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§1. Introduction

In the theory non linear equations of Korteweg de Vries type admitting for
example, a Lax representation in the form

η m

(1) ^j =[A, L] where L = 2 ut(x, i) £ j , A=%vt(x, *)  £  ,

the most interesting multi soliton and finite zone classes of exact solutions are
singled out by the following condition: there exists an operator Β commuting
withZ, at t = 0:

(2) [L, *]  [ £ « . < *. 0)jL. 2> «< *) £ r] =  °
t= 0 i= 0

(this restriction then holds automatically for any value of / ) . In the "rank 1
situation" (see below) if, for example, the orders of the operators L  and Β are
mutually prime (and, in the matrix case, the eigenvalues of the matrices of the

This survey is based on a lecture by the authors at the Soviet American symposium on soliton theory
(Kiev, September 1979).
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leading coefficients of L  and Β are distinct), the "typical" solutions of (1)
satisfying (2) are periodic or quasi periodic functions of χ and t. They can be
expressed in terms of 0 functions of Riemann surfaces, and the periodic
operator L  has the remarkable spectral property that the Bloch spectrum is
"finite zone".

Rapidly decreasing multi soliton solutions (corresponding to non reflexive
potentials) and also rational solutions of (1) are obtained (see [ 1 ] , [ 2] , and
[3]) from the periodic solutions by various limit passages. We recall the
Burchnall—Chaundy Lemma (see [4]) : Suppose that two commuting ordinary
differential operators (2) are connected by an algebraic relation

(3) R(L, B) =  0

where R(\ , µ) is a polynomial with constant coefficients. A common eigen 
function of L  and Β

Ζ/ψ =  λψ. #ψ =  µψ ψ =  ty(x> λ, µ)

is then such that Xand µ lie on the Riemann surface (3), which we denote by
the symbol Γ:

(4) # (λ,  µ) = 0 .

The pair (λ, µ) is thus a point Ρ £ Γ.
DEFIN ITION . The multiplicity of the eigenfunction ψ(χ, λ, µ) =  ψ(χ, Ρ) on

the Riemann surface (that is, the dimension of the eigenspace of φ when
? G Γ is fixed) is called the rank I of the commuting pair L, B.

In this way there arises an /  dimensional holomorphic vector bundle with
base Γ.

All the results on the commutativity relations (2) and on exact solutions of
equations of KdV type (1) obtained up to 1978, concern the rank /  =  1.

I t is important to emphasize that in the theory of "one dimensional" systems
of type (1) the condition (2) is imposed on the operator L  itself in the Lax pair.

In [5] and [6] for certain physically important "two dimensional" systems
of KdV type an analogue was observed of the algebraic representation (1) in
which L  has the form

Here Μ and A are ordinary linear differential operators in χ with coefficients
depending on x, y, and t.

In the search for exact solutions of "two dimensional" systems of the form
(5) the authors introduced the following Ansatz, which reduces to a set of
conditions involving an auxiliary pair of operators Lx and L2 '•
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[L, Lt] =  0 (i =  l, 2),  \  lf A, L 1 =  0,
(6)

Here Li and Z,2
 a r e ordinary linear differential operators (in χ alone).

In contrast to one dimensional systems (1), the orders of the operators Lx

andZ, 2 are arbitrary!
This class of solutions for commuting pairs L l and L2 of rank 1 was discovered

in [7] , and for commuting pairs Lx and L2 of arbitrary rank in [8] and [ 9] .
Solutions of rank /  > 1 depend already on arbitrary functions of a single
variable.

The most important example is the standard two dimensional KdV (or KP)
equation, where

M= ^ U{x,y,t), A =  ^ ± U ^ + W(x, y, t),

W 2_ 77 77

Solut ion s of rank /  =  1 ( th a t is, when th e pair Lx, L2 has rank 1) are, according
t o [10] of th e form

(8) U {x, y, t) = const 4 2—^logQiUx + Vy + Zt+W),

where 6(vi, . . ., vg) is the Riemann 0 function corresponding to the Riemann
surface Γ (4).

For the case /  > 1 even the study of the commutation condition
[L ι, L2 ] = 0 itself is very difficult. In [11] the problem of classifying such
pairs I , ! and L2 for arbitrary /  > 1 was solved by reducing the computation of
the coefficients to a certain Riemann problem.

In [8] , [9] , and [12] we developed a method by which in certain cases the
Riemann problem can be avoided and explicit formulae for the coefficients of
Li and L2 of rank /  > 1 can be obtained.

