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I. In the theory of nonlinear equations of Korteveg -de Vries
type, which can be represented in the Lax form

'—&:[LA], (1)

where ~ N m ?L'
K . = :
L = CZ:_O U.L (:c,'é) __b-—"‘x‘_- 5 A - LZ-'0 v:, C:E, 'é) ?x“

the most interesting families of exact solutions (multisoliton
and finitegap) are specified by the following conditions: there
exists operator B commuting with L at the time t=0

- n ¢ N .
[L,B]“’ = ’_Z- u;(z,0) 2= ,§ou{.(x)%__;,]. (2)

i zo o’

If it is so, then such operator B(t) exists at all times t.

In case of "rank 1" (gee below), if, for example, the degrees of
operators L and B are co-prime (and in cage of matrix coefficients,
if eigenvalues of higher coefficients of operators I and B are di-
fferent), the "typical" solutions of equations (1), which satisfy
the restriction (2), are periodic and quagiperiodic functions of

x and t, They can be represented by the 6-functions of Riemann
surfaces, Periodic operator L has some remarkable spectral proper-
ties ~ its Bloch spectrum is finitegap .

Rapidly decreasing multisolition solutions (corresponding to re-
flectleas potentials) and rational solutions of equations (1) are
obtained from periodic solutions by means of different limiting
processes (see surveys [1], [2], book [3]).

Let's recall the lemma by Burchnal and Chaundy ( [4], ). For
any pair of commuting ordinary differential operators (2) there
exists algebraic relation

R (2, )= o0, (3)
where R(z,w) ~ is & polynominal with constant coefficients.
For the common eigenfunctions of the operators L and B

Ly=dy : By=py 5 =yl P
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the relation (3) is valid,

R(),/u):o, (3).

Thisg relation determines the algebraic curve [, The pair (3,/4),
satisfying (3) ie point P of /7. Common eigenfunction v (=, P)is
defined on the surface [ .

Definition., The multiplicity of the pair (;Lj& ) eigen values of
the operators L and B ?i.e. 1 1is the dimension of the space of
solutions + of (4) for a fixed point Pe [ ) is called the "rank"
of the commuting pair of the operators 1L and B.

The common eigenfunctions W of L and B determine the l-dimensio-
nal holomorphic bundle over the surface [,

All the results concerning the equations (2) and exact solutions of
thekK?V-type equations, obtained before 1978, refer to the case of
rank 1,

It is noteworthy, that in the theory of "one-dimensional" systems
%f Kdvitype (1), condition (2) includes the operator L from the
&I—pa r .

For some physicaly important "two-dimensional" systems of the KdV
type the analog of the algebraic representation (1) was found in
the papers (5] , (6] . In this representation operator L has the

form of:
L=2- - M

__b?
L ) ;[?. M 2 ]2
Dt _[A'L] ) ﬁin%f A 0
where M and A are ordinary linear differential operators related
to x, with coefficients depending on (x,y,t).

To obtain the exact solutions of the "two-dimensional" systems (5)
the authors have introduced the following comstraints including
the auxiliary pair of the operators L1 and L2 :

[L,LC]=O; v=1.2 ,‘[%;-A,Li]zo

2

(5)

>

(6)

[Li,LZ]W ; L=%:‘f— - M.

Here L1 and L, are ordinary linear differential operator related
to x. Unlikg the theory of the onedimensional systems (1) the
degrees of operators L, and L, are arbitrary !

This class of solutions in case of the commuting pair L, and of
renk 1 wag found in work [7 and in case of the commutlng pail® of
any rank in the work [8] , [9] . The solutions of rank 1 > 1 dew
pend on the arbitrary functions of one variable.

The most significant example of the gystems (5) is a well-known
two~dimensional KAV equation (or KP equation),

where 2 3
M= o ‘U(%,y,é> » A= ?—;‘;3_%—1}% +W(x:j;’£)
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W, -2 U3

e

\)(/J=Z/f-fU -LU. 2 UL (7

XX

or

U&f V(v

The solutions of rank 1 (i.e, pair of Ly and L2 has rank 1) have
the form of:

U t) = comt + 23, €n 9(s~VyrltW) (o)

according to [10], and where 9 (Vi,~~, 19 ) - ig the theta-func-
tion by Riemann, corresponding to the Riemann surface [ (4),

In cagse of _1>1 even the investigations of the equations of com-
mutativity [L,, L,]J=0is very complicated. The solution of the
problem of c1;ssi ying such peir Ly, L, of any rank 1>1 was
found in the work [11] . The determlnat fon of the coefficients of
these operators is reduced to a certain Riemann problem, The met-
hod, which permite to eliminate the Rieman's problem and to obtain
exact formula for coefficients of the operators L, and L2 of rank

1>1 has been developed in work [9], [12].

II. Multipoints vector analog of the Baker-Akhiezer function.

Let's consider the set of the matrix (1x1) functions, 1{ (x k)
8=1y0e0 0, X = (x1, cee 3 xn , such that 1? (o,k)=1 and
the matrixes:

A; (%) =<%—§J Y, (i,&)) LANERD) (9)

are polynomial on k.

S -
Matrix functions A (I,'*) must satisfy the relations:

VY T
Sa T w LALAL (10)

Any set of matrixes polynomial of k Ai, satisfying(10), uniquely
determine the functions Y, (X,K).
Let (f’[’ B, )- is any nonsgingular Riemann surface of

the genuq % ‘with fixed points Pis eoe P and local parsmeters
=k~ P) in their neighbourhood

Consider now the unordered set of points (d’)=€,3,”,’z§£ ) and
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get ( £ ) of the complex (1l-1) - vectors o’(l.: (e for > L, 01

Remark, The set (g’,d) is called "Tiurin parameters" for the
gtable (in the Mamford's sense) l-dimensional holomorphic vector
bundle of the lg degree over [ with fixed framing, i.e. with a
fixed set of holomorphic sections #....., 7¢ ( 1131).

