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VIRASORO-TYPE ALGEBRAS, RIEMANN SURFACES AND 

STRINGS IN MINKOWSKY SPACE 

I. M. Krichever and S. P. Novikov UDC 517.9 

Introduction 

According to the ideas of [i] the algebrogeometric model of a string in Minkowsky space 
(more precisely, of a "diagram," near which the string fluctuates) is the following. Given is 
a compact Riemann surface F with two distinguished points P+~F. There exists a unique dif- 
ferential of the third kind dk with two simple poles at the-points P+, with residues ~I and 
purely imaginary periods with respect to all contours on F. The re~l part of the corres- 
ponding integral ~(z) = Re k (z) is single-valued on F and represents "time." The level 
lines ~(z) = const represent the positions of the string at the present time. To the collec- 
tion m = m+ + m_ of strings corresponds a Riemann surface F with two collections of points 
P+,i, P-,j, i = i, ..., m+, j = I, ..., m_ with a differential dk, with real residues c+i, 

c-j at all points P~, c+ > 0, c_ < O, and purely imaginary periods on F. In exactly the 

same way the function ~(z) = Re k(z) is single-valued and plays the role of "time". As 
~ ÷ +_~ the contours • = const split into free strings. The connected components concentra- 
ted near the points P+ play the role of asymptotically free "in" and "out" strings. In [I] 
a rich collection of ~igebraic objects connected with this picture for m = 1 was constructed, 
which for genus g = 0 reduce to the theory of the Virasoro algebra and its representations. 
In the present paper we demonstrate that these algebraic forms arise in the process of quan- 
tization of strings on such algebrogeometric models, "diagrams". To the asymptotic "in" and 
"out" states correspond the ordinary Fock spaces of free strings -- small contours • = const 
near the points P+. The global algebrogeometric objects on a surface F with distinguished 
points P+ permit ~ne in principle to trace the whole course of the interaction. 

- -  

The algebrogeometric objects in the theory of Polyakov, Belavin, Knizhnik, etc., of 
strings in Euclidean space-time, as is known, lead to problems on the space of moduli of 
Riemann surfaces. The algebraic forms we introduce do not appear in this theory. 
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But to the minds of the authors the approach.we develop relates the algebrogeometric 
theory of strings with traditional ideas of operator.quantum theory of strings in Minkowsky 
space and lets us use the mathematical techniques of the method of finite-zone integration 
in the theory of solitons. 

i. Analogs of the Heisenberg and Virasoro 
Algebra s Related to Riemann Surfaces 

In this section we recall the definitions and constructions of [I] which are needed 
later. 

Let F be an arbitrary compact Riemann surface of genus g with two distinguished points 
P+. By ~ =~(F, P+) we denote the commutative ring of meromorphic functions on F, which 
aye holomorphic aw~y from the points P+. In [1], an additive basis for ~, formed by func- 
tions An(Q), Q ~F, which for Inl > g/~ are uniquely determined by their behavior in neigh- 
borhoods of P+ of the form 

- -  

A,~ (Q) = ~±-±~:~-g/2 (t + O (z±)), a +~ = 1, ( 1 . 1 )  

was i n t r o d u c e d .  Here z+(Q) a r e  f i x e d  l o c a l  c o o r d i n a t e s  in  n e i g h b o r h o o d s  o f  P+. (For  
- -  - -  

In[ ! g/2 the definition of A n is changed slightly (cf. the details in [i]). Here and below 
the indices n run through integral values if g is even and half-integral ones n = ..., 
-3/2, --I/2, 1/2 .... if g is odd. 

Definition. By the generalized Heisenberg algebra connected with the curve F and pair 
of points P+ is meant the algebra generated by generators a n and a central element t with 
relations - 

[~n, ~ ]  = ? ~ t ,  [a~,t] = O, 
( 1 . 2 )  

where t h e  numbers ~nm a r e  e q u a l  to  

I £ 
~) A~ dA n. ~nrn : 2.~i 

(1.3) 

The integral in (1.3) is taken over any contour separating the points P+. Since all 
such contours are homologous, and the A n are holomorphic away from P+, one h~s that the 
Ynm do not depend on the choice of contour. - 

An important property of the cited central extension of the commutative algebra ~is 
the "locality" of the corresponding cocycle: 

W~----O, ~ I ~ ÷ ~ 1 > ~  , I ~ l , l ~ l > ~ / ~ ,  ( 1 . ~ )  

~ - - o ,  ~= I ~ ÷ ~ l > g ÷ L  1~t o= I~f~<~/2. (1.5) 

Later we need to consider the space of differentials, holomorphic on F away from the points 
P+, at which they have poles. A basis in this space is formed of the differentials dun(Q) , 

- -  

which for Inl > g/2 are uniquely determined, starting from the following behavior in neigh- 
borhoods of the points P+: 

- -  

,±~n+g/2-1 d ~  = ~ n ~ ±  (1 + 0 (z~))dz~. ( 1 . 6 )  

For  Inl ! g / 2 ,  n ~ - g / 2  we d e f i n e  du n from t h e  f o l l o w i n g  c o n d i t i o n s :  in  t h e  n e i g h b o r h o o d s  

dun = z~ n+g/~ (t + 0 (z+)) dz+, Q ~ P+' ( 1 . 7 )  

d¢% =- w~z~ +g/2-~ (1 + 0 (z_)) dz_, Q--~ P_. ( 1 . 8 )  

Finally, we define d~_g/2 as the unique differential dk: 

d~_~/~ : dk, (1.9) 

having simple poles at P+ with residues !l and purely imaginary periods on all cycles. (This 
differential plays a distinguished role in the theory; in [i] it was denoted by dp.) 

