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A general method of constructing the Wess-Zumino type lagrangians is proposed. The corre- 
sponding constants are shown to be quantized. Some examples in ld, 3d and 4d are considered. 

1. Introduction 

Recently [1, 2] Witten has considered the Skyrme model [3] with the additional 
term - the so-called Wess-Zumino lagrangian (WZL), which resulted from anomalies 
in the current algebra [4]. This term plays a crucial role in the theory; it determines 
the baryon charge of the soliton solution. The whole lagrangian with the WZ term 
reproduces correctly the discrete symmetries of QCD. 

The WZL in [1, 2] is represented in the form of  an integral over a 5d manifold 
which has an additional variable apart from space-time variables. In this form its 
topological sense and quantization of the constant become clear. The latter fact 
leads to the remarkable conclusion that in the low-energy limit the properly normal- 
ized amplitudes of  some reactions must be integers. 

WZL is a particular case of multivalued functionals defined by Novikov [5, 6]. 
According to [5, 6] multivalued functionals for chiral models which describe the 
fields mapping d-dimensional space-time M a into the manifold X are defined by 
the closed (d + 1)-form 12 on X and by fixing in open subsets Uj of X the d-forms 
of toj such that 

l"2(y)=dto~(y), y~Uj. (1) 

If  the image of  mapping ~o lies completely in U s then the multivalued functional is 
defined by the integral 

= JM d tOj(~). (2) F 

This definition is the direct generalization of the lagrangian for a charge in a magnetic 
field. In this particular case O corresponds to the magnetic field and toj corresponds 
to the vector potential. Relation (1) takes the usual form F = rot Aj. If F is the field 
of  a magnetic monopole, then, as a result of the Dirac string, Aj can be defined 
only locally. 
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This approach,  in contrast with the construction proposed in [1, 2], is free of  
restrictions on the topological type of chiral fields. As it does not require additional 
variables it may be called "internal".  

Though "external"  construction [1, 2] uses an artificial surface with an additional 
degree of freedom, it has its own advantages. Firstly, it is geometrically apparent  
and the quantization of the WZL constant becomes evident. Moreover, the calcula- 
tion of the normalizing factor is more feasible in comparison with the internal 
approach.  Unfortunately, Witten's approach encounters topological obstacles so 
here we generalize his construction in such a way that topological restrictions 
disappear and the method may be applied to a wide class of  chiral models. 

2. Witten's construction of WZL 

First of  all, let us recall the topological conditions necessary for the existence of 
WZL and quantization of  its constant in Witten's construction [1, 2]. 

We consider the euclidian version of the theory and suppose that fields vanish 
at infinity. Thus, space-time is identified with a large sphere S d. The first condition 
necessary for the construction [1, 2] is that any field ¢ (x)  defined on S a can be 
extended onto the disk O d+l with the boundary S d. This implies that the homotopic 

group of  order d of  X is trivial 

rra (X) = 0.  (3) 

Next it is required that there should exist an antisymmetric tensor of  rank d + 1, 
.Q~,...~+,, on X with a vanishing curl (Ot~i,...~+,~ = 0). In other words, the external 
form /2 = 12i,...i~+ d y  i . . . .  d y  i~÷' is closed, 

dO = 0. (4) 

The field ¢ (x )  defines the pull-back form ~ on the disk D d+l : .0 = 12(¢). The integral 

F = )~ f fi'l"'id+, d~q- id+,, (5) 
JD d+l 

(where d~, i,'''ia+l is a measure on D a+~) in WZL. According to Stokes theorem and 

in view of (1) the integral is reduced to the integral (2). Thus, the definition (5) is 
independent  of  an infinitisimal disk mapping deformation. 

