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SPECTRAL THEORY OF FINITE-ZONE NONSTATIONARY SCHRODINGER OPERATORS. 

A NONSTATIONARY PEIERLS MODEL 

I. M. Krichever UDC 517.93+513.015.7 

In [I, 2] there has been exposed a general scheme of the construction of periodic and 
quasiperiodie solutions of nonlinear equations which allow commutational representations. This 
scheme has been worked out by the author on the basis of the analysis of algebraically geomet- 
rical ideas, which were used earlier in the cycle of papers by S. P. Novikov, B. A. Dubrovin, 
V. B. Matveev, and A. R. Its. Those works have been devoted to an effective spectral theory 
of finite-zone Schr~dinger operators (Sturm-Liouville), and to the construction, based on 
this theory, of a wide class of quasiperiodic solutions of the Korteweg--de Vries equation 
(KdV). (The first step of the development of the theory of finite-zone integration is pre- 
sented in [3, 4].) 

The scheme given in [I, 2] allows one to obtain at first not only periodic andquasiperiodic 
solutions of spatially two-dimensional equations of the Kadomtsev--Petviashvili type (KP), but 
also a natural and methodologically convenient presentation of the results of the previous 
finite-zone theory of one-dimensional equations (KdV, nonlinear SchrDdinger, sine-Gordon). 
It turns out that within such an approach the algebraic-geometrical language permits (if only 
the problem of the construction of solutions of these equations is considered) to exclude 
from the considerations, practically completely, the spectral theory of auxiliary linear 
operators. Evidently, for this reason, an insufficient attention has been paid to the finite- 
zone spectral theory in the later development of the methods of "finite-zone integration" of 
nonlinear equations (cf. reviews [5-11]). 

The theory has attracted growing interest since its effective applications to prob- 
lems of the Peierls--Frolich type had been presented in [12, 14]. On the basis of the Peierls 
model there are usually formulated theories describing the characteristic singularities of 
quasi-one-dimensional conductors. In [12-14] "single-zone" extremals have been found in vari- 
ous continuous approximations of this theory. Those investigations have been continued in 
[15-18], where a discrete model was integrated whose limits were all of its previously studied 
continuous variants. It has been proved in [15] that in this model the "multizone" extremals 
do not occur, and thus at first it has been demonstrated that the "single-zone" extremals are 
the ground states of the system. In [16-18] the spectrum of excitations of the ground state 
has been found, and also the nonintegrable disturbations of the model have been studied. 

In all the cited papers only the stationary states of the Peierls model have been con- 
sidered. The study of nonstationary solutions needed a further development of a "spectral" 
theory for the nonstationary Schrodinger operator with a biperiodic potential, u(x, t) = 
u(x + L, t) = u(x, t + r). 

G. M. Krzlhizhanovskii Moscow State Institute of Energetics. Translated from Funkt- 
sional'nyi Analiz i Ego Prilozheniya, Vol. 20, No. 3, pp. 42-54, July-September, 1986. Orig- 
inal article submitted October 4, 1985. 
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The corresponding operator 

M ==- iOt - -  O~ ~- u (x, t), Ot = O/Ot, #x----- 0 / 0 x  ( 1 ) 

a p p e a r s  i n  the  c o m m u t a t i o n a l  r e p r e s e n t a t i o n  f o r  the  KP e q u a t i o n ,  and t h e r e f o r e  i t  has  been  
a c t i v e l y  c o n s i d e r e d  in  [1 ,  2 ] ,  where a l s o  t he  i n t e g r a b l e  p o t e n t i a l s  u ( x ,  t )  have  been  c o n -  
s t r u c t e d .  N e i t h e r  in  t h o s e  p a p e r s ,  n o r  in  t he  o t h e r s  ( t o  t he  a u t h o r ' s  b e s t  knowledge)  has  
any e f f o r t  been  made t o  f o r m u l a t e  t he  p rob lems  c o n n e c t e d  w i t h  the  s p e c t r a l  i n t e r p r e t a t i o n  o f  
t he  o b t a i n e d  r e s u l t s .  Many of  such p rob lems  became c l e a r  to  t he  a u t h o r  d u r i n g  h i s  numerous 
d i s c u s s i o n s  w i t h  I .  E. D z y a l o s h i n s k i i  and S. A. B r a z o v s k i i  on the  n o n s t a t i o n a r y  P e i e r l s  p r o b -  
lem. 

It seems that the "spectral" theory of the nonstationary SchrDdinger operator is inter- 
esting for its own sake also from the mathematical poin~ of view. 

In the first section a short formulation of the construction of algebraic-geometrical 
potentials of the nonstationary Schr~dinger operator is given. There is found a "spectral 
measure" for those potentials, defining the resolution ~f identity with respect to the Beiker-- 
Akhiezer functions (Bloch functions), corresponding to the "real Fermi curves." 

In the second section there are derived nonlinear relations between the solutions of the 
nonstationary Schr~dinger equation, M~ = 0, and the potential u(x, t). In the stationary 
ease the corresponding relations are well known, and they are used as deriving ones in the 
proof of the "traces formulas." In the final part of the section these relations have been 
used in the construction of solutions of the equations presented in [30, 31], describing in 
various approximations the interactions between the long and short waves in plasma. 

The concluding section contains a brief formulation of the nonstationary Peierls problem 
and some constructions of solutions of its integrable variants. More detailed investigations 
of the solutions., and of the conditions of their physical applicability have been carried out 
in the joint paper by I. E. Dzyaloshinskii and the author (to appoar). In that paper an ap- 
proximation in the Peierls model has been studied, which corresponds to the "smallness" of the 
forbidden zone. Undor such an approximation tho nonstationary SchrDdinger operator is trans- 
formed into the nonstationary Dirac operator. 

