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I. In the theory of nonlinear equations of Korteveg -de Vries 
type, which can be represented in the 7.ax form 

- [ L  A] (1) 
0 ( .  

where ~ ~ ~ 

the most interesting families of exact solutions (multisoliton 
and finitegap) are specified by the following conditions: there 
exists operator B commuting with T at the time t=o 

_ ~ A/ 

= ; , ~ ,  (2) 
i, 0 

If it is so, then such operator B(~) exists at all times t. 

In case of ,,rank I" (see below), if, for example, the degrees of 
operators 7. and B are co-prime (and in case of matrix coefficients, 
if eigenvalues of higher coefficients of operators 7. and B are di- 
fferent), the "t~pical" solutions of equations (I), which satisfy 
the restriction (2), are periodic and quasiperiodic functions of 
x and t. They can be represented by the 0-functions of Riemann 
surfaces. Periodic operator 7. has some remarkable spectral proper- 
ties - its Bloch spectrum is finitegap . 

Rapidly decreasing multisolition solutions (corresponding to re- 
flectless potentials) and rational solutions of equations (I) are 
obtained from periodic solutions by means of different limiting 
processes (see surveys [I], [2], book [3]). 

7.et's recall the lemma by Burchnal and Chaundy ( [4], ). For 
any pair of commuting ordinary differential operators (2) there 
exists algebraic relation 

o, (3) 
where R(z,w) - is a polynominal with constant coefficients. 
~or the common eigenfunctions of the operators 7. and B 

(4) 
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the relation (3) is valid, 

R (),~)= o (3). 
/ 

This relation determines the algebraic curve /~. The pair ( A,}~)~,p){ 
satisfying (3) is point P of P . Common eigenfunction ~k (m, 
defined on the surface P . 

Definition. The multiplicity of the pair (~,~) eigen values of 
the operators L and B (i.e. i is the dimension of the space of 
solutions y of (4) for a fixed point ~ F ) is called the "rank" 
of the commuting pair of the operators L and B. 

The common eigenfunctions ~ of L and B determine the 1-dimensio- 
nal holomorphic bundle over the surface P . 

All the results concerning the equations (2) and exact solutions of 
the KdV-type equations, obtained before 1978, refer to the case of 
rank I. 

It is noteworthy, that in the theory of "one-dimenslonal" systems 
of KdV type (I), condition (2) includes the operator i from the 
Lax-pair. 

For some physicaly important "two-dimensional" systems of the KdV 
type the analog of the algebraic representation (I) was found in 
the papers [5] , [6] , In this representation operator L has the 
form of: L=)-_ 

J.] -- 
- '~ t  

where M A are ordinary linear differential operators related 
to x, with coefficients depending on (x,y,t). 

To obtain the exact solutions of the "two-dimensional" systems (5) 
the authors have introduced the following constraints including 
the auxiliary pair of the operators L I and ~ : 

(6) 

[ L, L , ] - - o  • L ~ 

Here L 1 and L~ are o rd inary  l i n e a r  d i f f e r e n t i a l  opera tor  r e l a ted  
to  x. Unl ik~ the theory  of the onedimensional systems (1) the 
degrees of operators  L 1 ~ d  ~ are a r b i t r a r y  t 
This class of solutions in case of the commuting pair L I and Io of 
rank I was found in work ~7~ ~d in case of the commutlng pai~ of 
any rank in the work [8 ]  9] The solutions of rank i > 1 de- 
pend on the arbitrary functions of one variable. 

The most significant example of the systems (5) is a well-known 
two-dimensional KdV equation (or KP equation), 
where ~ 

~_---~ ~, - ~ ( ~ , y ,  ~ )  , A_- ~-~ ~ - ~-- U ~ _ ~ ~  ~ ~/ (~ ~, ~) 
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Iwj ! y Uu 

or 

i 
The solutions of rank I (i.e. pair of L I and ~ has rank I) have 
the form of: 

according to [ 1 0 ] ,  a n d  where ~ ( ~  ,--.R;e~)~ - i s  t h e  theta-f~uc-  
tion by Riemann, corresponding to the surface F (4). 

In case of I > I even the investigations of the equations of com- 
mutativity ILl, Io]--0 is very complicated. The solution of the 
problem of cl~ssiTying such pair LI, L 9 of any rank I > 1 was 
found iu the work [11] . The determlnat~on of the coefficients of 
these operators is reduced to a certain Rie-~nn problem. The met- 
hod, which permits to eliminate the Rieman's problem and to obtain 
exact formula for coefficients of the operators L I and L 2 of rank 
1 "1 has been developed in work [9], [12]. 

II. Mul~ipoints vector analog of the Baker-Akhi. ezer_function. 

Let's consider the set of the matrix (Ixl) functions. ~s C~,~) 
s = I,... , m, x = (x I, ... , Xn), such that ~s(O;k)=1 and ' 
the matrixes: 

are polynomial on k. 

~d ~,K) must satisfy the relations: Matrix functions • 

Any eet of matrixes polynomial of k A~, satisfying(IO), uniquely 
determine the functions l~t8 ~ ~, ~). 

Let (~ ~. ~, ~s )- is any nonsingular Riemann surface of 
the genu~ g'with fixed points PI, "'" , P~ and local parameters 
z s = k s- (P) in their neighbourhood. 

Consider now the unordered set of points ( l ) = ( ~  ' " ' "  Y/ ) and 
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set ( ~ ) o f  the complex (1-1) - vectors ~ : . :  ( ~ , t ' '  , ~ , £ - 1 ) .  

