it is possible to define 
the concept of this path in Mg by defining P(~) by the condition %(P(~)) = l(P0). 

The multivalued functions p, E, and ~, defined on every curve, are multivalued functions 
on ~g, i.e., p = p(%, I), E = E(I, I), and ~ = ~(~, I). 

THEOR~ i. The system of equations (36), (37) is equivalent to the following equation 
in p(X, X, Y, T), E(~, X, Y, T), and ~(~, X, Y, T): 

Op ( eE gfl ) OE ( c)p g~ ) 6~ ( Op OE ) <¢+K*>o ep 
~ OY 6Y - - ~  OT ,X + ~  OY OX = <~*¢>o Ok ( ]8 )  

P r o o f .  Let  P(<) and %(~) be an a r b i t r a r y  curve  in  ~g. Then a long t h i s  cu rve ,  p = p ( ~ ) ,  
E = E ~ :  ~nd ~ = ~ (<) .  ~ 5 and ¢ a~so depend on <, ~hen t h e  c o r r e s p o n d i n g  ~£n£ te -zone  
ope ra~ors  a l s o  depend on ~: L = L ( ~ ) . a n d  h = ~ ( ~ ) .  

L ~  2. The f o l l o w i n g  r e l a t £ o n s  ho ld :  
2g 

0~ <,+,>~ + <,+o:,>~ + ~ ~+o~w~ o~ ~ > ~ , t  = --  O~p <,+ (A<a),)>x,) -- <¢+ ( A (a)O~a¢ >~t) --  
i ~ l  

2g 

-£<< <,: 
i=l 

o. (40) 
, . 

Here ¢ and ~ + a r e  t h e  m u l t i p l i e r s  og t h e  e x p 0 n e n t i a l s  ~n (21) and (2&); t he  o p e r a t o r  A(*) i s  
defined in terms of k in (27),A(*)= g-*AO)g, g = exp (ax+ by + ct), and <'>xt is the mean with 
respect to x and t. 

Proof. Let ~+ = O+(x, y, t, P(~)) and let ~x = @(x, y, t, P(<~)). From (i]) and (25) 
it follows that 

m . 

0, (#+~h) = - ~, 0f~ (~+ (A(~)¢)) ÷ (V ((A, -- A) ,)), (4~) 
J=l 

= A(~) and A = A(~). Differentiating (41) with respect to ~z and putting ~ = ~ 

2g 

( ,~ o , w ~  -aT~ ) = - ~ 'p  (~+ (~('(~)) - (~+ ( , ~ , , o : ~ ) ) - .  0 ~  ((~+~) + ((~+O~c~) 4-, ~ " + o~ ~ 

2g 

- -  Z "  - = - ' ( ( ~ + ( 2 ~ ( 1 ) O ' ~ U i ~ ) )  ~- ('~+ ((OvA),~))+ R. (42) 
z ~ l  % \  ~ / 1  

Here the remainder term R is a sum of terms of the form 

a t, : 4~ ?~ 5 ~ ~. n =~, (qO~ ÷ ql: ÷ q~v ÷ q~ ~ tq:.~,~ (Ux ÷ vv ÷ wt ÷ 7i ÷ ~'~ (ux ~- ~.~ ÷ wt ÷ ~)), (4s) 
• 

where the qs ~ are constants, and the ~s are periodic in zi, 

The vectors U and ~ define the-rectilinear windings on T~g, ~e let ~(~) denote the 
closure of the winding Ux + Wt + ~. It is a k-dimensional subtorus in T~g. For any function 
of the form w(Ux + Wt + ~), we may consider the mean over the subtorus T~, which is denoted 
by <W>T~. It coincides with the mean with respect to x and t, i.e., <W>T~ = <W>xt. 

We average (42) over T~(~ + Vy) [we note that it is impossible to take the mean with 
respect to x and t since the part of the coefficients in (43) depends linearly on x and t]. 
From (43) it follows that <R>T~ = 0. 
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We examine the averaged equality (42) for variations under which P and I do not change, 
and consequently ~i and ~ change. For these variations, all of the terms except the next 
to the last are equal to zero. Hence 

=0 

and since in (44) the average over T z coincides with the average with respect to x and t, 
(40) is fulfilled. 

