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Theta functions and non-linear equations
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where
(5.4.23') [B,V] = Q, A = Ρ, Β =  I.

The systems (5.4.23) have been explicitly integrated by the present author in
[42]. They all have a commutative representation of the form

= 0(5.4.24) [w lB> V^ + zB> zA [A, V]]

on matrices depending on a superfluous parameter z; consequently, their
solutions can be expressed in terms of ^ functions of Riemann surfaces Γ of
the form

(5.4.25) det(zA —[A, V] — wl) =  0.

The set of these surfaces Γ is the same as that of all plane non singular
algebraic curves (in CP2) of degree η (their genus is ( «   1) ( n   2)/ 2) and
their degeneracies. Explicit formulae for a general solution of (5.4.23) can
be obtained from [42] and have the form V = (Vif), where

(0.4.26) ^ =  ± l

(5.4.27) [e(P , Q

(5.4.28) ?
h ψ i

(5.4.28') ^ =   ^  l o g 8 ( P , Pi)\ P=Ph.

Here λ?, ..., λ° are arbitrary non zero constants; the 0 function is constructed
from a curve of the form (5.4.25); Pu ..., Pn are the points at infinity on
this curve, where w/ z  >•  a,· as Ρ  *•  /*,·; the vector U has the form

(5.4.29) U= j]bjU(Pj),

where U(P) is a period vector of differentials SlP with a double pole at Ρ; ζ
is an arbitrary vector; and finally, υ is any non degenerate odd half period
(that is, grad θ[ν](Ο) Φ 0).

APPENDIX

THE PERIODIC NON ABELIAN TODA CHAIN AND ITS TWO DIMENSIONAL
GENERALIZATION

I.M. Krichever
The equations of a non Abelian Toda chain were suggested by Polyakov,

who found polynomial integrals for them. These equations, which have the
form

(1) dtidtgn gn^^gn ig'n—gng'nlv dt^4t'
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where the gn are matrices of order / , admit a commutative representation of
Lax type dtL  =  [P, L]. Here

(2) Lyn = gng \ t\ !i>n + i — gngn^n + ^n i, gn = dtgn,

(3) Ptyn =  γ {gngn\ i$n+l + gngn^n — tyn l) 

Using this representation, explicit expressions in terms of Riemann
0 functions have been obtained in the present survey for periodic solutions,
gn+N = gn, of the equations (1).

In contrast to the continuous case when the algebraic geometric
constructions give only the so called finite zone solutions, in a difference
version all the periodic solutions of the Lax equations turn out to be
algebraic geometric. This is connected with the fact that shift by a period,
which commutes with /, is a difference operator.

In [46] the present author obtained a classification of commuting
difference operators (see also [47]) . In the same paper a construction of
quasiperiodic solutions of difference operators of Zakharov Shabat type and
Lax type was proposed. Apart from general solutions of similar type, the
non abelian Toda chain has separatrix families of solutions or, in the
terminology of [14] , finite zone solutions of rank /  > 1. Their dimension is
more than half the dimension of the phase space.

First we recall the scheme of integration ([ 15], [46]) of the "ordinary"
Toda chain

I cn=cn(vn — vn_i).

Let R be a hyperelliptic Riemann surface of genus g of the form

2g+ 2
(5) w*=  Π (* *ι);

i= l

P+ and P~ the points of R of the form P±  =  (<», ± ). χ ο integrate the
system (4) we introduce the Baker Akhiezer function \p(n, t, P) which is,
meromorphic on R everywhere except for at P+ and P~, where it hasg poles
and as Ρ  *•  P±, an asymptotic expansion of the form

(6) ψ;(η, ί, Ρ) \ ρ^ρ±  =  ίηλ^ζ±η (1 +  I f (η, *) ζ » +  . . .) exp (=F  £

For this function there are difference operators L   (L"m) and A   (Anm)
such that

(7) 4 r =  ̂ ' £ψ =  ζΨ·
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These operators have the form

(8) Lnm= i

(9) Anm 

Here wn — ic,,., =  γ (vn — vn^) — γ (log cn) , and

(9')

(9") va =

The compatibility condition for (7) coincides with the equations of the Toda
chain. Expressing the Baker Akhiezer function (6) in terms of ^ functions of
R and calculating the coefficients λπ and ξί~(η, t), we obtain an explicit
form of the solutions of the Toda chain:

(10) ν d loc
[ ' Vn~ dt l°8

Here z0 is an arbitrary vector; the vectors U = (Uj) and V = (V/ ) are
determined as follows:

p+
(12) U}= \ω;

p~

(ωι , ..., ojg is a canonical basis of holomorphic differentials on R),

(13) 27;·

where ΩΡ+ and ΩΡ  are normalized differentials of the second kind with a
double pole at P+ and P~, respectively.

Periodic solutions of the Toda chain with period Ν are distinguished in
our system as follows: R must have the form

(14) w* =  (PN{z) +i)(PN(z) l),

where P^iz) is a polynomial. We emphasize that all periodic solutions of the
Toda chain are obtained in this way.

