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THE PEIERLS MODEL 

I. M. Krichever UDC 517.93+513.015.7 

INTRODUCTION 

The recently developed theory of "finite-zone" integration of nonlinear equations harmo- 
niously combines ideas from the theory of nonlinear equations, variational principles for 
Kruskal-type functionals, the spectral theory of linear operators with periodic coefficients, 
and methods from algebraic geometry (see the review papers [1-4]). This relationship was par- 
ticularly close in the primary stage, when the algebrogeometric approach to the spectral theo- 
ry of the periodic Sturrm-Liouville operator was used to construct periodic and quasiperiodic 
solutions to the Korteweg--deVries equation [i]. (It is interesting to remark that the varia- 
tional principles used initially to define finite-zone solutions [5] are, in a certain sense, 
kindred to the ones considered below.) Subsequently, the successes of the algebrogeometric 
language (especially with two-dimensional equations of the Kadomtsev--Petviashvili type) left 
both the spectral theory and the variational principles in shade. Roughly one and a half to 
two years ago it was discovered that the algebrogeometric methods can be applied in problems 
from the theory of quasi-one-dimensional conductors [6-10]. The typical features of the 
quasi-one-dimensional conductors (the presence of periodic superstructures and of charge den- 
sity waves, and the appearance of slits on the Fermi surface) are customarily explained in 

the framework of the theory based on the Peierls model [11]. 

This model describes the self-consistent behavior of electrons and atoms of an ionic 
frame. The state of atoms is characterized by their coordinates on the line Xn, x n < Xn+ I, 
and by the quantities Vn, which represent the "internal" degrees of freedom. The model ne- 
glects the direct interaction between electrons, but takes into account the deformation ener- 
gy of the lattice. The interaction of electrons with the lattice reduces to the fact that 
the state of the latter determines the energy spectrum of the electrons. The energy levels 
of the electrons are points of the spectrum Ei < ... < E N (which can merge, though not more 

than in pairs) of the Schrodinger difference operator 

with periodic boundary conditions 

~t~,~ (E~) = ~ ÷ ~  (E~). 

Here v n = Vn+ N and c n = Cn+ N = exp(x n -- Xn+l). 

If there are m electrons in the system (we do not deal with spin degeneration), then, by 
virtue of Pauli's principle, they occupy, at zero temperature, the m lowest energy levels. 
The total energy of the system is the sum of the energy of electrons and of the deformation 

energy of the lattice. Its value, fitted to one node, is equal to 
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'<£ Z ST = - y -  E~ + ~ (v~) + ~ (c~) , 
i=i n ~ O  

(2) 

where }I and ~-2 are the deformation energy. 

The problem is to minimize the functional ~( with respect to the variables v n and c n and 

for a fixed value of the electron density p = m/N. One is particularly interested in this 

problem in the thermodynamic limit N + ~, m + ~, m/N ÷ p = const. 

If p = 0, the minimum of ~ is trivially seen to be v n = v °, c n = c ° , where v ° and c o 

correspond to the minima of ~ and ~2, respectively. Moreover, one has x n = an + b, and the 
lattice is uniform. The spectrum of the operator L with constant coefficients on the entire 

line reduces to a segment. When p > 0, v n and c n are no longer constants, and slits appear 
in the spectrum. Under the assumption that the slits on the Fermi surface are small, the mod- 

el admits a continual approximation. The latter has been investigated in [6-11] for a special 

choice of the deformation potential. There the electrons's contribution to the energy was 

defined by the spectrum of either the Dirac equation for I p --½ I << i, or the Sturm--Liouville 

operator for p << i. 

The discrete Peierls model was integrated in [12] for the particular choice of potentials 
-O %~ = %<2v2/2 and %2~° = i<2c 2 --%<o ~n c. It was shown that in the thermodynamic limit to the 

minimum of ST there corresponds an operator L having two permitted zones of spectrum. More- 
over, all of the energy levels lying in the lower zone e~ ~< E ~< e2 are occupied, while those 

lying in the upper zone e3 ~< E ~ e4, ex < es, are empty. The energy of the ground state and 

the corresponding values of v n and c n were also found. 

The proof that the ground state is one zone used, in an essential way, the fact that for 

the choice of potentials indicated above the deformation energy is a linear combination of 

N - - 1  N--I I _ . 2 \  

first integrals of the equations of the Toda lattice, 1o------~---~ ~, ]ncn ,I2~---~-~r-, ~ ~, /c~n+--~). 
72~0 n ~  0 

(An operator L is said to be a q-zone operator if it has q bounded gaps in its spectrum or a 

q + 1 permitted zone). Since the E i are first integrals of the Toda lattice too, the ground 

state, as well as all the levels of the functional 

m 'Z ~o : - F  E~ q- ×212 -- ×ofo 
i = 0  

are degenerate. A similar degeneracy is responsible for the so-called Frehlich conductivity. 

In the present paper we consider the general Peierls functional 

N--I 
I ##=Yo÷~#A, "~i=-~-L (¢~(v~)+¢~(c$)). (3) 

We attach particular importance to the characteristics of the dependence of the energy of the 

ground state upon the density p. It turns out that this energy, J(*(p), which is a smooth 

function of p when g = 0, becomes discontinuous at the rational points p = p/q when g ¢ 0. 

The corresponding jump is of order ~ge-q. Both a number of physical considerations and the 

results of computer calculations [13-15] indicate that the degeneracy of the ground state is 

related to p being rational or irrational. We shall prove below that for p irrational and 
g < gp the ground state degenerates. 