Remark~ The set (~,~) is called "Tiurin parameters" for the 
stable (in the Mamford's sense) 1-dimensional holomorphic vector 
bundle of the lg degree over ~ with fixed framing, i.e. with a 
fixed set of holomorphic sections ~ .... , ~ ( [13] ). 
The points ~ ..... ~ are the points of ~he linear dependence of 
the sections ~. a~d d~ ,. are coefficients of linear depen- 
dence (~ ~_£ '~ 

Let's set up the problem: to find vector-function y 1 ( ~ , P )  which 
is meromorphic on F except for the points PI' "'" ' Pm' and 
such that: 

• I; a)the poles of ~.~): (~" (thJc~ordinates" @ lie in the of ~(~,~))~p°ints 
~, for the residues of ~j(r , P ) 
the following relations ass true 

• E') =- " 7 e  
(12) 

~,~ and y~ do not depend on x. 

2 ° . In the small neighbourhood of the point Ps the vector-func- 
tion ~ (~, ~ ) must have the representation: 

In case of 1=I the assimptotic functions~ are the exponents; 
in this case V is n-point scalar analog or the classical Baker- 
Akhiezer function ( [10] ). 

Following the scheme of the work [11] , which is based on the met- 
hods of [1~, ~51 , one can obtain the general statement. 

Theorem t The dimension of the linear space of the functions, which 
satisfy above-mentioned restrictions with fixed x, is equal to 1. 
For the unique determination of ~ it is enough to fix its value 
at any point. The construction of~ is equivalent to the system 
of the linear singular integral equations on the small circles - 
the points PI' '''' Pm neighbourhoods' boundaries. 

The integral equations are solved separately for each x. The rela- 
tions (12) and the value ~( x, Pc ) gives us unique solution of 
the singular integral equations. 

The matrix ~(~,~)whose rows are linearly independent solutions of 
the problem (12-13), is called the matrix function of the Baker- 
Akhiezer type. It follows that ~(~, P) is determined uniquely up 
to the multiplying by the invertible matrix function 

~(~ ~)= ~(~)V(~,~) (14) 
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Except for the Turin parameters the construction of ~ depends on 
the of matrixes V s. 

Example I. KP- Equation; commuting ordinary operators. (see [8], 
~9] ) .  

Let's consider one-point vector-function ~/(x,y,t,P~ with essen- 
tial singular point P~ on the Riemanulan surface I of the genus 
g. It is determSned by the Tiurin's parameters and the assimptotic 
matrix afo(X,y,~ , Pc ). In case 1=I it is the classical Gordon- 

Klebsk- Baker's function [ 16 ] .  
a) We should choose th# functions Ai(x,y,t,k), i=1,2,3, which 

determine the function ~o(X,y,t,P) according to (9), in case 
1=2, in the form (o ,) (: o) 

AI= , A 2 = 
k-~- 0 I~ ) 

, K . + "  E 

A 3 = 2 

2 2 4 , u'~e ' 

where u=u(x,y,t). 4 

Prom the compatibility equations (10) it follows that u=u(x,t) 
doesn't depend on y and satisfies the KdV equation 

4 u~--  6uu x -  Uxx x 

b) Case 1=3. Let's choose A i in the form: 

(o o ) 
A1 -_ 0 4 A~ 

-W -~ 0 

I¢, 0 0 / 

0 k 0 . 
0 0 

I u, 0 ,t 1 LL 
~ . _ ~ ÷  u.~ - ~ 0 

2, 

Prom (10) it follows, that u=u(x,y) doesn't depend on t 
the solution of the Bussinesque equation 

and is 
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c) In case I > 3 the matrixes Ai(x,Yit) should be chosen in the 
form 

A 1 = 

/o oo / 
. . . . .  • . -  0 "L 

o,... p , o  +~ ) ~ . . . .  

0 " " 

L i °  > "U"£- Z '0 0 °° 1 
O',O 

0 i ' 

o o /  

A 

A2 = ~ + ~z A3= ~ +gt 

where a 2 and a 3 are the (lxl) matrix, independent of k, whose 

elements are the differential polynominals of Uo,... , Ul, 2. 

Important statement I In all before-mentioned cases the vector- 
function - of the ~akeroAkhiezer type ~ , which has in the neigh- 
bourhood of the point Po the representation: 

~.~ , j  ~ , e )=(~  ° )~<~,~,~)~-~).eo~,~,~<)> <~, 

} :~o .  o) } (~<. ~{.<J) 
Satisfies to the pair of the scalar linear equations 

z ~3 
+ 

(16) 

The coefficients U 
are the formulas: 

and t~/ don't depend on P. For U there 

_ ~C2) , t , . 3 ,  U = - g j , , ~  

Conclusion. The function U(x,y,t) is the solution of the KP 
equation 

Consequently the class of solutions of the KP equation, which de- 
pend on the following data ~F, Fo, ~,~ , ~o ~-z~ 
is obtained. In case 1=2 the function u_(x,t) is the solution of 
the usual KdV equation, 
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The vector-function ~(x,o,o,P)=~(x,P), which depends on one 
variable x only, was introduced in the work [11J . The 1 coordina- 
tes of this function are the set of common eigenfunctions of the 
commuting pair of ordinary scalar differential operators: 

p)  : 

y 
where ~,yu. are arbitrary algebraic functions on the curve P , 
which have only one pole in the point P~. If the degrees of the 
poles ~ and ~ are°m and n, then the ~egrees of the operators L I 
and L 9 are ml and nl. That means, that the commutative ring of th@ 
opera?ors of the rank i is determined by the surface ~ , the 
p~int P^, with the local parameter, the Tiurin parameters 

v. ~ v  ~ ~ ~ ~ ) and the arbitrary functions co. ~. 
d " " "  d ~ '  i ~ . - .  , ~ " o-~ 

Each operator of this ring is determined by the function ~ (P) with 
only one pole in the point P_. Exact formulas for the coefficients 
of these operators will be Uobtained below in some special cases. 
All the relations (6) follow from the equations (16), (17). 

III. Example 2. The two-dimensional SchrSdin~er operator; 
two-point Baker-Akhiezer t#pe function. ~ith 
separate'yarlables. 

The natural generalization of the Lax type equations (I) in case 
of the operators L, which essentially depend on a few space variab- 
les, is not trivial. Let's note, that the opera~rs, corresponding 
to the KP type equations, include the operator ~ only in the 
first degree. 