I. SPECTRAL DECOMPOSITION OF ALGEBRAIC-GEOMETRICAL OPERATORS OF RANK I 

The construction of complex quasiperiodic "finite-zone" potentials of the nonstationary 
SchrDdinger operator has been presented in [I] (for details see [2]). The conditions for the 
reality and the nonsingularity of u(x, t) have been found in [7, 10] (originating from the 
ideas of [19]). We begin with the survey of these results and of some of their generaliza- 
tions (containing rational and soliton potentials), which are useful in the further applica- 
tions to the Peierls model. 

Let F be a nonsingular algebraic curve of the typo g with a fixed point P0 in whose 
neighborhood there is chosen a local parameter k-l(P), k-l(p0) = O. Moreover, let additional 
data be given on F: the pairs of points ×~, i = I .... ,N, and a collection of points Xj, j = 

I,...,M. 

In a standard way one can prove that for any fixed choioe of point~ YI,---,YG, G = g + 
N + M in generic position there exists a unique function @(x, t, P), called the Beiker--Akhiezer 
function, such that: 

I °. It is meromorphic beside P0 and has poles only at the points ¥s- 

2 ° . ~(x, t, P) satisfies the conditions 

~(x, t, ~ )  ~- ~(x,t, ~), (2)  

d~ (z, t, P ) I ~ = ~  = O. (3)  

3 °. In the neighborhood of P0 the function ~(x, t, P) has the form: 

~ (x, t, P) --= exp (ikx + ik~t + i~ (k)) ( t  + ~ ~ (x, t) k-~), 
~=~ (4) 

k = k (~), 
G 

where  ~ ~ k  ~ ( f o r  b r e v i t y ,  i n  t h e  e x p l i c i t  e x p r e s s i o n  f o r  ~ t h e  d e p e n d e n c e  on t h e  a u x i l -  
j=l 

i a r y  p a r a m e t e r s  ~ has  been  o m i t t e d .  T h e i r  r o l e  w i l l  be  d i s c u s s e d  b e l o w ) .  
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As it follows from the results of [2] (we preserve the notation taken from [2]) the func- 
tion ~(x, t, P) can be sought in the form 

P N + M  

, ( x , t , p ) = e x p ( i S x ~ ( ~ ) . t ~ ( a ) + Z ~ Q o )  ) ~ a ~ ( x , ~ )  o(A(p)÷xU(2)÷tU(s)+;~U(i )+~)  (5) 
• 0 (A (P) + ;m) ' 
J m ~ l  

w h e r e  O(v~ . . . . .  vg) i s  t h e  t h e t a - R i e m a n n  f u n c t i o n ;  2 u u ( J )  a r e  t h e  v e c t o r s  o f  t h e  b - p e r i o d s  o f  
A b e l i a n  d i f f e r e n t i a l s  o£ t h e  s e c o n d  k i n d  w i t h  n u l l  a - p e r i o d s ,  w h i c h  h a v e  s i n g u l a r i t i e s  o f  t h e  
f o r m  ( d ( k J - ~ ) )  i n  t h e  n e i g h b o r h o o d  o f  P0;  t h e  v e c t o r s  5 m a r e  e q u a l  t o  K - - A  ( Y 1 ) - - . . . - -  
A (yg-~) - -  A (Yg-l÷m), w h e r e  A: F ÷ J ( F )  i s  t h e  A b e l  m a p p i n g ,  and K i s  t h e  v e c t o r  o f  t h e  Riemann 
constants. 

The coefficients ~m(X, t) in (5) are determined by a system of linear equations result- 
ing from the substitution of (5) into (2) and (3). 

THEOREM I. The function ~(x, t, P) satisfies the equation 

(~#~ - $~ + ~ (z, ~)) ~ (~, ~, P) = 0, (6) 

where 

~ (x, t) = 2 i0~  (x, t). (7)  

The proof is fully analogous to that in [I] (where N = M = 0), and exploits only Proof. 
the uniqueness of ,(x, t, P). 

Remark. For N = M = 0 we obtain the quasiperiodic potential [2] 

u (x, t) = - -  20~ In @ (U(2)x + U(3)t + ~ 4- ~), ~ : ~ j U  (j). (8)  

For g = 0, and M = 0 the construction gives (after the replacement of t by y, and ~3 by 
t) the soliton wave fronts of the Kadomtsev--Petviashvili equation, obtained in [20]. For 
g = 0, and N = 0 we obtain the rational solutions of KP (see [21]), which for a proper choice 
of parameters coincide with the rational solitons of KP, decreasing in all directions, and 
which we have obtained in [22] with the help of the inverse scattering problem method. 

In the general case the conditions (2) and (3) can be replaced by an arbitrary system of 
N + M linear conditions on the values of ~ and their derivatives with respect to P (of arbi- 
trary order) at different points and with constant coefficients. (For further generalizations 
see [23].) 

Remark 21. The parameters Ys and ~j are not independent. Usually, Ys are chosen as the 
independent parameters, while ~j are assumed to be zero. It will be clear further that the 
passage to the parameters ~ (for a particular choice of ~s) is essentially more efficient 
in the description of real and nonsingular potentials u(x, t). 

Let on the curve F be defined an anti-involution ~: F ÷ F of the separating type, i.e., 
such that its invariant ovals ~,...,~ divide F into two segments ~±. Moreover, let ~ leave 
the point P0 invariant and transform the local parameter in its neighborhood into ~ = r*(k). 
The collections of the points ~,%~ should satisfy the conditions: ~(~) = %~; ~(×~) =~ and 
~ r  ~ , or • (×#) = x~, ~=]., and in the latter case both points ×~ belong to only one of 
the segments ~± (the pair ~ will be called of the first or of the second type, respectively). 
We shall index the pairs x~ of the first type with the numbers i = I,...,NI, NI < N. 