The points ),,... , ¥ys¢ are the points of the linear dependence of
the sections ?L- ajxd °(L'(/' are coefficients of linear depen-

dence 4
70 (yi)= JZ_L Ty (y.). (1)

Let's set up the problem: to find vector-function 1//(05,?) which
is meromorphic on [° except for the points Pys oo , P,  and
such that:

1: a) the poles of 1[/('&,9)‘— (Yoo s 'l//g) lie in the points .
b), for the residues of "y, (x ,P ) (the coordinates of Y(sz,p) y
the following relations abe true

resd/' YJ (i,E> = o(‘:,J» -res/L‘ 7 (’JEP)) (12)

a(L"C/' and ()/d do not depend on x.

2°, In the small neighbourhood of the point P, the vector-func-
tion Y(¥,F ) must have the representation:

peP-I @)Y en . o

In case of 1=1 the agsimptotic functions 'Y’ are the exponents;
in this case  is n-point scalar analog of the classical Baker-
Akhiezer function ( [10] ).

Pollowing the scheme of the work [11] , which is besed on the met-
hods of [14], [15] , one can obtain the general statement,

Theorem, The dimension of the linear space of the functions, which
satisfy above-mentioned restrictions with fixed x, is equal to 1.
For the unique determination of ;y 1t is enough to fix its value
at any point. The construction of vy 1is equivalent to the system
of the linear singular integral equations on the small circles -
the points P,, seey Pm neighbourhoods®' boundaries.

The integral equations are solved separately for each x., The rela-
tions (12) and the value y( x, Po) gives us unique solution of
the gingulaer integral equations,

The matrix ?(‘i,f’) whose rows are linearly independent solutions of
the problem (12-13), is called the matrix function of the Baker-
Akhiezer type, It follows that "Y(X,P) is determined uniquely up
to the multiplying by the invertible matrix function

Y(z P)= 6(2)¥(E,P) (18)
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Except for the Turin parameters the construction of ¥ depends on
the of matrixes V.

Exatsl;_nle 1. KP - Equation; commuting ordinary operators. (see [8],

Let's congider one-point vector-function y(x,y,t,P) with essen-
tial singular point P_. on the Riemannian surface of the genus
g. It ig determined b9 the Tiurin's parameters and the assimptotic

matrix ¥ (x,y,¥, P)). In case 1=1 it is the classical Gordon~

Klebsk - Baker's function [16].

a) We should choose the functions Ai(x,y,t,k), i=1,2,3, which
determine the function \l/o(x,y,t.P) according to (9), in case
1=2, in the form

G L (s °);

w Ww
Ay =
3 kl_;s_l_.t.__&tj__“xx
2 2 y , U )
)

where u=u(x,y,t).

Prom the compatibility equations (10) it follows that u=u(x,t)
doesn't depend on y and satisfies the X4V equation

4up =6y, - u

p 4
b) Case 1=3. Let's choose Ay in the forms
o 4 Q R 0 0
- . - o k 0O .
A =1 O 03 1 , Ay = 5
K-W -E-u. o 0 C K
w 0 1
53
k=W + Uy T2
Ay =
2 w W
-~ Wy * Uz k-\X/*-{ Y

Prom (10) it follows, that u=u(x,y) doesn't depend on t and is
the solution of the Bussinesque equation

Su.az+u,xxxm - e(uu,;)x=0.
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¢) In case 1> 3 the matrixes Ai(x,y,t) should be chosen in the
form

o, . ... o 0 41 o 0,0
. . 0,0
A = N R .
O) ’O>O +a€) ¢ )
w o < ©
o5 - 1%2_2‘,0 K o) . N . o O
A2 N3
A2= ot + 0”2, > A3= ¢ +a'3:

where a, and a; are the (1x1) matrix, independent of k, whose
elements are the differential polynominals of Ugpeoes Uy oo

Importent gtatement In all before-mentioned cages the vector-
function - of the BakereAkhiezer iype ¥ , which has in the neigh-
bourhood of the point Po the representation:

gt (L, 3empt) ) Hleptn) | s
3.2 (L0, ,0), 5. = ( §ii> ,Ege))’

Satisfies to the pair of the scalar linear equations
D ) 1_/1) -5 .
(w&; )“1” =0 (’7}{ Y=o, (16)

2
2 ._?.__il
M=Qﬁ > A' X *qux*WV

The coefficients [/ and W don't depend on P, For [/ there
are the formulas:

0=2: U=uw(xt)- gﬁm TS U=—2§<‘”.

Conclugion. The function U(x,y,t) is the solution of the KP
equation

237U 2-2‘3: iUtVi(éUU wa)}

Consequently the class of solutions of the KP equatlon, which de~
pend on the following data {/, 5, ¥, « , u,

is obtained., In case 1=2 the function u, (x t) 1s the golutlon of
the usual KdV equation,
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The vector-function Y¥(x,0,0,P)=y(x,P), which depends on one
variable x only, was introduced in the work [11] . The 1 coordina-
tes of this function are the set of common eigenfunctions of the
commuting pair of ordinary scalar differential operators:

Lay¥(x,P)= Ay % (xP),
Lz "-f’q'<r,P) =/w}09’(xap>, a7
vy Ly f)

where ), » are arbitrary algebraic functions on the curve f',
which have only one pole in the point P_.. If the degrees of the
poles 2 and 4« are m and n, then the 8egrees of the operators L
and L, are ml and nl; That means, that the commutative ring of thd
opera%ors of the rank 1 is determined by the surface [ , the

oint Py with the local parameter, the Tiurin parameters

o ) and the arbitrary functions «  w«
J/L,"-,J/ge,e(“... , 3g ° 5

R
Each operator of this ring is determined by the function p) (P) with
only one pole in the point P.. Exact formulas for the coefficients
of these operators will be “obtained below in some special cases.
All the relations (6) follow from the equations (16), (17).

III. Example 2, The two—dimensional4§chr3ding§r operator;

two-point Baker-Akhiezer Lype Tunction with
separate variables,

The natural generalization of the Lax type equations (1) in case
of the operators L, which essentially depend on a few space variab-
les, is not trivial, Let's note, that the operaggrs, corresponding
to the KP type equations, include the operator £ only in the
first degree. o4

It is known, that the nontrivial operator P, whoge commutator with
the operator L=p +u , [P, L],is the operator of multiplication by
the function doesn't exist for the typical potentials u(x),
X=(Xqgeee o ), n>1, Thig means, that nontrivial evolutional sys-
tems of the Léx form, preserving the full spectrum of L , do not
exist. The eigenvalues of the operator L in the case n >1 have the
infinite degree of the degeneration. It is enough for the recon-
struction of the operator L to use the "inverse problem data" about
the eigenfunctors of one energy level,

The equations Zf the form
—3 -
3£—[A,L]+BL) (18)

where B is the differential operator , were introduced in [17] and
stimulated our work [18] .