It is known, that the nontrivial operator P, whose commutator with 
the operator L=A+u , ~, L]~is the operator of multiplication by 
the function doesn't exist for the typical potentials u(x), 
x=(x1'''" ' L~' n >I. This means, that nontrivial evolutional sys- 
tems of the form, preserving the full spectrum of L , do not 
exist. The eigenvalues of the operator L in the case n >I have the 
infinite degree of the degeneration. It is enough for the recon- 
struction of the operator L to use the "inverse problem data,' about 
the eigenfunctors of one energy level. 

The equations of the form 

= [ A + B L c,8  

where B is the differential operator were introduced in [17 ] and 
stimulated our work [18~ . 

We shall introduce a certain class of two-dimentional "funite-gap" 
SchrSdinger operators; the inverse problem of reconstructing the 
o~erators from the data on one energy level was solved in the work 

8]. 
Let's review the main ideas, on the formulation of the inverse 
problem for the operator 



274 I.M. Krichever and S.P. Novikov I Holomorphic bundles and nonlinear equations 

Let the potential u(x,y) and the vector-potential A1(x,y), A2(x,y ) 

be the periodic functions of x and y with the periods TI, T 2. 

Consider the equation H~ = E ~/. It is natural to introduce the 
Bloch-functions as the eigenfhn~tions of monodromy operators 

"The numbers Pl and pp are called the "quasi-momenta". The eigen- 
values of the ~onodro~y operators TI, T 2 and SchrSdinger operator , 
H form the two-dimentional manifold M ~ in the 3- space _(~•~ E) 
The points of this submanifold are the triples of ~i, ~, ~ • " 
such that there exist~the solution of equation 

The operator H would be calle~ the operator with a good analytical 
properties, if the manifold3M~ , is the complete two-~imentional 
analytical submanifold in C . The intersection of M~ with hyper- 
plane E=E o is the analytical surface R (E o) , which is called "the 
complex Fermi-surface". 

The operator H is called "finite-gap", if the genus of this surface 
R(E o) is finite for some E o. Let's clarify the asymptotic behaviour 
of the Bloch functions at the c~mple~ values of p~ and Po, 
E(ps, p~)=E~, I pLI-~ ~o , p~ + p~ -- O (1). TB~s mean~, that 
the'surface ~ R is compactified b# two ~ "infinite" points PI and P2' 
and the Bloch function has the representation: 

s "~" £ 

-I -I 
where k i and K~ are the local parameters in the neighbourhoods 
of the points. ~ PI and P,. Outside these points PI, Po, the func- 
tion ~(~, ~,~) ~ p~ ~ , ~ is meromorphic and ha~ g ~ poles 
~,/~ ~ The problem of the reconstruction of the operator H 
~rom the C~rve R with two fixed points P~, P~ and the set of v. Y~ 
was solved in [18~ . , ~ ~' ~0~ 

Let's pay attention to the important fact: the asymptotics of ~_ 
near the points PI and Po depend on different variables z and z. 
The functions of the "Baker-Akhiezer type with such properties 
will be called "two-point" functions with separate variables',. 

For the operators H of the rank I the following formulae are valid: 
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.+,. ++ + 
e( z+ ~ +  + +' 

The vectors U+, V+ are independent of z, ~ and are determined 
only by the p~int~ PI, P~. The vector W is determined by the set 
#~, . . .  , y~ . In the ~ive~ gauge the operator H is not Hermitiau. 
The conditions on the parameters of our construction iR, P4, P~, . 
~, ,~J which lead to Hermltian operators H were found ~ ~ ~1~ 

The oondltion of the finiteness of genus g <oo for the operator 
H is not resistant to variation of energy level. This means that, 
if for one value E=E o the genus of "complex Ferml-surface" is 
finite ~ <=o then it becomes infinite for values E close to E~ 

The natural generalization of the Q-functions is dete~ained some- 
times for the c~rve ef the infinite genus [20]. Por complete con- 
struction of the theory of the two-dimensional Schr~dinger opera- 
tor the generalization of our construction for the ease of the in- 
finite genus is therefore necessary. Primarily it is necessary to 
find the assimptotics and the disposition of the poles of the 
Bloch functions on the surface of the quasi-momenta at the fixed 
energy level. Let's note that corresponding assimptotics must be 
considered in the unphysical region of the complex values of the 
quasi-momenta. 

The following algebraic requirements for the two-dimensional 
Schrddinger operators are analogous to the equatiqns.(2), specify- 
ing the finitegap solution of Lax-type equations [18J I 

There exist the linear operators L I and L2, such that the commuta- 
tors have the form: 

where B I, B 2, B 3 are the differential operators. 

The eigenvalues of the operators: 

H ~, = o ; L~ ~, : ~ 7 ; L~ V : Y '? '  (2o) 
satisfy to the algebraic relation 

Here Q(~,~) is the polynominal. 

The important concept of the "rank" for algebra of the operators 
(19) is introduced: the number of the linearly independent solu- 
tions of the equations (20) would be called the rank of the al- 
gebra (19). For the algebra of the rank I the eigenfunctions 
form the l~dlmensional holomorphic bundle over the curve /~ , which 
is determined by the equation(21). 
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The before-mentioned construction of the operators H has rank 1. 

It would be of interest to analyse the relation between the concept 
of the rank of the operator and the concept of "typical" position 
of the operator H with periodic coefficients. For the finitegap 
operators such relation is as follows. At the fixed degrees of the 
operators L~ and L 9 the number of the parameters, which determine 
the algebraic relation (21) for the rank-1 algebras is greater 
than the number of these parameters for the 1 > I rank operators, 
However, except for these parameters the algebra of the rank 1 is 
determined by the 2(1-I) arbitrary functions of one variable. 
That's why in general the rank 1 • I algebras isn't the degenera- 
tion of the rank I algebras. 