1. Thus, we consider periodic solutions of (1). The restriction of L  to
the space of eigenfunctions of the shift operator by a period, that is,
Ψη+jv =  u^n, where ψη is an /  dimensional vector, is a finite dimensional
linear operator. Its matrix has the form

( bN t 1 0 . . . 0 waj
ajv_2 &iv 2 1 · · · 0 0

0 0 . . . ατ ftj 1
w 1 0 . . . 0 a0 b0

where the block (/  χ / ) elements are bn =  —gng?, an =
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It follows from the Lax representation that the coefficients of the
polynomial Q(w, λ) =  det(ZT  λ· 1) are the integrals of (1). However, in
contrast to the Abel case they are not independent.

Lemma 1. The polynomial Q(w, λ) has the form

(16) (W kN)l + (w'i kN)l+ Σ (ΓίΙλχυ λΥ +  ̂ ^ Κ '  ή * )  
h= i

The last summation is over the pairs i, j such that, i ̂  0, i  \   TV \  j Κ (TV — 1)1.
The polynomials r£ have only k non zero coefficients:

t= (jV l)t? ft) ft+ l

The coefficients a^ and bti are a complete system of integrals in involution
with the single relation

(17) R0(k) + ( λΝ)1 =  Σ r% (k)(~kN)h = Σ r~h (k)( lN)".
A h

The number of independent integrals is Nl2 — l+ 1.
The restrictions on the form Q(w, λ) are equivalent to the following

condition: all the roots w of Q(w, λ) =  0 for large λ must be expandable in
Laurent series in λ"1, one half of them must be of the form λΝ +  ^(λ^"1) ,
and the other half of the form λ~Ν +  O(k N~1).

We consider the algebraic curve (R, given in C 2 by the equation Q(w, λ) =  0.
In general position we may assume that it is non singular and that Q(w, λ) =  0
for almost all λ has 2/  distinct roots vv;·. Then to each point Ρ of <R, that is,
Ρ = (wj, λ) there corresponds the unique eigenvector cpn(f) =  (φ^, . . ., φ^)',
normalized by the condition ψ0 = 1. All remaining coordinates φη(ί) are
meromorphic functions on <R. Their poles lie at the points 7,(0, where the
left upper principal minor L — λ · 1 vanishes and [rank (L~ λ · 1) =  Μ — 1 ] .

Lemma 2. The number of poles 7, (0 is Ν I2 — Ρ =  g  )  Ζ — 1, where g is
the genus of <R.

Thus, to every set of initial conditions gn(0) and gngn1^) there
corresponds a curve <R, that is, a polynomial Q and a set of Nl2  12 points
7,(0) on it. The solutions differing by a transformation gn  > Ggn,  where G is
a constant matrix, are the kernel of this mapping.

We consider the problem of recovering L  from the indicated data.
Let Q be as in Lemma 1. Then <R is compactified at infinity in λ by the

points Pf at which w has poles of order TV and zeros of multiplicity N,
respectively.
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Lemma 3. For any set of Nl2 — I points yt in general position there exists
one and only one vector function \ }jn(t, P) with the following properties:

1° it is meromorphic on <R except at Pf with poles at γ,·;
2° if we form from \pn(t, Xf) as columns, the matrices t//jf(f, λ) then they

have the form

(18) ψ± ( ί, λ ) = λ ± " ( Σ ξη Τ , 8ωλ  Ο

Here the Xj are inverse images of X in a neighbourhood of P*.

Lemma 4. The function 4>n(t) satisfies the equations
L^n =  λφη, (dt   Ρ)ψη =  0,

where gn = £ + 0 .

The functions φη{ί) and φη(ί) differ in the normalization pn(t) =  • ψη(Ψο)"

Corollary. The matrices gn satisfy the equation (1). By the restrictions to
Q, the thus constructed solutions are periodic, gn+N — Sn 

For \pn we can construct formulae of Baker Its type, by analogy with
[15]. Calculating ^ > 0 from them we obtain the following result.

Theorem 1. For any polynomial of the form (16) and any set of Nl2  I2

points yt in general position the functions

(19) gn(t) = {gn) 1gHcn

are periodic solutions (1), where the matrix elements of ĝ  are

The constant vectors U and V are given by the periods of differentials of
the third and second kinds with poles at Pf; ω;* are the images of the
points Pj1 under the Abel transformation, and the % are the images of the
divisors ylt . . . , γ^_ ΐ7 yg+i, 1 ^ i < ; I. also under the Abel transformation.
The constant c is determined from the periodicity condition gN =  gQ.

The general solution has the form GxgnG2, where the G,  are fixed matrices.

Remark. The calculation of all of the parameters in the formulae of the
theorem from the initial data gn(0) and gngnl(0) only uses quadratures and a
solution of algebraic equations, and the latter is necessary only to find the
Z,·. All the remaining parameters <af, U, V, etc. can be expressed by
quadratures in terms of the integrals.