The multivaluedness of  F is related to large deformations of  the disk mapping. 
The difference between the two integrals (5) defines the integral over the sphere, 
glued from two disks S d+l d+l _D2d+l = D1 U (minus denotes an opposite orientation 
of D ]+~ and D d+l) 

r l - G = a  fs~+ ' 0;,...,~+, dZ ' ' ' ~ + '  . (6) 

I f / 2  is exact (i.e. (1) holds globally over the whole X) or can be decomposed into 
a product of  two or more forms, then (6) equals zero. Therefore, F is defined 
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unambiguously and A may be arbitrary. But if O is indecomposible and moreover 
represents an integral cohomology class in the group Hd+~(X) then 

F, = F2 + An. (7) 

Thus the functional integral j D~ exp {iF} is not well defined unless An =2~-k. 
Therefore, one more condition is necessary for the quantization of  h: 

{Hd+~(X) contains only indecomposible elements} (8) 

In [1] the quantization is based on the condition 

• rd+,(X) = Z (9) 

inspite of (8). 
The conditions (3), (8) are so restrictive that only a few examples among 

homogeneous spaces X satisfy them (the most interesting cases have been considered 

in [2]). 

3. General approach 

In fact it is unnecessary to extend ~(x)  from S d on a disk D a+l. One may extend 
¢(x)  on a manifold N d+~ with a more sophisticated topology provided that N a+l 
has S d as the boundary. Then WZL is represented as the integral over Nd+I: 

F = A IN~+ ' ~,,...,~+, d 2  q'~+, . (10) 

The difference between two such integrals corresponding to two extensions is equal 
to the integral 

F~-F2  =A fw~. ' ~i,...,d+, dZh"d+ , .  (11) 

"~ld+l and "l%ld+l Here W d + l  is a closed manifold "glued" from the two "pieces" ,-1 ,-2 • 

Remark I. Consider a set of mappings of  different manifolds into a fixed manifold 
X. Two mappings of manifolds N1 and N2 are assumed to be equivalent (bordant) 
if there exist a manifold W connecting N1 and N2 (i.e. the boundary of W consists 
of two components N~ and N2) and an extension of the mappings on W. Analysis 
of such mapping extensions from boundaries on the whole manifold is the concept 
of the so-called bordism theory. For the sake of simplicity we shall not introduce 
accurate definitions of this theory. Some statements of this theory which we shall 
use below can be extracted from [7]. Unfortunately, the corresponding mathematical 
formalism is represented in a form incomprehensible to most physicists. 

The first step of  our construction is feasible if 

{the group H a(X) contains only decomposible elements}. (12) 

In particular, Hd(x )  may be trivial. If this single topological condition is satisfied, 
then any cohomology class of Hd+~(X) defines WZL according to (10), where /2 
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corresponds to the chosen class. F undergoes a nonessential shift if g2' is another 
tensor of  the same cohomology class. 

Since any rational homology class may be represented as an image of some closed 
manifold, it follows from (11) that F is defined up to adding to it the integrals of 
O over all (d + 1) cycles. Thus the functional integral for the theory with additional 
WZL is defined correctly if the constant A is quantized. 

Remark  2. The single topological obstruction (12) can be easily eliminated by a 
nonessential complication of the construction (see examples 4, 6 below). 

4. Examples 

In the following examples Witten's approach is inapplicable directly. Nevertheless, 
we construct WZL with quantized constants using the method developed above. 

Example  1. Let us consider two noninteracting fields u and v taking the values 
in X = S 3 x S 2 

with the lagrangian 

U : S 4 -.> S U  2 ~ S 3 , 

/):  S 4- '>  S U z / U ( 1 )  ~ S 2 , 

= ~ k i n ( u )  -J- ~ k i n ( U )  "[- ~ S k y r m e ( U )  -[- o ~ S k y r m e ( V )  , 

~(~kin(U) ~ tr (R~R~),  R~ = u+G,u, 

~ k i n ( 1 ) )  - -  I -- i ( 1 )  : . ( 2 )  - ~ B ~ B ~ ,  B,~ = _ ~  + tL .~  , 

L,~ = v + G v ,  L~ =½tr (L,~ra). (13) 

'~skyrme is the term providing the solitons stability. 
There are two topological charges: 

ql(U) =4--~ 3 dax e ~  tr ([e~, Ro]R~,),  (14) 

qdv) l fs ~ '~" = d x e O~,A~, A~ = L3~. (15) 
2 

The first integral defines the charge of skyrmion configurations and the second one 
the charge of  flux tube configurations, which are independent of one of the coordin- 
ates. This charge possesses a nontrivial topology in a perpendicular plane. Moreover, 
v possesses an additional topological c h a r g e - t h e  Hopf  invariant. We shall not 
exploit its explicit form. 