It follows from (i.I) and (1.6)-(1.9) that for Inl > g/2 

~F A~d~.~-~_5~. (i.i0) 
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In [i] the generators A n for In[ 5 g/2 were defined up to a constant, which one can fix 
uniquely by requiring that (i.i0) hold for all n and m. 

For g = 0, when F is the ordinary completion of the complex plane, and P+ are the 
points z = 0 and z = ~, the functions A n coincide with z n, the generators of ~'he Laurent 
basis in the space of smooth functions on the circle Izl = const. It turns out that the 
functions A n are the "Laurent" basis for curves of arbitrary genus on a special system of 
contours C~. These contours are the level lines of a single-valued function 

C, = {O, Re  k (O) = ~}. (1.11) 
As • + +2 the contours C~ are small circles enveloping the point P~. Upon passing through 

zeros of the differential dk as • changes, the contours C~ undergo topological reconstruc- 
tion: they split into disconnected cycles, which afterwards merge. Aside from the depen- 
dence on • there is the following theorem, whose proof is completely analogous to the proof 
of Lemma 1.2 of [i]. 

THEOREM i.i. For any continuously differentiable function F(Q) on the contour CT, 
Q ~C~ one has 

~ ~ F  F (Q) ~-- ~ Z A n (Q) (Q') &on (Q') 
n C.¢ 

(1.12) 

(which generalizes the Laurent expansion to the case of arbitrary curves). The dual is the 
expansion of any smooth differential dr(Q) in a series 

(1.13) 
d/(Q) .~ ~ £ dm. (Q)e ~ dl (Q') A= (Q'). 

~ ~ 

Now we proceed to the description of the analogs of the Virasoro algebra. Let ~r = 
~ (F, P+) be the algebra of meromorphic vector fields on F, holomorphic away from the points 
P+. F~r g > i a basis in this space is formed by the fields en, which in neighborhoods of 

- -  

P+ have the form 
- -  

~ ~ n - g ~ + l  14 ~ 3g + en ~--- en z± t" + 0 (z±)) 0--~--~ ' go = ' - - f - ,  en = t .  ( 1 . 1 4 )  

(The case g = i is analyzed in detail in Sec. 5 of [i].) It was proved in [i] that the res- 
trictions of these fields to any contour C~ form a Laurent basis in the space of all smooth 
vector fields on this contour. 

We denote by damn generators in the space of quadratic differentials (tensors of type 
(2, 0)) on r, holomorphic away from P+, where they have poles. For g > i they can be chosen 
uniquely so that in neighborhoods of Y+we have 

- -  

Then 

a*~,,----- (~)-~ =~:,~+e.-= (l + o (=+_)) (a=±)~. 

THEOREM 1.2. 

• e,~ d*~,~ ~ 6,~. 
~.~ 

For any smooth vector field E(Q) on C~ one has 

(1.15) 

( 1 . 1 6 )  

Q 1 )= 
?~. 

For any smooth quadratic differential d2f on C~ one has 

dV (Q) ---- ~--2~ ~ ~~ d'~" (q) ~ e,~ (q') dV (0'). 
~% 

(1.17) 

(1.18) 
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Definition. By the analog of the Virasoro algebra connected with the curve F with dis- 
tinguished points we shall mean the algebra ~r which is a one-dimensional "local" central 
extension of the algebra ~r. It is generated by the elements E n and t with the commutation 
relations 

go 

[E,~, t] : 0; [E,, E~i = Y, ~ ' c~,~E~+.~_~ + Xm~t. ( i. 19 ) 
~=--g~ 

Here c k are the structural constants of the algebra St, in which the following rela- 
nm 

t i o n s  h o l d  [1] 
g~ 

[e~, era] = ~, c~me,~+m-~. ( 1 . 2 0 )  
~:=--g'o 

The numbers Xnm define a 2-cocycle on the algebra ~r, which must satisfy the locality condi- 
tion 

Z n m  = O, if I n + m I >  3g. (1.21) 

By virtue of the convergence of Laurent series with respect to the basis e n on any 
contour Cm, any local cocycle on ~v extends to a cocycle on the algebra of all smooth vector 
fields on the circle. Since for the latter algebra there exists a unique nontrivial homology 
class of two-dimensional cocycles [2], all "local" central extensions of the algebra ~r are 
isomorphic. More precisely, if Xnm and X~m are two different cocycles, which define exten- 
sions of £r by (1.19) and satisfy (1.21), then one can find numbers s-g . . . . .  , $go, ~ such that 

~ = ~ ( ~  - -  ~ c~ms~+m_~). ( 1 . 2 2 )  

Here the correspondence E n' = E n + Snt, In[ < go, t' = ~t establishes an isomorphism of ten- 
, 

tral extensions, defined by the cycles Xnm and Xnm- In what follows we shall be interested 
not so much in the algebra ~ritself, which is the unique local central extension of St, as 
in the fixed basis of operators En, t in it. Hence in the future we shall be interested in 
all the local cocycles Xnm and not just their homology classes. 

In [i] "local" cocycles on the algebra ~ were defined with the help of "projective" 
complex structures given on F. These cocycles can be defined more effectively with the help 
of projective connections given on F. 