A divisor D = {Ys} is called admissible if YI,-..,YG, r(~l),...,~(¥G) are the zeros of 
a certain differential ~ which has the second-order poles with null residua at the points %j 
and P0, and the simple pol~s at the points ×~, with the residua ±~ji. If ×~ is a pair of 
the first type, then ~j = ~j > O. Fixing on ~i the natural orientation induced from the do- 
main F+ we assume that Q I,~0. 

LEMMA I. If the above assumptions are satisfied and ~ = ~ , then by virtue of Theorem 
I the potential u(x, t) defined by them is real and nonsingular. 

(For N =: M = 0 the sufficiency of these conditions has been shown in [7, 10].) 

Proof. Denote by @+(x, t, P) the function 

~+ (x, t, P) = # (x, t, • (P)). (9)  

From the assumptions of the lemma it follows that the differential 

~ = ~(x, t, P)~+(x, t, P) ~ (~0) 
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is meromorphic with the null residua at the points %j, and with the residua at the points ×~, 
with opposite signs. Since the sum of all residua of a meromorphic differential is null, 
then also the residuum of ~ at the point P0 is null. From this we have ~I + ~i = 0, and thus 
by virtue of (7) the reality of u(x, t) has been proved. 

A singularity of the potential may occur only for those values of x0, and to for which 
one of the zeros of ~(x0, to, P) appears at P0. But in this case the differential ~(x0, to, 
P) is regular at P0, and thus we can consider its integral over the invariant ovals. By the 
positivity of ~ on gi, and since we have ~+ = ~ on oi, the integral 

I ~ (*0, t0' P) > 0 (11) 
~ 

i s  p o s i t i v e .  On ~he o~he r  hand ,  2t  2~ e q u a l  ~o ~he sum o~ r e s ~ d u a  a t  ~ h e  p o ~ s  ~ ,  where  ~ 
2s ~he p a ~ r  o f  ~he f ~ r s ~  ~ype~ and moreove r  2~ s h o u l d  be n e g a t i v e  by the  a s s u m p t i o n s  o~ t he  
l e ~ .  The r e s u l t i n g  c o n t r a d i c t i o n  ends  ~he p r o o f  o f  ~he l ~ a .  

The c o n d 2 t 2 o n  2mposed on (~s}  ~s r a ~ h e r  compl2ca~ed .  However ,  we r e c a l ~  a g a i n  ~ha~ ~t 
is enough to find only one of such collections, and afterwards to find all real nonsingular 
potentials corresponding to this curve and to the data %]~,with the help of the variation 
of the real parameters ~], with a fixed set of poles. 

We omit the proof of the following simple result. 

LE~ 2. There exist admissible divisors on every curve F w~th an involution of the 
separable type. 

The real ovals {oi } and the pairs ~, i = I .... ,N~ of the first type will be called the 
spectrum of the corresponding nonstationary Schr~dinger operator. The differential ~ enter- 
ing the definition of an admissible collection of poles of the Belker--Akhiezer function will 
be called the spectral density. This terminology is justified by the following theorem. 

THEOR~ 2. Let the parameters of F, P0, ~ ,  ~ ,  ~ ,  . .  ", ~, defining the Beiker--Akhiezer 
function satisfy all of the above limitations (which guarantee the reality and the nonsingu- 
larity of the potential u(x, t)). Then 

N, 
~,.)¢ (~,t, ~),  (~2) 5 ( x - - g ) =  ~ ¢ ( x , t , P ) ~ + ( g , t , P ) ~ - - ~ r i ¢ ( x ,  t, + + + 

{ai}NP, i=l 

r i ~ 2ui res +~ ~ - -  2ha  i. ( 1 3) 
u i 

P r o o f .  Denote  by 3F + t he  bounda ry  F + ( g i v e n  by ~he c o l l e c t i o n  o f  o £ ' s ) ,  and by 3F~ t he  
c y c l e  o b t a i n e d  by t he  d e f o r m a t i o n  o f  3F + c o r r e s p o n d i n g  Co t he  p a t h  o f  r a d i u s  ~ a rouad  ~he 
p o i n t  P0 i n s i d e  F +. 

The d i f f e r e n t i a l  ~ ( x ,  c ,  P)O+(y ,  ~, P)~ £s r e g u l a r  on 3F~. From ~he d e f i n i t i o n  o f  ~ £~ 
f o l l o w s  ~hat  

" t + ¢+ + (14) ~ ~ (~, t, ~) ~+ (~, t, e) ~ = ~ ~,~ (~, , ~,) (~, ~, ~,). 
+ 

0Ps 

The difference of the cycles 0F~ ~0F + is the cycle Cs, which is the boundary of the upper 
semicircle of the e-neighborhood of the point P0- In the neighborhood of P0, as it follows 
from (4), the function ~(x, t, P) ~ ~+ (g, t, P) has the form 

~(~-~) (~ + ~ 4 (~, ~, ~) ~-~) • (~ 5) 
S=~ 

From this it follows that 

I ~ ( x ' t ' P ) ¢ + ( Y ' t ' P ) ~ - ~ 5 ( x - - Y ) "  (~6) 
C~\ P, 

Summing up (J4) and (J6) we obtain the desired equality (|2). 

As we mentioned before, for M = 0, and N = O, the potentials u(x, t), obtained in the 
present construction, are quasiperiodic. 

The conditions, which distinguish the potentials periodic in x and t, can be formulated 
in the following way. 
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A meromorphic differential on a smooth curve F will be called absolutely normed if its 
integrals with respect to all cycles are real. The differentials of the quasienergy dE and 
the quasimomentum dp are defined as absolutely normed potentials, which are holomorphic be- 

sides P0, and in the neighborhood of this point have the following form 

dp = dk (l + O(k-2)), dE = dk ~ (I ~- O (k-a)). 

It is easy to see that such differentials exist and are unique. 

