4.5. Hypothesis. at = a* for all a == M (§).

We leave the verification of this hypothesis in all the cases, where at is known to us, fo the reader (see
[1, See. 11]).
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BAXTER'S EQUATIONS AND ALGEBRAIC GEOME TRY

I. M. Krichever UDC 517.9+513,015.,7

In the beginning of the 1970s Baxter (see [1-5]) integrated the quantum-mechanics model of a magnetic
proposed by Heisenberg [6] and given the name of XYZ model.

This model describes a system of N interacting particles with a spin equal to 1 /2. Its Hamiltonian H
acts in the Hilbert state space 9w,

N
'bN = H ® Yy [)n':Cz’

n==1

and has the following form:

N
H=—— Y (Juolhss + J,030%1 + J.0300). M

n=jy

m,»—»

Here Jx, Jy, and J, are real constants, and rfg1 are spin operators,
& =IR.7FR .1,

. 10
where ¢J are Pauli matrices, j=1, 2, 3; ¢ =<0 1>.
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Baxter's essential aim was to investigate the so-called eight-vertex two-dimensional model of classical
statistical physics. It turned out that this problem is intimately connected with the quantum XYZ model,

The development of methods for the inverse problem of the dispersion theory applied to the study of
quantum systems undertaken by L. D. Faddeev and his disciples allowed them to notice at a certain stage a
remarkable parallelism between Baxter's basic formulas and formulas arising within the framework of the
method of the inverse problem on the quantum level. This, as well as a series of other considerations, finally
led Faddeev, Takhtadzhyan, and Sklyanin to the formulation of the quantum method of the inverse problem.,
This method includes in a natural way all the essential achievements of classical statistical physics and of the
theory of one-dimensional quantum systems, thus the ideas of Kramers—Wannier, Onsager, Baxter, Bethe's
Ansatz, and many others,

The basic relation in the quantum method of the inverse problem is the set of Baxter's equations
REZRLN=(Z'® LA, @)

where £ and £' are (2 X 2) matrices whose elements are operators in the two~dimensional space § = €2 The
tensor product is considered within the algebra of (2 X 2) matrices with operators as coefficients. The matrix
R is a numerical (4 X 4) matrix.

The elements of the matrix ¥ are labelled with two pairs of indices: %, i, j, @, #=1,2. The Latin
indices refer to the blocks of %, and the Greek ones are indices of elements of blocks.,

To each matrix £ there corresponds a monodromy matrix §, which is a 2 X 2) matrix whose elements
are operators in the space 9w (here, and further on, we shall essentially adhere to the terminology and nota-
tions of [8]),

iy Gy, 0 o cpirtte IN-1ON
iy Braae, sy =LubLhps - Li" by 3)

In all formulas it will be understood that the summation is carried out with respect to repeated indices.

If & and J! are the monodromy matrices constructed according to the matrices £ and ' satisfying @),
they also satisfy the relation

RUQRINV=F'®RI)AR. (4)

The name of transfer matrix T is given to the operator tr § in 9y, where the trace is taken in the ring
of (2 X 2) matrices with operators as elements.

To every solution of Eqgs, (4) there correspond commuting transfer matrices [T, T =0, To verify it, it
suffices to take the trace of the equality (4).

Baxter found the solutions of (2) for matrices of a special form corresponding to the interaction within the
the eight-vertex model

a 0 0 d
0 5 ¢ O

ff=<o c b o>- (5)
d 0 0 g

It turns out that elements of such matrices (up to a common factor) can be parametrized with the help of ellip-
tic functions with three parameters A, 7, k,

a =sn(b+2n), b=snh ¢ =sn2y, d=rksn2n-sn h-sn(d+ 2n), ®)
where sn) = sn (A, k) is Jacobi's elliptic sine (see [9]) with a modulus k.

With fixed parameters n and k, the transfer matrices corresponding to £ (A) commute for different val-
ues of A, i.e.,

(7 (), T (Wl =0. (M)

It follows from (7) that the coefficients of the decomposition of T(A) in A commute among themselves, and hence
so do any functions of them, Remarkably, it was found that among these operators we have the Hamiltonian of
the XYZ model

d o1
H:—SnZnTﬁ-lnT(X)[hg+—2——JZNIN. (®)
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The presence of an infinite collection of operators being integrals of the system and commuting with H contri-
butes to the interest of the XYZ model.