§2. A multi point vector valued analogue of the Baker—Akhiezer function

We consider a collection of (/  X /) matrix valued functions

Ψ$(χ, k) (s =  1, . . .,  m), χ =  (xu . . ., xn)

such that i/ / s(0, k) = 1 and the matrices

(9) A){x, k) =
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are polynomials in k.
The As

t(x, k) must satisfy the relations
dA'. dA*.

The specification of the functions A\  as polynomials in k satisfying (10)
determines Ws(x,k) uniquely.

Now let Γ be an arbitrary non singular Riemann surface of genus g, and
Px, . . .,Pm a set of points of Γ with local parameters zs =  kf1 (P) in neigh 
bourhoods of them. We select on Γ an unordered set of points

(γ) =  (γι, · · ·,

and a set (a) of complex (7 — 1 ) vectors
a i =  ( a i i l , . . . , α{, ;_ ι) (i =  l, · · . , gl).

Ν ΟΤΕ. The combined collection (7, a) is called the "Turin parameters",
since according to [13] they determine uniquely an /  dimensional holomorphic
vector bundle that is stable in the sense of Mumford, of degree gl over Γ
together with the equipment, that is, the set of holomorphic sections ηλ, . . ., ηι.
The points 71, . . ., ygl are in fact the points of linear dependence of the
sections 77,·, and the α;  ;· are the coefficients of the linear dependence

1 1

( li) ii(Vi)=  Σ »i.j»u(vi)·
3 = 1

We consider the following problem: to find a vector valued function
ψ(χ, Ρ) on Γ that is meromorphic except at P t , . . ., Pm and such that:

1. the poles of ψ(χ, Ρ) = (ψ ι, . . ., ψ;) are at the points y{ and the residues
iijix, P) satisfy these relations

(12) resY.^ (o:, P) = a i f jresY. ψ; (α:, Ρ),

where 0̂ · · and 7,· do not depend on χ;
2. ψ (χ, Ρ) can be expanded in a neighbourhood of Ps as

(13) Ψ (*,  Ρ) =  ( Σ h (χ) κ1)  Ψ8 (χ, Α.) ·
i=0

When I   I the "bare functions" Ψ8 are exponentials and ψ is the m point
scalar analogue to the classical Baker—Akhiezer function.

Following the scheme of [ 11 ] , which is based on the technique of [14] and
[15], we obtain the general result.

THEOREM. The dimension of the linear space of functions satisfying the
requirements listed for fixed χ is I. To determine ψ uniquely it is sufficient, for
example, to specify its value at one point. The determination of φ reduces to a
system of linear singular integral equations on small contours (the boundaries
of neighbourhoods of the points Pl; . . .,Pm ) . The integral equations are solved
separately for each x; the condition (12) on the residues and the specification
of ψ(χ, Po) uniquely distinguishes the required vector valued function ψ(χ, Ρ)
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in the solution space of the singular equations.
We call a matrix Ψ(χ, Ρ) whose rows are linearly independent solutions of

the problem (12)—(13) a complete Baker—Akhiezer matrix valued function.
According to the theorem, Ψ(χ, Ρ) is uniquely determined to within
multiplication by a non degenerate matrix valued function G(x):

Ψ(«, Ρ) => G(xYV(x, Ρ).

Apart from the Turin parameters (7, a) the arbitrariness of the construction
reduces to the choice of the matrix Ψ5.

EXAMPLE l.(see [8] , [9]) . THE KP EQUATION AND COMMUTING
OPERATORS  We consider the single point Baker—Akhiezer vector valued
function i//(x, y, t, P) with an essentially singular point Po on the Riemann
surface Γ of genus g. It is determined by the Turin parameters (7, a) and the
matrix Ψ0(χ, y, t, k). When /  =  1 it is the classical Clebsch—Gordon—Baker
function [16] .

a) Let I = 2. We choose the matrix functions At{x, y, t, k) (i =  1, 2, 3), which
define Ψο by (1), in the form

ί 0 1\  . (k

^ i = U _ B θ); ^ = U

A,=

— fc +4
u2 uxx ux

"2 4 4

where u = u(x, y, t).
From the consistency equations (10) if follows that u = u(x, t) does not

depend on.y and satisfies the KdV equation:

Aut =  uxxx — 6uux.

b) Let /  =  3. We choose At in the form

From (10) it follows that u = u(x, y) does not depend on t and is a solution of
the Boussinesque equation

3^5, +  uxxxx — 6(uux)x =  0.

c) When /  > 3, the matrices A((x, y, t, k) are chosen in the form
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, 0 0

• 4 i = l o o ' .' .' .'
\ue . . .

where a2 and a 3 are (/  X O matrices n o t depending on k, whose elem en ts are
differential polyn om ials on u0, . . ., u1_2.