Since ~4(X) = ~r4(S 3) + ~r4(S 2) = Zz+Z2, the condition (3) is broken. Meanwhile 
H4(X)=~v+q=4 HP(sa)®Hq(S2) ~0 ,  and we can use our method (see the remark 
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after (11)). The group HS(X) is generated by the form which is an exterior product 
of  charge densities (14), (15) 

HS(x) = H3($3)® H2(S 2) - Z ,  

g2~y~,, = e ~t3w'~ tr ([R~, Rt3]Rv)O~,A,,. (16) 

Then we have the following representation of WZL: 

= x fN5 d2=t3v~'~ ' (17) F 

where ~ is the pull-back of O. Here N 5 is a manifold with the boundary S 4. For 
instance, it may be bordant to the space X without a disk D 5. In view of (16), A is 
quantized. 

By means of  WZL the nontrivial configurations of  the fields u and v (skyrmions 
and flux tubes) interact. Perhaps this theory can be considered as a low-energy 
approximation of the gauge theory with two types of gluons and fermions with an 
anomalous interaction giving rise to WZL (17). It can be evidently generalized to 
a theory of  the type S4-~X-~G×CP n, where G is a simple Lie group. 

Example 2. Consider the theory in the 3d space 

~ :  83 --) X = C p 2  = S U 3 / S U 2 ( ~  U I  . 

Here the group S U  3 is spontaneously broken in the current algebra to the subgroup 
SU2®U1. The complex fields ~0 = ((pl, q~2) are similar to the K-mesons. The kinetic 
term has the following form 

~kin = f d3x g~o ( ~0 ) 0~Ao ~ 0~'q5 8, (18) 
Js 3 

where the metric g~0 is generated by the K/ihler potential 

~2 

g,~o 0q,~0ff~ In (1+ 1~112+1~212). (19) 

For this model 7r3(X) = 0 and (3) is satisfied. Thus it is possible to extend the map 
q~: S 3 -* X to D 4 ~ X. Because for 

H ' (CP z) -~Z (20) 

there exists WZL. But integration over disks does not lead to quantizing of the WZL 
constant since w4(CP 2) = 0 (see (9)). 

In fact, the constant is quantized though it is not evident in Witten's approach. 
To see this one should consider extentions of  some fields on the manifolds like the 
manifold CP 2 without disk, N 4= Cp2\D 4. 
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The generic element of  H4(Cp 2) may be defined by means of the tensor g~0(19). 
Then 

where 

O , ~  = e~r~co~to,8,  /2 = / 2 ( ¢ ) ,  to~o = Im g~o. 

In view of  (20) h is quantized. 

Example 3. As in the previous example, let us consider the group SU3 but now 
let the symmetry be broken to subgroup U~ x U~. Then we have a theory with three 
complex fields 

~ = ( ( ~ 1 , ~ 2  3 ) :  53_..) X = S U 3 / U I  x U l  , 

which can be identified with massless mesons with nonzero charge or hypercharge. 
The kinetic part  of  the lagrangian is: 

f s  r t 3 ~  r _ ( I )  (2) c~ ~ - f l  ~ k i n  = 3~.a . , , . ~ g ~ + g , ~ ) c g ~ p  0 ~ , (21) 

where 

c 9 2 K  (J) 
g(J) - -  (j = 1 ,  2) 