In the present paper, Baxter's equations (2) are discussed without any restrictions whatsoever concern-
ing the form of matrices £. In the first section we construct for any even-dimensional matrix its parametriza-
tion by means of some algebrogeometric data analogous to Baxter's parameters, This parametrization of the
tensor R (£ ® £') allows us to introduce in a natural way the concept of the rank of solutions of Baxter's equa-
tions. It is found that all the solutions of rank 1 up to a "calibration equivalence” and some simple symmetries
coincide with Baxter's solutions. In the third section, all the remaining solutions are found. Their rank is 2.

It is interesting to note that for Baxter's solutions it is characteristic that matrices satisfying @) are
parametrized by elliptic functions with the same modulus, while the equations themselves, after parametriza-
tion, are transformed into variations on the addition theorems for elliptic functions. For solutions of rank 2,
the elliptic functions no longer have the same modulus, Thus Eqs. (2) yield relations between elliptic functions
with different moduluses,

1, "Vacuous' Vectors and Algebraic Curves

Let £ be an arbitrary even-dimensional matrix. We shall regard it as a @ X 2) matrix whose elements
are (n X n) matrices, Accordingly, the matrix elements of ¢ will be labeled with two pairs of indices, 58}%‘,
1=1i,j=n, 1=a, B=2, The operator £ acts in the space C*" generated by vectors of the form X ® U,
where the vector U is two-dimensional, and X is n-dimensional, their coordinates being Uy and Xj, respec-
tively. In what follows, unless otherwise stated, all the vectors are assumed to be normed so that their last
coordinate is equal to 1, i.e., Xp = U, = 1,

By a "vacuous" vector of the operator £ we shall understand a vector X & U which under the action of
% is transformed into a vector that is also a tensor product, i.e.,

ZEXQU)=h{¥ RV, 9)
where h is a number. In terms of coordinates, (9) takes the form
L Xy Uy =hY;Vp. @)

We multiply (9) on the left by the covector (\75) = (1, —v) orthogonal to V; thus {7ﬁV,3 =0,
Here v = V; and we put similarly u = Uy, Then
LX =0, 10
where L is the operator with coordinates
Li=PP¢isu,. 11)

For the existence of a vector X satisfying (10) it is necessary and sufficient that u and v should satisfy
the algebraic relation
P(u,v) =det L =0. 12)
This equation determines in C? an algebraic curve T.

In the general situation it can be assumed that for almost all u the roots vi (1 =i = n) of (12) are differ-
ent. Then to every point z =T, i.e., to every pair z = {u, v) satisfying (12), there corresponds a unigue vector
X satisfying (10) and X = 1,

All the other coordinates X; are rational functions of u and v and, therefore, meromorphic functions of
zon I,

As in the theory of "finite-zone" integration [10], one shows that the number of poles of X(z) is equal to
N =g+ n~—1, where g is the genus of the curve I,

Equation (12) is of the form
Pu,v) =Da;uv =0, 1<i, j<n 13)
In the general situation, the genus of the curve I determined by (13) is g = (n— 1)? (see [12]).
The function h and the vector Y (z) are determined by (9'). Since V, =1, we have

L5 Xi®) Un (3) =1 (@) ¥ (2). 14)
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The function h(z) is equal to the left side of (14) with j =n,

THEOREM 1. In the general situation the operator £ is uniquely determined up to a multiplicative nu~
merical constant by the coefficients aij of the polynomial (13) and by the meromorphic vectors X(z) and Y (z);

the divisors of the poles of the latter have a degree n’—n =g +n—1 and satisfy the equivalence condition

Dy -+ Dy ~ Dy + Dy. (15)

Proof. The equivalence condition of the two divisors means that there exists a function h(z) meromorphic

on I whose pole divisor coincides with one divisor, while the divisor of the zeros coincides with the other, The
function h is determined, up to a multiplicative constant, by its zeros and poles,

To every divisor D there corresponds an associated linear space M(D) of functions having at the points of
D poles with degrees of multiplicity not exceeding the degrees of multiplicity in D of these points,

The Riemann—Roche theorem states that
dimM D) >N —g +1, (16)
and that if the degree N of the divisor D (i.e., the number of points of D counted with their multiplicities) is
not smaller than g, then for the divisors in the general situation equality is achieved in (16) (see [11]).