For any constant diagonal matrix r, 

<~,+ ([,', Ale)T, = <4 + (Jr, A]~)>~I = <0l (~+r~)>~, = 0. (45)  

Hence it also follows from (31) that 

<~+ (0,A~)>r, = <~+ ~A~)>~t (46)  

and the averaged equality (42) goes into (39). 

COROLLARY i. The differentials dp and d~ are related by 

dQ + <4 ¢>~t -~ dp <4 + (A(*)~)>=t = 0. (47)  

Proof. We consider a variation P in r with constant I, ~, and ~. Then all of the terms 
except the first two on both sides of (39) are equal to zero. Hence (47) follows. (A simi- 
lar equality for the case where A is a Sturm-Liouville operator was obtained for the first 
time in [22].) 

From (47) it follows that in the case of general position, when the zeros of dp and d~ 
do not intersect, the zeros of the functions <~+~>x~ and <~+A(1)~>x~, which are meromorphic on 
r, coincide with the zeros of these differentials. Because of the analytic dependence of 
all of these zeros on Ik, this last statement holds for any curve r. We note that it follows 
from this that the mean in (47) does not depend on y. 

Equalities completely analogous to (39) and (40) also hold for L (we omit them for the 
sake of brevity). From these relations it follows, in particular, that 

dE <¢+~>~ + dp <~+ (LO)¢)>~u = 0. (48)  

Note. If we choose one-half of the zeros of dp as the distinguished set ~ of poles 
of the Baker-Akhiezer function, then such a function satisfies the relation <~+~>~i = <~+~>~ = 
i (as follows from what we have proved). 

From (27) it follows that, for the operators L(J) and A(J) associated with L and A 
satisfying (4), we have that 

LI~>__ z(~) A(~-') l . ~  ~- ~ [L 00, ~ 0. (49)  
k=0 

Using t h e s e  r e l a t i o n s  and t h e  e q u a t i o n s  which  $+ = ~+(x ,  y ,  t ,  P ( ~ ) )  and ~z = ~ ( x ,  y ,  t ,  
P(~)) satisfy, we get that 

w% ~ 

~ 0~ 1 [0 t (4 + (LO)~h)) -- 0~ (4 + (A0)~)). = ~ O~ ~ [(~+ (LO)(A~ --  A) ~))  --  (9 + (A0) (L~--- L) ~h)), (50)  
J=l ~=1 

~ ~- ~ (~0~ ~ = ~ (~), ~ = ~ (~0. where L = L(~), ~-- 

We differentiate (50) with respect to ~ and put ~ = ~. We average the resulting equa- 
tion over the subtorus T o corresponding to the winding Ux + Vy + Wt + ~. The mean of all 
of the terms in (50) except those corresponding to j = 1 is equal to zero. In a way analogous 
to the proof of Lemma 2, we can show that the averaged equation (50) reduces to (51). 

LEMMA 3. We have the equalities 

0~e <~+ (L(~)~)>o --  O~E <~+ (A(~)~)> o + <~+L(~)O~c~>o -- <~+A(1)O~b~>o + 
2g 

o~ + L(~)~A + <, (( _ 
~ 

It is possible to verify directly that, for any ~wo operators L and h, 

{L, A} = L(*)~xA -- A(,~L. (52) 
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Therefore the assertion in Lemma 3 allows us to find the mean <$+ ({L, A}$)>~. From (39) we 
can find an expression for <$+~yA~>o for T = Y. Putting T = T into the analogous equality 
for L, we find <~+~TL~> 0. 

Summing the resulting expression and using (47) and (48) we get that #p ~$~F$>0 is equal 
' ~-Y <~+~o 

to the left-hand side of (38) plus a sum of terms each of which is zero by virtue of (37). 
[These additional terms have the form <~+L(~)(@re--#xc)9>, , etc.] This proves the theorem. 