One says that a holomorphic projective connection R is given on F, if for any local 
coordinate system z~(Q), defined in a domain U s c F, there is defined a holomorphic function 
Ra(za). In addition, on the intersection of charts U s ~ US the corresponding functions must 
be related by 

{°9] ~ ~---B~ (z~) + @ ( f~ ) .  (i. 23) B~ (zl~) t o~  i 

Here f~8 are the transition functions, z~s----/=~ (z=); ~ (h) is the Schwartz derivative, 

,~" (1.24) 
$ ( h ) - -  ~, z \ h '  1" 

There  a r e  s e v e r a l  c a n o n i c a l  p r o j e c t i v e  c o n n e c t i o n s  - o f  ~uks ,  S c h o ~ k y ,  e~c .  [3 ,  4 ] .  I~ 
f o l l o w s  f rom ( 1 . 2 3 )  [ha~  t h e  d i f f e r e n c e  o~ any  two p r o j e c t i v e  c o n n e c t i o n s  i s  a q u a d r a t i c  
d ~ f e r e n [ ~ a l .  ~n wha~ f o l l o w s  we s h a l l  c o n s i d e r  p r o j e c t i v e  c o n n e c t i o n s  R, ho~omorph ic  on r 
a~ay f rom ~he d ~ s [ ~ n g u i s h e d  p o i n t s  P+, a t  which  R has  a po~e o f  a~ mos~ ~he f ~ r s t  o r d e r .  
One can r e p r e s e n ~  any  s u c h  c o n n e c ~ o ~  u n i q u e l y  in  t h e  form 

g. 
R ~ R o  + ~ s ~ d ~  ' ( 1 . 2 5 )  

~ g ~  

if one fixes any holomorphic projective connection R0. 

Let f and g be two arbitrary vector fields. Then the formula 
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(+ 
which is defined in each local coordinate system in which f and g have the form f(z)~/~z, 
g(z)~/~z (the dash denotes the derivative with respect to the local parameter z), determines 
a well-defined 1-form on F. If the projective connection R has the form (1.25), then the 
cocycle 

X~ = ~--~7-~ ~ (e~, e~) (1.27) 

• 

defines a "local" central extension of the algebra ~c. 

We shall return later to the question of the explicit calculation of projective connec- 
tions corresponding to cocycles which will be constructed in the next section in the course 
of quantization of strings, and the connection of this problem with the problem of "accessory" 
parameters. 

2. Analogs of the Heisenberg and Virasoro Algebras 
in Strin~ Theory 

The standard phase of a classical boson closed string in D-dimensional Minkowsky space 
is defined as the space of 2~-periodic functions x~(o) and 2~-periodic differentials p~(o) 
with Poisson bracket 

{p~ (~'), ~ (~)} = ~ (a, a'). (2. l )  

Here ~v is the Minkowsky metric with signature (-i, i, i, ...), A(o, o') is the "delta- 
function on the circle" (more precisely, ~(~, ~') is a function of the variable o'and the 
differential with respect to the variable o'), where for any function on the circle one has 

/(~) = ~ / (o ' )A (~, ~'). (2 .2)  

Such a definition of phase space does not permit the naive inclusion in consideration 
of motion of a string in which topological reconstruction occurs (division and merging) in 
the course of the motion in time. A possible way of avoiding this difficulty prompts the 
analysis of the system of contours C~, constructed above on any Riemann surface with two 
distinguished points. 

The realization of a two-dimensional Riemann surface ~ as "world line" of a string auto- 
matically induces a partition of ~ into a system of contours corresponding to the position 
of the string at a specific moment of time. The complex structure on ~ arises from the 
requirement that time is a harmonic function on ~. In the role of "diagrams" only those 
world lines appear for which at no time • do new components of the string appear or vanish, 
and the compactification is algebraic. 

We consider the problem of quantization of such diagrams. The ordinary Fourier coeffi- 
cients must be replaced by the coefficients of the decomopsitions with respect to the func- 
tions An, which form a basis in the space of smooth functions on the contours C~ for all ~. 

Thus, let xV(Q) and p~(Q) be operator-valued functions and differentials on F, commuting 
if Q and Q' lie on different contours C~ (i.e., at different moments of time) and such that 

[x~ (Q), p~ (Q')] = - i ~ A ~  (Q, Q'), Q, Q, ~ C~, (2 .3)  

where A~ is the "delta-functi~' on the contour G~. It follows from Theorem i.i that 

I EAa(Q)d~n(Q, ) ,  (2 .~)  A, (Q, Q') ~- - f~  

We denote by X~ the operator coefficients of the expansion 

x. (Q) = ~, X~A,, (Q). (2.5) 
~. 
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Since pD is a differential with respect to the variable Q, it should be expanded with respect 
to the basis of differentials dm n 

p~ (Q) ----- ~ P~ d~% (Q). ( 2 . 6 )  
~t 

It follows from (2.3) and (2.4) that P~ and X v satisfy the canonical commutation relations 
n m 

[P~, X~] ~ - ~  ~]gvSnm. 
(2 .7)  

We define the operators ~ as the coefficients of the decomposition of the differential 

apv ÷ (x ) -~ ~ oz~ d~% (Q), Q = (.c, ~), x' = ax/aa. ( 2 . 8 )  

We have 

~, (z~ do)n (Q) -~- ~ (X~dAn (Q) q- ~rP~ do~n). 
n n (2 .9)  

Using (1.13), we get 

d A . - ~  ?~d~o~, 

where the constants ~nm are given by (1.3). Finally 

( 2 . 1 0 )  

c¢~ = ~rP~ + ~ ?m~X~. (2 .11 )  
?;*t 

These operators satisfy the commutation relations 

[~ ,  ~%] = ? ~ N ~  (2.12)  

and r e a l i z e  a r e p r e s e n t a t i o n  of  t he  d i r e c t  product  of  D copies  of  the  F-analog of  the  Heisen-  
berg a l g e b r a .  