We shall introduce a certain class of two-dimentional "funite-gep"

Schrodinger operators; the inverse problem of reconstructing the

ﬁéefators from the data on one energy level was solved in the work
18] .

Let's review the main ideag, on the formulation of the inverse
problem for the operator
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(2 L A R
(A AL g
Let the potential u(x,y) and the vector-potential A4,(x,y), A2(x,y)

be the periodic functions of x and y with the periods Ty, T2.

Congider the equation He/ = Ey. It ig natural to introduce the
Bloch~-functions ag the eigenfunctions of monodromy operators

‘V@*t%)=fﬂﬂvﬁg)mﬂﬁg+ﬂ)=/ﬁEY(&J);@'

"The numbers p, and p, are called the "quagi-momenta". The eigen~-
values of the &onodro operators T,, T2 and Schrodinger operator
H form the two-~dimentional manifold M2 in the 3- space (XL,MJE)
The points of this submanifold are the triples of 2, ]
such that there exists the solution of equation

Hp = Ey s ?(x+71,33=%?(x,3); ‘f'(%g*”}% 2, Y(OC,(/L/).
The operator H would be calleg the operator with a good analytical
properties, if the menifold M™, is the complete two-dimentional
analytical submanifold in ¢3. The intersection of M with hyper-
plane E=E, is the analytical surface R (Ec)’ which is called "the
complex  Fermi-gurface",

The operator H is called "finite-gap", if the genug of this surface
R(Eo) ig finite for some Eo. Let's clarify the asymptotic behaviour
of “the Bloch functions at™the ¢ mpleg valueg of El and p,,

E(p1, P )=Eo, | Pil‘* oo + pc =0 (1). This meang, that
the surface® R is compactified by two? "infinite" points P, and P,
and the Bloch function has the representation:

que)c‘hcna) (SZTQES(QC,J)RIS) N ew.il

o T

2

y - ex:.(?!:'"J)(io Q S(“¢>J) K;s)«, exzz’

where ;! and K£1 are the local parameters in the neighbourhoods
of the “points P1 and P2. Outgide these points P,, P2, the func-
tion yf(x,g,PB ,Pe R, is meromorphic and had g 2 poles
fpﬂ... - Y% . The problem of the reconstruction of the operator H
rom the d%rve R with two fixed points P1, P2 and the get oqu,”,J
wag solved in [187] . J

Let's pay attention to the important fact: the asymptotics of  _
near the points P1 and P2 depend on different variables z and z.
The functions of the Baker-Akhiezer type with such properties
will be called "two-point" functions with separate variables".

For the operators H of the rank 1 the following formulae are valid:

w (eg) =g b 0 (27 )

2202
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N R @(ﬁ +U 3 :+W
= Agrihy =g & Sllealla Ve W)
MZ+%Z+%+W)’

AZ=A1—CA2=0 , 2=x+dj, ‘E=x-c3.

The vectors U;, V

only by the p%inté P,, P,. The vector W

J&,...,dg « In the éive gauge the operator H is not Hermitian,
he con %ions on the parameterg of our congtruction {R, P,, Py,
*1""=k§§ which lead to Hermitian operators H were found ia [19

The condition of the finiteness of genus g <o for the operator
H is not resistant to variation of energy level. This means that,
if for one value E=E, the genus of "complex Fermi-surface" is
finite g <o then"it becomes infinite for values E close to E,

The natural generalization of the @-functions is determined some~-
timegs for the curve ef the infinite genus [20] . For complete con-
struction of the theory of the two-dimensional Schrodinger opera-
tor the generalization of our construction for the ease of the in-
finite genus is therefore necessary. Primarily it is necessary to
find the assimptotics and the disposition of the poles of the
Bloch functions on the surface of the quasi-moments at the fixed
energy level, Let's note that corresponding asgsimptotics must be
congidered in the unphysical region of the complex values of the
quagi-momenta,

The following algebraic requirements for the two-dimensional
Schrodinger operators are analogous to the equations_(2), specify-
ing the finitegap solution of Lax-type equations [18]

There exist the linear operators I, and L2, guch that the commuta-
tors have the form:

[H’LL-] =B;H 5 [L‘&,Lz]:B‘ng (19)

are independent of z, Z and are determined
s determined by the set

where By, B,, 33 are the differential operators.
The eigenvalues of the operators:

Hw=o . Ltlfm)x_{/ ;Lay=/u.70 (20)

satisfy to the algebraic relation
Q(l,/“)= °. (21)

Here Q(Xvﬁ) is the polynominal.

The important concept of the "rank" for algebra of the operators
(19) is introduced: the number of the 1inear1¥ independent solu-
tions of the equations (20) would be called the rank of the al-
gebra (19). For the algebra of the rank 1 the eigenfunctions

form the ledimengional holomor?hic bundle over the curve [, which
ig determined by the equation (21).
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The before-mentioned construction of the operators H has rank 1,

It would be of interest to analyse the relation between the concept
of the rank of the operator and the concept of "typical" position
of the operator H with periodic coefficients. For the finitegap
operators such relation is as follows. At the fixed degrees of the
operators L, and L, the number of the parameters, which determine
the algebra{c relgtlon (21) for the rank-~1 algebras is greater
then the number of these parameters for the 1>1 rank operators.
However, except for these parameters the algebra of the rank 1 is
determined by the 2(1-1) arbitrary functions of one variable.
That's why in general the rank 1> 1 algebras isn't the degenera-
tion of the rank 1 algebras.

Let's present the construction of the finitegap operators H of the
rank 1.

Let ¥,(z,k) and ' (z k) be the matrix functions, determining the
equations

% ,\PL <Z»K’) = Ai(Z,K) vi (Z,K>;;—f sz(i,‘éﬁ Az(i,k) %(i)k)’(%)

where
01,0 , 0,0 0o 0 K+7,
0,04 o © 1 2 o v,
A'- Il
» (23)
O) O.) ,O, 4. O rl)'e—z
U, U L(,E_zjo o o 1 0

“Fi(o k)=1 and uy=us(2), v4=v4 () are arbitrary functions .