The description of the construction of solutions of (4) in Sec. 1 also contains as a 
special case the construction of solutions of the Lax equation L t = [A, L]. We consider 
the submanifold of data (14), M~ c Mg, for which the corresponding differential dE is exact, 
i.e., the function E(P) is single-valued on F c M~. In this case, the coefficients of Land 
A do not depend on y, and (4) becomes a Lax equation. It is possible to use the function 
E(P) to parametrize neighborhoods of all points of the corresponding curves except a finite 
number. In addition, p = p(E, X, T) and ~ = ~(E, X, T), and (38) becomes 

OX~__OTp: <~+K~>0 dp ~÷%,, ~ • (53) 

For ~ e 0 (53)  co i nc i des  w i t h  aTp = axe, f i r s t  o b t a i n e d  i n  t he  s p e c i a l  case o f  t he  K o r t e w e g -  
de Y r i e s  e q u a t i o n  i n  [ 3 ] .  I t  i s  necessa ry  to  no te  t h a t  t h i s  e q u a t i o n  was o b t a i n e d  i n  [3 ]  as 
a consequence o f  averaged conse rva t±on  laws,  i . e . ,  a consequence o f  t he  equa t i ons  ( 3 ) ,  wh ich  
were p o s t u l a t e d  a p r i o r i .  The d e r i v a t i o n  o f  (3 )  as n e c e s s a r y c o n d i t i o n s  f o r  t he  boundedness 
o f  t he  c o r r e c t i o n  term o f  an a s y m p t o t i c  s e r i e s  was g i ven  i n  [ i ]  i n  t he  csae o f  t he  K o r t e w e g -  
de V r i e s  e q u a t i o n .  

3. CONSTRUCTION OF SOLUTIONS OF THE AVERAGED EQUATIONS 

Let n~>~ be an integer, and let ~n~ = ~-~ ~(~ ~- I). For any curve F of genus g with 

distinguished points P~ in generalposition and with local parameters k~ ~ there exists a 
function k(P) which is unique to within an additive constant, which has poles only at P~ (of 
multiplicity n~), and such that P~ %~/~= (P) = ~-~O (~'~) in a neighborhood of P~. In the case 
of general position, it is possible to assume that the zeros of dk are simple, dk(qi) = 0, 
i = 0, .... N = 3g - 3 + ~(m + 2). It is possible to normalize %(P) uniquely by putting 
~(q0) = 0. Then the quantities %i = %(qi), i = 1 ..... N, are local coordinates on Mg. (In 
the case of Lax equations similar coordinates on M~ are Riemann invariants). The sets (%(P), 
Xi) constitute local coordinates on Mg everywhere except in a neighborhood of qj. (The con- 
nections on ~g given in this way will be called canonical.) 

On an arbitrary curve in general position F0 we fix a piecewise smooth contour ~ (con- 
sisting of a finite number of closed or open curves with a finite number of intersections) 
and sets of points t~ and ~ on and outside of this contour, respectively. Using a canonical 
connection, it is possible to define a corresponding contour and corresponding points on any 
curve F sufficiently close to F0. (For example, it suffices to put the point t'~ ~'~F 
which is determined by the condition %(t') = l(t) into correspondence with the point ~ 

F0. 

LEMMA 4. For any differential dh on ~, which is H-continuous (HSlder continuous) every- 
where except at the points t9 and is such that in a neighborhood of tv the differential 
(~ - A(tg))Sgdh is bounded, there exists a unique differential dA which ~satisfies the condi- 
tions: 

1 ~. dA is meromorphic to F outside of ~ , and has a simple pole in q0 there and poles 
at P~ of the form 

dA-----d~,( ~, F~(% - -  ~ ( P u ) ) - ~ .  0 ( t ) ) .  ( 5 4 )  
i = 1  

2 ° . 

relation" 

d A  + - -  d A -  ---- dh. 

In addition, (~- ~ (t~))SvdA is bounded in a neighborhood of t~. 

3 ° . 
~ ( ~  - -  ~ ( t , , ) /dA = r~i, i = I s,-, . . . . .  

The limiting values dA ± oF Z are H-continuous outside of t~ and satisfy the "jump 

(55) 

(56) 
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is fulfilled. 
equations 

(the integral is taken over a small neighborhood on r containing tu). 

Here ~, i = 1 ..... ,~, and r~, i = l,...,s~, are arbitrary sets of numbers. 

4 ° . dA has imaginary periods with respect to all cycles on r. 