LEMMA 3. If for any cycle on F there are satisfied the conditions 

~ 2~ ~ 2~m a) ap  = - - L - -  , b) d E - -  T ' m, l are integers, 

then (for M = N = O) the finite-zone potentials u(x, t), corresponding to this curve, are 
periodic, and the Beiker--Akhiezer function is the Bloch function 

Proof. 

~ (x -4- L, t, P) = w~ (P) ~ (x, t, P), 
~ ( x , t  + r , P )  = w2 (P) ~ (x, t, P). 

From conditions (18) it follows that the functions 

P P 

I I 
Q O 

(17) 

(18) 

(19) 

(20) 

(21) 

are well defined on F (i.e., they do not depend on the choice of the integration path between 
the initial point Q and P). Beside the point P0 they are holomorphic. 

Thus the equalities (19) and (20) follow from the fact that their left- and right-hand 
sides have the same analytic properties. Since w~(P) does not depend on x and t, then, by 
(19) and (20), u(x, t) is periodic. 

Remark. Up to now the parameter k -l has not been fixed in the neighborhood of P0, be- 
cause the Beiker--Akhiezer function and the potential u(x, t) depend on its choice in a very 
simple way. With the change of k into k + ~0 + ~k -~ + ..., the functions ~ and u are trans- 
formed into 

~ --> ~ (x + 2~ot, t, P)  e ~(~o~+%~÷~mo, u --> u (x + 2act, t) - -  2 ~ .  

Nevertheless, for the further goals, it is convenient to choose the local parameter so 
that dp = dk. This fixes it uniquely up to proportionality, which is equivalent to the scal- 
ing group x, t ÷ %x, %et, and to the shifts k ÷ k + ~0. 

As it follows from the proved statement the coefficients ~s of the decomposition of (4) 
with respect to the local parameter are quasiperiodic functions of x and t with (M = N = 0). 
In the general case ~s are uniformly bounded in x on the whole direct line. 

Let the curve F satisfy conditions (18a). Denote by Pn(w) the points on F at which the 
function w~(F n) = w.. Notice that Pn ÷ P0, n ÷ ~. 

For any function f(x) satisfying the condition 

f (x + L) = w ] (x), (22) 

we consider the series 

~, cn (t) ~ (x, t, Pn (u,)) = ~ Chin, ( 2 3 ) 

where 
L 

c ~ = -  z- f(y) 
0 

and < '>x  a r e  the  a v e r a g e s  ove r  t h e  p e r i o d .  

~+ (g, t, Pn (w)) 
dg, (24) + 

<%~n>~ 

THEOREM 3_. If f(x) is continuously differentiable, then the series (23) converges to 
f (x). 

(In general the conditions of convergence of the series (23) are the same as for the 
usual Fourier series.) 
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Proof. Let R N (for sufficiently large N's) be the circle of radius ((2N + I)~L) -~ in 
the neighborhood of P0, and N is an in~teger. 

Let us consider the integral 
L 

I I ~(x't'P)~+(Y't'') N~= /(Y) ~ V ) 5  ~ Y "  (25) 
RN ~ 

On the one hand, it is equal to the sum of the residua of the integrand inside the contour 
RN, which, by (30) and because iLdp = d inw~, coincides with the sum of those terms in the 
series (23) for which Pn lies beyond R N. On the other hand, using the decomposition (4) for 
~, and the fact that in the neighborhood of P0 we have w~ = e ikL, it is easy to show that S N 
coincides up to ~(N -~) with the sum of the first N terms of the usual Fourier series for f(x). 
From this, letting N go to =, we obtain the assertion of the theorem. 

LEMMA 4. If M = 0 and all the pairs ~¢~, occurring in conditions (2), are of the first 
type, then the potential u(x, t) corresponding to these data, with x + Vt ÷ ~, where 

ImE (~) (26) 
v #  

Imp (x~) ' 

has the form 

u (x, 1) = 20~ In O (U(2)x + U(m~ + ~± + ~), (27) 

g + N  N 

~ ± = K - -  ~ A(y~)@ ~ A(×~). (28) 
8=1 ~=I 

From conditions (2) it follows that ~(x, t, Po), forx + Vt ÷ ±~, tends to the functions 
~±(x, t, P), which have at P0 the form (4). Beside P0 they have poles at the points Ys and 
zeros at the points ~. By the Riemann--Roch theorem there exist unique meromorphic functions 
h±(P) with poles at Ys and zeros at ~, h+(P0) = I. Beside ×3 , the functions ~± have yet 
g zeros. Let us denote them by T~ .... ~ ?~? By the Abel theorem 

~ A (?~) = 2 A (?~) -- ~ ~ (~). (29) 
~=1 s # 

The f u n c t i o n s  # ± ( x ,  t ,  P ) h ~ ( P )  a r e  t h e  B e i k e r - - A k h i e z e r  f u n c t i o n s  w i t h  g p o l e s  a t  ¥~.  
T h e r e f o r e  f o r m u l a  (27) f o l l o w s  f rom (29) and ( 8 ) .  

m u l t ~ s o l ~ t o n  w i t h  f i n i t e - z o n e  b a c k -  Remark.  I t  i s  n a t u r a l  t o  c a l l  t he  above  p o t e n t i a l s  " " " 
g r o u n d . "  A n o t h e r  fo rm o f  t h e  " d r e s s i n g "  of  f i n i t e - z o n e  p o t e n t i a l s  w i t h  s o l i t o n  p o t e n -  
t i a l s ,  b a s e d  upon t h e  Back lund- -Darboux  t r a n s f o r m ,  has  b e e n  p r e s e n t e d  in  [ 2 5 ] .  