Consider the vector-function of the Baker-Akhiezer type y(z,%,P)

on the Riemannian surface [ of the genus g, corregponding to the
Tiurin parameters ( }>« ), which has the following representation
in the neighbourhoo s of the two fixed points P1 and P2.

v (23,P) - <iio 5. (2,2 )uiﬂ}ﬂ (z,k,) (24)

Y(Z,E,P) =(;Z.; is (z,3) Kf) Ya (‘2, VZB_ (25)

The function W 1is normalized by the condltlon E =(1,0,...,0)

Here ¥ C  are vectors 3 = (39, ) Cs _(% Z;e)) and

k31(P) are the local parameters in the neighbour oods o)
Statement., The vector-function 1/ of the Baker-Akhiezer type
statisfies the equation IP%:O, where

Pj.
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2

H:l—— +v(2,§);—i— + u(3’§>

V292
ig two-dimensional Shr'odinger operator with scalar coefficients.
Iy - 2 (1)
v(zi)= -5 b V(73

(26)

w(z,3) = - 2= E(U (2,%).

Only Hermitian operators H may have the physical sensge,

Ig it was mentioned above, for the rank 1 operators H the restric-
tions on the parameters, corresponding to the Hermitian operators,
were found in the work [19] . Following the idea of this work we
shall find here the analogous conditions in the casge 1l=2,

Let us consider the curves [ with antiholomorphic involutions
c:.[— [, which transpose the fixed points &(P,) and the local
parameters, --k . For any two points thér gxis’cs the
Abelian dlfferentiél the third kind with the simple poles in
thege points and w1th the residues 41, correspondingly. In our
case, for points P4, P2 we ghall consider the odd differential of
the third kind w(P) S - w(s(PY) . The difference between
any two differentials of such type is the odd holomorphic differen-
tial. This means, that the real dimengion of the sgpace of the odd
differentials of the third kind equals g. The set of the zeroes
(3'1,... { )} of the w(P) is invariant with respect to the
anti-invo u{ion 6.0 (). 3’0-(,_) , where G(i) is the corres-
ponding permutation o the indices.

Examgle. Let [ be the hyperelliptic curve, given in c? by the

equa ongat y [‘7 () 3 >

The set of the complex numbe rs )

N ¥
tions ). ni=14."* 4
The antlholomorpilic involution S on [ , transposing points
Py=0 and P = oo hag the forms

P=(y. X)———‘S(P3—< 5;@*1) Sl)

The Abelian differentials with their poles in the points Py, ZE’2
have the form:

W = X‘JX+Z ¢, )g'ia/)

If the constants °i satisfy the conditions cy= -c —1-i? the diffe-

rential w is od
The zeroes 71 of wr are the zeroes oi’ the function

YT e\ gyt on -fhe oa/rve r.
In the cage of rank 1=2 the Tiurin parameters are the sets of JQ
and the complex numbers d;. Let c(c = d.oi~ )

Besides these parameters the vector-function W (%, %, P) is
determined by the two functions u, (z) and v (z) (23) Let

u (z)=- v(z).

Statemont. The above-mentioned restrictions on the parameters of
congtruction correspond to the Hermitian operators H,

Sketch of the proofs let us consider the scalar function

satisfies the condi-
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9(z,7,P)=v(R,ZP)y*(=,2,P),
(the cross denotes the Hermitian conjugation)

In cage 1l=2 and u_(z)=-v.(Z), it follows from (23) that

“Y1(z,k)’\l/2 + (z,-g)'ﬂ- °

This meang that (2,2,P) is the meromorphic function on the whole
curve [, It is easy to check that, if &; =- ;) , the
poles y in the points p, are simple., The differential (2,3 P)wr
hag the only two simple poles in the points 1’1 and P,, because in
the poles ¢ the w equals zero, The sum of the residu%s of the dif-
ferential 'yw equals zero. _

Consequegtly “tf(z,Z,P ) =p(2,2z,P ). These values are equal to
p(z,2,Pt)=C% " , (z,2,P~)= ¢t , by definition., From (26)
it follows, that 2(z,Z) is real and the operator H ig Hermitian,

IV, The deformations of the holomorphic vector bundleg,

In general the problem of the reconstruction of the vector analog

of the Baker-Akhiezer function v is reduced to the Riemann problem,
which is equivalent to the system of the gingular integral equa-
tions. But for the calculation of the linear operator and correspond
ing solutions of the nonlinear equation the Rieman problem can be
gsometimes eliminated., This possgibility is based on the investiga~
tion of the equations on the Tiurin parameters ( y,« ).

Let, M be a nongingular algebraic curve_qf the genus g with fixed

points Py, ..., P and local parameters k. ¢(P) in their neighbour-
hoods.” The logarithmic derivatives X  (X,P) of the

Baker~Akhiezer function ¥ (X P) will be considered.

The matrix function \.{/(i,P) wag determined earlier according to
the Tiurin parameters and the "agsimptotic functions" 'Sl/s(x,k)
We have by definition:

(3% - LER)YER:-o e

Phe functions X, (i,E) are m eromorphic functions on the curve I,
which have the poles in the points P4y, ese , Pm. Bepides P, the
functions)(x, P) have 1g simple poles in the points sy, . y4€
The rank of the matrix-residues K. at the points y equals 1,

Congsequently, there is (1-1)- vector « =(ra£B 1 ..,oCS 1.1) in each
polnts y;  such that for matrix elemefits 5> ' ’ the follow-
ing relations are wvalid:

d.g Q£

TS v S =« us% foo. (28)

The parameters 3/(55) ;:(55) satisfy the equations:

-
—x = Sf Heo , (29)
: | W,

41 /. (30)

4
i 24
—_ o = - .

3/5 (03 - Yso ) ;(-S(o) . d-asa R where J(é)o and -j(c',i
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are coefficients of the expangions X
bourhood of the poles s (%) (the

VRCR/ERE ot Oleg) (31)

o

(x,P) in the neigh-
index S is omitted),

Let “is(x’ k) be the matrices, which are polynominal on k and
such, that all differences

Lo (F,P) - wpg (%% (P) (32)
are regular functions in the neighbourhood of P..