The assertion in the lemma is a standard one in the theory of boundary value problems. 
We give a brief sketch of the proof. Let d~ be the differential defined by the Cauchy inte- 
gral 

----~-/ai l A (~, t) dh (t), (57)  
2 

where A(k, q)d~, the meromorphic analog of the Cauchy kernel, is a function which is mero- 
morphic in q with zeros of multiplicity sv at tv, and is a differential in I with poles at 
tv of multiplicity s V and simple poles at q and q0- In a neighborhood of q it has the form 

~_q ~ O (I) . It is possible to give such a differential by (2.5) of [20], where one can 

find further details on boundary value problems on Riemann surfaces. The limiting values 
d~ ± on ~ satisfy (55). Therefore dA = dA + dW, where d~ is a meromorphic differential with 
poles of multiplicity sv and ~ at t V and ~, respectively, and a simple pole at qo. The 

dimension of the space of such differentials is g ~ ~,s~, ~' ~, and therefore the conditions 
v ~ 

(54), (56), and 4 ° allow us to fix d~ univalently. 

THEOREM 2. Suppose that Xi = %(qi) depends on X, Y, and T is such a way that, for any 
i = i, .... N, one of the two conditions 

, ~ _ _ _ ~  ( d A + X d p ~ - Y d E + r d Q ) - - ~ 0  ~ X~=eonst (58) 

~hen p ~ p(X, X, ¥ ,  ~ ) ,  g ~ E(X, X, ¥ ,  ~ ) ,  a ~ a(X, X, ¥ ,  T) s a t i s f y  t h e  

O~p--~-OxQ, Orp-~-OxE, OyQ~-OTE. (59)  

The i n t e g r a l  in  (58)  i s  t a k e n  over  a smal l  c o n t o u r  c o n t a i n i n g  q~. I f  q i  does no t  l i e  
o n ~  , t hen  t h e  f i r s t  o f  t h e  c o n d i t i o n s  (58)  means t h a t  t h e  d i f f e r e n t i a l  in  t he  p a r e n t h e s e s  
v a n i s h e s  a t  qi"  

Proof. We consider the differential %xd~, where d~ = dh + Xdp + YdE + T d~. From the 
constancy of the "jump" in d~ on ~ it follows that ~Xd~ is meromorphic on ?. From (54) and 
(56) it follows that this differential is holomorphic at t V and ~. Besides P~ and q0, the 
only points where it could have poles are the points qi, where the connection has singular- 
ities. The differential d~ has no singularities at qi; therefore for any j = 0, i, 2,... the 
first of the equalities in (60) holds. The second is a consequence of it. 

0. 

Hence we have that, for all j, the first of the terms in (60) is equal to zero [for j ~ i, 
this follows from the first equality, and for j = 1 we must use (58)]. Consequently.~xd~ 
is holomorphic outside of the points P~ and q0. At the points P~, it has the same singular- 
ity as dp. This means, in particular, that its residues at these points are zero. From the 
fact that the sum of all of the residues of any meromorphic differential is equal to zero, it 
follows that its residue at q0 is also zero. Hence ~xd~ - dp is a holomorphic differential 
on F. By virtue of condition 4 ° and the normalization conditions on dp, dE, and dD, this 
holomorphic differential must have imaginary periods with respect to all cycles. Conse- 
quently.it is equal to zero. In a similar way, we can prove that 8yd~ = dE and ~yd~ = d~. 
The equalities (59) are a consequence of the fact that the mixed derivatives of ~(P) 
P 

I dS are equal. 

Remark i. As follows from the proof of the theorem, the vector of periods of the dif- 
ferential d~ ~ and the matrix S o with diagonal elements which are equal to the coefficients 
of the zero powers of k= in the expansions of S(P) in powers of k~ ± in neighborhoods of P~ 
satisfy the conditions (i0). 
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~ d E  ~ d ~  
The quantities v~ ~--- ~ (q~), u~ ~ ~ (q~) and 

~,2 = U~,~ ()~, . ~N), W~ = ~ (X~, . XN) In this nota- depend on lj and determine the functions u~ . . . . . . . .  
tion, (58) has the form 

w~ @ X @Yv~ @ Tv~ = 0  or Xi = e o n s t .  (62) 

For  g i v e n  X, Y, and T, (62)  g i v e  a s y s t e m  of  N e q u a t i o n s  i n  t h e  N unknowns Xj. T h e i r  s o l u -  
t i o n s  Xj(X, ¥ ,  T) d e t e r m i n e  p a r t i c u l a r  s o l u t i o n s  o f  t h e  Whitham e q u a t i o n s  f o r  t h e  u n p e r t u r b e d  
e q u a t i o n s  ( 4 ) ,  i . e . ,  i n  t h e  c a s e  K ~ 0. 