The degree of the divisor Dx + Dy is equal to n* = g+2n— 1, A base in the space of functions associated
with this divisor is formed by the functions Xj(z)Uq (z). Another base in the same space consists of the func-
tions h(z)Yj (Z)Vﬁ(z).

Thus, the matrix £ connects these two bases with each other, To find £ when X, U, Y, and V are given,
it suffices to use (9') with an arbitrary choice of points zg (1 = s = 2n) in a general situation,

COROLLARY. To the matrices £ and & there correspond the same polynomials P(u, v) and "vacuous"
vectors with equivalent divisors Dy ~ Dyt and Dy ~ Dy if, and only if, they are connected by the relation

6L, (17)

where G and G' are (n X n) matrices.

This follows from the fact that if the divisors Dx and Dxr are equivalent, then the "vacuous" vectors X
and X' are connected by the relation G'X'(z) = {(z)X (z).

Now we consider the case when the polynomial P(u, v) corresponding to the matrix ¢ has identically
multiple roots vj for all u, i.e., P{u, v) = IBZ(u v), where P(u, v) is a polynomial of degree n' in either vari-
able, and n = n'/, This means that for any point (u, v) of the curve T given by the equation P(u, v) = 0 the rank
of the matrix L is n— I. Thus / linearly independent solutions X% (a =1, , .., /) of (10) form an /-dimensjonal
bundle, i.e., a bundle of rank ! over the curve I

We normalize X& = (Xia) by the condition Xia = dia, 1 =i =, Inthe theory of "finite-zone" integration the
concept of the rank of a solution was introduced in [13, 14], In analogy with [13], we establish the following
analytic properties of the vectors X%, All the coordinates X are meromorphlc functions on Y having N = I(g +
n'—1) poles vy ..., ¥N. The rank of the matrix of res1dues of X1 at its poles is equal to 1, i.e., there exist
such vectors ag = (agg) that resysX1 == Olgq TOSy, X;. The set of parameters (vss @g) is called the set of "Tyurin's

parameters" orthe matrix divisor since, according to [15] it defines uniquely the fitted bundle of rank 1 (stable
in the sense of Mumford).

THEOREM 1', Let be given the polynomial 13(u, v) and thereby the curve I'. For any meromorphic ma-
trices X{(z) and Y¢(z) (1 =< a = I) whose matrix divisors satisfy the equivalence relation

J
Dx + Dij ~ Dy + D¥, 15"
there exists a unique (2n X 2n) matrix £ such that
LRXIU, = YiVeet,

where gb(z) is the matrix that brings about the equlvalence (15"). Th.lS means that gb has poles at the points of
the pole divisor U(z) and at the points v5. Here, resy g5 = Qg resy, gb- Moreover, gb has zeros at the poles of

V{(z), and at the points "ys it satisfies the relation ﬁsbgb( ) = 0. The matrix divisors Dx = (¥gs %gqg)s Dy =
(v4, Bsb) have a degree N=I(g+n'—1), 1 =s =N,



COROLLARY. The matrix divisors Dx ~ Dx' and Dy ~ Dy are equivalent if, and only if, the corre-~
sponding matrices £ and ¥ are connected by relation (17).

2. Baxter's Equations

Let £ and &' be (4 X 4) matrices. According to Theorem 1, these matrices are determined by the poly-
nomials

P(u,v) =3 a;uv’ =0, Py(u,v) =3 asulv’ =0, 0<i,7<2, (18)

and by the meromorphic functions x(z), y (@), x!(z}), yi(z1) having two poles each and satisfying condition (15),
Curves T and I'! determined by Egs. (18) are of genus 1, i.e,, are elliptic curves. Furthermore,

N7 (X (u7 U) ® U) =h (u'1 U) (Y (u7 v) ® V)7 (19)
(X, v) @ UF) =hy (u, o) (Y (L, o) @ V). 20)

Here, capitals denote fwo-dimensional vectors whose second coordinate is equal to 1, while the first coordi-
nate is denoted by the corresponding lower-case letter. Points of the curve I' will be denoted either simply by

z, or by (u, v); in the latter case it will be automatically assumed that the pair (u, v) satisfies the equation that
defines I,