THEOREM 4.  I f  on t h e  c u r v e  r t h e  d i f f e r e n t i a l s  dp and dE do n o t  have  j o i n t  z e r o s  ( t h i s  
c o n d i t i o n  i s  s a t i s f i e d  f o r  c u r v e s  in  g e n e r a l  p o s i t i o n ) ,  t h e n  t h e  s p e c t r a l  m e a s u r e  ~,  c o r r e -  
s p o n d i n g  to  a m u l t i s o l i t o n  p o t e n t i a l  w i t h  f i n i t e - z o n e  b a c k g r o u n d  i s  e q u a l  t o  

dv ~Z , ~ '  = 0,~ (30) ~ = ~+>- - -~ -  i <~ '~+-~+ ,> ,  

(where  < ' > x  and < ' > t  d e n o t e  t h e  a v e r a g e s  o v e r  x and t ,  r e s p e c t i v e l y ) .  

P r o o f .  L e t  $ = $ ( x ,  t ,  P) and @ = ~ ( x ,  t ,  ~ ) ,  where  P and ~ a r e  a r b i t r a r y  p o i n t s  o f  r .  
Then ,  f r o m  (6) and f r o m  the  r e a l i t y  o f  u ( x ,  t )  i t  f o l l o w s  t h a t  

~0, (@+) = 0~ (,'6+ - ,~+'). (3~) 

Averaging this equality with respect to (x, t) and letting ~ ÷ P, we obtain the following 
equality: 

• 

~ dE <~+>,-----dp <~+ -- #~+ >~. (32) 
• 

Notice that, as it has been shown in the proof of the preceding lemma, the points i~ corre- 
spond to bound stages and 

<~¢+>. I~=~? = <*'#+ -- ~m+'>, I~=~? = o. (33) 

In addition to these N zeros, <~+>x has also 2g zeros more, which, by (32) and because dp 
and dE do not have common zeros, must coincide with the zeros of dp. Consequently, the 
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differential dp/<~@+>x has poles at the points + ~V, zeros at the points y~ ..... ~+~, ~(.?~) ..... 

• (?g+~)~ and the desired form in the neighborhood of P0. 

The author has been informed by B. A. Dubrovin and So M. Natanson that they have recently 
obtained another proof of the sufficiency of the conditions on the divisor of the poles of ~ 
leading to real nonsingular potentials of the SchrSdinger operator. Moreover, they have 
proved the necessity of the existence of an antiinvolution ~. 

The values of the quasimomentum p = p(E) for each value of the quasienergy (for a given 
local choice of branches of these multivalued functions) determine functionals over the set 
of finite-zone potentials. In the stationary case the coefficients of the expansion of p 

with respect to powers of k -i = E -I/2 in the neighborhood of Po, P-~-k+~Ps k-z possess local 

densities, i.e., ps = ~,([~])dx, where Is([U]') are differential polynomials. In the non- 
stationary case the situation is different. 

THEOREM 5. The variation of the quasimomentum 6p under the variation 6u(x, t) of 

~p = ~t I i  6~(z't)~(x't'P)~+(x't'P)~ ~ ~---~+,--->~ dxdt. (34) 

We omit the proof of this theorem because it is completely parallel to its standard 

variant [27]. 

2. NONLINEAR RSLATIONS IN THE SPECTRAL THEORY OF THE FINITE-ZONE NONSTATIONARY 

SCHR~DINGER OPERATORS 

In this section we shall derive nonlinear relations between the algebraic-geometrical 
potentials of the linear SchrSdinger equation and its solutions. As it will be seen further, 
these relations can be used for the construction of the solutions of some nonlinear equa- 
tions of mathematical physics (a similar approach to the construction of the finite-zone so- 
lutions of the nonlinear SchrSdinger equation has been earlier used in [29]). 

Let ~(x, t, k) be a formal solution of Eq. (6) of the form (4). Equation (6) is equiva- 
lent to the following system of equations on the coefficients ~s(X, t): 

i$~ -- 2i~+~ -- ~ n u u~ ----- 0. (35). 

Consider the series 

~(z,t,~)-~(x,t,-~)= t + ~ ,4(x,t)~-~. 
~ 2  

The c o e f f i c i e ~ , t s  J s  o f  t h i s  s e r i e s  a r e  t h e  f o l l o w i n g  p o l y n o m i a l s  o f  ~7~, ~7~: 

z~ = ~ + ~ -~' I~ I ~, 4 = ~ + ~ + ~_~ + $~, 
A = ~ + i + ~$  + $~. + I~ I ~ 

(36) 

(37) 

etc. 

In the stationary case these coefficients are equal to Js = ~Is/6U, the variational deri- 
vatives of the KdV integrals, and they are differential polynomials of u(x) [3, 4]. 

We shall find analogous expressions for Js in the nonstationary case. Since E1 + ~i = 
0, then from Eq. (35) for s = I we get 

$~=~_~,,  ~(~,~" ~[_.,~v o ~.2)+ ~t-~ = • (38) 

Consequently, 

J~ ---i~; + A (t) = --if- + A (t). 

S i m i l a r l y ,  f r o m  Eq.  (42)  f o r  s = 2 we d e r i v e  t h e  e q u a l i t y  

j t O~ .~=T A + i(~0'. 

(39) 

(4o) 

We assume also that ~s are bounded on the whole axis in x (which always holds in our con- 
structions). Then from (40) we have ~ = 0 and A = const. Integrating (40), we get 
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J~ = i ~  + B (t). (4~) 

F i n a l l y ,  f o r  s = 3, f rom ( 4 2 ) ,  a f t e r  a s imple  c o m p u t a t i o n  and u s i n g  the  p r e v i o u s  e q u a l i t i e s  
we o b t a i n  

• 3 i . . . .  3 " "  I 
O~J~: T i ~ i - - T ~  -- ~ + ' T  1~. (42) 

For the further use we need only the above expressions. Considering the remaining co- 
efficients Js, it is natural to assume that ~xS-2j s is a differential polynomial of u. (Per- 
haps, in the proof of this statement it mightbe necessary to apply the hierarchy of the KP 
equation, based on the introduction of the ~-function, presented in [35].) 