These  s o l u t i o n s  depend on t h e  c h o i c e  o f  c a n o n i c a l  c o n n e c t i o n  and on t h e  p a r a m e t e r s  in  t h e  
d e f i n i t i o n  o f  dA, i . e . ,  ~,  dh, t v, r,,~, P~, and 5~i"  I t  i s  p o s s i b l e  t o  e x t e n d  t h e  method o f  
c h o o s i n g  t h e  c a n o n i c a l  c o n n e c t i o n  d e s c r i b e d  in  t h e  f i r s t  p a r a g r a p h .  

Le t  ~ M ~  be a s u b m a n i f o l d  o f  Hg ( p o s s i b l y  e q u a l  t o  i t ) .  Re w i l l  s ay  t h a t  an admis -  
s i b l e  c o n n e c t i o n  i s  d e f i n e d  on t h e  s t r a t i f i c a t i o n  ~ - ~ ,  wh ich  i s  a r e s t r i c t i o n  o f  t h e  

^ 

s t r a t i f i c a t i o n  Ng on ~ ,  i f  on e a c h  c u r v e  r in  t h e  s e t  o f  d a t a  which  d e f i n e  a p o i n t  o f  ~ 
t h e r e  i s  d e f i n e d - a  f u n c t i o n  X(P) such  t h a t ,  f o r  any number X 0 b e l o n g i n g  t o  a s m a l l  n e i g h -  
b o r h o o d  of  X(Pu) ,  t h e  q u a n t i t i e s  k ~ ( P ) ,  i = l , . . . , m ,  where  P i s  d e t e r m i n e d  by t h e  c o n d i t i o n s  
X(P) = X 0, a r e  w e l l - d e f i n e d  f u n c t i o n s  o f  X 0, i . e . ,  do n o t  depend on t h e  c u r v e  F. Re n o t e  t h a t  
c a n o n i c a l  c o n n e c t i o n s  a r e  a d m i s s i b l e .  The p o i n t s  q i  a t  which  dX v a n i s h e s  a r e  s i n g u l a r i t i e s  
o f  t h e  c o n n e c t i o n .  

THEOREH 2 '  Suppose  (r, P ~ , [ k g ~ ] , , ~ ) ~  depends  on X, Y, and T in  such  a way t h a t  a t  a l l  
s i n g u l a r i t i s  o f  an a d m i s s i b l e  c o n n e c t i o n  on F one o f  t h e  c o n d i t i o n s  (58)  i s  f u l f i l l e d .  Then 
t h e  c o r r e s p o n d i n g  A b e l i a n  i n t e g r a l s  p,  E, and ~ s a t i s f y  ( 5 9 ) .  

I n  t h e  s p e c i a l  c a s e  o f  t h e  s u b m a n i f o l d  o f  d a t a  ~ =  31~, which  d e t e r m i n e  s o l u t i o n s  o f  Lax 
e q u a t i o n s ,  t h e  c o n n e c t i o n  g i v e n  by t h e  f u n c t i o n  E ( P ) ,  wh ich  c o n n e c t i o n  e x i s t s  on each  c u r v e  
in  t h e  d a t a  s e t s  in  H~, i s  an a d m i s s i b l e  c o n n e c t i o n .  H o r e o v e r ,  i f  a l l  E i * e o n s t ,  g q s .  (62)  
go i n t o  e q u a t i o n s  p r o p o s e d  in  [ 5 ] .  I t  must  be n o t e d ,  howeve r ,  t h a t  [5]  l a c k s  an e f f e c t i v e  
c o n s t r u c t i o n  o f  t h e  f u n c t i o n s  w i e x c e p t  in  t h e  c a s e  where  t h e  w i a r e  p r o d u c e d  by a v e r a g e d  
p o l y n o m i a l  laws o f  c o n s e r v a t i o n  o f  t h e  o r i g i n a l  Lax e q u a t i o n .  ~he c o r r e s p o n d i n g  s o l u t i o n s  
a r e  c a l l e d  " a v e r a g e d  n - z o n e . "  I n  our  f r amework ,  t h e  c o n s t r u c t i o n s  o f  such  s o l u t i o n s  c o r r e -  
spond t o  t h e  c a s e  dH = 0, and a l l  o f  t h e  p o i n t s  ~ c o i n c i d e  ~ i t h  t h e  P~. From t h i s  i n t e r -  
p r e t a t i o n  o f  a v e r a g e d  n - z o n e  s o l u t i o n s  f o l l o w s  t h e i r  s i m i l a r i t y ,  a p r o p e r t y  o m i t t e d  in  [ 5 ] .  
Note  p r e c i s e l y ,  we c o n s i d e r  t h e  Rhi tham e q u a t i o n s  c o r r e s p o n d i n g  t o  t h e  K o r t e w e g - d e  V r i e s  
e q u a t i o n .  