Statement For arbitrary functions uis(x k), (polynominal on k),
and arbitrary y(X) , « (X) there exists matrix function
X%,P), satisfying the conditions (23), (32), This function is
unlque:(ty)éetermined by its value at some point Poji(x, Py)=
= U X
i,o ¢
The ambiquity of the determination of X; is connected with the
ambiguity of the determination of "P(x, P) which is determined
up to the multiplying by the invertible matrix function G(x).

The proof of this statement directly follows from the Riemann-Roh
theorem for the dimension of the functions’ space which have sim-
ple poles at the points XS and ni-fold poles at the points Pi'

Thig dimension equals the number of inhomogeneous linear equations,
which are equivalent to the conditions (23), (32) and the condi-

tion X (X,B)=s wu., (%).
Let the function X ;(x, P) be determined by the parameters
fuss (Z,6) |, ug (), y(3), (DY .
Statement. The solution of the equations (27), VY (o, P)=1, is

the Baker-Akhiezer type function iff the equations (29,30) are
valid.,

For brevity, the index i will be omitted, i.e. it will be assum~
ed that VY depends on one parameter x,.

FPirst of all we shall prove that the equations (29), (30) are
equivalent to the absence of the singularity ¥ at the points
K:}(x) (i.e. ¥ is holomorphic function in these points),

Let Y (x,P) be holomorphic in = Js(x) , then for each colum
by, y of tlrée matrix Y the equality:

L#iVe=0 L dpst (33)
ig valid (here i is the index in the columm)

This equality meang that the coefficient at (k.—X)"1 on the left
of (27) is equal to zero. Except for this

d ié 4
EY- I w3 ) 20

By derizvation of the equality (33) we sghall obtain, that

(LZ=-L ("(o.x Yo t e Vo *t o, Ve 'zu“>= 0.
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From (33) and (34) it follows:

. al al
Zloaave vaa (3 65, - 0 2]
(35)

A ‘”’ax Z("( " Z figa)%a‘o

The equality (29) is the simple consequence of the equality bet-
ween the logarithmic derivative of the det-erminant ¥ and the
trace of X (x,P). The coefficient at VY,in the equalities (33) and

(35) must be proportional, thats is why the equation (30) is
valid.

Let us prove the inverse part of theorem, We shall consider the
matrix JZ which is gauge equivalent to X

VARSI PN

where
Ay oy oA Py {
’ 2 3 s
7y Y
3_ o , o , .. o 1 , ©
© >i ) > ;O 7 ©
1 , O ,O) ,O , ©
© ’O ? )0)071
0 ’O > O 1 o
2 )_‘>)
-1
(7 O7 iooa"" R O) OjO
- - R ~o, ~¢of
Y s Co

The direct consequenge of the equations (29), (30) is the absence
of the singularity rY at the point k= )/ . That means that the
solution of the equation

a ~ ~

FY-xY
has no sgingularity. Then the function Vo, 3’1 Y , satisfying the
equation (27), is nonsingular at k= too.

Now the form of VY oin the neighbourhood of P_ will be found, Let
us formulate the following Riemann problems to~ find the matrix
function ¥ (x, k), which is holomorphic on k except for only one
point k= o and in the neighbourhood: §

Vo (=,k) = R(x,k) Wi, k) 5 R= 5.5,k . (36)

e
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This problem has only one solution, such that ¥ (x,0)=1.
Lemma, The logarithmic derivative of Yjs is the polynominal func-

$ion on k d 1 Ef ( ) ¢
—— = W K
(dx 1{/5) ,\ILS ey 51L
It is valid, because ( & Y)Y
’ dx T’ ig has no singularities on

k except k= o0 &and has the ns-fold pole in the infinity k= oo

FProm (36) it follows the expression (13) for Ty(x,P) in the neigh-
bourhoods of the points Pg» i.e. is the Baker-Akhiezer type
function,

V. Finitegap KP equation solutions of the rank 2 and genus 1.

In this paragraph the equations on the Tiurin parameters, corres—
ponding to the "finite-gap" KP equation solutions of the rank 2
genus 1, will be considered, These solutions correspond to the com-
mutative pair of the operators L,, L., whose degrees are equal to

4 and 6., In the nondegenerate caée stich operators satisfy the rela-
tiong:

LZ=‘/L3+3LLL’+O‘?Z (37)

and are determined by the algebraic curve [ﬂ(the constents g,, 2),
the Tiurin parameters (Y, on_the elliptic curve /[~ and one
arbitrary function u (x) ( [11] ). The elliptic curve / is deter-
mined by the equatiof (37).

In this case the Tiurin parameters are the points 4,érk and com-
plex numbers ofgy=oly | dyy =oly corresponding to thede points,
According to the example 1a §1 the solution of the KP equation
corresponding to the pair L, and L., is determined by the sget (/’d)
and by the solution of the flav equgtion uo(x, t).

The logarithmic derivative of matrix analog of the Baker-Akhiezer
function Y (x,y,t,P), has the assimptotic form:

(%?)?ﬁi 3‘./{;(36,(7){,)):(‘(0_“ ;) +0()> (38)

where A= K'L is the pasrameter on the elliptic curve.

The form of the singularity fat )=0 and parameter ( /,« ) deter-
mine the function . Any elliptic function may be represented as
the sum of the ¢ -functions [21] . Let us find X, in the form:

Fi=AC(v-p) +Bg<u-yz)+cgm+ D,

where A,B,C,D are matrices independent of A . The Weierstrass
- function is determined by thgiseries ;
(;O‘)‘; At +Z'[0'W,,,h)"" + Wy, + )w,‘,”;‘]; ©,,, smwWin
and the relation E(z): - 39(3) is wvalid.
The t-function is not two-periodic in contrast to = func-
tion. The function is an elliptic function iff the equality:

A+B+C=o0 (39)
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o 0
is valid. The expansion (38) of uf means that C = (i o R
According to the definition,the residues X, at the points Ve
and X have the rank 1,

b Ta (50 L Be (%G Y

Therefore
A< [ ( 0 o > < >
Free term in the expansion (38) equals ( " 5 Consequently,

$-AL(-8e ) =) (10)

(Recall that g(* X): - g (A) )

The following expression hag been finally obtained:

Sz 22 ( f)é(w% i, (:2 2) L0

o o (41)
(5)e0)+9
where D is determined from the equality (40).
According to (29),
Yaem A= s - SpET o

7_

The matrix J¢ 1_ 2 wh:Lch according to (30), determine the dynamics
of o, 1is equal’ t

TZ (2 4, 1) )+ (308G + 2.