Consider the tensors A; and A, given by
A== Avih = L L5RY, o)
Ao = Aoigs = Rp, iy ™. 22)
Each of these tensors can be regarded as a 2 X 2) matrix whose elements are (4 X 4) matrices, The indices a
and 8 are external, while the pairs (i, j) and (p, g) are internal,
According to Theorem 1, to the tensors A; there correspond curves f‘i determined by the equations
Q; (u,w) =0, i=1,2, 23)
of degree 4 in each variable,
If the triplet u, v, w of numbers satisfies the conditions
Pu,v) =0,P, (v w) =0, (24)
it follows from (19) and (20) that
AXww)QU) =)@ Gw Y 1) W), ©5)
where
X (u,w) =R1(X (v, w) @ X (u, V).
Consequently, {1, w) satisfies the equation Q, (u, w) = 0, and the vectors i(u, w) and Y!(v, w) ® Y(u, v)
are "vacuous" vectors of Ay.

Similarly, we shall consider triplets u, v, w of numbers satisfying the equations

Py (u,%) =0, P@# w)=0. (26)
Then
AXEW®X @) QU) =h 0 h@ v F uwd W), e
where :
Y@ w)=RY @ wQY 9. 28)

Thus, the pairs u, w entering in triplet (26) satisfy the equation @, (u, w) = 0.
Baxter's equations are nothing else but the equality Aq = A,
Consequently, the following proposition has been proved:

LEMMA 1, If %, £', and R satisfy Baxter's equations, the polynomials P and P; "commute" in the sense
of compositions, i.e., Eqgs. (24) and (26) define the same curve I' with the equation

Q{u, w) = 01 (u’ w) = 02 (u'7 w) =0.
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LEMMA 2, The polynomial Q(u, w) is reducible, i.e., is decomposable into a product of two polynomials,

Proof. If Q is irreducible, then for almost all values of u the equation Q(u, w) = 0 has four distinet roots,
Thus, the tensor A is of rank 1, and, according to the results of the preceding section, to every point of I"
there correspond "vacuous" vectors of the tensor A = Ay = A,,

AX @w®U) =fww @ (4w @ W. 29)

Comparing the "vacuous" vectors in 25) and 27), we find the equalities

RX @, wv)® X' () =g v X' w® X (4 v), 30)
R(Y (0, w) @ Y (u, %)) = g1 (w, w) (Y (1, ) @ Y (u, v)).

Since the polynomials P(u, v) and Py(u, v) "commute" in the sense of composition, the structure of the points
{u, v, w) and (u, v, w) can be of two types, which are visually represented by the graphs below:

Segments connect pairs satisfying corresponding equations,

We shall show that the structure of type a) is impossible, Indeed, in this case to the pair x!(u, Gl) and
x(u, v{), which by (30) satisfies the equation PR & u, vy), xi(u, \71)) = ( of the "vacuous" curve of the matrix R,
there correspond two "vacuous" vectors X(v{, wy) and X (v{, wy), which contradicts their uniqueness.

In the case b), the set (wy, wy, Wy, W) is split up into two pairs, (wy, wy) and (wy, w;), that are singled out

invariantly by the condition that the values of v and v which correspond to w; and wj formed into one pair should
be different.

Thus, the curve I splits up into two elliptic curves, I and i‘", while the polynomial Q(u, w) is decom-
posed into a product Q(u, w) =Q'(u, w) -Q" (u, w). The points of the curves I'" and I'" are the pairs ((u, wi),
{u, wp)) and (@, wy), (u, wy)), respectively. Hence the proof of the lemma is complete,

Consider the curve I'". To any point of it, say (u, wy), there correspond uniquely points of the curves I
and I'y, (u, vy) and (u, vy), respectively. Consequently, the curves I' and I'| are isomorphic to I''. Any elliptic
curve can be parametrized with points z of the complex torus with periods (1, 1) where Im 7 > 0.

Let u(z) and w(z) be a parametrization of the points of f"; then (u(z), v(z)) and (@), v(z)) are aparametri-
zation of the solution of (18), Since (v(z), w(z)) satisfies the equation Py(v(z), w(z)) = 0, we have v(z) =u(z — n)
and correspondingly v{z) = u{z — m).

With the parameter z, Egs, (30) take the form
R(X(—n)@ X' (2)=¢g@X (z—m) & X@) 8L
Since the divisors of the left and right sides of this equation have to be equivalent, we bave n =n+ L”_J;EL ,
where m and n are integers. -

The equivalence of two divisors v; and y{ on an elliptic curve means that Sy, = D7; modulo the periods;
with a shift by a vector 5 the divisor of the poles of a function having two poles is changed by 27.