Let's present the construction of the finitegap operators H of the 
rank 1. 

Let l~(z,k) and l~2(z,k) be the matrix functions, determining the 
equati6ns 

where 

A 
t. = 

/0 ,L O . .  0 
o O, '£ o 

.) 

O 
3 

'o 
) A2"~ 

O , O . , . .  , O ,  £ 

k:t-Ro,iZ~ ~ '  > q'~.-2,~O 

i 0 0 V~ 
o 

O o 
o ~-~ 
£ O 

(23 )  

~i(o,k)=1 and ui=ui(z) , vi=vi(~) are arbitrary functions. 

Consider the vector-function of the Baker-Akhiezer type ~(z,~,P) 
on the Rie~nnian surface F of the genus g, corresponding to the 
Tiurin parameters (~,~), which has the following representation 
in the neighbourhoods of the two fixed points PI and P2" 

(24) 

L 
The function ~ is normalized by the condition, ~ = ~, o o) 
Here ~ ~ are vectors ~ _ Q~ct) ~ce)~ 7- 7~(~ o ~ce)) 'and 

k; (P) are the local parameters in the neighbourhoods ~Spj. 

Statement. The vector-function ~ of the Baker-Akhiezer type 
statisfies the equation H~=o, where 
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is two-dimensional Shr~dinger operator with scalar coefficients. 

(26) re) , g )  . 

Only Hermitian operators H may have the physical sense. 
Is it was mentioned above 6 for the rank I operators H the restric- 
tions on the parameters,, corresponding to the Hermitian operators, 
were found in the work L19] • Following the idea of this work we 
shall find here the analogous conditions in the case 1=2. 

Let us consider the curves ~ with antiholomorphic involutions : 
~: P-~ r" , which transpose the fixed points ~-(PI)=P9 and the local 
parameters, ~(kl)=-~2. For any two points th@re ~xists the 
Abelian differenti~l of the third kind with the simple poles in 
these points and with the residues ±I, correspondingly. In our 
case, for points PI' P2 we shall consider the odd differential of 
the third kind cO~p~= - ~(o-(P)) . The difference between 
any two differentials of such type is the odd holomorphic differen- 
tial. This means, that the real dimension of the space of the odd 
differentials of the third kind equals g. The set of the zeroes 
( ~ ,  ,X~ ) of the, ~(P) is invariant with respect to the 
anti-inv'o~u~tio n ~, ~(~) = ~o-~L~ , where G(i) is the corres- 
ponding permutation of the indices. 

Example. Let ~ be the hyperelliptic curve, given in C 2 by the 
e quation 2# 

&_-£ 
The set of the complex numbers ~ ~ satisfies the condi- 
tions ~ = Iz~-£ , D ~= ~ ' ' ~# 
The antiholomorp~ic involution ~ oa P , transposing points 
P1=o and P2 = oo has the forml _ -~ *~) _~) 

The Abelian differentials with their poles in the points PI' P2 
have the form: ~. 

= ),-~'d~, + Z .  c - , 1 ' :  - "  

If the constants c~ satisfy the conditions ci= -~g-l-i' the diffe- 
rential az is odd. ~ 
The zeroes ~, ,~2~ of a~ are the zeroes of the function 
l'~÷Zc ~M "~ on the cGrve E. 

(J 
In the case of rank 1=2 the Tiurin_parameters are the sets of 
and the complex numbers ~i. Let ~g= _~) 

Besides these parameters the vector-function ~ (~, ~, P) is 
determined by the two functions uo(z) and Vo(Z ) (23). Let 
Uo(Z)=- ~(~). 
Statement, The above-mentioned restrictions on the parameters of 
construction correspond to the Hermitian operators H. 

Sketch of the proof~ let us consider the scalar function 
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= Y C a , < P  ) 
(the cross denotes the Uermitian conjugation) 

In case 1=2 and u~(z)=-v~(~), it follows from (23) that 
V1(z ,k )~2 + (~,- lO=i .  " 
This means that kQ (z,~,P) is the meromorphic f.unction on the whole 
curve F. It is eas'y to check that, if ~-~ ~- ~(L3 , the 
poles ~ in the points ~c are simple. The differential ~(x.~,~)~3 
has the only two simple poles in the points P1 and P,, because in 
the poles ~ the ~r equals zero. The sum of the residues of the dif- 
ferential "~a£ equals z~ro. 
Conseque~tl~ ~(z,~,P ~) = ~(z,z,P-). These values are equal to 
~(z,~,P*)= ~'~ , ha (z,~,P')= ~o~ , by definition. From (26) 

it follows, that ~(z,'~) is real and the operator H is Hermitiau. 

IV. Th e deformations of the h01omorphic vector bundles. 

In general the problem of the reconstruction of the vecwor analog 
of the Baker-Akhiezer function ~Vis reduced to the Riemaun problem, 
which is equivalent to the syst@m of the singular integral equa- 
tions. But for the calculation of the linear operator and correspond 
ing solutions of the nonlinear equation the Rieman problem can be 
sometimes eliminated. This possibility is based on the investiga- 
tion of the equations on the Tiurin parameters (#.~). 

Let. [~ be a nonsingular algebraic curve @f the genus g with fixed 
points PI, "'', P~ and local parameters k'~(P) in their neighbour- 

hoods. ~ The logarithmic derivatives J~ C~P) of the 
Baker-Akhiezer function y(~,P) will be considered. 

The matrix function ~ (~ P) was determined earlier according to 
the Tiurin parameters and the "assimptotic functions" ~s(X,k) 
We have by definition: 

0 
.-.0~ c (27) 

~he functions ~f l [g(~ ,O)are  w' eromorphic functions on the curve r, 
which have the poles in the points PI' "'" , P~" Besides p~, the 
fanctions~(x, P) have Ig simple poles in the ~ points ~ k , f f . .  , ~8£ 
The rank of the matrix-residues ~, at the points ~/s equals I. 