Congequently,
°(1x=4f+u—$o((}/£’),2). (43)
Similarly,
2
°(2x=°(a + W +(P((}/1,3/2>, (44)
Here

?(()/"()/3> =C//e'[1)+ é (J/‘) —g((}/z> .
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The expansions of the logarithmic derivatives ¥, ¥ ™* and Y, ¥’
in the neighbourhood of 2=-0 have the form: &
-4 X O -4
.)(z:\{j}y/ =\ v ) + 0()) , A=k

K (45)

'S

S :qft%ft< ) ;K - {rO(A) (46)

u,-—I--rLO ’-004_

The expansions (45), (46) uniquely determine the functions j(z and
and their representations in form of the C-functions ' sum
as well as (4.

The equations eon the Tiurin parameters will be as follows:

(}/:.g: 1 dy = -?}(:Jc,J,é) ; (47)
Yot = -1) <°Q°(z + %’ ) o(j_dz ; (48)

=04, 2y ¢
O(Lf" 20("(&}14'0(("'2'—&)2—(-1) (“+o/ )¢ 20((}/ (49)
Let us define 3/1 = y+c(x,t), 3/2= y-c(x,t)+c, c, =const,
0‘1—°‘2=Z(X,t), °‘1+°‘2= w (x,y,t), P=F (y,c,co).

The compatibility conditions of the equations (43,44,47-49) leads
to the following:

- Ga-a) (P () - P ()
"1 a@ - ;) (P -#(y.)) - == (50)

Y= Wi -5 4 }9(()/1) 1)

The equations on the Tiurin parameters in new variable have the
form
-1
c:x_z ;zx=2W—2¢(yacaCo) CJ:ZJ:O)

‘e * 224(31‘@ ' (51)
“('x,éf’é) —di e( +\0(ac {) +\P(T{)
R Y’(T’U |
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The substitution of the expression W = (Zn Z)x +2 P Z-i into the
equation for W/, yields:

1+3c¢
x ) = T ZCtxwe 2 _ 1 ¢
¥ (2, ) 7 + @ el 5 _%zc;fg 3 (52)

2
leyt)s S22l s @ vl (Rop?)-L oz (53

- 3 2 1 3 1
Ce Se, (i—cxm>—E-ch t 7 Crna (54)

Statement, Every solution c(x,t) of the equation (54) determine,
according to (53), the solution of KP equation, This solution
u(x,y,t) is the periodic function of y., It has not any singularity
and is the boundary function on x , if c = 214 0, 2 £ o,

The comparison of the constructions of the KP equation solutions,

one of which uges the vector analog of the Baker-Akhiezer function
and the other was mentioned above, shows that the equation (54) is
latently isomorphic to the K4V equation. However this isomorphism

is difficult to irace.

The equation (54) is the integrable system, which admits the zero:
curvature representation. The operators in this representation al-
gebraically depend on the auxiliary "spectral parameter" A , which
ig determined on the elliptic curve, differing from all the known

cases, which contain the rational parameter ) .

This representation, having the form:

F1e= Nog tL L, 3] <o, (55)

JC:=QXJ (x,i;é),permits, as usual, to obtain the integrals of the
equation (54) "from the expansion of X: . The investigation of the
general system, which have the form (55), will be undertaken in the

next paragraph,

Let us consider the stationary solutions of the equation (54),which
have the form u(x + at, y). They correspond to the solutions of the
Bussinesque equation. The simple substitution ( [3] , p.301) per-
mits to obtain the more generaly solutions of the KP equation,which
have "knoidal"™ wave type u(x+a,t, y + byt).

The gubsgtitution of z=h_2(c) into (54) (cy=0) leads to the Hamilto-
nian equation,

Lk 2 (he) (56)
de* ~ 2 h ’
-4 -2 -6
W= s Q(G,Q,)[,} ta —-g‘: h . where Q:gpc + P2
isg the elliptic function.

This system is completely integrable. It follows from (55) that (56)
admis the representation:

Faw =L L, 1], (57)

Consequently, the determinant det (/Mti - JX; (5C,)>= Ré;g)> does not
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depend on 2 and is the integral of the equation,

R(pd) =t P2 - we,c.) =0 (58)

The integral o (c,c,) is equal to
of

ol =Rk Del, - ol Y g ( / o, /
e((‘:)C<>>="~:?.u: <f3:ez 20({1)* ;f'__d'f 93({1)‘ 2,“;)" z :f_:(’_?(,}i) T P ()@)
The equation (54) depends on ¢., as & parameter. £ R

The set of the stationary solufions of the equation (54) for all

c, is isomorphic to the gpace of Tiurin parameters.

The variety of the solution, corresponding to the fixed value of
integral o (c,c.)=Cons? ig igsomorphic to three-dimensional Jacoby
variety J(R) of the algebraic curve R. This curve is determined by
the equation (58) and is two-sheet covering of the initial ellip-
tic curve/ . The intersection of the varieties, corresponding to
o = conat, ¢ = const is isomorphic to the so-called "Prim"
variety - the 8dd part of the Jacoby variety.
Consequently, the modular space of the framed holomorphic rank-2
bundles over the elliptic curve is gtratified into the two-dimen-
gsional Abelian Prim-varieties, corresponding to the coverings of
the elliptic curve,

Conclugion, The knoidal waves of the KP equation, which have
rank-2 and genus 1, can be represented in termg of theta-function
of two variable. They do not coincide with the solutions of KP
equation of the genus two and rank 1, which also have the represen-
tation in terms of @-functions of two variables,

The above-mentioned statements follow directly from the results of
the appendix,

Now we shall obtain the exact expression for the operator IL,,
which is included into the rank 2 commutative pair [L4, Lgl™ = o

It follows from the results of [11] (§3) that the commutative
pair is uniquely determined from the equations (43), (44), where
u(x) is an arbitrary function. It is not necessary to.solve these
equations. If the function c(x) is chogen as the arbitrary func-
tional parsmeter, then the expression (51) for y. o, , u

L L]

ermits to obtain all the rank 2 commutative pairs, corresponding
%o the elliptic curve.

