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Exactly soluble models for electrons on a deformable discrete chain are found. They include typical continuous Peierls 
models as special limits. The chain structure, electronic spectrum and thermodynamic functions in the ground state are 
found. The region of a nearly haft filled band corresponding to the polyacetylene model is described in detail. 

We consider a system of N molecules situated at 
arbitrary points x n on a line L and N e electrons, N e 
= pN, 0 <~ p < 2. The eigenfunctions ~0 n = ~ n ( E )  and 
the energy eigenvalues E for electrons are defined by 
a typical strong coupling hamiltonian 

H ~ n  = Cn ~bn+l + C n -  1 ~bn- 1 + On ~ n  = E $ n  , 

c n = c e x p [ c t ( x  n - x n + l )  ] , Xn+ l > x  n .  (1) 

Here o n are the on-site potentials and c n are the inte- 
grals of tranfer among the nearest sites. Below, dimen- 
sionless units of energy (c = 1) and length (ct -1 = 1) are 
used. The ground state of the system has to be found 
by the minimization of the total energy functional 

W(Cn,  On} = E E{Cn ,  o n } + N I 2 { C n ,  On) , 
E <ls 

12 = N -1 ~ ( c  2 + 02/2), (2 )  
n 

over Cn, o n at a given total length L 

L = N a  = - I O { C n }  , I 0 = X 1 -- X N = S i n  c n , 
n 

e -a  = 6 .  (3) 

Here/a is the chemical potential of the electrons, KI 2 
is the potential of the intramolecular deformations 
o n and that of the intramolecular repulsion which is 
supposed to be exponential in distance. 

We shall distinguish the two models: 
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O) On =- O, 6 W / S c  n = 0 ; 

(ii) ~ W l ~ c  n = o ,  8WlSt ,  n = o.  
Model (i) is general enough to describe the Peierls 

effect due to the interaction of electrons with acoustic- 
al deformations of the lattice. Model (ii) also takes 
into account the effect of the on-site deformations, 
but it requires special adjustment for the coefficient 
of elastic deformations On, as can be seen from (2). 
This condition leads to the special degeneracy of mod- 
el (ii) which displays itself, for instance, as the absence 
of solitons at P --> 1. 

In the limit K~ >> 1 the displacements u n = x n - na  

are small, l u n I ~ 1, and model (i) becomes close to 
the Su-Schrieffer-Heeger model of polyacetylene 
[1]. Under the same condition this model may be ap- 
proximated by one of the three typical continuum 
models depending on eitherp ~ 1, I P -  i I ~ 1 or 
I P - 11 ~ 1, or p ~ 1 (see refs. [2,3] for details). 

In this paper we present the final results for the ex- 
act solution of model (i) and with less detail for model 
(ii). We shall also outline briefly the method of the so- 
lution. All the details are given in ref. [3]. 

In the ground state of model (i) the lattice x n = na  

+ u n is found to be an incommensurate doubly perio- 
dic structure. It may be considered as a superposition 
of the two shifted superlattices for odd and even num- 
bers n with the periods N o = 2/I p - 11, 

ln04(( n - - n o  - 1 ) I N  o + (-1)n/_4) 1 ~u~n u n n o ) 
--2 04((n - n o + 1)]Up + ( -1)n /4)  ' 

04(0 ) = 04(o , r ) ,  7" = i K ' / K ,  K = K ( k ) .  (4) 
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Hereafter we follow the notations [4] adopted for 
the Weierstrass function 04(o, r),  elliptical integrals K, 
K '  and the functions sn u = sn(u, k), etc. Note that 
n o in (4) is an arbitrary generally nonintegral number, 
so that the ground state is continuously degenerate 
relative to the translations of  the superstructure in 
spite of  the absence of  the translational invariance in 
the energy functional (1), (2). 

Deformations (4) are accompanied by the CDW de- 
freed as a local distribution of  electronic density Pn : 

On=2 ~ j  i$n(E)12=p+go g ' (k )  a u ( n _ n o ) .  
E<u 4 K(k)  ~n 0 

- (5) 
The parameters r = r(O) or k = k (p )  are determin- 

ed from the selfconsistency equation 

[K(r)lcn u] 02(0)/024_(v) = nKc, r = dn u ,  

o = ~  p - l l  , u = K ( k ) l p - 1 1 .  (6) 

The electronic spectrum at any P ~ 0, 1, 2 con- 
sists of  three bands (-Era, - E  + ), ( -E_  , E_ ), ( E + , 
Em). The chemical potential is situated in one of  the 
gaps ( -E+ ,  - E _ )  or (E_,  E+) depending on whether 
0 < p <  1 or 1 < p < 2 .  The band edges E_ , E+, Em 
are determined by the formula 

Em = 2~ o3(0)o 4_(0)/o3(o)o 4_(o) , 

E+/E m = s n u ,  E /E+ =k ' /dnu .  