Consequently, there is (1-I)- vector ~=(~s ~6s,l_ I) in each 
points ~s s~ch that for matrix elements I "" ' ' the follow- 
ing relations are valid: 

The parameters ~(~ )2 (~) satisfy the equations, 

where YL o 

(30) 

and / { 



LM. Krichever and S.P. Novikov / Holomorphic bundles and nonlinear equations 279 

are coefficients of the expansions ~l (2 .P) in the neigh- 
bourhood of the poles ~s ( ~ ) (%he index S is omitted). 

Let u~o(x, k) be the matrices, which are polynominal on k and 
such, "'that all differences 

.& e) - (P) )  (32) 

are regular functions in the neighbourhood of Ps" 

Statement, For arbitrar~ functions ui.(x , k), (polynominal on k), 
and arbitrary X(~) , ~ (~) there ~exists matrix function 
j~ (~, F) , satisfying the conditions (23), (32). This function is 
unmquely determined by its value at some point PoJi(x, Pc)= 
= U i , o ( X ) .  
The ambiquity of the determination of 4X'," is connected with the 
ambiguity of the determination of ~(x, P) which is determined 
up to the multiplying by the invertible matrix function G(x). 

The proof of this statement directly follows from the Riemann-Roh 
theorem for the dimension of the functions' space which have sim- 
ple poles at the points ~s and ni-fold poles at the points Pi" 

This dimension equals the number of inhomogeneous linear equations, 
which are equivalent to the conditions (23), (32) and the condi- 

Let the function ~i(x, P) be determined by the parameters 

Statement. The solution of the equations (27), ~(o, P)=I, is 
the Baker-Akhiezer type function iff the equations (29,30) are 
valid. 
For brevity, the index i will be omitted, i.e. it will be assum- 
ed that "~ depends on one parameter x. 

Pirst of all we shall prove that the equations (29), (30) are 
equivalent to the absence of the singularity ~ at the points 
~(x) (i.e. T is holomorphic function in these points). 

Let ~(x,P) be holomorph$~c in ~= ~s (~) , then for each column 
~ i  ~ of t~e matrix ""f' the equality. 

t=t , 6 (33)  
is valid (here i is the index in the column) 

This equality means that the coefficient a% (k-[)-I on the left 
of (27) is equal to zero. Except for this 

By deri~va%ion of the equality (33) we shall obtain, that 
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From (33) and (34) it follows: 

(35) 

where 

k ' W -  

I 0 , 
0 , 

-£ 

J= 

o 
o 

3 " " " 

3 

0 £ 

o 
; J 

0 

o o 

0 4. o 

O 4. 0 . . . .  0.~ O~ 0 
. . - ~  - o r  L 

The direct consequence of the equations (29), (30) is the absence 
of the singularity ~ at the point k=~ . That means that the 
solution of the equation 

has no singularity. Then the function %~ = g-1 ~ , satisfying the 
equation (27), is nonsingular at k= ~ too. 

Now the form of n~ in the neighbourhood of Ps will be found. Let 
us formulate the following Riemann problems to find the matrix 
function ~(x, k), which is holomorphic on k except for only one 
point k= c~ ~ and in the neighbourhood: ~ • 

~ z ~ ( ~ . ~ )  = I~(.~,~-)~(~,~) ~ R , = ~ . . o ~ , . ( ~ : ) k :  -~ . ( 3 6 )  

The equality (29) is the simple consequence of the equality bet- 
ween the logarithmic derivative of the det-~rminant ~ and the 
trace of ~(x,P). The coefficient at Vain the equalities (33) and 
(35) must be proportional, thats is why the equation (30) is 
valid. 

Let us prove the inverse part of theorem. We shall consider the 
mat~x J which is gauge equivalent to ~c 

= + 
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This problem has only one solution, such that l~s(X,O)=1. 

Lemma. The logarithmic derivative of ~s is the polynominal func- 

It is v a l i d ,  because ( ~ ~s) qJ~s -1 has no singularities on 
k except k= co and has the ns-fold pole in the infinity k= ~o 

From (36) it follows the expression (13) for ~(x,P) in the neigh- 
bourhoods of the points Ps' i.e. "~ is the Baker-Akhiezer type 
function. 

V. Finite~ap KP equation solutions of the rank 2 and.~enus I. 

In this paragraph the equations on the Tiurin parameters, corres- 
ponding to the "finite-gap" KP equation solutions of the rank 2 
genus I, will be considered. These solutions correspond to the com- 
mutative pair of the operators LA, L~, whose degrees are equal to 
4 and 6. In the nondegenerate ca~e s~ch operators satisfy the rela- 
tions: 

Z 3 

z~ 

and are determined by the algebraic curve ~(the constants gl, g2 ), 
the Tiurin parameters (~,d) on the elliptlc curve C a~ud ode 
arbitrary function u^(x) ~ ( [11J ). The elliptic curve / is deter- 
mined by the equatio~ (37). 

In this case the Tiurln parameters are the points ~L ~ and com- 
plex numbers ~= ~ , ~z~ = ~z corresponding to the~e points. 
According to the example la ~I the solution of the KP equation, 
corresponding to the pair L A and L~, is determined by the set ( 
and by the solution of the KdV equation Uo(X , t). # -  

The logarithmic derivative of matrix analog of the Baker-Akhlezer 
function ~ (x,y,t,P), has the assimptotic form: 

where ~ = ~'£ is the parameter on the elliptic curve. 

The form of the singularity ~at ~ =O and parameter (~,~) deter- 
mine the function %_ . Any ell_iptic function may be re~resented as 
the sum of the ~-functions 421] . Let us find~i in the form. 

where A,B,C~D are matrices independent of ~ . The Weierstrass 
- function~ is determined -~bY the. tseries -z ' 

and the relation ~)= _ ~ E ~ )  i s  v a l i d .  