Each function c(x) determines according to (41,51), the logarith-
mic derivative of VY :

Yyt () (j }\ | (59)

Y
Here Y. ( ﬁpﬂ‘vL, and +. are the elgenfunctions of the
operator L,: «

Ly ¥e(x,2) =P welx,1) (60)

The equation (59) means that .- o ¥e * Naa VQ/
The formulae for higher derivatives may be obtained from this ex-
pression. For example, '
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V= Lot fznf Xzz o (Kt S )

These formulae express, J__ - in the form of the linear com-
bination of 7/, and y, 'hose coefficients are the polynominals
on Jrli’e%}l and their derivatives.

Consgequently, for any operator

l'
L= G+ ) 4 oo ) s e ()

we can represent L, o in the form of €. (x, A) Yoot (rk)<%
The functions @ are meromorphic functions of )
linearly depend on vi;e. The functions can be found from the
following conditions an the expansions ﬁf £ and ¢ in the
neigbourhood of X=0 t 2

8, (x\) = 2P0 ()
{z(x7>‘> = O(l>

Finaly, the following expression for L4 will be obtained.

Lgm [y [PGe,)-Pleve] % - Plere)-Plere)),

L =-2%;z rulx).

Vi. The zero curvature equations with algebraical "spectral®
parameter,

It was shown, that for KP equation the construction of the genus
1 and rank 2 "finitegap" solutions leads to the integrable sys-
tem. This system has the "zero curvature" representation with
operators, which algebraically depend on the auxiliary "“spectral
parameter" - the point of elliptic curve/ .

The general representation of such type ,

w —-Vx hy [(L’V] =

o,
t 3 (62)

means that the following equations are compatible

(2 -w(=t,P) ¥(=tP)=0, 5
(—}{?‘{ ’V<°°’{’P>>f\f/(°"£f>=o, (64)

where P is the point of the algebraic genus g curve " with
fixed points Pys e Pm

Let the matrix functions u(x,t,P) and v(x,t,P) be determined, as
in §,4 by their singularities at the points Ps and the values

u°= u(x,t,Po), Vo= v X,t,Po).

The singularities w and v at the points Ps are the matrix
functions:

L
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u,s(ac,f, k)= ?;5 Ug; (’I,{)Ki Vs (DC,ZL’K)= ‘% VSL.(:c,é)leL

In case of the genus g=0 surface the functions u and v are the
rational functions. The functions have to satiasfy the equation
(62) for each point P; but in this case these equations are equi-
valent to the finite system of the equations, The latter means
that the function w=u,-v_+ [u,v] has no singularities at the
points P1’....’Pm and"th¥ value w(x,t,Po) is equal to zero.

If the genus g of surface ' is greater then g3» 1, then the func-
tions u and v have the singularities in the points y,,... |, J/Je
except for P, ... P_. For these points there are vectors « “for
which the coAditién (28) and the equations (29), (30) are ful-
filled,

However, the equation (62) is equivalent to the finite system of
the equations, which are asgociated with points P1’....,Pm.
Statement, The systems (63) and (64) are compatible iff

u’ot-vo’x.'.[u'o»vo]:o (65)

2

wy =V + Lu,v] = 000 P-P, . (668

The latter equations mean that the function uy - v, + [u,v] has not
any singularities in the points P1’.... Ppe ;

The number of the matrix equations (65): (66) equals to M4+N+1,
where M=Z mg - N=2 kg - The number of the functions deter-

mining u and v 1is equal to MyN42.
This system is underdeterminate: the gauge transformation

-4

R P R b A
v — —bbj~j'!'-+<?vg'i

with arbitrary invertible matrix g(x,t) transfers the solutions
(65), (66) to the solutions of the same equations,

The sketch of the proof. Let us consider the function w=u,-V +
+ ,V]. 1t follows from the equations (29) that the functién ~ w
has not the poles of the second degree in the points J/‘ ,_,,7{}/‘?5
In the neighbourhood of the point (}/: /5 (=, {) we haves

W = b—?_—;; + u s u."-(k-(r) + 0((“‘)’)2) ,
Yoow vt e viley) + 0 (k).

A=
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From the equations (30) we deduce for matrix elements wa.b

ol 4
mfs W= Y USJ,S\X/

This means that w hag the same type as the functions u and
v. Consequently, the function wis unlquely determined by the
singularities at the points coe end by the value
wi{x,t,P o) Accordlng to (65), ¢66)? w@ obtain:

W=u, -ve+luyv]l=0, (67)

To complete the proof of the statement it is enough to prove that
the equations (29), (30) are compatible,

It follows from (67) that
SPut - S/o\/x = 0 < yscf :J/tae .

Let ug introduce the vector-row {5: (P1 ’FBJ which satis-
fies the equations '
1
~l£> w (68)
(69)

_/3 \/L'
The compatibillty of this system is equlvalent to the compatibili.

ty of the equations (30) and d, = e /38 . The compatibili.
ty of (68), (69) means, that

1 1 i 1 _
F(“t“vx‘*[“,\’D*O. (70)
The zero degree term of the Loran expansion for W in the neigh-
bourhood of Y = )’s (m’£> is equal to
i 1 4 2 2 _
(Wt v} Tutv]) « L vel elw ] =0 (71)

Consequently ,the (70) is equivalent to
B (Ive,ut] +[v? u,°]> =0 (72)
This relation does not contain the derivatives on x and +t .

We shall use the following trick, It is easy to construct the
Baker-Akhiezer function Y (x,%,P), such thats

T(xote,P)=wlx, 4, P), a- ¥ ¥
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Ve A P) =v(x L P), V=Y, Y

For this function the equations (68), (69) are fulfilled for its
Tiurin paremeters . Congequently we have that

f(rvsa] «[e2,a°1) -0
This relation coincides with (72) at X=X, and t=t°.

Appendix

Algebraic ensgembles of the commutative flows.

The A - 'representation for KAV equation and for its higher analo-
gues was first found in the work [22]. This is the representation
of the whole family of these equations in the form

[’%Zc e’ (Z)‘) , :'EE - ud-(z,))l =0

where W, ({1,“4 ,)> are the polynominals of A (t=ty, x=t5)
In the general case of functions u;, retional or algebraic on 2
the in~variant definition of the aigebraic engemble of the opera-
tors may be done as follows.