COROLLARY. L e t  da n be a d i f f e r e n t i a l  which  i s  h o l o m o r p h i c  e v e r y w h e r e  e x c e p t  g = ~ on 
2 ,e+~ 

t h e  h y p e r e l l i p t i c  c u r v e  rg  g i v e n  by t h e  e q u a t i o n  V~= I ~ ( E - - E j ) .  I n  a n e i g h b o r h o o d  of  E : ~,  
~--1 dQ 

i t  has  a s i n g u l a r i t y  o f  t h e  form dQ~ = d (E"/~)+O (1). Then f o r  w~= ~ (E~), (62)  d e f i n e s  

s o l u t i o n s  o f  t h e  ~ h i t h a m  e q u a t i o n s  w i t h  s i m i l a r i t y  index  X = 2 / ( n  - 3 ) .  

The ~ h i t h a m  e q u a t i o n s  f o r  t h e  K o r t e w e g - d e  g r i e s  e q u a t i o n  h a v e  s i m i l a r  s o l u t i o n s  o f  t h e  

/ ) form E~=t~E~ ~ w i t h  a r b i t r a r y  i ndex  ~. To c o n s t r u c t  such  s o l u t i o n s ,  i t  s u f f i c e s  t o  t a k e  

as  t h e  c o n t o u r  g a c u t  on Fg a l o n g  t h e  e n t i r e  r e a l  a x i s  and t o  p u t  dh = a i d ( E n / ~ ) ,  where  
n = 3 + 2 /¥  and t h e  c o n s t a n t s  a i may be d i f f e r e n t  on d i f f e r e n t  banks  o f  t h e  c u t .  We n o t e  
t h a t ,  i f  we a n a l y z e  t h e  c o r o l l a r y  i n  more d e t a i l ,  we can show t h a t  t h e  s i m i l a r  s o l u t i o n  w i t h  
index  X = 1 /2  u s e d  in  [18]  i s  an a v e r a g e d  7 - z o n e .  

An i m p o r t a n t  p r o b l e m  i s  t h e  d e f i n i t i o n  o f  " e q u i v a l e n t "  s e t s  o f  c o n s t r u c t i o n  p a r a m e t e r s  
(N, d h , . . . ) ,  i . e . ,  s e t s  wh ich  r e d u c e  t o  t h e  same s o l u t i o n  o f  t h e  Whitham e q u a t i o n s .  The p r o b -  
lem o f  t h e  e f f e c t i v e  s o l u t i o n  o f  t h e  Cauchy p rob l em f o r  Whitham e q u a t i o n s  i n  t h e  c a s e  o f  
e q u a t i o n s  in  one  s p a t i a l  d i m e n s i o n  i s  a l s o  c l o s e l y  r e l a t e d  t o  t h i s  p r o b l e m .  