The con juga t e  f u n c t i o n s  Xn(Q) and d i f f e r e n t i a l s  d~'--n(Q) a l s o  form bases in the  spaces of  
smoot_h f u n c t i o n s  and d i f f e r e n t i a l s  on the  con tours  C~. Hence one can d e f i n e  o p e r a t o r s  X~ 
and Pn ~ from the  expans ions  

~ (Q)= Y, X~T,~ (O), (2.13)  
?Z 

p~ (Q) = ~ p~ ~ (Q). (2 .14)  
*t'~ 

They satisfy the relations 

The operators 

1 V [Z~, P~] ~ -2~ ~1" 8~,. (2.15) 

~ _ - -  --  ~P~ + Y~ ~ X ~  (2 .16 )  
- -  

(where the  Ynm are  t he  c o n s t a n t s  c o n j u g a t e  to  '(nm) are  the  c o e f f i c i e n t s  of  the  expansion 

(x')~ -- ~p~ = ~ 4~--~ (0)- (2 .17)  
?~ 

They s a t i s f y  the  commutation r e l a t i o n s  of  khe con juga t e  F-analog of  the  Heisenberg a lgeb ra  

[a~, -~ ~m] = ~ .  ( 2 . 18 )  

LEMMA 2.1. One has 

[ ~, a~] = 0. ( 2 .19 )  

Proof .  Expanding ~n and dm-- n wi th  r e s p e c t  to  the  bases A k and dm k r e s p e c t i v e l y ,  we ge t  

X ~ -  ~ X~/~a., P~ : - -  Y,P~f~, ( 2 .20 )  
8 8 
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where 

Fromthis 

t L~ --__-~/-(~ ~o do~. 

" .  ¸ 

= + Z = 

8 a  ~ ~ 

(2 .21)  

(2 .22)  

In passing to the next to the last equation we used (2.4). 

The operators ~ and ~-n ~ with n > g/2 will be called death operators, and those with 

n ! g/2, birth operators of "in"-states. In the standard way one can introduce the Fock 

space, generated by the birth operators of "in"-states from a "vacuum," which is defined by 
the relations 

=~ ] ~ >  = ~  [ ~ >  = O, n > g / 2 .  (2 .23)  

We note that the death operators coramute with one another, so the conditions (2.23) are 
consistent. 

The subspaces ~±, generated by A n with c ~ n ~ g/2, are dense among functions which 

are holomorphic in neighborhoods of the points p+ respectively. Hence the Fock space of in- 
states we have defined coincides with the ordinary Fock space, constructed in the standard 
way from the expansions of xB and pB in Fourier series on a small contour enveloping t~e 
point P+. 

Analogousl_y, if the Fock space of "out-states" is defined as the space generated by the 
operators ~, ~ with n ~ -g/2 from an out-vacuum, satisfying (2.24), then they coincide with 

the standard Fock space of a small contour in a neighborhood of the point P_ 

<~ou~ ] =~ = <~ou~ ] ~ = O, n < --g/2. (2 .24)  

It follows form the comments made that all the restrictions connected with the require- 
ments of positivity of the norm of physical states and closure of the Lorentz relations and 
reducing in the case g = 0 to the distinguishing of the critical dimension D = 26 [5; 6] 
remain completely valid in the case g > 0 considered by us also. Our subsequent goal is the 
proof of the fact that for any g the construction of a consistent theory is possible for D = 
26. 

For a classical string the Hamiltonian density and momentum are the half sum and differ- 
ence of the expressions 

~ , - ~ , T = ~ (x + ~p)~, ( 2 . 2 5 )  ~ -- -~- (x -- ~p)~, 

which are quadratic differentials on each contour C~. In order to define the quantized ana- 
logs of these expressions we need to introduce the concept of normal ordering of birth and 
death operators. Since the operators ~ ~ with Inl Iml < g/2 are noncommutative, the 

n' m ~ 

possibility of introducing such mutually inequivalent concepts is rather large. 

Let Z ± be a partition of the set of integral points of the two-dimensional plane into 
two subsets such that Z + differs by a finite set of points from the half-plane E~: (n, m), 
n ! m. For any such admissible partition E ± we define the concept of normal product 

:~n~m: = ~n~m, (n, m) ~ ~+; :~n~m: = ~m~n, (n, m) ~ E-. (2 .26)  

Remark. This definition of normal product is far from the most general one. In the 
next section we need an extension of it (cf. (3.24)). Since ~, e~m conuuute if (1.4) holds, 

the concept of normal product depends on the partition into two subsets not of the whole 
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plane, but only of the strip In + m I ! g- One can give fundamental examples of such parti- 
tions with the help of collections of numbers o_g .... , Og. Here we shall put 

(n, m) ~ Z +, if n q- m = s, n ~.< ~s, s : - - g  . . . . .  g. (2.27) 

F o r  a n y  c h o i c e  o f  c o n c e p t  o f  n o r m a l  p r o d u c t  we d e f i n e  t h e  quan tum o p e r a t o r s  

T (Q) ~--- ~ -  :aria,n: d~% (Q) do~r~ (Q), 
Tt, Tg~ 

t ] 
f (O)=- --U ~.~ :a~c~m: ~-n (Ol~-~m (O). 