The particularities of the behavior of the system indicated above are related to the 

fact that the dependence of q-zone operators upon their n coefficients is a discrete analogue 

of the time dynamics of completely integrable systems. The Peierls functional has the form 

of a discrete "time" average. The singularities of such quantities are caused not only by 
resonances among frequencies, as in the continuous case, but also by resonances with the num- 
ber one. 

i. Periodic Shredinger Difference Operator 

In this section we shall briefly discuss the main elements of the spectral theory of the 
Schredinger difference operator. This operator was actively studied by many authors in con- 
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nection with the integration of the Todd lattice. The preference given to this direction 

led, as we already mentioned, to the situation that, aside from the paper [i] (Ch. III, Sec. 
i), which provided the foundation for the algebrogeometric approach to difference problems, 
the other works essentially did not touch upon the aspects of spectral theory and its rela- 

tion to the variational principles. 

We shall mainly follow the definitions and notation of [12], where the gap mentioned 
above was filled up. We shall pause to discuss in more detail the explicit expressions for 
v n and c n in terms of theta-functions of Riemann surfaces. Such formulas for v were ob- 
tained, with some inaccuracies, in [i] (Ch. III, Sec. i). Complete formulas for all the co- 
efficients of operator L were obtained in [16] (see also the author's appendix to the review 

paper [4]). 

The shift-by-a-period operator T: yn^÷ Yn+N takes the solutions of equation (i) into so- 
lutions of the same equation. Denote by T(E) the corresponding two-dimensional linear opera- 
tor. The eigenvalues of T(E) are defined by the characteristic equation 

w 2 -- 2Q(E)w + i = 0, (4) 

where 2Q(E) = Sp T(E) is a polynomial of degree N. 

To each pair (w, E) of complex numbers satisfying equation (4) (or, which is the same, 
to each point of the curve defined by this equation) there corresponds a unique solution to 
equation (i) satisfying ~n+N = W~n and normalized by the condition 4o = i. We shall call ~n 

the Bloch solution. 

The spectrum of the operator L on the entire line is the union of those segments of the 
real axis (throughout this paper we are interested only in operators having real coefficients) 
for which [ Q(E) I ~ i. These segments are called permitted zones. Their endpoints el, e2, 
• .., ezq+2 are simple roots of Che equation Q2(E) = i. It follows from (4) that these are 
simple points of the spectra of the periodic and antiperiodic problems for the operator L. 
An operator L having the (q + l)-th permitted zone is called a q-zone operator. Notice that 

q~N--l. 

For each value of E there are two Bloch functions @~(E), corresponding to the two roots 
of equation (4). This double-walled function of E becomes single-valued on the Riemann sur- 

face P of function /R(E), 

~q+2 

R (E) ---- ~ (E -- ei). (5) 

We shall imagine that F is glued up from two sheets of the E plane, with cuts along the per- 
mitted zones. The sheet where, at infinity, the branch ¢R = E q+1 + O(Eq) of the function ¢R 
was selected will be called upper. The Bloch function ~n(P) is meromorphic as a function of 
the point P of surface F. It has the following form in the vicinity of E = ~: 

,~n (E)=e+XnE+n(t .+ ~, ~sS:(n) E -s) (6) 

(here the sign ± denotes the upper and lower lists of F, respectively). In the complement of 
infinity ~n(P) has q poles Yi, i = i, ..., q, and the fact that c n > 0 implies that one of 

these poles lies on each of the circles over the forbidden zones. 

Remark. The points ~i, or, more precisely, their projections on the E plane, which we 
shall denote with the same letters, have a natural spectral interpretation; namely, they are 
points of the spectrum of the operator L in the problem with null boundary conditions ~o = 
~N = 0. The remaining N -- q points of the spectrum of such a problem coincide with the de- 
generate points of the spectra of the periodic and antiperiodic problems for the operator L, 

i.e., with roots of multiplicity two of the equation Q2(E) = I. 

Consider the converse statement. Let there be given an arbitrary collection of points 
el < ... < e=q+2 on the real axis. Then for any collection of points ~i, ..., yq of the cor- 
responding Riemann surface, disposed one over each bounded forbidden zone, there exists a 
function ~n(P), P ~ F, unique up to its sign, that behaves as in (5) in the vicinity of in- 

finity and, outside infinity, has q poles at the points ¥i, ..., Yq. 
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Remark. Condition (5) simply means that @n(P) has a pole of order n on the upper list, 

and a zero of order n on the lower list. The coefficients of the leading terms are normalized 

in such a way that their product equals i. We denote these coefficients by eiXn. 

The proof of this assertion is a straightforward consequence of the Riemann--Roch theo- 

rem. A little further we shall write down explicit expressions for ~n(P) in terms of Rie- 

mann's theta-function. 

It was proved in [16] that the function ~n(P) thus constructed satisfies the equation 

L@n(P ) = E(P)~n(P) , where the SchrSdinger operator L has coefficients 

C n ----- eXn-Xn+l, (7a) 

(76) 

(Here E(P) stands for the projection of the point P~F on the E plane). 

Remark. Our assertions remain valid for arbitrary, including complex, values of e i and 
yj. The constraints imposed to the disposition of yj are necessary and sufficient for the co- 

efficients c n and v n to be real. 

For an arbitrary collection of points ei, the operators L constructed above are quasi- 
periodic. To isolate the truly periodic operators and obtain explicit formulas for v n and 

Cn, let us introduce the important notion of the quasimomentum differential. By definition, 
this is a differential of the form 

q--1 

~=o dE, i d p  ~ ]f- f f  (E) 

(8) 

normalized by the condition 

e2~+l 

d p = O .  
e2~ 

(9) 

System (9) is equivalent to a system of linear nonhomogeneous equations in the ak, which can 
thus be expressed in quadratures. 

Let the ~j be holomorphic differentials on F 

q--1 E j dE 

j = o  

satisfying 

2;+1 

2 I ~q~------6~J" 

(Here and in the sequel the integrals between ramification points are taken on the lower sheet. 
If the integration contour encircles a cut, then it passes on the upper edge of the cut on the 
lower sheet.) 