The ~-function is not two-periodlc in contrast to ~O~ func- 
tion. The function is an elliptic function iff the equality: 

A + B + c = o (39) 
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is valid. The expansion (38) of f~ means that 
According to the definition,the residues J~ 
and ~ have the rank I, 

, , ~', d 4 

Therefore , ( o o )  , (o 
A dz-o( ~ d~ i o ~- ,x z o( z 

Free term in the expansion (38) equals (_°u.. £ ~ 
O ° 

(Recal,l that C (-)~) =- - ~ C~) ) 
The following expression has been finally obtained: 

c--( I / )  
at the points "~ 

o) 
Z . 

Consequently, 

(40) 

0 .,, 
where ~0 is determined from the equality (40). 

According to (29), 

(41) 

.~/o "- # z  ~ 5 =  4. (42) 

The matrix -- t'~-~'t~ which according to (30), determine the dynamics 
of 4~ is equal 

4. 0 O) 

Consequently, 

,Z~= = 4~. -* u - P ( 4 3 )  

Similarly, 

Here 
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The expansions of the logarithmic derivatives ~/~ ~ - "  and ~¢~ ~-J 
in the neighbourhood of ~--0 have the form~ 

= ~r ~ ÷0 ~=~-~ 
' ( 4 5 )  

= -- + 0 (46 )  ~ ~ . . 
- ~ - -  ~ L ~  Z , - ~ 0 ~  

The expansions (45), (46) uniquely determine the functions ~ and 
~5 and their representations in form of t h e  ~ - f u n c t i o n s  " sum 
as well asst. 
The equations on the Tiurin parameters will be as follows~ 

Let us define ~I = y+c(x,t), ~2 = y-c(x,t)+c O Co=COnst , 

~ l - ~ 2 = z ( x , t ) ,  d1+~2= w ( x , y , t ) ,  9~=~ b (y,C,Co). 

The compa t ib i l i t y  condit ions of the equations (43,44,47-49) leads 
to the fo l l ow ing :  

• ( - , t  
¢ - 

u? ~ ' 

The equations on the Tiurin parameters in new variable have the 
form 

= Z -t  ( ~  ¢= ; z = = z w -  2 ~  ,e, Co) 

) ( 5 ~ )  
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The substitution of the expression W= ~ R ~  + ~ ~ E -i into the 
equation for ~/z yields: 

3C~x~e £ +  

z/c + Q 2 / - 

:c C ~  

2 

(52) 

2 ( ~  2) ~_ exx~:(53) -t-C _~D . . . . .  + 2 q~c:e~o ~: -~ c:~ " 

( ) a ~ ~ ~ 67 e ~  + ( 5 4 )  

Statement. Every solution c(x,t) of the equation (54) determine, 
according to (53), the solution of KP equation. This solution 
u(x,y,t) is the periodic function of y. It has not any singularity 
and is the boundary function on x , if Cx= z-1~ o , z ~ o. 

The comparison of the constructions of the KP equation solutions, 
one of which uses the vector analog of the Baker-Akhiezer function 
and the other was mentioned above, shows that the equation (54) is 
latently isomorphic to the KdV equation. However this isomorphism 
is difficult to trace. 

The equation (54) is the integrable system, which admits the zero 
curvature representation. The operators in this representation al- 
gebraically depend on the auxiliary "spectral parameter" ~L , which 
is determined on the elliptic curve, differing from all the known 
cases, which contain the rational parameter ~ . 

This representation, having the form: 

Y~:YJ (',#,J),permits, as usual, to obtain the integrals of the 
equation (5~) from the expansion of ~ . The investigation of the 
general system, which have the form (55), will be undertaken in the 
next paragraph. 

Let us consider the stationary solutions of the equation (54),which 
have the form u(x + at, y). They correspond to the solutions of the 
Bussinesque equation. The simple substitution ( [3] , p.301) per- 
mits to obtain the more generaly solutions of the KP equation,which 
have "knoidal" wave type u(x+alt, y + blt). 

The substitution of z=h-2(c) into (54) (ct=o) leads to the Hamilto- 
nian equatio3~ k -8 bT/ (~.~) 

c~ = - - ( 5 6 )  

W= - Q( ,q L L- where Q=# + 
is the elliptic function. 

This system is completely integrable. It follows from (55) that (56) 
admis the representation: 

Censequently, the determinant ~ (J~l~ - / '~ (~,#)--~,~)does not 
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depend on ~ and is the integral of the equation. 

The integral ~ (C,Oo) is equal to 

The equation (54) depends on c., as a parameter. ~7~z~ (~]~)' 
The set of the stationary solutions of the equation (54) for all 
c o is isomorphic to the space of Tiurin parameters. 

The variety of the solution, corresponding to the fixed value of 
integral ~(¢,Co)= c~ is isomorphic to three-dimensional Jacoby 
variety J(R) of the algebraic curve R. This curve is determined by 
the equation (58) and is two-sheet covering of the initial ellip- 
tic curveF. The intersection of the varieties, corresponding to 

-- const, c~ = const is isomorphic to the so-called "Prim" 
variety - the ~dd part of the Jacoby variety. 
Consequently, the modular space of the framed holomorphic rank-2 
bundles over the elliptic curve is stratified into the two-dimen- 
sional Abelian Prim-varietles, corresponding to the coverings of 
the elliptic curve. 

Conclusion. The knoidal waves of the KP equation, which have 
rank-2 and genus I, can be represented in terms of theta-function 
of two variable. They do not coincide with the solutions of KP 
equation of the genus two and rank I, which also have the represen- 
tation in terms of @-functions of two variables. 

The above-mentioned statements follow directly from the results of 
the appendix. 

Now we shall obtain the exact expression for the operator ~, 
which is included into the rank 2 commutative pair [L 4, L6] ~ = o. 