IMPORTANT PROPOSITION. In all the preceding cases the Baker Akhiezer
vector valued function \p, which in a neighbourhood ofP0 has the form

(14) ψ (χ, y, t, P) =  ( § ls (x, y, t) k~s) Ψο (k, y, t, k),

? o = ( l , 0 0); | 8 =  (ξ(Λ . . . , ll.°),

is annihilated by the pair of scalar operators (7):

(15)
where

The coefficients.of U and W  do not depend on Ρ and are determined by
7 . o .  77 ,,  (T f\  9 f i 2 '

CONCLUSION. U(x, y, t) is a solution of the KP equation

(16) \uylJ =  

Thus, we obtain a class of KP solutions depending on the data

{Γ, Po, y, a, wo, · · ·, ut.2}.

when /  =  2, uo(x, t) is a solution of the usual KdV equation.
A vector valued function ψ(χ, 0, 0,P) = φ(χ, Ρ) depending on a single

variable χ occurred in [ 11 ] . Its components consist of /  common eigen 
functions of a pair of commuting scalar ordinary differential operators (in x):

lLrfq(x, Ρ) =  λ(Ρ )ψ, (χ, Ρ),
( 1 7 ) \Lrtq(x, Ρ) = µ (Ρ) ψ, (x, Ρ),

where λ and µ are arbitrary algebraic functions on the surface Γ, having a single
pole at Po of order m and η. The orders of Lx and L2 are ml and nl, respectively.
Thus, a commuting ring of operators of rank /  can be classified by the surface
Γ, the point Po with a local parameter, the set of Turin parameters yly . . ., ygl,
(αϊ , . . ., cc/ ), and the arbitrary functions M O 0O , · · ·> Ui_2{x). An operator/ , in
this ring is given by an arbitrary algebraic function \ {P) with a single pole at Po.
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We discuss later the problem of how to calculate the coefficients of these
operators effectively (see [ 9] , [ 12]) .

All the relations (6) follow immediately from (15) and (17). And so the
solutions we have found of the KP equation of rank /  correspond to the Ansatz
(6).

§3. The two dimensional Schrodinger operator and two point
functions of Baker—Akhiezer type with separate variables

The problem of a natural generalization of equations of Lax type (1) to the
case of operators L  that depend essentially on several spatial variables is non 
trivial. We note that for equations of KP type the corresponding operator

contains — only to the first degree. I t is known that for a potential in general
oy

position u(x), χ =  {χλ, . . ., xn), η > 1, there is no operator that "almost
commutes" with L = Au, that is, an operator A such that [L, A] is
multiplication by a function. This means that there are no non trivial dynamical
systems of the form L  [A, L], preserving the whole spectrum of the operator
L. When η > 1, the eigenvalues of L  are infinitely degenerate. Apparently, to
recover L it is sufficient to be given the "inverse problem data" only for a single
energy value; for example, for Ε = 0.

Deformations preserving the spectral characteristics for the single energy value
Ε   0 are described by an equation of the form

(18) % =\A,L]+BL,

where Β is a differential operator. Such equations were first considered in [17] .
The inverse problem for the two dimensional Schrodinger operator in a

magnetic field with zero flux, that is, with periodic (or quasi periodic)
coefficients, was solved in [18] by using the data for a single energy level, in a
class of operators analogous in a certain sense to finite zone operators.

We recall the basic arguments leading to a statement of the inverse problem for
the recovery of the operator

Suppose that the potential u(x, y) and the vector potentials A j (x, y) and
^ 2 (x, y) a r e periodic in χ and y with periods Τ ι and T2. For the equation
Η φ = Εφ it is natural to select the Bloch eigenfunctions as those of the operator
of displacement by the period

ψ(χ +7Ί.»)=  βί?' ιΤιΨ(* . ν),
ψ (ζ, y +  Γ2) =  e*• • • ·τ'ψ (ζ, y) .

The numbers ρ j a n d p 2 are called quasimomenta. In three dimensional space
the simultaneous eigenvalues of the monodromy operators Τλ and T2 and of
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the operator Η form a two dimensional submanifold. I ts points are sets
\ γ , λ2, Ε for which there exist solutions of the equation Ηφ =  Εφ such that
φ{χ +  Τι, y) =  Xi φ(χ, y), φ(χ, y + T2) =  λ2 φ(χ, y). We say that Η has good
analytic properties if this manifold M2 for complex values of \ ι, λ2 , and E, is a
two dimensional analytic submanifold. Then the intersection of M2 with the
surface Ε = Eo is an analytic curve §ϊ(£ ), the so called "complex Fermi
surface".
Η is said to be a finite zone operator if the genus 3ϊ(£ ) is finite. In this

case we can clarify the asymptotic behaviour of the Bloch functions for large
values of the quasimomenta in the non physical domain of complex ρ ι and
p2. In this domain they must be subject t o p? + p | =  O(\ ). Hence, the curve

fR(E0) is compactified by two points at infinity Pi and P2, in a neighbour 
hood of which the Bloch functions have the following asymptotic expansions:

ψ= β*, ( * ί ν> ( 2 ζ( (χ, y) fc 1) ^ e h , I f

wh ereof1 and k2
l are local coordinates in neighbourhoods of P t an d P 2  

Except at the points P i and P 2 , the function ψ(χ, y, Ρ), Ρ Ε 9ί ,is meromorphic
and has g poles ji,. . .,7». The problem of recovering / /  from the curve S3i with
two distinguished points Px and P2 and from the set j \ , •  . .,yg was solved in
[18]. We draw attention to the important fact that the asymptotic behaviour
of φ near the points Pt and P2 depends on the distinct variables z and z.
Functions of Baker—Akhiezer type with this property are called "two point
functions with separate variables". The following formulae hold (for rank

AZ = AX — iA2~0; z = x \  iy; z = x — iy;

U(X, y)= ?Lr\ogQ(UiZ + Uzl+W).
dzdz.

The constant vectors Ut and V{ depend only on P1 and P 2 , but W  is determined
by the divisor 71, . . ., yg. G enerally speaking, the operator Η is not H ermitian.
The choice of the parameters 3R, Pi, Ρ2, Yi. · · ·» Yg» for which Η is
Hermitian was obtained in [19] .

The condition on Η to be a finite zone operator is not stable under a variation
of the energy level. This means that if the genus of the complex Fermi surface 
curve $R(.E) of the Bloch functions satisfying the equation Ηφ = Εφ is finite
for one value Ε =  Eo, then it becomes infinite even for neighbouring values. In
the theory of the KdV equation a natural generalization of the language of
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theta functions enables us to solve the inverse problem for operators whose
Bloch eigenfunction is defined on a hyperelliptic curve of infinite genus [20] .
Because of the instability of the finite zone property, to develop a complete
theory of the two dimensional Schrodinger operator it is necessary to generalize
the above construction to the case of infinite genus. The first task is to elucidate
the asymptotic behaviour and the disposition of the poles of the Bloch functions
for quasimomenta at a fixed energy value. We note that the corresponding
asymptotic behaviour must be considered in the non physical domain of complex
values of the quasimomenta.

The following algebraic condition for the two dimensional Schrodinger
operator, which distinguishes finite zone solutions of equations of Lax type, is
an analogue of (2). Suppose that there are linear operators Lx and L2 such that
the commutators have the form

(19) [H, Lt] =  BtH; [Llf LJ = B3H,

where 2?!, B2, an dfi3 are differential operators.
The simultaneous eigenvalues of the operators

(20) #ψ =  0, L;ip =  λ;·ψ

are connected by the algebraic relation

(21) Λ(λχ, λ2) =  0,

where R(X, µ) is a polynomial in two variables.
As in the theory of finite zone solutions of equations of Lax type and their

two dimensional generalizations (6), we introduce the concept of the rank of
the algebra of operators (19), which is defined as the multiplicity of the eigen 
values, that is, the number of linearly independent solutions of the equations
(20). F or an algebra of rank / , the simultaneous eigenfunctions form an
/  dimensional holomorphic bundle over the curve Γ given by (21). The operators
Η constructed above correspond to algebras of rank 1.

It would be interesting to investigate the interrelation of the concepts of
rank and the "generality of position" for an operator Η with periodic
coefficients. F or finite zone operators this interrelation is as follows. F or fixed
values of the orders of L1 and L2 the number of parameters determining the
algebraic relation (3) for algebras of rank 1 is greater than the number of para 
meters determining these relations for algebras of rank /  > 1. However, in
addition to the parameters specifying Γ, an algebra of rank /  depends on
2(1 — 1) arbitrary functions, hence, algebras of rank /  > 1 are, generally speaking,
not degenerations of algebras of rank /  =  1.

We now give constructions of finite zone operators Η of rank / . Let
Ψι (ζ, k) and Ψ2( ^ , k) be matrix valued functions defined by the equations



62 I.M. Krichever and S. P. Novikov

( 2 2 ) '  4  Ψ 2 (ζ, k) = •  A* (z, ft) Ψ 2 (ζ, ft),

wh ere
<0 Ο

1 Ο
ΟΙΟ . . .