2. Considering special cases of multiple eigenvalues of L  and a shift by a
period, we restrict ourselves to the case of maximal degeneracy of
multiplicity / . Then the polynomial Q has the form Q(w, λ) =  QUw, λ),

Ν

Qi = w +  w1 +  Σ «A1· To each point of the hyperelliptic curve <R given
i= 0
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by Qi(w, λ) =  0 there corresponds an /  dimensional subspace of joint
eigenfunctions. Let \pn(t, P) be the matrix whose columns form a basis in
this subspace, normalized by the condition φο(0,Ρ) = 1. Then φη is a
meromorphic matrix, having IN  poles ys, and

φ " — οΛφ" ; φ4·* =  res, , , ι·'3',
 η, s s *n, s' T n , s ^aH n'

where the c4 are constants independent of η and t. In a neighbourhood P±

of the inverse images of λ =  °°, ψη has the form

(21) ψ±  (ί, λ) =  λ±η ( Σ In, . (t) λ " ) *Τ λ ί / 2 .

Lemma 5. F or a«y sei of data (%, a's) (which are called, as in [14] , the
Tyurin parameters) in general position there exists one and only one matrix
function \pn satisfying (20) and (21) and normalized by the requirement
tn,0= I ·

Just as above, ξη0 can be proved to be a periodic solution of (1).
3. In conclusion we give a construction of the periodic solutions of the

equations
(22) ( 5 |_ a | ) 9 r l =  e< pn (Pn i_e'i

!n+ l 'Pn!

to which, as was found in [48] , the two dimensional version by Zakharov 
Shabat of the Lax pair for the Abelian Toda chain reduces. These equations
generalize, besides the equations of the chain itself, the sine Gordon equation
corresponding to the periodic solutions φπ+ 2 =  Ψη 

We consider a non singular algebraic curve (R of genus g with two
distinguished points P±.

Lemma 6. For any set of points ylt ..., yg in general position there exist
unique functions ψη(ζ+, ζ_, Ρ) such that:

1° they are meromorphic except at P± with poles at γ, , ..., yg;
2° in a neighbourhood of P± they are representable in the form

ψη (Z + , z_, P± ) =  ehz±  ( 2 1% , (z+ , z.) k's) k± n;

where ξ * 0 =  1 and k~l =  k^iP1) are local parameters in neighbourhoods of P±.

Lemma 7. The following equalities hold:

The compatibility conditions of these equalities are equivalent to the
equations

dz+dz_ Vn e β

which coincide with (22) written in conical variables.



88 B.A. Dubrovin

Theorem 2. For each non singular complex curve <R with two distinguished
points the formula

(23) φ χ Qi^ + Uit + Uzx + Usn + W) Θ(ω 
{ a> Φη »°8 θ( +  1 O g

gives α solution of the equations (22).

Here ω* =  (ω*, . . . , ω^) are the images of Ρ* under the Abel transformation;
the vectors Uj depend on the points P±  and are the period vectors of Abelian
differentials of the second and third kinds with appropriately chosen
singularities at P * (see, by analogy, [15]) .

Let us distinguish the periodic solutions ψη+Ν — φη among the solutions
thus constructed. For this purpose there must be a function E(P) on <R
having a pole of order Ν and a zero of order TV at P±.

Suppose <R is given in C 2 by the equation

(24) wN Em + E(^aijE
iwj) = 0>,

N(i + 1) +  mj <  Nm   2; Ν is prime to m. This is an JV sheeted cover of the
is plane, and over Ε =  0 and Ε = °° all the sheets are glued, that is, the
function E(P) given by the projection of <R has the required properties.

Corollary. Suppose that <R is of the form (24); then the formulae (23) give
periodic solutions of (22).

Remark (Dubrovin). The methods developed in Chapter 4 of the present
survey allow us, in particular, to make the formula (23) for the solutions of
(22) effective. By substituting (23) in (22) we obtain after simple
transformations the following relation:

(25) a e ^ +  ̂ y  ^ =  b + du^du.p , log θ (W).

Here W is an arbitrary g dimensional vector; U(P) for each Ρ £ <R is a period
vector of a differential with a double pole at P<2C/ 1, 2 =  U(P+) ±  U(P~));
the constants a and b have the form

(25') α =  ε Μ^+ , Ρ~), b = ̂  ^±   loge(i>, (?) \ P=P+ Q = P  

(ε (Ρ, Q) is defined by (5.4.27)). This is a standard identity in the theory of
Abelian functions (see [8] , (39)). Applying the addition theorem to (25),
we obtain the following system (in the notation of Chapter IV):

(26) αθ [η] (2Ua) =  δθ [n] (0) +  θϋ(Ρ*)δαιΡ )§ [η] (0),

where
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Here U3 = A(P+) A(P~), therefore, the system (26), together with (4.2.4),
allows us to recover from the period matrix not only the canonical equations
of the curve (R, but also the image of the Abel transformation A: (R  *•  J(R)
(although, for this we have to solve the transcendental equation (26) for U3)).
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