The matrix of b periods is defined by the equality 

e2; 

D~. 
el 

It is known that B is symmetric and has a positive definite imaginary part. 

The integer combinations of the vectors of cq having coordinates 6ik and Bik form a lat- 
tice, which in turn defines a complex torus J(F), called the Jacobi variety (the Jacobian) of 
the curve F. The Abel map A: F + J(F) is defined as follows: The coordinates Ak(P) of the 
point A(P) are equal to 
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P 

A~ (P) = l ilk. 
el 

Given the matrix of b periods, as well as any other matrix with a positive imaginary 
part, one can construct an entire function of q complex variables 

o (u~ . . . .  , u~) = Y, oxp {~ ((m,,, z:) + 2 @, u)), 
k ~ Z  q 

w h e r e  ( k ,  u ) = k ~ u ~ +  . . .  + k q u q .  T h e  l a t t e r  e n j o y s  t h e  f o l l o w i n g  e a s i l y  v e r i f i a b l e  p r o p e r t i e s :  

O (u  1 . . . . .  ttj @ 1 . . . . .  uq) = 0 (u  1 . . . . .  u j  . . . . .  Uq), ( l O a )  

0 (U 1 @ Blk . . . . .  Uq @ Bqk) = exp  ( - - a i  ( B ~  + 2u~)) 0 (u 1 . . . . .  uq). ( 1 0 b )  

M o r e o v e r ,  g i v e n  a n y  c o l l e c t i o n  o f  p o i n t s  y 1 ,  . . . ,  y_ i n  g e n e r a l  p o s i t i o n ,  o n e  c a n  f i n d  
a v e c t o r  Z s u c h  t h a t  t h e  f u n c t i o n  0 ( A ( P )  --  Z)  h a s  p r e c i s e l y  q z e r o s  o n  F ,  w h i c h  a r e  j u s t  t h e  
Y i ' s .  F o r  a s t a n d a r d  c h o i c e  o f  t h e  c y c l e s ,  t h e  v e c t o r  Z b e c o m e s  

9i' k Zk : .  D~ + -T'" 
3 E1  e2j 

The Bloch function 9n(P) has the form 

P 
@~n(p)__rnexp(nif dp) O(A(P)@nU--Z) ( l l )  

O (A (P) - -  Z) ' 
el 

where r n is a constant and the vector U has the coordinates 

e2k 

' I all,, t)<. <u~<u~+1< <I. (12) U~=74- . . . .  
el 

From (i0) and (12) it follows easily that the right-hand side of (Ii) is correctly defined on 

F, i.e., it does not depend upon the choice of the path of integration between el and P. More- 
over, ~n(P) has the required singularities at infinity and at the points Yi" (A formula of 
this type was first proposed by Its [17] for the Bloch function of the Sturm--Liouville opera- 
tor. The general expression for the Baker--Akhiezer-type functions was obtained in [18] (see 

also [2, 4]).) In the neighborhood of infinity and on the upper sheet one has 

E 

exp (i I dp ) - -  Ee-I°(t -- /1 .E - t - i  O (E-2)), 
el 

sl £ 
where Ii = al + ~--, sz = e i. 

It follows from (5) that e 2xn+~nl° equals the ratio of the values of the factors that 

multiplyexpin (ii), taken at the images of the points at infinity +-Zo = -+(Zol, ..., Zoq), 

oo 

Z°k = I ~k" 
el 

Thus, by virtue of (7a), 

o 0 (zo-k n U -  Z) O(-- z . + ( n T  1) U - - Z )  
e"- " c ~ - -  0 ( l ~ o ~ n U --  Z ) 0 ( z 0 ~ ( ~ ~ ~ - ] ) U - -  Z )" (13a) 

Riemann's bilinear relations imply [18] that 

One has, in the vicinity of the infinity on the upper sheet, that 

(14) 
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A (e) = zo + v z  -' + o (E-~), 

where the coordinates V k are defined by the equality 

~k (E) = dE -~ (V~ + 0 (E-~)). 

The definition of ~k shows that V k = --dk,q_ ~- 

Expanding (ii) in powers of E -z, we get 

d O(z°-~-'nU--Zq-Vt) t=o (13b) 
v ~ : ~ T - l n  O ( z o + ( n + l ) U - - g + v t )  -i-a1 4: s~ 2 " 

As formula (13) makes clear, the operator L has period N if and only if U k = mk/N, where 

the m k are integers, and 0 < ... < m k < mk+ I < ... < N. 

As formula (13) shows, the coefficients v n and c n of the operator L depend on the point 

Z of the unit torus in addition to the parameters of the @ function and the vectors U, V, de- 

fined by the curve F. As in the periodic case, the "generating function" for the integrals 

of the Toda lattice, i.e., for quantities which do not depend on Z, is, for any finite-zone 

operator, the quasimomentum 

E 

p (E) ---- I @" ( 1 5 ) 
el 

If one expands p(E) in a neighborhood of infinity on the upper sheet: 

ip(E): l n E - -  ~ [~g% (16) 
8 ~ 0  

then 

N--I N--I /V--I / 

I o =  l im In ca; Ii:lim vn, I2~---tira 7 -  v 2 + o n  ; etc. (27) 

The proof of these formulas (which are well-known in the periodic case) is based on the rela- 
i d~N 

tion i dp = lim ----. It is rather elementary, and we omit it. 
N-~ N ~N 

2. "Integrable Case" 

The Peierls functional (3) was initially defined for periodic operators. With the fu- 

ture aim of passing to the limit as N + ~, we modify the setting of the problem to a certain 

extent and define the Peierls functional for an arbitrary q zone operator L by the formula 