The algebraic-geometrical potentials u(x, t) are characterized among all Potentials by 
the fact that only a finite number of the coefficients Js is linearly independent. 

Denote by ~ = £  (F, %i, ×~) the linear space of meromorphic differentials, which have poles 
only of at most second order with null residua at the points ~j, and the simple poles at the 
points ~ with opposite residua. The dimension of this space is g + N + M = G. 

Since 

~ (x, t, P)¢+ (x, t, P) ~ dp ~ Z (F, %i, ×?), 

then among~ the coefficients Js there are at most G linearly independent. 

In the case of general position, as for the basic differentials we can take the differ- 
entials As, normalized by the conditions 

A~ = d k ( k  -* + O(k-V-~)), s----2 . . . . .  G +  i. (43) 

In t h i s  b a s i s  t he  d e c o m p o s i t i o n  c o e f f i c i e n t s  

~+~ (44) ~p¢+~2 = dp -~ ~ A~2~ (x, ~) 
S ~ 2  

coincide with the first coefficients of the decomposition 

¢(~,~,~) ~(x,t ,~) . .~l  + ~ ~ (x,~) ~-~. (45) 
<~+>~ Z-~=~ 

Notice, that if <~>x = 0, then 

7~=]~, 7~=J~, ~,=~4, (46) 

where J2, J3, J4 are defined above. 

As it will be seen below, by a particular choice of the parameters of F, P0, %j, g~ we can 
obtain from (46) equalities which together with Eq. (8) give a system of equations describing 
the interaction between the short and long waves in plasma, in various approximations. 

Suppose that there exists on F a function h(P), holomorphic beside the points P0, P1, 
T(PI) = PI. At the last point it has a simple pole. Let, moreover, the parameters ×~ and %j 
be chosen in such a way that 

h(×?)----h(×7), dhl~=x~=0. (47) 

Denote by ~(x, t) the value of the Beiker--Akhiezer function at the point P~: ~(x, t) = 

~(x, t, PI). 

THEOREM 6. If h(P) has at the point P0 a pole of the second order 

h(P) = k ~ + ak + O (i), (48) 

then ¢(x, t) satisfies the relation: 

r (t ¢ lgx = . ~  (a + ~u~), (49) 

r = resp~h~. (50) 

If h(P) has a third order pole at P0, and 

h ( P )  =k ~ +  ~ k + O ( i ) ,  (51) 
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then 

2 3 ~ r(lq~ l )=  = -g-  a - -  -g-  (u~,.,'.~ - -  3 u u 2 ~  - -  f ~u:¢~" (52) 

Proof. It follows from (47) that the sum of the residua of the differential 

A = h (P) ~ (x, t, P) ~+ (x, t, P) Q (P) (53) 

at all points except P0 and Pl is null. Therefore 

reselA------resPoA. (54) 

The left-hand side of this equality coincides with rl~I 2, and the right-hand side in the first 
case coincides with J3 + aJ2, and with J~ + BJ2 in the latter. From (54) and the formulas 
(39)-(42) the equalities (49)-(52) follow. 

COROLLARY. Formula (8) and the formula- 

i t . ) O ( A ( p , ) + x U ( 2 ) + t U ( ~ ) + ~ o + ¢ ) O ( ~ o + ¢ )  
~ (iX, t) ~--- exp (i (x~(~) + ~(3) + E~Qo))  0 (A (P~) + ~o + ¢) O (xU (~) + tU (a) + ~o + ~ -  (55) 

give quasiperiodic solutions of the systems (6) and (49), and (6) and (52), in the first and 
in the latter case, respectively. 

The system. (6), (49) has been presented in [30], where~also its integrability has been 
shown. The system (6), (52) has been obtained in [3~], where also a simpler soliton solution 
has been found. A family of soliton solutions has been found in [32]. In [33] the L, A, B- 
triple has been found for the system (6), (52). Periodic, finite-zone solutions of both 
systems havenotbeen constructed till now. 

3. A NONSTATIONARY PEIERLS MODEL 

The decomposition theorem proved in Sec. I shows that the real ovals of the curve F and 
the pairs z~ of the first type correspond to the "single-valued" states of electron. Intro- 
ducing the occupation numbers c (P), P ~ {ffi}; cj, j = J,...,NI of these states, we can represent 
the Lagrangian of the Peierls model in the form 

L Nt 

0 ~i} i=~ 

where  r~ ~s d e ~ a e d  by ~ormu~a ( ] ] )  , ~ = ~ (x, t, ~ ) .  

By v ~ r c u e  of  ~he P a u ~  p r i n c i p l e  t he  o c c u p a t i o n  numbers  s h o u l d  s a t i s f y  t he  c o n d i t i o n  
0 ~ c (P)  ~ 2, 0 ~ c~ ~ 2. The ~asc  two componen t s  a r e  the  k~neC~c e n e r g y  and the  e n e r g y  of  
t h e  e l a s t i c  d e f o r m a t i o n  o~ t h e  ~on l a t t i c e .  ~n ~he g e n e r a ~  c a s e  t he  d e f o r m a t i o n  p o t e n t i a l  
~(Wx, w x x , . . . )  can  be s u f f i c i e n t l y  a r b ~ c r a ~ .  