(23) Αι=~
•  η η ( ΐ ι ι ι

0 0 . . . 1 Ο ΐ;;_
; 0 Ο . . . Ο 1 Ο

1 0 . . . 0 0
0 1 . . . 0 0

Ψ,·(0, / :) =  1 and M, (Z) and υ,·(ζ) are arbitrary functions.
We consider the two point Baker Akhiezer vector valued function ι//(ζ, ζ, Ρ)

on the Riemann surface Γ of genus g, corresponding to Turin parameters
(7, a) and having the following form in a neighbourhood of the two distinguished
points Ρλ and P2 :

(24) ψ ( 2, ζ, Ρ) =  ( | . ξ5 ( 2 , i) ftf.) Ψ ι ( 2 j
s0s= 0

(25) ψ («, ϊ , Ρ) =  ( § ζ, (2, 2) ft ») ψ 2 (i, fc2).

We normalize it by the following condition: %0 =  (1, 0, 0, . . ., 0);

Here Α;ε
1 =  Α;ε

1 (Ρ), ε =  1, or 2, are local parameters in neighbourhoods of
Λ an d / V

PROPOSITION. The Baker—Akhiezer vector valued function satisfies the
condition H\p = 0. where

 L +  u(z, z)
ddzdz dz

is the two dimensional Schrodinger operator with scalar coefficients

Only Hermitian operators Η which for a choice of gauge correspond to the
case of a real "magnetic field" Β — dv/ dz and "electric potential"
U= 2u — dv/ dz are physically meaningful.

As was mentioned above, the conditions on the parameters of our construction
of operators Η of rank 1 corresponding to the operators being Hermitian, were
obtained in [ 19]. Following the ideas there we now give similar conditions for
1 = 2.

We consider curves Γ with an anti holomorphic involution σ: Γ  *•  Γ
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interchanging the distinguished points, β(Ρχ) = P2, and the local parameters
k^l(o(k1) =  —k 2 ) . We define an Abelian differential ω of the third kind with
simple poles a t P t a n d P 2

 a n ( i with residues ± 1, respectively. Such a differential
exists and is determined to within the addition of an arbitrary holomorphic
differential.

We choose such a differential ω, ω(Ρ) =  — ω(σ(Ρ)), that is odd with respect to
σ. The dimension of the space of such differentials is equal to the dimension of
the odd holomorphic differentials ωγ (Ρ). Since multiplication by /  carries even
differentials into odd ones, this real dimension is equal to g. We denote by
 ι > · · ·, J2g the zeros of ω(Ρ) . Since ω is odd, the set of points (γ) is invariant
under σ, σ(7,·) =  jo(i), where a(i) is a corresponding permutation of the indices.

EXAMPLE. Let Γ be the hyperelliptic curve in C 2 given by
2g

y2 = X [\  (λ λ«) ,
i= l

where the set of complex numbers λ,· is invariant under the involution
λ  »•  λ"1, and Π λ,  =  1.

An anti holomorphic involution on Γ interchanging the points
Pi =  0, P2 — °°, has the form

The Abelian differentials with poles at Px and P2 have the form
g i

λ ^—ι ' y *

Where the c,· are constants. The condition on ω to be odd means that
c/ ="fM  / ·

Thus, 7 j , . . ., 72£ are the zeros of the function
g i

"i=0

οηΓ .
With each point γ,· we associate a number a,· (we recall that /  =  2) for which

In addition to the choice of Turin parameters (7, a) , the vector valued function
ψ(ζ, Ι, Ρ) was defined by two functions uo(z) and vo(z). Let uo{z) =  υο(ζ).

PROPOSITION. These conditions on the parameters of the problem dist 
inguish Hermitian operators H.

SKETCH OF PROOF. We consider the scalar function

φ(ζ, ~ζ, Ρ) = ψ(ζ, Ι , Ρ)ψ(ζ, z~, a{P))
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( t h e d agger d e n o t e s H e r m i t i a n c o n ju ga t io n ) . F r o m ( 2 3 ) fo r 1 2 a n d
UQ (Z) — — v0 ( z ) i t easily fo llo ws t h a t

&  *) =  ι.
H ence, ιρ(ζ, Τ, Ρ) is a meromorphic function on the whole curve Γ. F rom the
fact that a{ = a " ^ it follows that the poles of φ at the points 7,· are simple. By
definition of yl, . . ., y2g, the differential φ(ζ, ζ, Ρ) ω(Ρ) has a total of two
poles at Ρλ and P2. Since the sum of its residues is zero, φ{ζ, Ι, Ρι) = φ(ζ, ζ, Ρ2).
Calculating the values of ψ at P t and P2 we obtain

φ(ζ, ζ, Ρί) = ζ*\  φ (ζ, z, Ρό = ζ*\

Hence, by (26), B(z, ζ) is real. I t is easy to see that V is also real.