I I  

o ~ : - ~  Edp--×fl2--×ofoq-gaX1,  
el 

N - - 1  

I £ (c9~ (v~) -~- c92 2 (c,O ), 3g, : l im  "-5- 
N ~ e Q  

n = O  

(18) 

(19)  

where ~, the so-called chemopotential, is found from the condition 

(20) ~_L_~ dp=p. 
2 ~  

el 

Here ~<2, %0, and p are real positive constants. The integral sign ~ means that inte- 
el 

g r a t i o n  i s  t a k e n  on t h e  l o w e r  s h e e t  of  F a l o n g  a p a t h  j o i n i n g  ~ -  and  ~+ and  e n c i r c l i n g  t h e  
segment [e~, ~] of the real line. If u lies in a forbidden zone, then ~- = ~+ = ~, while if 
~ l i e s  i n  a p e r m i t t e d  z o n e ,  ~± a r e  t h e  p r e i m a g e s  o f  U on t h e  u p p e r  a nd  l o w e r  e d g e s  o f  t h e  c u t .  
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For operators of period N and having bounded coefficients Iv n I< k~ and lc n I< k2, the 
functionals (3) and (18) differ by a quantity of order 0[(kl + k2)/N]. 

As we already mentioned in the introduction, the minimum of the functional ~0, equal to 
(18) for g = 0, was found in [12]. Let us pause and discuss the results of this paper in more 
detail. 

The functional ##0 depends smoothly on the endpoints of the zones as long as ~ lies in a 
permitted zone. If ~ lies in a forbidden zone, e2k < ~ ~ e2k+~, then ##0 is a smooth function 

e2k 

for those variations satisfying I dp = const. In both cases it was proven that the equations 

el 

of the extremals 8~0-= 0 have no solutions among the q-zone operators with q > i. 

The zone endpoints e~, e2, e3, e4, corresponding to a minimum of ~0, are determined 
from the equations 

i ~ dE . (21) 

~) dE (22) 
0 = ( 2 E - - s  0 ~ ;  

el 

~0=-~ E2--~E~ 2 S ] VR--~ ; (23) 

I dE 
P--~ 2-- '~-# (E + a) , (24)  

e, V ' R - ' ~  

w h e r e  e2 ~ la ~< e3 and  t h e  c o n s t a n t  a i s  d e r i v e d  f rom t h e  n o r m a l i z a t i o n  c o n d i t i o n  ( 9 ) .  

4 

H e r e  R(E) = H ( E - - e i ) ,  s l - - - - -~e i ,  s2-----~ eie i .  
' i = i  i < j  

Le t  us  p o i n t  o n c e  more  t o  t h e  f a c t  t h a t  a t  t h e  c o r r e s p o n d i n g  p o i n t  t h e  f u n c t i o n a l  o~f0 
i s  n o t  a s m o o t h  f u n c t i o n  o f  a l l  o f  t h e  z o n e  e n d p o i n t s  ( b e c a u s e  e2 ~ ~ ~< e a ) .  I f  S 0  (U, p) 
d e n o t e s  t h e  minimum o f  o~0 among t h e  o n e - z o n e  o p e r a t o r s  f o r  f i x e d  p 

i , ~ d p = U ,  (25) 

[el 

then the zone endpoints corresponding to this minimum are determined from the equations (21)- 
(23) and (25). At the same time, if U > p then el ~< ~ < e2, while when U < @, e3 < ~ ~< e,. 

The derivative 0~ o (U, p)/OU has a discontinuity at the point U = 0, but its right and 
left limits exist and are equal to h(e3) > 0 and h(e2) < 0, respectively. Here h(e) is the 

function 

dE e, ]/'-ff '~dt 
h (e) --- lrw-7-.-~ t " (26 

Consequently, in a neighborhood of U = p, one has 

~0(V,p)=.~0(p)+hiIU--pl +h2(U--p)+O((U--P)D, hi+h,=h(e3), h,--hi=h(e2). (27 

We shall consider the functional ~ given by (18) for small g as a perturbation of ~0. 
In order to apply the considerations usual in these situations, we need that the second vari- 
ation of the functional ~2 ~0 be strictly positive for those variations of the zone endpoints 

that satisfy the condition 

el 

63 # dp ~ O. 
e l  

(28) 
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(If this condition is not fulfilled, then the leading term of the increment is defined from 
(27) and is strictly positive.) 

The functional ~0 is defined on the stratified manifold SN~ ~ ~q, where Sq is the 
q~N 

set of collections ~q = (el, ..., e2q+2) of distinct points of the real line 

g¢o = 3% ffq). 

A point ~q ~ ~q C£ ~N is called an n-zone state of the system. Its neighborhood in ~N 
consists not only of collections e~, which differ from eq by small displacements of the end- 
points e i of the old zones of eq, ~ut also differ from collections eq, q ~ q' ~ N, which arise 
from eq by the appearance of new slits in the old permitted zones (i.e., to the collection 
(el, . . . ,  e2q+1) one adds pairs e2k_ I < e_ < e+ < e2k). 

Let ~* be the ground state of the system, defined by (21)-(24) for e2 ~ ~ ~< e~. Consid- 

er an arbitrary variation of th~s sgate (i.e., any collection (el ..... e', e j, e~), 0 ~< j 
~< N- i, where the new slits (eJ_, e$) where opened at the points eJ which lie in the old per- 
mitted zones [e~, e2] or [e3, e4]), and suppose that it satisfies condition (28). 