According to (30), functions Y (z) and Y!(z) satisfy the same relation as X(z) and X! (z). Thus, they coin-
cide up to a shift, i.e.,

Y (z2) = X (z 4+ 1), (32)
Y1(z) = X' (z + ). (33)
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Finally, Egs. (19) and (20) take the form

LE@DRUE=hE) X E+1) QU @E—n), (34)
BE@DRUE) =h @)Xz +1) @ U (s — n). (35)
The equivalence relation (15) means that
Ne==1- '—m:#

Now we consider the inverse problem.

Let be given an elliptic curve I', i.e., a modulus k, arbitrary functions x(z), x!(), and u(z) having each
two poles on the curve, and also some points 1, ny, and 7y, differing by half-periods. Then relations (31), (34),
and (35) define uniquely up to a multiplicative constant the matrices %, £, and R.

Remark, In the case of n =2, i.e., of matrices of order 4, giving polynomial (13) is equivalent to giving
the modulus of the elliptic curve I' and two functions with two poles on it, because for any such functions u(z)
and v(z) there exists such a unique polynomial P of the second degree in each of the variables that P(u(z),

v(z)) = 0.

THEOREM 2. Matrices £, £*, and R defined by (31), (34), and (35) satisfy Baxter's equations. These
solutions exhaust all the solutions in a general situation for which the polynomial Q(u, w) corresponding to the
tensor A has not two identically degenerate double roots.

Under the assumptions that the polynomial Q(u, w) has four different roots wj for almost all u, we have
found that its roots are parametrized with elliptic functions in the following way:

W=uZ-1-n,)
Y=u(z~7) <
4(z) Wp=U(Z-7)+7))
Wy=u(2+7-7,)
Dy=u(z+y) <
Wy =u(z+]+ 7y

Here we assume that u(z) is an even function, for this can always be obtained by a shift of the origin of
coordinates. Insofar as 7 and n, differ by half a period, wy, = ws.

Thus, as an addition to Lemma 2, it can be stated that in a general situation the polynomial Q(u, w) has
either one or two doubly degenerated roots.

We shall describe these two types of solutions of Baxter's equations as solutions of rank 1 and 2, respec-
tively.

In the case of rank 1, arguing as under the assumption of simple roots of polynomial Q(u, w), we arrive
at relations (31), (34), and (35). This proves that the conditions of Theorem 2 are necessary.

To prove the thesis of the theorem, it remains to be proved that the vacuous vectors of the tensors A4
and A, coincide. The coincidence of the vacuous vectors corresponding to simple roots wy and w, of the poly~
nomial Q(u, w) follows from (31), To a double root wy, = w; there corresponds a two-dimensijonal subspace of
"vacuous"™ vectors, Comparing 25) and 27), we find that a base in this space is formed by the vectors

X(-)®@X'(z), XGz—n)QX'(—z+m) (36)
and by the vectors
R (X' (~2)®X (@), BF*X'@—1® X (—z+ ). (37

Thus, for £, £', and R to satisfy Baxter's equations it is necessary and sufficient that, apart from (31), (34),
and (35) holding, the vectors (36) and (37) should be linearly dependent, that is

RX(—)@X' @) =a(@ X (—2)RX(@) +pDX (z—m & X (—z+n), (38)
where o and 8 are meromorphic functions.
The fact that (31) implies relation (38) follows from a more general assertion:
Assertion. If an arbitrary four-dimensional matrix R is defined by the relations

RXE®HQIUE) =L@ (&R V (2), (39
then we have
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RX@ARUE)=a@¥ @Q@VE)+@Y ¢ —p®V(+ ),
where the vector u coincides, up to half a period, with a vector equivalent to (Dx — Dv).

We shall leave this assertion without a proof, showing merely that the matrices £, ¥', and R obtained by
®ealibration transformations™ can be reduced either to Baxter's already known solutions or to solutions obtained
from them by multiplying them by a certain matrix.