The v a r i a t i o n  o~ ~ w£~h r e s p e a ~  ~o ~+ l e a d s  ~o t h e  n o n s C a ~ o n a r y  Sch rSd~nge r  e q u a t i o n  
(6) ~or  ~ ( x ,  C, P) w~Ch the  p o t e n t i a l  u ( x ,  c) = Wx(X , C). ~rom ~he v a r ~ a C ~ a  of  ~ w~Ch r e -  
s p e c t  to w we obtain the self-congruency equation 

N~ 

M w t t - - g w ~ : O ~  ( ~ ~ * l ~ ( x , t , P ) c ( P ) a ( P )  - E r~c~l*]e) • (57) 
{oi} i=i 

E q u a t i o n s  ( 6 ) ,  (5~) ~orm a s~sCem o~ e q u a t i o n s  o~ the  noasCaC£onar~  P e t e r , s  mode l .  Ne s h a ~  
~ook ~or  t he  so luC~ous  o~ t h e s e  e q u a t i o n s  ~n t h e  ~orm o~ a p r o p a ~ a c ~ n ~  wave,  weak ly  m o d u l a t e d  
~n C~me, i . e . ,  w(x ,  C) ~s s o u g h t  ~n the  ~ r m  w = ~ (x  + VC, c ) ,  where  ~ ( x ,  C) weak ly  depends  
oa C. A n a l o g o u s l y ,  ~ ( x ,  c) wi l~  be  r e p r e s e n t e d  ~n the  ~orm 

~ (x, t, P) : e-~/~vx-L'avU~(x + Vt, t, P) .  

T o g e t h e r  w i t h  c h a t ,  ~he £ u n c t i o n  ~ w£1l s a ~ £ s £ y  Eq. (6) w i t h  t h e  po~en~£a1 u ( x ,  ~) = 
~ x ( x ,  c ) ,  and Eq. ( 5 7 ) ,  w i t h  the  a c c u r a c y  up co the  s e c o n d - o r d e r  t e r m s ,  w£11 be  Crans£ormed  
£nco the  e q u a t i o n  

N, 

- c ~Wxx - -  ~ s ~ t  = Ox L{ 

where ×3 = MV2 - -  g, ×3 = M V .  
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Denote by Fs, s = 2,...,G + I the numbers 

I Y, ri c , (59) 
~i~ i 

where  A s a r e  t h e  d i f f e r e n t i a l s  on r d e ~ n e d  b~ c o n d i t i o n s  ( ~ ] ) ,  and 

r~,~ ~ 2n~ res +A~. (60)  
ui 

A d£recC c o n s e q u e n c e  o~ e q u a l i t y  (4~) £s 

THEORE~ 7. ~ ehe r e ~ a c £ o n s  

F ~ = u ~ , F ~ = u a ,  F ~ = 0 ,  s = 4  . . . . .  G + l ,  (6~) 

h o l d ,  t h e n  ~he Be£ke ; - -Akh£eze r  ~ u n c ~ o n  ~ ( x ,  ~, P ) ,  and w(x ,  C) = 2 £ ~ z ( x ,  C) s a c £ s ~ y  t h e  s y s -  
tem o~ e q u a t i o n s  (6) (when u = w x) and ( 5 8 ) .  

Remark.  ~ ~he o c c u p a ~ £ o a  numbers  c£ ,  a (P )  assume ~he v a l u e s  0 and 2 on~y,  and c (P )  £s 
c o n s t a n ~  on e v e r y  o v a l  ~£ ( £ . e . ,  some o£ ~he zones  and ~eve~s  a r e  ~ £ ~ l e d  up c o m p l e t e l y ,  and 
~he r e s t  o~ C h e m a r e e m p ~ y ) ,  ~hen,  o b v i o u s l y ,  £n ~he a n a l o g y  ~o t h e  s t a n d a r d  c a s e ,  we can  show 
ChaC a ~ r e a d y  t h e  p a r e  o~ Eqs.  ( 6 ~ ) ,  c o r r e s p o n d i n g  ~o t h e  £nd£ces  s ~ 5 ,  does  no~ have  s o l u -  
t i o n s  ~or  G ~ 6.  

E q u a t i o n  (6~) s h o u l d  be  c o m p l e t e d  w£Ch t h e  equaC£on wh£ch de~erm£nes  t h e  " d e n s £ e y  o~ 
~ C ~ O ~ S "  ~ 

~c ( P) dp ~ 2n 9 ~ const. (62) 
{~i} 

F o r  G = 2 we have  a l t o g e t h e r  3 equa~Lons  ~or  ~he c o n s t r u c ~ £ o n  p a r a m e t e r s :  t h e  p a r a m e t e r s  o£ 
~he c u r v e  F ( c h e e r  number £o~ g = 2 £s 3 ) ,  and t h e  p o £ n t  P0. 

~e s h a l ~  c o n s £ d e ~  now £n de~a£~ a p h y s i c a l l y  £nCeresC£ng c a s e ,  c o r r e s p o n d £ n g  ~o t h e  d e -  
g e n e r a ~ £ o n  o~ t h e  c u r v e s  o~ ~he k£nd 2 ~o e l ~ £ p c £ c a l  c u r v e s  w£ch s e ~ £ - ~ n c e r s e c c £ o n s  g = ~, 
N = ~ ( £ . e . ,  t h e  c a s e  o£ a " s £ n g ~ e - s o ~ £ ~ o a  w£~h s £ n g l ~ - z o n e  b a c k g r o u n d " ) .  F o r  ~h~s d e g e n e r -  
a t e d  c a s e  we have  3 p a r a m e t e r s ,  £ . e . ,  t h e  p e r £ o d s  2~, and 2~ ~ o~ t h e  e ~ l £ p c £ c  c u r v e  F, and 
t h e  p o i n t  ~ ,  e n t e r i n g  cond£C£ons ( 2 ) .  

A d £ r e c ~  compu~a~£on r e d u c e s  Eqs.  (6~) and (62) eo ~he £ol~ow£ng exp~£c£c  ~orm: 

~ ( 6 ~ )  F ~ 4 o ~ z ~ ,  p : ~ ,  
~ ( 6 4 )  

~. = e (g) _ ~ (~) [(~ - u) n + ~ (~ (u) - -  ~ ~ ) )  + ~ic~] = u . .  