THEOREM i. The second variation of the functional ~0 is equal to 

4 N - - 1  

52~o(e*) = ~ %~(5e~.) 2v- ~ %(e j)(Sej) 2, (29) 
h'=l j~l 

where 

J -- e J 61~ = e~- - -  e >  5e~ ----- e+ _, 

bt 
t ~ (e 4- a) dE 

) v ( e ) = ~ . ~ i  ] / - ~ ( E - - e )  ~: A >  O, (30) 

%k : 2 £  (ek),  

and ~ is determined by the normalization condition (9): 

(31) 

es 

E + a - g T - d E = O .  (32) 

What the theorem asserts is that the second variation is "diagonal" and positive at the 
point of minimum. 

Proof. By the definition, the differential dp corresponding to the collection el = (e~, 
.... e~) and e~, e~ has the form 

• PN (E) dE 
i dp  (~1, e~) ~ N--1 • (3 3 ) 

¢ ~  1I FiE-4)<E-4) 
~ 1  

Here PN(E) is a polynomial of degree N with leading coefficient i, which is uniquely deter- 
mined by the conditions 

ea 

f d p  = O, (34) 
e2 

dp =0. (35) 

It follows from (35) that 

• E + a dE,  
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where a is determined from (32). 

Differentiating (33), we see that 52dp has the form 

P2N+6 (E) dE i52dp I;_~.~ ; ~=- ~,_~ , 
- '-+-= FY(n~', II  (E- -d )~  

where  PEN+6 i s  a p o l y n o m i a l  of  d e g r e e  2N + 6. 

C o n d i t i o n  (35) i m p l i e s  t h a t  62dp has  no r e s i d u e s  a t  t h e  p o i n t s  E = e J .  Combined w i th  
(28 ) ,  t h i s  shows t h a t  t h e  i n t e g r a l s  of  62dp a l o n g  a l l  c y c l e s  o f  F v a n i s h .  Thus ,  the  mero-  
morph ic  f u n c t i o n  

E 

6~P : I 52 dp, 
el 

(36) 

is correctly defined on F, and has singularities only at the points e i and eJ, namely, poles 
of order three and one, respectively. Consequently, it can be uniquely represented in the 
form 

4 N-L 

VI-T ' l/~- ~ +  ( E ~ d ) ) "  (37) 
d=l J=l 

Differentiating (37) with respect to dE and comparing with the coefficients of the lead- 
ing singular terms in e i and eJ in (36), we get 

~ i  = - - + ( e i  @ a) (Se~) ~, ( 3 8 )  

1 
B i =  - - - T ( e  @ a) (SeJ) 2. (39) 

The mixed derivatives, i.e. , the expressions containing ~ei~eJ and so on, are grouped in the 
coefficients of the second degree polynomial Pi. Their explicit form is not needed because 
their contribution to 62~0 is zero. Indeed, 

~- ~ 52p dE + ×26212 - -  ×o62to. (40) 52"~° - -  2n 
ex 

Expanding (37) in a neighborhood of infinity and comparing the result with the expansion 

oo 

i62p : - -  ~ 52I~.E -~', 
h'=o 

that follows from the definition (16) of Ik, we see that the coefficients of the polynomial 
P2 figuring in (37) are 

P2 = ~o E2 + [1E + ~2, 
31 ~o ---- - -  62Io, ~1 : - -  62/I  @ ~ 52/o, 

81 ~2T ( 81 82 ) Z'~ = - -  621o - --T ~' ~' + 52I° 8 2 " " 

Substituting (41) in Pi, the "self-consistency" equations (21)-(23) yield 

(41) 

i ~ P.. (42) 
-- 2~i" el ~ dE + ×o5'10_ -- ~o5~Io ~-- O. 

(This relation is by no means surprising, because equations (21)-(23) were obtained from sim- 
ilar relations for 6p). Therefore, 

~ o  (~) ~ ~ dE ~.~ ~ 
= --  2~, ~ V ~  { e -  ~-----F + ~ e  ' i : l  j~l 
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which, in turn, with the aid of (38) and (39), yields (29). 

In order to find the coefficients %k and %(e) in a more explicit form and establish their 

positiveness, we use the elliptic parametrization of Y' (the details of which can be found in 

[12]). 

The function 

E I dE' 
z = V ~ (~') 

maps ? onto a torus having periods 2~ and 2w': 

i ei d E  . 0 ) '  : d E  

= V - Y  F-~ 
e l  e~ 

(Here the integrals are taken on the lower sheet of F on paths over the real axis.) 

The formula 

(43) 

E (z) = ~ (z + Zo) - -  ~ ( Z - - Z o )  + h, (44)  

provides the inversion of the elliptic integral (43); here ~(z) = ~(z I ~, ~') is Weierstrass ~ 
function. (The necessary information concerning elliptic functions can be found in [19].) 

Parameters ~, w', Zo, and h replace e~, ..., e4, and relative to them equations (21)-(24) 
become significantly simpler; namely (see [12]), 

zo---- (p--  l )o; ,  (45) 
(46) 

~i Jr 2qZo : (2~ (2Zo) + h) co, (47) 

2~ (48) ×o ---- - - f -  (q + ~ (2zo) o)). 

Relative to the new parameters, the following integral becomes 

e~ CO 

fig (E -- ~) P (~ + ~o) -- P (~ -- Zo) 
--0] 

1 
---- ~ ( ?+Zo) - -~ (? - -Zo )  [ 4 n ¥ - 2 c ° ( ~ ( z ° + 7 ) - ~ ( z ° - ? ) ) ] "  

(49) 

where y denotes the image of e under the map (43), i.e., e = E(y + Zo) -- ~(y -- zo) + h. 

If el ~ e ~ e2, then y is purely imaginary and lies on the segment [0, w]. When e3 
e ~ e4, Re y = w' and y belongs to the segment [w', w' + ~]. 

One can easily see that the numerator of (49) does not vanish inside the intervals (0, 
w) and (~', w + w'), because at their endpoints it takes the values 0 and 4~i, respectively. 
Thus, had such a zero existed, the number of zeros of the derivative of this numerator would 
be greater than 4. However, this derivative is just 4~2~ (@ (z 0 ~) ~ (z0--?)) and has 
four zeros. 