~%,~t 

( 2 . 2 8 )  

~ i~v Ix v Here and later ~ZrtO~ m Z~ ] O~nOSm" 

These operators are quadratic differentials on C~. Hence they can be decomposed with 
respect to the basis of quadratic differentials d~n, d=~n 

r-~ Y,L~d~P.~; T - ~ G ' d ~ .  
1~ k 

(2 .29)  

From Theorem 1.2 it follows that 

- 

n m  :O~, G~m: ~ 

;2~ ~/~ T~ T/I 

(2 ,30)  

where the constants £k have the form 
nm 

Here f o r  Ik l  > go we have 

z~ = ,~ ~ e~ a~% d~o.,. 
(2.31) 

l ~.m~-~O, ff l n + m - - k l > + .  ( 2 . 3 2 )  

For [k[ < g0 the indices n and m for which the constants ~k can differ from zero satisfy 
- nm 

the same relation (2.32) for Inl, Iml > g/2 and the relation In + m - k I ! g + s if one 
or two of the numbers Inl, Iml do not exceed g/2. Here s is equal to i, 2, respectively. 
In any case it follows fr_om the definition of normal product and (2.32) that the action 
of the operators L k and L k is well defined in the Fock spaces of "in"- and "out"-states. By 

(2.32) and (1.4), the operators Lk, ~k with Ik{ > g~ do not depend on the choice of normal 
order and here 

L~ I 6lOin > ~___ 0 = < 6D °ut I L_~, k > go- 

THEOREM 2.1. The operators L k satisfy the commutation relations 

(2 .33)  

g0 (2.34) 
L{Lj -- LjLi : ~ c~iL{+~-~ ÷ D.Z{5. ~" 

~=--g~ 

Here D is the dimension of the space and the 2-cocycle X[j has the form (1.26), where the 

projective connection R depends only on the method of normal ordering and is independent of 
D. 

Proof. One verifies directly that 

+2 ' 

[L~, LJ ~ l~.l~o (?~. :a~%: + ?~ :~ .~ . :  + ? ~  : a ~ . :  + ?~. : a ~ :  + D - ~ . ~ 0 )  ~ ~ /~ : = ~ :  + DZ~.~ , 

~,~'~,~ n,~ ( 2 . 3 5 )  

where 

.~  ,~ ~ J ~ .~ (2 ,36)  = ( I n m l ~  ~ l~sl,trn) ?ra~.  
7 ~  }~ 
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In addition 

Here 

1 
ln,nl~sFnra~,. ( 2 . 3  7 ) 

~, m, k, S 

Fn.~.  = O, (n, s) ~ Y,+, (k, m) ~ E +, 

F n . ~  = ~ . ~ ,  (n ,s)  ~ Y,+, (k, m) ~ ~- ,  (2 .38)  

F~ ,~  = ?~.?.~, (n, s) ~ Y-, (k, m) ~ 2% (2 .39)  

It follows from (1.4), (1.5), and (2.32) that the sum (2.37) contains only a finite number 
of nonzero terms. Hence it is well-defined. 

By virtue of (1.3) and (2.31) we have 

i ~ - - ~  t Z lnml~£fm~ " t . = ~ Z ~ ( d o ) n d o ) m e O ~ ( d o ) ~ d ( o s e , ) ~ A ~ d A m  ~ Z ~ ~O,ik d~e,l ~ ~ (do)~el, A~" (2 .50)  
~, k m, k k 

To get the last equation it suffices, in taking the first integral and the sum over m, to 
use (2.4). Analogously, from (2.40) we get 

Z ~ ~ 1 
laml~y,~ == ~ ~ (do)~e~) d (do)~ei). 

~ 

(2.41) 

Consequently 
~. 

( t , , ,  Z ' . : c~i~ns (2.42) 
~=--g~ 

and (2.34) is proved. It follows directly from (2.39) that the cocycle X~j~ is local. The 
theorem is proved. 

At the present time the authors have still not obtained a complete answer to the impor- 
tant and interesting question of the explicit calculation for all methods of normal ordering 
of the corresponding projective connections R E . At the end of this section we give an ex- 
pression in terms of Cauchy type integrals for the cocycle X~j in the case of a normal or- 

dering defined by a partition of E of the following form: 

(n, m) ~ E-, n ~ N, m < N. (2 .43)  

For this we define the necessary class of meromorphic analogs of Cauchy kernels, which are 
special cases of general kernels of similar type [7]. 

For any integer orhalf-integer (depending on the parity of g) N, INI > g/2, we denote 
by KN(Z~, z2)dz 2 a meromorphic analog of the Cauchy kernel, which is a differential with 
respect to the variable z2 which in neighborhoods of P+ has the form 

-- 

K N  ( z  1, z2)dz 2 : z~-N+gl~-l~u (l)dz2, z2-~ P+, (2 .44)  

KN (zl, z~)dz2 : z~+g/~O (t)dz2, g2-~ p_. (2.45) 

With respect to the variable z~ the kernel K N is a meromorphic function, which~ in neighbor- 
hoods of P+, has the form 

- -  

K ~  = z~+~-g/20 (~), Zl "-~ P+, ( 2 . 4 6 )  

KN = zTN-~l~O (t),  z2_+ p_. (2 .47)  

Away from P+ the kernel K N is holomorphic everywhere except z~ = z 2. Here 
- -  

dz2 (2.48) KN (Zf, Z~) dz~- -  z2 -- z-----~ + regular terms. 
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The cited properties (by virtue of the same arguments which have been used repeatedly) deter- 

mine K N uniquely. 

Example. We give an explicit formula for KN(Z~, z=) in the case g = i, P+: 
- -  

~ ' + V ,  ( ~  _ zo) ~Y+'/'  (z~ + zo) ~ (z~ - -  z~ + (2N + 1) Zo) K~ (z~, z ~ ) ~  
o ( (2N -~- 1) zo) ~ (z~ - -  zx) o N+'A (zl + Zo) ~N+% (z~ - -  zo) 

(For g > 1 one can get analogous expressions in terms of the Riemann theta-functions.) 