It follows from the results of Ill] (§3) that the commutative 
pair is uniquely determined from the equations (43), (44), where 
u(x) is an arbitrary function. It is not necessary to solve these 
equations. If the function c(x) is chosen as the arbitrary func- 
tional parameter, then the expression (51) for #~ ,~U, 
permits to obtain all the rank 2 commutative pairs, corresponding 
%0 the elliptic curve. 
Each function c(x) determines according to (41,51), the logarith- 
mic derivative of ~ : 

L Y 2 2 .  " 

operator L4: ~'~' ~//'a' and ~'. are the eigenfunctions of the 

"7",. : c6o) 
The equation (59) means that ~/~."= jlt2i 3D. + J~zz "t//S. 
The formulae for higher derivatives may be obtained from this ex- 
pression. For example, 
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# ,' 

These formulae express ~ ~ d in the form of the linear com- 
bination of ~; and ~; ,~ose coefficients are the polynominals 
on J2~ . J~z and thei~ derivatives. 

Consequently, for any operator 

= + + + 

we can represent / ' ~  in  the form of e< c/oc,~) + j÷4( rx ,~)+u ' 
The functions eL are meromorphic functions of ~ and 
linearly depend on conditions vj'u~L The functions can be found from the 
following the expansions of ~ and ~ in the 
neigbourhood of ~--0 ~ 

Finaly, the following expression for L 4 will be obtained. 

~ .  The zero 9~<rvature e~ua t ions  w.i.th . .a l~ebraical  ,..spe~.t~.al" 
parameter. 

It was shown, that for KP equation the construction of the genus 
1 and rank 2 "finitegap" solutions leads to the integrable sys- 
tem. This system has the "zero curvature" representation with 
operators, which algebraically depend on the auxiliary "spectral 
parameter" - the point of elliptic curve F. 
The general representation of such type 

, (62) 

means that the following equations are compatible 

(63) 

where P is the point of the algebraic genus g curve ~ with 
fixed points PI' "'" Pm" 

Let the matrix functions u(x,t,P) and v(x,t,P) be determined, as 
in ~ 4 by their singularities at the points Ps and the values 
Uo= u(x,t,Po), Vo= v(x,t,Po). 
The singularities u and v at the points Ps are the matrix 
functions: 
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r,I$ 

~., (:~,~.,~): T__ . ~  C~,7) ; v s (~ ,  ~ ,~): 7__ vs<. , 

In case of the genus g=o surface the functions u and v are t~e 
rational functions. The functions have to satisfy the equation 
(62) for each point P; but in this case these equations are equl- 
~alent to the finite system of the equations. The latter means 
that the function w=u~-v + [u,v] has no singularities at the 
points PI, .... ,Pm and~th~ value w(x,t,P o) is equal to zero. 

If the genus g of surface ~ is greater then g) I, then the func- 
tions u and v have the singularities in the points ~ .... , ~Sg 
except for P ... P_. For these points there are vectors ~,o for 
which the co~iti~n~ (28) and the equations (29), (30) are~ful - 
filled. 

However, the equation (62) is equivalent to the finite system of 
the equations, which are associated with points PI," "'',Pm" 

Statement. The systems (63) and (64) are compatible iff 

OC - + - 0 0 )  
p : p$ (66) 

The latter equations mean that the function u t - v x + [u,v] has not 
any singularities in the points PI .... Pm" 

i 

The number of the matrix equations (65), (66) equals to M+N+I, 
where M = ~ m S ~ A/= )- ~ s " The number of the functions deter- 

mining u and v is equal to M+N+2. 
This system is underdeterminate: the gauge transformation 

9 

wi th  a rb i t ra ry  inver t ib le  matr ix g (x , t )  t ransfers the solut ions 
(65), (66) to the solutions of the same equations. 

The sketch of the proof. Let us consider the function w=u~-Vx+ 
+ [u,v]. It follows from the equations (29) that the functiSn w 
has not the poles of the second degree in the points ~, ~ySE 

In the neighbourhcod o f  t h e  p o i n t  ~=~Oc,~) we have ,  

~ :  k - j ,  * ~  + ~  - ÷ 0  k -  ,I 
I J  

Vo Vi V ~.(~ ,-~ ÷ 0 ~ f  - ~  ) , ,  : + + < . . - ,  . 



288 LM. Krichever and S.P. Novikov / Holornorphic bundles and nonlinear equations 

ab From the equations (30) we dedu~ for matrix elements w 

This means that ~ has the same type as the functions u and 
v. Consequently, the function ~ is uniquely determined by the 
singularities at the points PI "'" P and by the value 

(x,t,P o). According to (65), ~66)'w~ obtain: 

: ~ { - v ~  + [ ~ , v ]  = 0 (67)  

To complete the proof of the statement it is enough to prove that 
the equations (29), (30) are compatible. 

It follows from (67) that 

~p ~ ; - ~ v ° ~ : o < > y~ ~ ~ ~ . 

L e t  us i n t r o d u c e  the v e c t o r - r o w  ~ = ",rb' ... ,1/511 w h i c h  s a t i s -  
f i e s  the equations 

t (69) 

The compatibility of this system is equivalent to the compatibill. 
ty of the equations (30) and d~ : # #~ The compatibili. 
ty of (68), (69) means, that 

(7o) 

The zero degree term of the Loran expansion for ~ in the neigh- 
bourhood of ~ = ~% C ~,~) i s  equal to 

Consequently,the (70) is equivalent to 

( I v  ° , Ivy,  oj) : o 

This relation does not contain the derivatives on x and t . 

We shall use the following trick, It is easy to construct the 
Baker-Akhiezer fumction ~(x,t,P), such that: 

7 ~o,4o,P =~(~o,4o P ~ =  
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For this function the equations (68), (69) are fulfilled for its 
Tiurin parameters/3 • Consequently we have that 

This relation coincides with (72) at x=x o and t=t o. 

Appendix 

Algebraic ensembles of the commutative flows. 

The ~-'representation for KdV equation and for its higher analo- 
gues was first found in the work [22]. This is the representation 
of the whole family of these equations in the form 

where ~ (~, , ~ are the polynominals of ~ (t=t l, x=t 2) 

In the general case of functions u~, rational or algebraic on 
the inwvarlant definition of the aTgebraic ensemble of the opera- 
tors may be done as follows. 
This definition is analogous to the condition (2) in the theory of 
KdV-type equations. 