Let us calculate the expression e + ~ = E(¥ + zo) -- ~(Y -- Zo) + h + a. 

The normalizing condition (32) yields 

S 
o1 

[~ (z ÷ Zo) - -  ~ (z - -  zo) ÷ h + a] dz : (h + a) co' + 2Tl'zo ---- O. 

whence, taking advantage of (45), we get 

e + a  = ~(? + z o ) - -  ~ ( ? - - z o )  + 2 q '  ( i - - p ) .  (50) 

This shows that the "eigenvalue ~' ~(y) of the second variation 8~,.~o, corresponding to the 
zone newly open at the point e = E(y), is equal to 
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I ~ ( y ) - - - - - - ~ - [ ~ ( y ~ - Z o ) - - ~ ( y - - Z o ) ~ - 2 N ' ( i - - p ) ]  4N?--2~p(V_?Zo)_~ ($(z°-~?)-~(?-zo)(s°-?)) (51)  

From (30) it follows that 

~,~ ---- 2 lira ~, (?), 

where ~ = 0, ~= = ~, ~3 = ~ + ~' and ~4 = ~' 

We have 

(52) 

t , 2~ -~ ~o~ (zo) 
h = - ~ 7  (n ( l  - p) + ~ (Zo)) e' (~o) ' 

i ~], 2~1 ~- ¢o~ (z o -~- (o) 
~ ----- - ~ -  (q + (i - -  p)), ~°' (~o + ~) ' 

i . q, 2~1-c (o~ (Zo -[- (° "4 -~°') 
~ ---- ~ (n -4- (2 - -  p)) - -  ~' (Zo + ~ + ~') 

i ' (2  9) 2 ~ + ~ ( ~ o + ~ ' )  
~,~ ---- ~ ~1 -- ~°' (Zo + ~o)~ 

(53) 

(54) 

(55) 

(56) 

The positivity of %3, %4, %(Y), and Re y = ~' is plain from their original expressions 
(30) and (31). In fact, in this case the integration contour can be contracted to the cut 
between el and e2, where, for our choice of direction, i/i/R < 0. Now (32) implies that e + 
a > 0 for e > e~. Finally, we see that the expression under the integral sign is positive 
and %3 > 0, %4 > 0, and %(e) > 0 (or, which is the same, %(y) > 0 and Re y = ~' > 0). 

We proved earlier that %(y) does not vanish in the interval (0, ~). As (52) shows, its 

sign can be determined if we find the sign of %~. 

The expression 2~'(i -- 0) + 2~(zo) = e~ + a < 0 is negative. Since Zo = (0 -- i)~' lies 
on the segment (--o', 0), ~'(z0)~0. When one goes around the boundary of the rectangle with 
vertices {0, w, ~' + w, ~'}, ~ (z) monotonically increases from -~° to +~o; moreover, since 

~o'+¢o 
f ~(z)  d z = - - 2 q  

0)'--0) 

$(z) takes the value --q/~ on the wedge [m + ~', ~']. Consequently, 

+ ~ ( z o ) >  O. 

As Im ~ < 0, we see that %1, %2, and i(y) (for Re y = 0) are strictly positive, too. To 

complete the proof of the theorem, we need only remark that %(y) is bounded from above by a 
positive constant A, because its limits at the boundaries of the intervals (0, ~) and (~ + 

m', ~') exist and are positive. 

3. Ground State of the General Peierls Model 

As we showed in the first section, the set of q-zone operators is isomorphic to the prod- 
uct of ~q and a q-dimensional torus Tq. For general functions ~ and ~2 (which in the sequel 

will be assumed to be analytic), the functional 

N--I 
i (57) 

Ha = lira -N- V ,  ((~1 (u~) -~ ¢2 (C2n)) 

i s  a f u n c t i o n  ~ l - - $ g a ( e q ,  Z) o f  t h e  c o l l e c t i o n s  eq  = ( e z ,  . . . ,  e 2 q + 2 ) ,  Z = ( z l ,  . . . ,  Z q ) .  

Let us investigate the character of the dependence of ~(I upon Z. 

Formula (12) associates to each collection eq the q-dimensional vector U(e@) with coor- 
dinates 0 < UI < ... < Uq < i. We call the collection ~q nonresonant if there xs no integer 

vector r = (rl, . , rq) such that 

<r, U (~q)> = ro, ( 5 8 )  
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where ro is an integer. Given a nonresonant collection eq, we shall denote by R(~q) the group 

of all r ~  (~q)such that (58) holds for some value of ro. 

THEOREM 2. The functional ~ is equal to 

where 

a~l (~, Z) = ~ ~-r exp (25ti Q', Z> -}- airo), 
r ~ R ( e q )  

I 1 

Y ~ =  l ' ' "  l ~- (zz . . . . .  zq) exp <-- 2trim, Z> dzl. . ,  dzq 
0 0 

(59) 

(60) 

are the Fourier coefficients of the function 

S (z) ----- a#~ (v (z)) + ¢~ (c ~ (z)), 
O (z - -  U (~q)) 0 (z + g (~q)) e -2zo , 

c 2 (z) - -  O~ (~) 

t 81 
d O (~ + vt) + a~ + - - y .  

v (z) ~ --KF ln  o (z + U (~ q) .at " i t )  o 

Formulas  (12) and (13) imply  t h a t  

- - ~ -  u -}- . 

The limit of 

7V--I 

7t~O 

as N ÷ ~ can be e a s i l y  found u s i n g  the  F o u r i e r  e x p a n s i o n  of  f f ' ( z ) .  