L ~  2.2. If ~(z~) < ~(z=), then 

K s  (z,, z~) dzz ~ ~ A~ (za) d ~  (z~). 
n=N~l 

Z = +Zo: 

(2.~9) 

( 2 . 5 0 )  

For ~(z~)  > ~(z=) we have 
N 

KN(Z~, z~)dz~=-- ~ A~(za)do~(z~). ( 2 . 5 1 )  
n ~ - - o ~  

We give only a brief sketch of the proof. The convergence of the right sides of (2.50) 
and (2.51) follows since the terms of the series are majorized by the terms of the geometric 
progressionM~(~(~0-~)) . It follows from (2.4) that (2.50) and (2.51) are analytic continua- 
tions of one another and define a global analog of the Cauchy kernel K N. Its behavior in 
neighborhoods of P+ is easy to determine, using the asymptotic form of A n and dm n. 

- -  

We note that (2.50) and (2.51) define K N for all N. The asymptotics of K N for INI ~ g/2 

differ slightly from (2.44)-(2.47), similarly to the way the asymptotics of A n and d~ n for 
Inl ! g/2 differ from the general case. 

It follows from (2.37), (1.4), and (2.3) that the cocycle X~j,~ corresponding to the 
partition (2.43), is equal to 

~D-- ~2~ ~ ) '  (2.52) 

where 

(2.53) 

The summation in (2.53) is over n < N, s > -N, k > N, m ! N. We choose the contours of 
integration in (2.53) so that the ~orresponding variables zl, z=, z~, z~.satisfy the condi- 
tions~(Zl)<T(Z3)<T(Z~)<~(Z2).. Then it follows from Lemma 2.2 that 

~i~=~d~z~ds~dz~[e~(z~)e,(z~)K~(~.~z~)~-~(z~)(~K~(z~z~))(~K~(z~))]. ( 2 . 5 4 )  

Here d~ and d~ denote differentiation ~ith respect to the variables z~ and z~ respectively. 
Shrinking the contours C~ and C~ to the points P+, one can get an expression of the form 

- -  

(1.26), where the corresponding projective connection is a linear combination of the first 
coefficients of the expansions of K+N in a neighborhood of the diagonal zl = z=0 

- -  

3. Operator Realization of Multilooped 
String Diagrams and Conformal Anomalies 

As already said above, the Fock spaces of "in"- and "out"-states coincide with Fock spaces 
corresponding to small contours in neighborhoods of the points P+, respectively. Hence the 
physical states in the case of arbitrary g are defined by the conditions 

L~[ ~ + >  -~-- O , m  i>go; Lgo[~+>~h+lin ~+>,m (3 . i )  

/~out ,  r 0 i ~ out out 
- -  < ¢ ~ _ l L _ g o  < ~ _  [ h _ ,  ( 3 . 2 )  \ ~ -  I ~ i  ---~ , go; -~- 

where the constants h+ are equal to 
- -  

h+ = :1, h_ = e--g.. ( 3 . 3 )  
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(We recall that in a neighborhood of P_ the field e_g ° has the form e- z 8/8z.) The actions 
= -go 

of the operators L i with i ~ go on I~ n> and L i with i ~ -go on <~t I generate subspaces 

V~ n, V~ ut. As follows from (2.34), th~ correspondences E i ÷ L i and E i + -L i define represen- 

t~ion~ of the analog of the Virasoro algebra on V~ ut and V~ respectively. In addition 

these spaces are Verma modules over Zr.. Our next goal will be the construction of scalar 
products between the elements of such spaces 

<ml~>, O ~ V ~  ~, ~ V ~  (3.4) 

so that with respect to this product the operators L i will be self-adjoint, i,e., 

<@ I L~ I ~> = <mL~ l ~F> ---- <(l) I L,T>. (3.5) 

For this we need the realization by the Verma modules of the analog of the Virasoro algebra 
given in [i] which generalizes the corresponding construction of [8] for the case g = 0. 

In [i] there were defined bases fj in the spaces Fl(x 0) of tensor fields of weight ~, 

which are holomorphic on F away from the points P+ and the contour o joining these points. 
u 

Here the limit values on o of any field f~Fl(x0) are related by 

i + = I - e ~ .  (3.6) 

It was shown in [I] that the action of e i on fj has the form 

go 

e4 Z ~ ~ R~f~+;-~, 
R=--go 

where the Rk.. are constants. In particular, 
i3 

+ +  

~ 
B ~e° -- '~ + Xo -- S @~) + ~ ( ~  i -- go + i)) ~ .  ~ ~ ~ J ~ • 

(3.7) 

(3.8) 

Here ¢~ + are the constants defined by the form of fj in neighborhoods of P+_ (cf. [i] for the 

details), and 

S(~) = ~ / ~ - - ~ ( ~ - - ~ )  (3.9) 

(we note that by the authors' oversight the corresponding formula (2.2) in [i] is given with 
a misprint). 

We denote by H~,N(X 0) the space generated by the basis consisting of half-infinite forms -- 

exterior products of the form 

h,+~ A i~,+~ A . . .  A h.,~,+~ A I~+,~ A lm+,+,~ A .. . .  
~<G<...<~-~<m, 

(3.10) 

where the indices of the fields f, starting from some index, run through all values in 
succession to ~. 