~ £ t h  ~h£s we assume a l s o  c h a t  t h e  ~owesc (w£th r e s p e c t  ~o t h e  q u a s £ e n e r g y )  d ~ s t £ n g u £ s h e d  
zone £s c o m p l e t e l y  f£1~ed  up:  c (P )  = 2,  ImP = - - ~ ,  and Chac ~he u p p e r  one £s emp ty :  c (P )  = 0 ,  
ZmP = 0.  E q u a t i o n s  ( 6 3 ) ,  deCerm£n£ng t h e  p e r £ o d s  of  F,  co£nc£de  w£~h t h e  s e ~ f - c o a g v u e n c y  
e q u a c £ o n s  ~or  ehe sCa~£ona ry  P e i e r ~ s  model  [ ~ 3 ] .  From (65) we can  f£nd  u. 

The l£m£Ced volume of  Ch£s a r t £ c ~ e  does  no~ a ~ o w  us  ~o d£s p~ a y  ~he e x p l £ c £ c  f o r m u l a s  
f o r  ~ a n d  w, c o r r e s p o n d i n g  co F and n.. They a r e  obCa£ned by ehe d £ r e c ~  subsC£~uC£on o~ ~ o r -  
mula  (5) ~n~o ( 2 ) .  ~ f o l l o w s  ~rom L e n a  4 chac  a s y m p t o t i c a l l y  £or  ~ a r g e  x and c t h e  p o c e n -  
c£a~ u ( x ,  ~) = wx(x ,  C) has  ~he £orm 

u - - > 2 ~ ( i x +  ~ 0 ~ ( u - - ~ ) )  + c o n s t -  (65)  

Y~om ~he po£n~ o£ v£ew o£ ~he s o l u t i o n s  o£ ehe  nonsCaC£ona ry  P e £ e r l s  mode~ o n l y  Chose 
s o l u t i o n s  o£ Eqs .  (6) and (58) a r e  £ n C e r e s e £ n g ,  which  depend  w e a k l y  on c .  ~n t h e  c a s e  o~ an 
e ~ l £ p ~ £ c  c u r v e  F ~he q u a s L e n e r g y  E £s ~(z )  -- ~he ~ - ~ e £ e r s C r a s s  ~unc~£on [ 3 ~ ] .  T h e r e f o r e ,  
a s  £e ~ o l l o w $  £rom t h e  p roo~  of  L e n a  ~,  t h e  " s m a l l n e s s "  o~ t h e  ve~oc£Cy o~ a s o l , C o n  w£Ch 
~he b a c k g r o u n d  o~ c a n o £ d a l  wave £s equ£va~ene  ~o ~h~ " s m a l l n e s s "  o~ ~ ( u ) - - ~  (~) ] .  The ~ a ~ e r  
£s  s a t £ s f £ e d  £~ 

~ i ~ ~ - ~ '  ~ ~ ~. ( 6 6 )  

The s e L £ - a o n g c u e a c y  equa~£on (64) has  ~he s o l u t i o n  n s a ~ £ s £ y £ a g  coad£C£on (66) o n l y  £f 

c~ = i .  (67) 

~n uuch a ~ a y ,  l £ k e  £n ~he s ~ a ~ £ o n a r y  c a s e ,  on t h e  d £ s c r e ~ e  l e v e l  t h e r e  s h o u l d  be  l o c a l i z e d  
o n l y  one e l e c t r o n .  ~n t h £ s  c a s e  t he  P e £ e r l s  model  has  a s o l u ~ £ o n  of  ~he p r o p a g a ~ £ n g  wave 
t y p e ,  w e a k l y  m o d u l a t e d  £n c£me. 
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In analogy to the previous theorem, from (44) follows 

Theorem 80~ If the conditions 

f z  = - - g ,  f~  = O, f a = M ,  f s  = O; s = 5 . . . . .  G + 1, (68) 

are satisfied, then ~(x, t, P) and w(x, t) = 2i~l(x, t) satisfy Eq. (6) and the self-con- 

gruency condition 

- - - - f -  w . . . .  ÷ - f -  I I*l~ ¢(P) fl -- 2 ciri I*~ [~] (69)  
i 
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FINITE-DIMENSIONAL PERTURBATIONS OF DISCRETE OPERATORS AND 

FORMULAS FOR TRACES 

V. A. Sadovnichii and V. A. Lyubishkin UDC 517.956 

I. Introduction 

The theory of regularized traces in problems generated by ordinary differential expres- 
sions on afinite interval is practically completed at the present time (cf.[l,2]). This circumstance 
is mainly connected with the fact discovered in [I] and contained there that obtaining formulas 
for traces in this case can be reduced to the study of zeros of entire functions with a com- 
pletely determined asymptotic structure stipulated by the concrete form of the fundamental 
system of solutions of a differential equation. However, even in this situation, one cannot 
avoid the fact (cf. [2]) that the zeros of the involved entire functions do not have a suf- 
ficiently regular asymptotic behavior which makes it necessary to call upon the methods of 
perturbation theory in these cases. 

The situation becomes significantly more complicated if we consider problems generated 
by partial differential operators. This is connected, first of all, with the complicated 
structure of the spectrum, and consequently of functions of the spectral parameter %, arising 
in similar problems. 

At the present time, the theory of regularized traces of discrete operators has been 
worked out relatively little. From the results we would like to mention [3], in which trace 
formulas are obtained in the case of self-adjoint nuclear perturbations, and [4], in which 
the theory is extended to the case of dissipative perturbations. In [5] an algorithm is con- 
structed for obtaining trace formulas for a large class of discrete operators. 

We would like to emphasize that as usual, the methods of the theory of functions have 
great significance in the study of the spectral problems of abstract operators. Namely, the 
combination of methods of perturbation theory with those of the theory of functions leads to 
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