Let Gy, Gyt and Gy be arbitrary two-dimensional matrices; then a "calibration transformation™ trans-
forms an arbitrary solution £, $!, R of Baxter's equations into a solution of the same equations, viz.,

Z=(6x®6n) LG QCW), @0)
Pr==(Gx ® Gy) £* (X ® ), 1)
R = (Gx:®Gx) R (G} R GF). 42)

Without loss of generality, we can assume that the divisor of the poles of u(z) is equivalent to the divisor
of the poles of snz. Let the divisors of the poles of x(z) and x!(z) be equivalent to those of sn(z + A) and sn (z +
#). There exist matrices Gy, Gxt, and Gyy unique up to a proportionality and such that

GuU (2) =, @) Snz, GxX (2) = f,Sn (z + A),
Gx:X* (2) = f5 (2) Sn (z + p),

\/—k—snz)
L)

43)

where the vector Snz is given by Snz :<

With the help of these matrices we shall pass fro~m the matrices £, £', and R defined by (31), (34), and
(35) to the calibration-equivalent matrices £, £!, and R, Relation (31) becomes

RSnG@+i—m)@8n(z+p) =82S0 (z + p—n) & Sn (z + A). 44)

If p; =mn, then R is a Baxter matrix, for this relation coincides with the formula (4.27) in [8] for Baxter ma-
trices. Relations (34) and (35) are transformed similarly. After a "calibration transformation,” (38) becomes
the formula (4.28) of [8].

COROLLARY. If n = ny = 1y, then R, &, and £' are calibration-equivalent to Baxter's solutions,
With shifts by half-periods, the elliptic sine is so transformed (see [9]) that

Sn 2+ ) =6Suz, G=("5 1) (45)

0 1>. (46)

Sn <z ‘T_;") =G:Snz-Vksnz, G= <1 0

When the vector 7y is shifted with respect to by half-periods Iy =1/2 and I, = 7 /2, then, according
to @45), (46), and (44), the Baxter matrices are transformed as follows:

T 88, 2,(1Q6) T, RG:® 1) (47)

Since matrices Gy and Gy commute up to a multiplicative numerical constant, the transformations Tj determine
a projective representation of the group of half-periods in the matrix space.

Similarly, shifts by half-periods of the vector n, determine a projective representation of the group Z, x
Z, in which the generators act as follows:

T: 2,3, R % (G; 1), 21 (G;® 1), R. (48)

COROLLARY. All the solutions of rank 1 of Baxter's equations are calibration-equivalent either to Bax-
ter's solutions or to solutions obtained from them by means of projective transformations of groups Z, x Z,,
the action of the generators being given by (47) and 48).

3. Solutions of Rank 2

The essential purpose of the present section is to prove that all the solutions of rank2 of Baxter's equa-
tions are calibration-equivalent to the solutions found by Felderhof [16].*

*The existence of solutions other than those of Baxter and also their parametrization [see (79) in the present
paper] was communicated to the author by Zamolodchikov, who obtained them independently, but substantially
later than Felderhof,
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As shown in the preceding section, besides solutions of the Baxter type, Egs. (2) can have solutions of
rank2, i.e., solutions for which the polynomial Q (u, v) corresponding to the tensor A = A; = A, has two doubly
generated roots for all u,

Q (u, w) = 0 (u, w). 49)

Consider Eqs. (24) defining the polynomial Q(u, w). If u; and u, are roots of the polynomial Q(u, w) with
a fixed w, while v{ and v, are roots of P(v, w), then it follows from (49) that

P (ug, vm) =0, k,m=1,2. (50)
We represent the polynomial P(u, v) in the form
2 . 2 )
P(u,v)= D ri(u)v' = ZO g; (V) u'.
1=0 ==

It follows from (50) that on the curve I corresponding to £, there corresponds to every value of the function
r(u) a unigue value of the function q(v), where r(u) = ry(u)/ryw), q(v) =qy(v) /qy(v). Thus on T these functions
are connected by a rational transformation, and the curve itself is determined by the equation

p(rw), ¢) =0, p(r, 9g=rg—oar— g+ (61)
The curve T’y that corresponds to the matrix #£! is determined by an analogous equation
pt(t(u), ¢ ) =0, p'=rg— o — Pig + V1 (52)

Since the polynomials P and P; commute in the sense of composition, the polynomials p and p' commute
in the same sense, too. Moreover, it follows from it that

r(=gq@=r (=g (. (563)

If to the matrix % there corresponds the polynomial P(u, v), then to the calibration-equivalent matrix %
there corresponds the polynomial

b b
P(u,v):P(acZid , ‘C’;id )(cu+d)2(cu+d)2,

where Gy =<Z 2)

Using rational changes of variables, we obtain finally the following result:

LEMMA 3. If £ and %' are solutions of rank2, then, up to a calibration equivalence, it can be assumed
that the corresponding I'" and I'y are determined by the equations

P (u, v) = u%? — qu? — P12 +1 =0, (54)
Py(u, v) = uW? — qu? — Bp? + 1 =0, (55)
o+ B=a -+ by (56)

Relation (56) is necessary and sufficient for compositions 24) and (26) of polynomials (54) and (55) to
coincide,

The choice of the pair of indices of the tensor A which are regarded as external is arbitrary. Hence,
corresponding to the tensor AIJO‘E, it is possible to construct a collection of polynomials Q™™ (u, v), where m,

n=1, 2, 3 are the numbers o?%he corresponding upper and lower indices. For instance,
Q" (u, w) = det (WAILU,) = 0 (57)
(notations of Sec, 1). Condition {57) is necessary and sufficient for the existence of such vectors Xja and Ypg
that
NoapXjol 1 = RY W, (58)
In the new notations the old polynomial Q(u, w) becomes Q% @, w).

Let the matrix R be defined by the relation

R (Xz (2 ® Ur (2)) = g 5)(Yr (5) ® Vr (3)), (59)
where z & I's is a point of the elliptic curve., We introduce such polynomials Pg and PZRT that
PR (zr (3), vr (2)) =0, 60)
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PR (ur (@), yr () =0, 61)

If £ and %' are determined, as previously, by (19) and (20), then the polynomials P!t and Pil are de-
fined so that

P (z(z), y (z)) =0, Py (z* (@), y* (2) = 0. 62)

In analogy with the preceding section, substituting i and q for the indices o and 8, we find that the polynomial
Q'2(u, w) of the tensor A is determined by the compositions

P (u,v) =0, Pg @ w) =0, ®3)
PE (u, 5) =0, P2(@, w)=0. 64)

Considering the polynomial Q“(u, w), we find that the compositions of the polynomials P! and P}l commute,
Similarly to Lemma 3, we prove:

LEMMA 4. Up to a calibration equivalence of the matrices £, ¥', and R, it can be assumed that the cor-
responding polynomials are

PU (y, v) = u® — yu? — 812 -1 =0, 65)

P (u, v) = u? — yu® — 802 + 1 =0, (66)

PR (u, v) = ut® — ypu® — 8p1® + 1 = 0, 67)

PE (u, v) = ut? — yhu® — 8L? + 1 =0, 68)
where

Y+ 8 =7vr + 8k Y+ 8 =yh + Ok ©9)

The solutions of Eq. (54) can be parametrized with elliptic functions of modulus k =1 /vap as follows:

:’sn(z, k) — cn z, k) 70
A T 70

This can be verified by simply substituting these expressions in (56) and taking into account the well-known
identities
sn?*z + cn®z =1, k%n?(z, k) + dn?(z, k) = 1.
All the necessary relations between the elliptic functions used here and further on can be found in {9],
Since (54) and (65) determine the same curve, we have v6 = af,

Using an analogous parametrization of Eq. (65), which can differ from that of (69) by some vector n and
by a reflection, we find that the matrix % is determined by the following equality:

sn (N — 2) sn 2 cn'(z — n) cnz N
AT -()f )
1 1 1 t

This matrix depends, up to a multiplicative constant, on the parameters a, 8, v, 6, 1, where k =1/vag =

1/Vv8, i.e.,

$ == Z (a’ ‘3? Y. 67 n)i a’ﬁ = Yé

From (71) it is possible to obtain an explicit expression for the elements of the matrix

eta 0 0 d
[ 0 e oec O (72)
!
ed 0 0 o
where
a=asnndnn, a =fsandny, d=sanenn,
b=V apcny, ¢c=Voapdnn, = Vvl (73)
It can be verified that the elements of £ satisfy the relation
ag’ — b — ¢t —d? = Q. (74)
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Consequently, for %, %', and R to be solutions of rank2 of Baxter's equations it is necessary that they should
be of the form

L=%(B 7 61, £ =2 @by 0um),
R = R (v%h 6}3’ %:2) aRv nR)v

where R;,jq (c B, %, 8, m) = £, (o, B, v, 6,1M), and that the parameters of these matrices should be connected by
relations (56) and (69).