If one defines the action of e i on the forms (3.10) by the Leibniz rule, then it follows 
from (3.7) that this action is well defined for Ill > go. For any cocycle Xij, defining a 

local central extension of ~r, there exists a unique extension of the actions.of e i with 

lil > go to a representation of the algebra ~r. Let us agree to normalize the cocycles so 

that they have the form (1.27) with ~ = i. Then the operator t acts on H%,N(X 0) by multi- 
plication by the number 

D = - - 2  ( 6 ~ - - 6 ~  + i), 

called the central charge. The vector 

(3.ii) 
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I~o > = IN+I A 1~+~ A I~+~ A • • • 

satisfies the conditions 

E~ I ~o > = o, ~ > go; E~. I ~o > = --h+ I ~o>. 

The highest weight ~+ depends on x0, ~, and the choice of the cocycle Xij. 

pending projective connection R has the form 

~ = ~±z$ (t + O (~±)) 

in a neighborhood of P+, then 
- -  

Xi, - i ± 3 g  = 
(~ • goP - (~ ~ go) - 2,0 +_ (~ ~_ go) _+ ± 

' ~2 ~ g i  S-i=h3g. 

(3.14) 

(3.13) 
If the corres- 

(3 .15)  

(3.12) 

Calculating the action of [Li, L_i+sg] on I~0> with the help of (3.8), and using (i.19) and 

(3.15), we get the formula (cf. the note) 

4+-----  2 - - C ~  + + ( N - 8 ( ' ~ )  + x o + ~)(2~ + N + x o - S ( ) ~ ) )  . (3.16)  

The action of the operators L i on Y~ ut determines the Verma module generated by the 

vector <~ut I , annihilated by e i with i < -go- One can realize such a module by defining 
-- 

the action of e i on left semiinfinite forms. However we shall need a realization of it of 

a different form. We denote by H%,N(X0) the space generated by the forms 

I;+,+:'," A I~+~,' + A - . .  A/~,n-,+-" A I+~+~ A lm+~+~ + A . . .  ( 3 . 1 7 )  

Here f+. are elements of the space Fz_h(-x0), uniquely defined up to propotionality by their 

asymptotic form in neighborhoods of P+ 

]~----- z~-~-~o-s(~)+~O (z+) (dz) ~-~. (3 .18)  

One can choose the corresponding constants uniquely so as to have 

+ 5 ~ ~M~=I ~. (3.19) 2~i 

It follows from this that the action of e i on f+. is equal to 
J 

g~ 

+ R~ ~+ (3,20)  
ei/~ ~-  - -  ~ ~, j-i+~ ~-~+~. 

k=--g~ 

Just as in the preceding case one can define the action of e i on H~,N(X0). Here the 
vector 

~ ~ o o . <0o I /?v+~ A .  :',-÷~/~ 
(3.21) 

satisfies the conditions 

< @ o ! E ~ = 0 ,  i < - - g o ,  < ~ 0 1 E - g o = < ~ o l h _ .  

The cor respond ing  r e p r e s e n t a t i o n  of  ~ has the  same c e n t r a l  charge (3 .11 ) ,  and the  h i g h e s t  
weight  h- i s  g iven by 

(4 ) h _ - = ~  P - + ( S ( ~ ) + N + x o ) ( S ( ~ ) + N + x o + l - - 2 ~ )  • (3.22)  

We d e f i n e  t he  s c a l a r  p roduc t  between e lements  of  HA,N(x 0) and H~,N(X0), by d e f i n i n g  i t  

on the  bas i s  e lements  (3 .10)  and (3 .17)  

<A . . . . .  ]m-l16 . . . .  ,i,,_~) = 5~,j, S i , j ~ . . . 5 ~ _ ~ _ l  (3 .23)  

and ex tend ing  i t  to  the  r e s t  by l i n e a r i t y .  With r e s p e c t  to  t h i s  p roduc t ,  the  o p e r a t o r s  E i 
a re  skew-symmetr ic ,  as fo l l ows  from (3 .20 ) .  The product  between H%,N(X0) and H~,N(X0) de- 
f i n e s  a product  between V in and V~ u t ,  where the  o p e r a t o r s  L i a re  s e l f - a d j o i n t  wi th  r e s p e c t  h+ _ 
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to this product. It is important to note that we have defined a nontrivial scalar product 
between spaces corresponding to the highest weights h+, h_,which are given by (3.16) and 
(3.22). For each fixed method of normal ordering, the set of such admissible pairs 
h+, h_ is a one-parameter set. Hence the question arises naturally, can h+, h_ simul- 
taneously assume the values (3.3). 

Apparently if one confines oneself to just the normal orderings introduced in Sec. 2, 
then the answer to this question is negative. We extend this concept by defining 

: a~,~ : = ~ , ~  @ ~,~,~. ( 3 . 2 4 )  
: 

Here ~mn are a r b i t r a r y  c o n s t a n t s ,  equa l  to  zero f o r  a l l  bu t  a f i n i t e  number o f  po in ts  o f  the  

half-plane n ~ m and equal to ~mn for all but a finite number of points of the half-plane 

n > m. To the case (2.26) corresponds ~m~ = 0, (n,~)~E +, ~mn = ?m~ (n,~)~E- 

By varying the extended concept of normal ordering one can realize an arbitrary co- 
cycle Xnm. In particular, the parameters p+ in (3.16) and (3.22) can be considered arbitrary. 

- -  

The scalar product introduced lets us define, for any operator from the associated ring 
generated by the operators L i, the concept of its mean 

L " ~ o u t ~ r  I. <L~,... ~ + ~ o = \  ~_ ,~,~,...L~[O~+> (3.25) 

(we use the index x0 to recal l  that  the admissible pairs h+, h_ are parametrized by means of 
X 0 ) .  