Let there be the set of the operators L i 

"a~; i 
where u~(~, P) are the meromorphic functions of P o n  the Riemannian 
surface~ of the genus g, which have the same properties as the 
functions from the $1V. For g=o the functions u~ are the usual 
rational functions o-n the Riemannian sphere with~he fixed poles, 
undependent on t . 

Definition I. The family of the operators ~ will be called the 
t! "commutative ensemble , if for any i,j the operators Li, Lj com- 

mute: 

_ r , , 3  
=o c73  

-~ /:d 3Li 
Definition 2. The commutative ensemble is called algebraic if 
there exists the matrix function ~/(~,P), which algebraically de- 
pends on P and such that: 

The basic example of the algebraic ensemble - are the stationarity 
conditions of the whole ensemble, with respect to one of the 
variables 
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0 9 " ' "  

In this case ui= •. In general, the assumption, that ~ is con- 
nected with (u~ .... u~,...), is not necessary a priori. However, 
it may be showfl'than't~s assumption is true. 

The linear operators L~ = ~ - ~ o which enter the algebraic 
ensemble (if they ha~e sen@ Hermitian properties), are "finite- 
gap" in the sense of the spectral theory of the operators. [227. 
Because of this, these operators and corresponding solutions of 
the nonlinear equations are called the "finitegap". 

Any equation (73) with the indices i,~ play the role of the "higher 
KdV" with respect to one of them. A p~iori all these equations are 
the partial differential equations. However, the algebraic ("fini- 
tegap") conditions (74) lead to the reduce these equations to the 
set of commuting ordinary differential equations referring to each 
variable. 
Statement. If the operators Li commute withW , then each of them 
commutes with the others [Lc,L~]=O, i.e. the equations(73)follow 
from the equations (74). If the number and degrees of the poles 
of ~ are fixed, then the dimension of the space of the corres- 
ponding matrices is finite. The equations (74) determine the com- 
mutative deformations of this space. All equations (74) have the 
common integrals. 

Consider the solution ~ (~, ~) of the equations: 

such t h a t  (o,P) = i. 
The equality: 

follows from (74). 

Hence, the characteristic polynominal 

does not depend on~. Its coefficients are the integrals of (74). 

Definition 3. The algebraic ensemble will be called "complete", 
if the flows determined by (74), cover all the level manifolds of 
the integrals (77). 
In general position, the eigenvalues of ~ (o,P) are different for 
almost all points P. Hence, the algebraic curve R which is deter- 
mined by (77), is 1-fold cover of the initial curve F. Let us 
consider for each point ~ of R the corresponding eigenvector of 
~(o,P). If the first coordinate of this vector kL (~) = i j then 
the o~her coordinates are meromorphic functions on R. The vector- 
f unctions 

e 
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where ~ are the i-th columns of the matrix ~ (t,P), possess the 
following analytical properties: 

I . ~ ~, y)is meromorphic on R outside the points PL .J=~,", ~, 
which are the prototypes of the points Pi' i=I,..., m. 

The poles of ~ do not depend on t, their number is equal to g+l-1, 
where g is the genus of R.. 

z The eigen lues P) = do not depend on t, 
because characteristic polynominal u~ do~s not depend on ~. 
Consequently, in the neighbourhood of Pi the coordinates of 
have the form: / 

-1  -1 
where ~ are the constants and k = k (~) is the local parameter 
near the P~ . _ ~ 

Thats why, ~(~ , ~) is the scalar Baker-Akh~ezer function and 
is uniquelydeter,ilned by the divisor of the poles #L .... , J/~+e-L • 
According to the general rule this function may De represented in 
terms of @ -functions. The function ~ determines the matrix 
by means of equality: 

where [= (e,~¢))is the prototype of P on the curve R. 

If we identify the matrices W/ and A ~/ A -1, where A is the con- 
stunt diagonal matrix, then the factor-man/fold of the levels of 
the integrals is isomorphic to the torus - the Jacobian variety of 
the surface ~ . The equations (74) determine the straight line on 
t h i s  torus ( [~S] , ~ , ~ s  ) .  
I n  t h e  t h e o r y  o f  t h e  KdV-type  e q u a t i o n s  t h e  h i g h e r  a n a l o g u s  a r e  t h e  
complete algebraic ensemble. The following operators, used in 
[~5],C~%] for the theory of the chiral field, are another example of 
the operators' ensemble. These operators have the form: 

/. 

i = I)2 , t I = t - x t 2 = t + x. 

The examples of the algebraic ensembles with arbitrary numbers of 
the operators, which have the form (78), were considered by 
Gamier [257 . The initial point of his investigations was the 
Shlezinger theory of the deformations of the ordinary differential 
equation, which preserve the monodromy group of the singular points. 
The formal substitution ~ ~ t i into (78) leads to Shlezinger 
• quations. 

Gamier considered the equation (74) of the special form: 

~____ Ac. Ac 
"~~L " ~ - o . .  , . ~. "X-o.~ = 0 (79) 
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where W = L A___~ ~=~ ~ - ~  

The ensemble (79)  i s  no t  comple te .  The number ~ of the  o p e r a t o r  
i s  l e s s  than  genus g of  the curve R, wh ich  i s  de te rmined  by the 
equations : 

The equations (79) were used [25] for the construction of new 
examples of integrable dinamical systems connected with Riemanian 
surfaces. 

' ) 
6=i 

ff 

t='l. 
This system was discovered in the work [ 2 5 ] .  
On the d i f f e r e n t  i n v a r i a n t  hype rp lanes  ~ j  = ~ ~ t h i s  system 
will reduces with the Newmanz[26] syste~ of the-oscillators, 
restricted on the s~here Z ~ =i and with the system of unhormo- 
nic oscillators [27~ ~ ~ 
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