§4. Deformations of holomorphic bundles

As we have said above, in the general case the problem of calculating the
vector analogue of the Baker—Akhiezer function Ψ reduces to a system of
singular integral equations equivalent to the Riemann problem. However, we
do not need the function Ψ. In the construction of the coefficients of linear
operators and solutions of corresponding non linear equations, the Riemann
problem can sometimes be avoided. This possibility is based on the study of
conditions on the Turin parameters (7, a) generalizing rectilinear windings of
Jacobi tori for rank 1.

As before, let Γ be a non singular algebraic curve of genus g with distinguished
poin tsPx, . . ., Pm and fixed local parameters k~l (P) in neighbourhoods of them.
We consider the logarithmic derivative of the Baker—Akhiezer function Ψ(χ, Ρ),
which was defined in the preceding section from the "bare functions" ^s(x, k)
and the Turin parameters ( 7 0 , α°) , the matrix functions χ{(χ, Ρ) being such
that

(27)

The functions X,(JC, P) are meromorphic on Γ, having poles atPl, . . ., Pm . In
addition, the χ,ζχ, Ρ) have gl simple poles 7! (x), . . ., ygi(x). The rank of the
matrix of residues of the χ,· at the points 7S is 1. Thus, at the point ys we define
the (/    l) vectors ocSj(x) (j = 1, . . ., / ) so that the following relations hold for
the matrix elements χ? δ :

(28) resVsx?b =  a s b r es7 sxf.

The parameters y(x) and <x(x) satisfy the "deformation" equations

(29)  ^
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(30) ^^=  S «u+ a

1 a = l a = l

where χ;· 0 and χ,· ι are the coefficients of the expansion of X, (JC, P) in a
Laurent series in the neighbourhood of the pole 7 =  ys(x) (the index s is here
omitted for the sake of brevity):

(31) Xi(x, P) = %i,0(x)(k y) i + Xi,i(x) + °(k y) 

We denote by uis(x, k) matrices depending polynomially on k that are equal
to the singularities of χ,· at Ps. This means that

(32) Xt(x, P)   ui$(x, ks(P))

is a regular function near Ps.
PROPOSITION. For any functions uis(x, k) depending polynomially on k

and any y(x) and a(x) there exists a matrix valued function Xj(x, P) satisfying
(28) and (32). It is uniquely determined by its value at any Po, Xj(x, Po) =
= uiQ(x).

The arbitrariness in the definition of χ,·(χ, Ρ) is connected with the fact that
the matrix analogue of the Baker—Akhiezer function is determined by its
singularities at the points Ρλ, . . ., Pm and by the Turin parameters only to
within multiplication by a non degenerate matrix.

The proof reduces to a simple calculation using the Riemann—Roch theorem
of the dimension of the space of functions having simple poles at the points ys

and poles of multiplicity n{ at the points Pv This dimension is equal to the
number of inhomogeneous linear equations equivalent to (28) and (32) and to
the condition

X,(ar, Po) =  ui0(x).

Let Xj(x, P) be the matrix valued function defined by the parameters

{y(x), a(x), usi(x, k), ui0(x)}.

PROPOSITION. The conditions (29) and (30) are necessary and sufficient
for the solution of {21), normalized by the condition Ψ(0, Ρ)= I, to be a
Baker—A khiezer function.

For brevity we omit the index i, that is, we assume that Ψ(χ, Ρ) depends
only on the single parameter χ.

PROOF. First of all, we prove that (29) and (30) are equivalent to Ψ(χ, Ρ)
being holomorphic at the points 7, Oc).

Suppose that Ψ(χ, Ρ) is holomorphic at γ =  y}(x). Then for any column Ψ ;

of Ψ we have
ι

(33) Σαα% = Ρ, αι =  1, Ψ ' =  (ψι . • • • ·1> ι)<ι
a= l
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as follows by equating to zero the coefficient of {k   7 )  1 in (27). In addition,

( 3 4) "«Γ ψα =  λ llHb +  , dk

ra Q

Differentiating (33) we obtain

Σ«αχψ«+ 2
α α

or, bearing (33) and (34) in mind,

(35) Σ [««*..+«• ( 2 «*

The condition (29) is a simple consequence of the fact that the logarithmic
derivative of det Ψ is equal to the trace of χ(χ, Ρ). Since the coefficients of
\pa in (33) and (35) must be proportional, (30) holds.