By definit ion the mean <Li> x is equal to zero for li[ > go. Now the means 
0 

S~ = <Li>Xo, i = - - g o  . . . .  , go (3.26) 

are a pr ior i  nontr ivial  quanti t ies.  Since these means are the coeff ic ients  of the expansion 
of the energy-momentum tensor, these quantit ies correspond to the so-called conformal anomaly, 
for which <T(z)> ~ 0. 

Unfortunately the res t r ic ted  size of the paper does not permit us to give a suf f ic ien t ly  
= . We detailed calculation even for the simplest case, a f te r  <L~g0> h±, of a mean <Lg0_z>x0 

shall  merely indicate some of the most essent ia l  points. 

We have 
N+i--go+l N+i--g~ 

<L~L-~+~_I> ~ ~ R ~"-I- ~° R ~ R g°-x ( 3.27 ) ~, ~-~+g~-l~t-i+3g-1, ~ + ~ i, ~--i+g~ -i+3g-1, ~" 
n ~  N + I  n = N ~ l  

Here R~? is given by (3.8), and to get R~? -~ 
m] 

zi+j~g °-S+~ in (3.7). 

Then 

it suffices to equate the coefficients of 
x3 

We denote by ~j,% the coefficient of the expansion (z + P+) 

1i = z i-s(~)+~o (t -~ ¢p~, ~z ~- 0 (z~))(dz) ~. ( 3 . 2 8 )  

~ - 1  : (]  - -  S (~)  + x 0 + X (g - -  go -~ i))((~i, -1 + 9J,  % - -  ~°~+j-go, %) -~ 9J,  ~ + ~9 i ,  -1. ( 3 . 2 9 )  

Further direct calculations lead to the equation (I = i - go) 

(LiL-,+3~-I>=q~,-x(D 1(Iq-~)(1÷2)12 + (21 + l)h+) q- 

+ T-~+ag-~ ( D l a  ~2___~_/+ 21h+) ÷ (N --  S (~) + x 0 + 1)(21 ÷ 1) CN, ~. 

I t  f o l l o w s  f rom ( 2 . 3 4 )  t h a t  

(3.3o) 

"L _go-1 ~ ( 3 . 3 1 )  \ iL-i+3g:l}~---(21 +~i)](Lgo_1} + ~-~+3g-l, lh+ + D~,_~+~_I. 

In calculating the cocycle Xi,-i+~g-~ it is necessary to use, in addition to its definition, 

the relations 
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l ~ (3.32) n, ~-n-% --~ ~, l,~, ~-n-°4-: ~ %O~, : + %O~-~-'/., : + %O~, -~, 

V ~ , g _ ~ - n  ~/ (3.33) - -  ,~, Yn, g - n - l ~ ( n - - 9 1 2 ) % o g - n - l , o  + (n- -91~  + 1)%o~,o, 

which a r e  s i m p l y  c o n s e q u e n c e s  o f  t h e  d e f i n i t i o n s  o f  ~i and Ynm" I t  f o l l o w s  f rom (1.10) f o r  
ILm 

m = n + 1 t h a t  

%on. , + %O~+I. I = 0. (3.34) 

Using this equation, one can get that for Og = g/2 (in this case p+ = 0) and Og.~ = g/2 + I 

X I ( I +  ~) ( I +  2) I~ - - I  ( 3 . 3 5 )  
Xi, -i+3g-1 ~ 12 %oi, -1 -~ ~ %o-i+3g-1, -1" 

S u b s t i t u t i o n  o f  ( 3 . 3 5 )  i n t o  ( 3 . 3 1 )  g i v e s  ( c .  g ° - z  i s  g i v e n  by ( 3 . 2 9 )  f o r  I = - 1 )  
1 , 3  

< L g . - l > X  o = h+%ogo-1,_ 1 ~- (N - -  S (~) + x0 + 1)%o~,7,. ( 3 . 3 6 )  

In  t h i s  c a s e  Cg0_z,_ z = 0, and i t  i s  e a s y  t o  g e t  CN,t f rom ( 5 . 2 )  Example (g = i). 
of [i], 

%O~,~ = ~ (((2N + zo) + l)zo) - -  (N + x0 + 1/e)~ (2zo). ( 3 . 3 7 )  

I t  i s  a l r e a d y  c l e a r  f rom t h i s  example  t h a t  t h e  d i r e c t  c a l c u l a t i o n  o f  t h e  means <Li> 
i s  q u i t e  c o m p l i c a t e d .  The a u t h o r s  i n t e n d  t o  g i v e  an i n v a r i a n t  method o f  d e r i v i n g  t h e s e  
means in  t h e  f ramework  o f  t h e  c o n s t r u c t i o n  o f  models  o f  t h e  c o n f o r m a l  t h e o r y  o f  f i e l d s  on 
a r b i t r a r y  Riemann s u r f a c e s  o f  genus  g > 0 in  a s u b s e q u e n t  p u b l i c a t i o n .  

Note .  I t  i s  i m p o r t a n t  t o  n o t e  t h a t  t o  p h y s i c a l  v a l u e s  D > 1 c o r r e s p o n d  complex v a l u e s  
o f  I .  I n  p a r t i c u l a r ,  f o r  D = 25, h = 1, ~ = 1/2  ± 5 i / 2 ¢ ~ ,  p = N + x0 + g /2  (2~ - 1) = - 1 / 2  

! i / 2 / ~ .  I t  i s  i n t e r e s t i n g  t h a t  f o r  ~ = 2 and p = 0 we g e t  t h e  n o n p h y s i c a l  s i t u a t i o n  D = 

- 2 5 ,  h = - 1 .  

. 
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