We return to the vacuous vectors of A corresponding to the curve T’ given by the equation Q*(u, w) = 0.
Comparing the bases in two-dimensional spaces of these vectors for every point of T" which yield the equalities
25) and (26), we find that the following relations ought to be satisfied:

R (X (47, v) ® X' (u, £7)) =ax X', ) ® X (u, v)) + Py X (—vw) ® X (¥, —)), (75)
RY(?, v) @Y (u, +0) =0 V' (v, ) @Y (u, v) -+ B (Y1 (—v, W) ® Y (u, —v)). (76)

The mapping u, v —~—1/v, 1/u determines an automorphism of the fourth-order curves given by Egs. (54) and
(55), which is seen to be a shift by one-quarter of the period. It follows from (71) that

1 1 1
v )=
The functions x!(u, v) and y'@, v) are similarly connected with each other., From (75) and (76) we find that then
the matrix R should satisfy
M_IRM = hR‘l’ (77)

where

DO D
DD O

i
[
\_/

and h is a constant,

For R of the form (72) to satisfy (77) it is necessary and sufficient that we should have e = 1 or 'yi{ = YR,
6R = (SR.

Considering instead of Q% the polynomials Q! and Q*!, we obtain analogous relations for the parameters
of the matrices £ and , viz.a =v, =06, ay =7, f = 0y

THEOREM 3. For %, £, and R to be solutions of rank 2 of Baxter's equations, it is necessary that they
should be reducible by calibration transformations to matrices of the form

"Cg - z ((X., ﬁ’ n)7 21 == fg(alv Blv nl)v R = H (aRv BR: T]R)y (78)
where £ (o, B, 1) = Z{a, B, @, B, M), @« + p =0+ B, = or + Pr For any matrix £ (, B, n) there exists a
one-parameter family of matrices %! and R satisfying Baxter's equations.
All the statements of this theorem, except for the last one, were proved above,

A direct proof of the latter is rather long and cumbersome, It can be avoided by combining the results
obtained here with those of Felderhof.

Formulas (73) with o = v yield a parametrization of all matrices (up to multiplicative constants) of the
form (72) (e = +1) whose elements satisfy relation (74). Felderhof discussed Baxter's equations precisely for
matrices of this type. He found that for these matrices there exists a parametrization

¢a=dnb +psnBcenb, ¢’ =dnb —psnBcnB, b =ecsnbenb, (79)
c=cnh, d=sn6dn8, g =p+ k%
Moreover, if A and the modulus k of the elliptic functions are constant, the matrices % (0), £* = £ (9"), Rj =
Fap (8 — 0) satisfy Baxter's equations,
COROLLARY. All the solutions of rank2 of Baxter's equations are calibration~equivalent to Felderhof's
solutions,

It is important to note that the parametrizations (79) and (73) are two different parametrizations of the
same matrices. It would be most interesting to find out which algebrogeometric object corresponds to the
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parametrization (79) to the extent to which the concept of vacuous vectors corresponds to the parametrization
(73). We stress once more that, as opposed to the case of Baxter's solutions, the modulus of the curves of
vacuous vectors takes different values.
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TANGENTIAL SINGULARITIES

E. E. Landis UDC 517,27

By tangential singularities we mean singularities of the position of a surface in affine or projective space
with respect to its tangentially different dimensions.

The goal of the present paper is the classification of tangential singularities of a smooth hypersurface
and of the family of level surfaces of a smooth function.

A line can have, with a surface in general position in three-dimensional space, order of tangency 1, 2, 3,
4 (with a hypersurface in RB, up to 2n — 2; with a level surface, up to 2n — 1),

We classify points of a surface according to orders of tangency of their tangents and according to the
disposition of sets of points with different orders in their neighborhoods.

In the case of surfaces in three-dimensional space our classification consists of seven classes. A smooth
curve of parabolic points (p;) divides a surface in general position into elliptic (e) and hyperbolic (hy) domains.
In the hyperbolic domain there is singled out a curve (hy), on which asymptotic lines have inflection (curvature
zero), This curve on a surface in general position is smoothly immersed; on it there are singled out isolated
points of double inflection of asymptotic lines (hy), points of transversal self-intersection {hy) and points of
tangency of lines of inflection with a parabolic line (p,).

Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 15, No. 2,
pp. 36-49, April-June, 1981, Original article submitted November 12, 1979.

0016-2663/81/1502- 0103%07,50 © 1981 Plenum Publishing Corporation 103