N ow we prove the sufficiency of (29) and (30). We consider the matrix

=  Σ (αα

which is gauge equivalent

e i —ο

ίοχ,
α ϊ

* v
0

0

ι ι
/  °
/  ο

0
\ k  

where
a 2

fc V
0

1 0 . . .
0

('

1 0 . .
γ — a,_!

0

. 0

. 0

a; i
le y

1

0
0

0
1

0
— α 

ϊ Ϊ
k — γ

0

0
0 )
1 \
0 )

° i
 O.J

A direct verification shows that if (29) and (30) hold, then χ has no
singularities at k =  7. H ence, the solution of

has no singularities. But then neither has Ψ =  g'1 Ψ, which satisfies (27).
To complete the proof we find the form of Ψ in a neighbourhood of the

singular point Ps. To do this we raise the following Riemann problem:
To find a matrix valued function ^ s ( x, k) that is holomorphic in k everywhere

except in a neighbourhood of k =  °° and can be represented near k =  °° in the
form

(36) Ψ3(χ, k) =  R(x,
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where the matrix valued function

R (χ, Λ) =  5 ξ, (x) ft"1

i=0
is regular near k =  °°.

This problem has a unique solution such that ^ s ( x, 0) =  1.
LEMMA. The logarithmic derivative o / * s is the polynomial

The lemma is proved by noting that (• ^^rs) Ψί 1 has no singularities other

than k = °°, and by (36) and the definition of Ψ has a pole of order ns at
k = °°.

Multiplying (36) by R   1 on the left we find that Ψ can be represented in
the form (13) near Ps, that is, it is a matrix analogue of the Baker—Akhiezer
function.

§5. Finite zone solutions of the KP equation of rank 2
and genus 1

In this section we give explicit formulae for equations for the Turin para 
meters corresponding to finite zone solutions of the KP equations of rank 2 and
genus 1, that is, KP solutions connected with commuting operators Z,4 and L6

of orders 4 and 6. In general position, such operators are linked by the relations

(37) L\  = AL\  + glL t + g2

and are determined by the constants g and g2, the Turin parameters (7, a) on
the elliptic curve Γ defined by (37), and by a single arbitrary function

In this case the Turin parameters are a pair of points ji, y2 on the elliptic
curve, with a complex number an = c^ , α 2 1 =  a2 given at each of them.

According to § 1, Example 1, the KP solution corresponding to the
commutative algebra generated by L4 and L6 is determined by the set (γ, a)
and an arbitrary solution uo(x, t) of the KdV equation.

The logarithmic derivative of the matrix analogue of the Baker—Akhiezer
function Ψζχ, y, t, P) corresponding to this solution has the following form
near λ =  0:

(38 ) ({
where λ =  k~l is a parameter on the elliptic curve.

The form of the singularity of χι {χ, y, t, λ) in the neighbourhood of λ =  0
and the specification of the parameters 7 i , 72, «ι , oc2 determines χι uniquely.
Let us find its explicit form.
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Any elliptic function can be represented in terms of the Weierstrass
f function [21 ] . We are looking for χχ in the form

Χί = Α ζ(λ   7 l ) +  Βζ(λ   γ2) +  ϋζ(λ) + D,

where A, B, C, and D are matrices that do not depend on λ. The Weierstrass
zeta function is given by the series

ζ ( λ ) = λ " 1 +  ^ [(λ —ω,ηηΓ
m, npO

or by the relation f'(X) =   ^ ( λ ) . The Weierstrass §;(λ) ίυηοΐίοη has a unique
pole of the second order at λ =  0. In contrast to ^(λ) ξ(λ) is not doubly 
periodic.

A necessary and sufficient condition for χι to be an elliptic function is
(39) A + Β + C =  0.

F rom (38) it follows that C= (. A. By the definition of %j, its residues at

7x and y2
 a r e °f rank 1, that is,

. _ / α Χ α α\

Thus, A = (a2 — aiy
l(° °.), Β= (α, — αΖ)~

ι (° °A. The free term in (38)

iS ( Ι θ)" H enCe'
(40) Ο Αζ( ι) ΒζΜ= (_1 J).

Putting everything together, we obtain

where Z> is defined by (40). From (29),

,„ f ? ι α =  δ ρ 4 =  (α 1  α 2 )  1 ,
( j I v 2 x=  S p 5  ( a 2  a 1 )  1 ·

The matrix χχ j which defines the dynamics of at in x, is by virtue of (30)

^ G . ;)'< * • *>+ (! sj
Consequently,

(43) o l x =  o* +  «   Φ(νι, V«).

Similarly
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(44)
Here

a2x = a2
2 + u + Φ ( Τ ι , γ, ) .