The energy of  the ground state Wo(p, a) per 
molecule is given by the formula 

1 E(r) N-1Wo = K2(r--~) + sn2u dn2u 4 K(r) 
7r2r cn2u - 

(7) 

snu Oz,(l/2 - I P  - 11[2)] 

- K(k----) ~ : l p  -- fiT'-J" (8) 

The pressure P (p ,  a) is 

(DW0) 2 K _ (  0 [1 +sn2udn2u  " e ( r ) ]  
P=N-I  L'-~a lp 7r2 K _ cn2u - Z K ~ _ J ' ( 9  ) 

The parameters k, u, r in (7 ) - (9 )  have to be determin- 
ed from relations (6). 

In a weak coupling limit 

X o = [*m~cos(~ nip - 11)1-1 "g 1, I P -  ll~" e -1/xt . 

We find from (6), (7)  that 

E m ~ 2 ~ ,  E+/E m ~ E _ / E m ~ f m O r l p -  11/2), 

E 2 - e 2_ = A 2 cos2[rrlp - 11/21, 

A o = 8~ e x p ( - 1 / X o ) .  (10) 

Relations (10) generalize the results for the continuum 
Peieds-FrShlich models [2,51. At p(2 - p)"g 1/g~ 
we come to the limit [6] of  isolated selftrapped states. 

In the most interesting limit I p - 11 ~ e -1/xl we 
have the dilute kink lattice. For the isolated kink we 
first find from (4) and (5) 

1 ch[a(n - n o - 1/2)] 
U2n = ~ l n  c h [ a ( n -  ~ - + ' 1 / 2 ) 1  ' U2n+l  = const . ,  

O~ = I e - l / k 1  , 

P2n - t9 = ~ [ th(a(n - no)) - th(a(n - n o + ½))], 

P2n+l = P,  ~ P 2 n  = 1. 
n 

Note that every second site only is involved in the dis- 
tortions and the charge concentration for an isolated 
kink. For the spectrum we fred 

E m = 2 ~ ,  E + ~ A  1 ,  E_~- .4Axexp[-8cc / Ip - l l ]  

i p _  ll .alot.  (11) 

In the same limit we can study relations (6) - (9) ,  
omitting the terms ~ 0 ( E / A  1), which are exponential. 
ly small in distance Np = 2/I p - I I between solitons. 
This approximation corresponds to the limit k ~ 1, 
I rl  "" IP - 11 in expressions (6) - (9) .  We f'md 

rK(r) [(1 + r')/r IIp - 1 1  = ffK~', (12) 

W 0 = [K2(r)[lrErl [2 - r  E - 4E(r)JK(r)+2r'ip- 111 , 
(13) 

P= (211r2r)K2(r)[2 - r E - 2 E ( r ) / K ( r ) ]  . (14) 

Using (12) - (14)  we can find 

w0(p, a) = w0(1, a) + EslP - 11 

+ ½ (al, i/aP)a( P -- 1) 2 + . . . .  

wo( P,P ) = w 0 + Pa = w 0 ( 1 , P ) + E s l P -  11, 

where E s = Ital is the soliton energy. Note that (Dp/ 
ap)e = O ( e x p [ - 8 a / I p  - 11]) like for the continuum 
model [5], while (Sla/Dp) a is finite at p = 1. Unlike 
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the earlier suggestions [9] we find (~la/bp)a > 0, For 
a weak coupling we can calculate E s = 2A 1/,r, (3~/OP)a 
: 

Model (ii) can be described analogously. The quali- 
tative difference is that in this case the electronic spec- 
trum has only two bands (El ,  E2), (E 3, E4) and one 
gap (E2, E3), which lies at the Fermi level E 2 < # < E 3. 
Consequently model (ii) shows no singularity at p -- I .  
The method o f  the exact solution is based on the results 
[ I0]  o f  the spectral theory for the discrete Schr~dinger 
operators (1). All the details are described elsewhere 
[3]. The extrema of  the functional (1), (2) are studied 
by making variations of  the density of  states for (1) 
in the space of  the functionals I n (c n, o n) which are 
known as integrals of  motion for the dynamics of  
the Toda lattice [ 11 ]. The two of  them 12 and I 0 ap- 
pear explicitly in the energy functional (2). The exact 
integrability of  our models is due to the fact that the 
energy functional depends only on the spectrum E and 
the integrals I n for the operator (1). 
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