This definition is analogous to the condition (2) in the theory of
KdV-type equations,

Let there be the set of the operators L;

Lc = %—5 —u,L-(Z,P> )

4

where t, P) are the meromorphic functions of P on the Riemannian
surface of the genus g, which have the same properties ag the
functions from the §{IV. For g=o0 the functions u¥ are the usual
rational functions on the Riemannian sphere with The fixed poles,

undependent on t .

Definition 1. The family of the operators Ly will be called the
"commutative ensemble", if for any 1,j the operators Lj, Lj com-
mutes

R’ DU
—t - —{ : o=
~E T ot +lug,wi] =0 (73)

Definition 2. The commutative ensemble is called algebraic if
there exigts the matrix function w(%t,P), which algebraically de-
pends on P and such that:

[%_‘E.- W, (‘Z,P),W<€,P>]:O (74)

L

The basic example of the algebraic ensemble ~ are the gtationarity
conditions of the whole engemble, with respect to one of the
variables



290 IM. Krichever and S.P. Novikov [/ Holomorphic bundles and nonlinear equations

du,
vl =? AT

In this case u,= W, In general, the assumption, that w is con-
nected with (U5 ..e¢. W;,...), i8 not necessary a priori. However,
i+t may be showfi’than’tlfils assumption is true,

The linear operators L; = %;: - Uy , which enter the algebraic
ensemble (if  they ha%‘e gomé Hermitian properties), are "finite-
gap" in the sense of the spectral theory of the operators. [22].
Becauge of thig, these operators and corresponding solutions of
the nonlinear equations are called the "finitegap®,

Any equation (73) with the indices i,j play the role of the "higher
KdV* with respect to one of them. A priori all these equations are
the partial differential equations. However, the algebraic ("fini-
tegap") conditions (74) lead to the reduce these equations to the
set of commuting ordinary differential equations referring to each
variable, .

Statement. If the operators Li commute withW , then each of them
commutes with the others [L.,L;]=0, i.e. the equations(73)follow
from the equations (74), If the number and degrees of the poles
of w are fixed, then the dimension of the space of the corres-
ponding matrices is finite. The equations (74) determine the com-
nutative deformations of this space, All equations (74) have the
common integrals. -

Consider the solution ‘y(f,P) of the equations:

(l —u.c.(f,ﬂ)\l/@,f)%o (75)

2t

such that 'H?(O,f3)= 1.
The equality: >

w(E PYUIP) - LI P)w(o,P

follows from (74).
Hence, the characteristic polynominal

RCU.,)()*= Ofbt(/kl- W(g:P)) =0 (77)

does not depend ont, Its coefficients are the integrals of (74),

Definition 3. The algebraic ensemble will be called "comglete",
e ows determined by (74), cover all the level manifolds of

the integrals (77).

In general position, the eligenvalues of W (o,P) are different for
almost all points P. Hence, the algebraic curve R which is deter-
mined by (77), is 1-fold cover of the initial curve [, Let us
consider for each point )Y of R the corresponding eigenvector of
W(o,P), If the first coordinate of this vector h, (f)= 1, then
the other coordinates are meromorphic functions on R. The véctor-
functions

"f'(z>]> = ?-E-L h, Q’) r%g (LZP> ,

(76)
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whefe‘qﬂ; are the i-th columns of the matrix ¥ (t,P), possess the
following analytical properties: ¢

1°.'¢(£,y)is meromorphic on R outside the points PL %[zi,.“,f,
which are the prototypes of the points Pi’ i=1,..., m,
The poles of Y do not depend on t, their number is equel to g+l-1,
where g is the genus of R,

2°. The eigenvalues u,g(-/:, P) et P- P; do not depend on t,
because characteristic polynominal w doss not depend on t,

i

Consgequently, in the neighbourhood of PY the coordinates of 70
have the form:

op (T1,4,4) (Z3.0) )

where ), are the constants and k-1= k'1(y) igs the local parameter
near the Py .

Thats why, yb(é ,)/§ is the scalar Baker-Akhiezer function and
is uniquely determined by the divisor of the poles y,.. , f3+¢ (.
According to the general rule this function may be represented in
terms of ¢ -functions., The function <y determines the matrix
by means of equality:

W (Z,P)y(;[,/) = p () ‘7‘(’5,(}’) s

where j-= (9’/4(” is the prototype of P on the curve A,

If we identify the matrices W and AW A'1, where A is the con-
stant diagonal matrix, then the factor-manifold of the levels of
the integrals is isomorphic to the torus - the Jacobian variety of
the surface R . The equations (74) determine the straight line on
this torus ( [181 , T §3 ).

In the theory of the KdV-type equations the higher analogus are the
complete algebralc ensemble, The following operators, used in
[23],024] for the theory of the chiral field, are enother example of
the operators' ensemble, These operators have the form:

[ = 2 A L(lz)
T A-a,

—

(78)

121’2, t1=t-x t2=t+xv

The exeamples of the algebralc ensembles with arbitrary numbers of
the operators, which have the form (78), were congidered by
Garnier [25] . The initial point of his investigations was the
Shlezinger theory of the deformations of the ordinary differential
equation, which preserve the monodromy group of the singular points,
The igrmal substitution 8 — ti intp (78) leads to Shlezinger
equations,

Garnier considered the equation (74) of the special forms

2 A = A,
[ D¢, Y-a, o LZ-L —RTQLJ”? (79)
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T A

h = b,

where VV F1h-a,

The ensemble (79) is not complete. The number n of the operator
is less than genus g of the curve R, which is determined by the

equations: n A _
Q)= det (ot - Z, T‘éyo

The equations (79) were used [25] for the construction 9f new
examples of integrable dinamical systems connected with Riemanian

surfaces. , n
5.7 5. ( Zi 2 +Q">J
20 =0 (T 300+ e0),

This system wag discovered in the work [25].

On the different invariant hyperplanes g; = gti?c this system
will reduces with the Newman [22? systefi of the oscillators,
restricted on the sphere Z 5? -{ and with the system of unhormo-
nic oscillators [27%, ¢
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