,~ - a ~ o , ~ c ~ ,  

K (1)= In (1 + 1~oll2 + I~p212), 

K (2)= In (1 + 1¢12÷ 1&12+ I~q~l&l =-2 Re ~0,ff2~03) • 

Here ~r3(X) ¢ 0, but HS(X) = 0 and we can apply our method. It is noteworthy that 
there are two types of  topological charges (H2(X) = 7/G7/) corresponding to the two 
types of  flux tubes 

tb(¢) = ½i [ ~o.¢J)r  ~ d2x (22) 2 ~ 'SctB~'Vr'] " 
Os 

Since 

H4(X)  = Z • 7 / ,  

the WZL also contains two terms constructed by means of tensors .0 )  (21): 

F = Aj  a ~ otfl3q5 ~.t~., , 
j = l  4 

where 

(23) 

a ~ t f l y  0 - -  t ~ t / 3 w  3, 5 ~ , ~ . 

Here we integrate over the manifold with boundary  S 3. As always in our construction, 
the constants Aj are quantized. 
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Example 4. Consider the motion of a charged particle constrained on a torus T 2 
in the field of  a monopole located inside the torus. Here the condition (12) is broken 
because H~(T 2) = Z O Z  has only indecomposible elements. In fact, the trajectories 
which are nontrivial one-cycles of the torus do not admit the attachment of two- 
dimensional surfaces and at first sight there exists only a local expression for WZL 
(electromagnetic term) 

= A Is' A~, dx ~" (24) F 

(see (2)). We propose the following modification of our construction. Consider a 
fixed mapping Xo from S~ to T 2 in each homological class. Then WZL has the 
following form: 

A IN 2/~,~ dZ ~'~ . (25) F ' =  

Here N 2 is such a manifold with the boundary S~U- S~ that there exists a map f 
f r o m  N 2 to the torus satisfying the following conditions: 

f l s '  = x ,  ~qs~ = Xo.  

Clearly in this case we can take N 2 to be a cylinder, S ~ x I, but we prefer to define 
the construction in a more general form, which can be applicable to other models. 

The t e n s o r / 3  in (25) is the pull-back of  the field strength F~,~. Stokes theorem 
implies that F '  in (25) differs from F on a fixed constant. The quantization of A 
results from H2(X)= Z. 

Example 5. Let X be the direct product: 

X = K 3 × T  2 . 

This manifold describes compactification of six dimensions in the ten-dimensional 
superstrings theory [8]. Reminding ourselves that 

dim K 3 = 4 ,  H3(K3) = 0 ,  H4(K3)~7/ ,  

we consider the chiral field 

~ :  54-"> X . 

Since H4(X) ~ H4(K3) = Z it contains an indecomposable element corresponding to 
the volume density 124 of K3. There are two independent five-forms on X generated 
by ~'~4 on K3 and one-forms to~ ~), to~ 2) on T 2, 

HS(X) ~ Z~Z. (26) 

Treating our construction as we did in the previous example, we introduce the basic 
representation ~o : S~-> X; then 

F 
j= 1,2 ,INS 
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Here N 5 is a manifold with the boundary S4U - S~ such that there exists an extension 
of the mapping q~ and q~o on the whole manifold. As it follows from (26), the 
constants A~ and A2 are quantized independently. 

Example 6. Finally let us consider two-dimensional models, with fields taking 
values in K~ihler manifolds of  complex dimension three, in which the first Chern 
class vanishes. These models also appear  in string theories [8b]. For all the types 
of  models considered in [8b] H 2 ( X )  = 7/. Hence in 2d models it is necessary to use 
the last construction. Because the third Betti numbers differ from zero, WZL can 
exist; for instance, in the theory with four generations of  fermions b 3 = 12 [8b]. 
Thus we have twelve WZ terms with quantizing constants. Perhaps this is an 

indication of the finiteness of  the model. 

We would like to thank A. Reyman, J. Kogan and A. Morozov for valuable 
discussions and comments  and A. Morozov for a critical reading of the manuscript. 
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