COROLLARY 1. For n o n r e s o n a n t  c o l l e c t i o n s  eq t he  f u n c t i o n a l  N~ (eq ,  Z) does no t  depend 
upon Z and e q u a l s  

COROLLARY 2. If the frequencies U k are not all rational, then the corresponding level 
of the functional ~i is degenerated• 

Proof. Let at least one of the U k be irrational. Then all the r ~ 7~ (~q) are dependent. 
That is to say, one can find a vector Z, such that (r, Z.) ~ 0. But then (59) implies that 
• ~i (eq, Z + tZ,) does not depend upon t. 

Formula (61) determines the "continuous part" of the functional ~i, which, given general 
%~ and ~2, is discontinuous at all resonant collections. If I r I is the minimal order of res- 
onance, I rJ : I r~ + ... +I rq I, r ~ R(eq), then the ]~i (eq, Z) -- ~I (eq) I has order I ~r I and 
decreases h n I r grows as e-lrlA 

Denote by Jz (eq) the function on @q given by 

2{1 (#,~) = mhl  ~ t  (eq, Z). 
Z.~T q 

By Corollary i, the latter equals ~i (eq)almost everywhere. By virtue of (59), I ~1(eq ' 
Tq 

Z)dZ = ~ (~q) ,  and hence  3"{*(~q)-./.~ (#q). 
• 

Cons ide r  an a r b i t r a r y  v a r i a t i o n  in  gN, ( e l ,  . . . ,  e~,  e J ,  e ) ,  of  t he  one-zone  s t a t e  
~i = (el . . . . .  e.). 

THEOREH 3. The variation of ~i is equal to 

N I 

l ~ '~ i l~ l~4~ '~ (~ ' i ) - -d~ '~ l (d l ) ]  ' ~ x(eJ) 6ej, (62) 
j= l  
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Here ~(e) = 0 whenever 

.i 
e e~ 

t .~dp=#:r~U . r o = r g i ( f )  d p q - r o ,  
2z~ . 

~1 el  

(63) 

where r: and ro are integers; in the contrary case, 0 ~ ~(e) ~ Ce -r~A~. 

Proof. Let ~ be the normalized holomorphic differential corresponding to the surface 
F: of the function erR(E) 

e3 ez 

e l  

T h e  n o r m a l i z e d  h o l o m o r p h i c  d i f f e r e n t i a l s  :2: and  ~ on  t h e  s u r f a c e  F~ c o r r e s p o n d i n g  t o  t h e  

c o l l e c t i o n  ( e : ,  . . . ,  e , ;  e _ ,  e + ) ,  h a v e  t h e  f o r m  

(E -- s) dE 

CQ =: a -~- 0 ((8e)2), s ::: e -[- 0 ((~e)°-), 8e : e + - -  e_, 

(a., (E - e) i- c¢:+) dE 
2 e ~ - e + - ~ - e ,  f2+-- - l f_f f l / (E-  e_)(E--e+) ' 

where 

~'2 I ,-" I/].z (,,) 
d E  0 ((~,,)e). 

- -  2 :  !I V !+ :,:> :L' > 
+_, 

(64) 

This shows that the matrix of b periods of the curve F2 is 

B[: = / h :  + O ~(~e)~), 
_ _  e . ,  

oc., ]/'-~ (e) ~ dE 
B:2 = --g-- B n  2~ g ' ~  (E) (E - -  ~) 

el  

exp  (~iB~2) = 8eO (1). 

+ 0 ((8e)2), 
(65) 

Notice that B:2 (which may be written down explicitly using the formulas in the previous 

section) is bounded for all e by a constant: I B:2 I < Bo. 

For the corresponding ~ function we obtain 

0 (Zl, Z2) ----- 0 (Zl) @ ~ exp (2ai (mz: -?- z~) ÷ ~i (2B12m + Bltm2)) @ 

@ exp (2~i (mzi - -  ze) @ ~i (Bi im 2 - -  2Bi2m.)) @ () ~(8e)2). 

whence 

Y (z,, z2) = F (z:) q- 8e (F+ (zl)e 2ai*= @ F_ (zl)~2aiz,) + O ((8e)2). 

Here F±(z:) are periodic functions of z: which depend analytically upon B:2(e). 

(66) in (59), we find that 

(66) 

Inserting 

.~r - -  1 oo 

16"-~.1 1 ~-~ 1 '~* (e'l) - -  a~* (el) l ~ 6ej ~ ~ I F~,(~)[ -I- ]F~,.(~)l) -r 0 ((8e)2), 
3=i k~l 

( 6 7 )  

where r(e) is an integer such that 

t ~ dp ~7"(e) U (rood(l)), 
2,-: 

f l  

+ 
a n d  F m a r e  t h e  F o u r i e r  c o e f f i c i e n t s  o f  F ± ( z ) .  The  t h e o r e m  i s  p r o v e d .  
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Summing up the results obtained, we are led to the following basic statement: 

THEOREM 4. Let ~ and ~2 be positive on the real axis and let p satisfy the condition 

/?1, C¢ 

P - -  ,-V > - -  n~ 

f o r  n > n o ,  w h e r e  no and  ~ a r e  c o n s t a n t s .  Then t h e r e  e x i s t s  a gp > 0 s u c h  t h a t  f o r  g < gp 
t h e  e n e r g y  o f  t h e  g r o u n d  s t a t e  N *  ( p ) - - - - t i n  (2~0 + g$Sfl) s a t i s f i e s  t h e  i n e q u a l i t y  

2g2C 
I .~*  (p) - ~* (~) 1 < -  A ' 

where e~ is the ground state of the unperturbed functional ~0. Moreover: 

i. The spectrum of the operator L corresponding to the ground state of the system has 
slits at the points er determined from the conditions 

e ~ 

t I dp--rp(mod t) .  
2~ 

el 

2. The width of the slit has order 

gCe-rA~ 
16e'l< 2A +o(g~). 