Supp lemen t .  I n  [22]  a n o n t r i v i a l  g e n e r a l i z a t i o n  o f  t h e  Lax e q u a t i o n s  t o  t h e  c a s e  o f  
s y s t e m s  in  two s p a t i a l  d i m e n s i o n s ,  d i f f e r e n t  f rom t h a t  o f  [ 4 ] ,  was p r o p o s e d .  The g r e a t e s t  
i n t e r e s t  in  such  e q u a t i o n s  c e n t e r s  on t h e  N o v i k o v - V e s e l o v  e q u a t i o n  [ 2 3 ] .  
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ut = 03u-+- ~ u  + O (vu) + ~@u),  3Ou = ~L:, O =  ~Oz, ~ = ~ ,  z = z + iy: (63) 
It turns out that, although the commutator representation for this equation differs from (4), 
the Whitham equation has the form (38) in this case. More precisely: the parameters which 
determine the finite-zone solutions of (63) are the curve ?, on which there is a holomorphic 
involution o with two fixed points P~ and P2, and an antiholomorphic involution • which com- 
mutes with o, ~d = o~, ~(P~) = P2. In addition, in neighborhoods of P~ and P= are fixed the 
germs [k~]~ and [k=]~ of the local parameters k~ and k= such that o*k i = -ki, and ~*k~ = k=. 
On such curves, we define differentials dpx, dPv , and d~ which have the forms dPx = i dk, 
dPv = ±dk, and dS = i dk ~ in neighborhoods of P~ and P= and are normalized by the condition 
that their periods with respect to all cycles are real. 

THEOREM 3. The Whitham equation for the Novikov-Veselov equation has the form (38), 
where dp = dPx, dE = dpy, and dg = d~. 
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ASYMPTOTIC OF THE SPECTRAL FUNCTION OF A POSITIVE ELLIPTIC 

OPERATOR WITHOUT THE NONTRAP CONDITION 

Yu. G. Safarov UDC 517.944 

In this article we investigate the asymptotic with respect to the spectral parameter of 
the spectral function of a scalar (pseudo) differential operator on a smooth manifold (with 
or without boundary). A large number of works have been devoted to this problem; we indicate 
[1-13] without pretention of completeness. Till now, in the general situation a one-term 
asymptotic formula with a sharp estimate of the remainder for the trace of the spectral func- 
tion on the diagonal and an order-sharp estimate of the spectral function off the diagonal 
have been obtained. It is established that these formulas are uniform on compacta that lie 
outside a small neighborhood of the boundary (and sometimes also up to the boundary; see [8, 
12]). In this article, under certain (quite weak) conditions we find the subsequent (with 
respect to order) term of the asymptotic. 

In [5, 6, ii, 13] the complete asymptotic expansion of the spectral function was ob- 
tained for the operators in R ~ (in [5, 6], also for the operators in the exterior of a bounded 
domain) under a series of additional conditions. The nontrap condition (see, e.g., [ii, 13]) 
is the most fundamental of these conditions. In the present article, in place of the nontrap 
condition we introduce the substantially weaker nonfocality condition (see Theorems 3.2 and 
3.3). At the nonfocal points the two leading terms of the asymptotic have the same form as 
for the problems with the nontrap condition (these terms vanish off the diagonal); we will 
call these asymptotics the Weyl asymptotics. On the boundaryless manifold the Weyl asympto- 
tic is uniform on compacta that do not contain focal points. 

The behavior of the spectral function at the focal points depends on the properties of 
certain partially isometric operators, generated by a Hamiltonian flow and acting in the 
spaces L 2 on the unit cotangent spheres (see Sec. 4). Without the nonfocality condition a 
two-sided asymptotic inequality (Theorem 4.3) is obtained for the trace of the spectral 
function on the diagonal. A similar formula is established in [14, 15] for the distribution 
function of eigenvalues. In the "regular" cases the Weyl asymptotic, and in a somewhat more 
general situation the "quasi-Weyl" asymptotic (the coefficient of the second term is a 
bounded uniformly continuous function of the spectral parameter), is obtained from these 
formulas. Moreover, in analogy with works on the distribution function of eigenvalues the 
notion of a cluster asymptotic is introduced (see Sec. 5). 

In this article we use the method of hyperbolic equation. In the main body of the 
article, for simplicity we consider an operator that acts in the space of half-densities on 
a boundaryless manifold. All the results are easily carried over to an operator that acts 
in a function space (then for the formulation of the problem it is necessary to fix a posi- 
tive smooth density on the manifold). With certain stipulations, the results are carried 
over to manifolds with boundary (see Sec. 6). In this case the obtained formulas are valid 
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