3. The ground state is given by formulas (13), where all the frequencies are of the form 
U k = rkP + r~, with r k and r~ integers. 

4. If p is irrational, then the ground state is degenerate. 

Proof. Denote ~7hf£~N the neighborhood of e~ consisting of those collections (e~, ..., 
• o 

e~; e!, e¢) that satisfy 

1 N - - I  

ls~t  ~ ~ i ~ J ! = ~ < h ,  (68)  
i = 1  j = l  

and let Wh be the complement of this neighborhood. 

Since ~0 has no other extremals aside from e~, and since ~i and ~2 are positive, for 
sufficiently small h we have 

A 2 t i n  J(* ~- t i n  J(0 ~ 2(0 (p) i- -~- h . 

I f  gN1 (d*) - ~ - g - h  2, t h e n  t h e  minimum o f  JE $g* (O) ~ S 0  (P) + g ~ l  (0") i s  a t t a i n e d  i n  W h.  
^ ,  

Let p satisfy the conditions of the theorem. Then ~ is differentiable at e~ with re- 

spect t o  a l l  t h e  v a r i a t i o n s ,  i n c l u d i n g  t h e  v a r i a t i o n s  t h a t  m o d i f y  t h e  p e r i o d  ~ dp=U.  
el 

Indeed, if [ U -- p I < s, U = m/n, then n > , whence 

~1 (eO - -  . - ~ i  (eO[ < 

and Ze* (~;) h a s  a d e r i v a t i v e  w i t h  r e s p e c t  t o  U, e q u a l  t o  t h e  d e r i v a t i v e  o f  @~(~J .  
that g satisfies the condition 

0~1  (d,~ 
g "-gO- ~ 1, "~ t i n  (hi -t- h i ,  

Suppose 

where hl and h2 are defined by (27). Then (27) implies that min ~ is attained for U = 0. 

Let (el; e~] be the ground state of the system. Since it belongs to Wh, the results of 

Theorems i and 3 apply, and we have 
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A e2 * , ^ ,  2gzC 

where ~ is defined in (68). The fact that 62~0 is "diagonal" allows us to obtain a sharper 
estimate of the width of each new slit: 

_ ~ ( e  j) i z ( e  j) 
~ e J ~ g ~  "~ g A 

At the same time, all the assertions of the theorem, except for the last one, are proven. 
The degeneracy of the ground state for irrational p is stated in Corollary 2 to Theorem 2. 

We should mention that the zone structure of the SchrOdinger difference operator corre- 
sponding to the ground state of the Peierls model (which, as we have shown, is quasiperiodic 
with two periods p and i) is entirely similar to the structure of the spectrum of the Sturm-- 
Liouville operator, with an almost periodic potential that was obtained in [20] (for the ap- 
plications of the results of [20] to the continual approximations to the Peierls problem, see 
[15]). 

In conclusion, the author considers it his duty to express his gratitude to I. E. Dzyal- 
oshinskii and S. A. Brazovskii for fruitful discussions and help in formulating the problem. 
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SOME ALGEBRAIC STRUCTURES CONNECTED WITH THE 

YANG--BAXTER EQUATION 

E. K. Sklyanin UDC 517.43+519.46 

One of the strongest methods of investigating the exactly solvable models of quantum 
and statistical physics is the quantum inverse problem method (QIPM; see the review papers 
[1-3]). The problem of enumerating the discrete quantum systems that can be solved by the 
QIPM reduces to the problem of enumerating the operator-valued functions L(u) that satisfy 
the relation 

R (u - -  , )  L' (u) L" (~) ---- L" (v) L'  (u) /~ (u - -  ~) (i) 

for a fixed solution R(u) of the so-called quantum Yang--Baxter equation 

R12 (U -- V) ~13 (U)~23 (U)= R23(U) ~13 (U) ~12 (U -- #), (2) 

Here we use the notation L' = L~i~ L" = i~L (see [i, 3]). More detailed information con- 
cerning equations (I) and (2) and the notation used here can be found in the review papers to 
which we have already referred. 

In the classical case, (i) is replaced by the equation 

{L'  (u), L"  (v)} = [r (u - -  v), L '  (u) L" (v)]_, (3) 

while (2) becomes the classical Yang--Baxter equation 

[r12 (u - -  v), r13 (u)]_ ~- [r12 (u - -  v), r23 (v)]_ + [r13 (u),  r2:~ (u)]_ = 0. (4) 

Here we use {,} to denote the Poisson bracket, and [A, B]_ = AB -- BA stands for the commutator 
of the matrices A and B. We shall also make use of the notation [A, B]+ = AB + BA for the an- 
ticommutator. 

The problem of enumerating the solutions to equations (i) and (3) has received little 
attention. This contrasts with the intense study of both the quantum and classical Yang--Bax- 
ter equations, which has led to a number of successes. These have revealed, in particular, 
the deep relationship between the Yang--Baxter equation, the theory of Lie groups [4, 5], and 
algebraic geometry [6, 7]. However, important results were obtained in [8, 9], where solu- 
tions to (i) and (3) corresponding to lattice versions of the nonlinear SchrSdinger and sine-- 
Gordon equations were found. 

The present paper is devoted to a study of equations (i) and (3) in the case when R(u) 
and r(u) are, respectively, the simplest solution to equation (i), found by R. Baxter [i0], 
and its classical analog [ii]. During our investigation it turned out that it is necessary 
to bring into the picture new algebraic structures, namely, the quadratic algebras of Poisson 
brackets and the quadratic generalization of the universal enveloping algebra of a Lie alge- 
bra. The theory of these mathematical objects is surprisingly reminiscent of the theory of 
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