, ν.) =  ζ(γ2   vi) +  ζ(νι)  

The expansions of the logarithmic derivatives Ψ, ,Ψ"1 and Ψ,Ψ * near λ =  0
are

(45)

(46) χ, = 0(λ).

As in the case of XJ , the expansions (45) and (46) determine χ2 and χ 3

uniquely, and an explicit representation for them as a sum off functions can
be obtained; here the equations for the Turin parameters acquire the following
form:

(47) 7^ =  1; aiy = —v(x, y, t);

(48) γί( =  ( 1) ί(

(49) a a =  2 α ί ω ι + α |  | —ω 2  (  1 ) ί ( J  f af) Φ  %> (γ,) 

We introduce the notation 7i = .y +  c(x, ί) ; γ 2 = >' ~ C(JC, i) +  c0 ;
c 0 =  const; ax — a2 —z(x, 0;<*i +  a 2 =  n>Cx, j ' , ί ) ;Φ  =  Φ(ν» c, c0).

From the consistency condition of the flows in x, y, t, given by (42)—(44)
and (47)—(49) we obtain

υ =  (α 2  («> (γ2) —§> (γ, ) ) ,

(50)

In the new variables the equations themselves become
cx = z~l; zx = zw—2<D(y, c, c 0) ; ^ =  2^ =  0;

Substituting in the equation for wx the expression w = (log
obtain

+  2Φζ  1 , we

(52) φ  (ζ ,

(D,J) U (Χ, £   Φ 2)  T
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(54) ct =   £ (i c*xx)  jQc% +  ± cxxx; <? =  Φ

PROPOSITION. Every solution c(x, t) of (54) determines in accordance with
(53) a solution of the KP equation that is periodic in y. If cx =  ζ ~ ι Φ 0, ζ Φ 0,
then u(x, y, t) is non singular and bounded in x.

A comparison of the constructions of solutions of the KP equation by means
of the vector analogue of the Baker—Akhiezer function and the equations for
the Turin parameters shows that (54) is "latently isomorphic" to the KdV
equation, although the isomorphism is somewhat hidden.

Now (54) is an integrable system, admitting a representation of zero
curvature in which the operators depend algebraically on an auxiliary "spectral
parameter" on an elliptic curve, in contrast to all previously known cases where
λ enters rationally. This representation has the form

(55) &* —Xsz +  I *  X3] =  0 
it =  xi(«, y, t, λ).

The representation (55) enables us to obtain the integrals of (54) in the usual
way from the expansion of XJ in the spectral parameter λ. An analysis of
general systems of the form (55) is given in the next section of the paper.

Let us consider the stationary solutions of (54) of the form u(x +  at, y),
corresponding to solutions of the Boussinesque equation. A simple substitution
(see [3] , p. 309) enables us to obtain from them a more general solution of
the KP equation of the type of a conoidal wave u(x +  axt, y +  bit).

The substitution ζ =  h~2 (c) reduces (54) (ct =  acx) to the Hamiltonian form

{ d2h _ dW (h, c)*.  —·
where Q = Φ(. + Φ 2 is an elliptic function. This system is completely integrable.
F rom (55) it follows that it admits the commutation representation

(57) χ3χ =  [χι, χ31·

Consequently, the quantity Λ(µ, λ) =  d e t ^ l   χ 3 (χ , λ)) does not depend on χ
and is an integral of the equations

Λ(µ, λ) =  det (µΐ   %3(c, λ)) =  µ2   <§>'(λ)   I(c, c0).

The corresponding integral / (c, cQ) is

(58)

The equations (54) are parametricized by the constant c0. The set of their
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stationary solutions for all c0 is isomorphic to the space of Turin parameters.
The manifold of the level surface I(c, c0) =  /  is isomorphic to the three 

dimensional Jacobi manifold (/ (Γ2) of Γ 2 , which is a two sheeted covering of the
initial elliptic curve and is given by the equation Λ(µ, λ) =  0. The intersection
of the level lines /  =  const and c0 =  const determines its odd part, the "Prym
manifold" in the Jacobian Γ2 .

Thus, the variety of the moduli of holomorphic equipped bundles of rank 2
over an elliptic curve stratifies into two Abelian Prym varieties, corresponding
to a covering of the elliptic curve.

RESULT. The conoidal waves of the KP equation of rank 2 and genus 1 can
be expressed in terms of 0 functions of two complex variables; they do not
coincide with the solutions of KP equations of genus 2 and rank 1, which can
also be expressed by (^ functions of two variables.

These assertions follow directly from results in the Appendix.
To conclude this section we give an explicit formula for the operator L&

that occurs in the commutative pair [L4, L6 ] =  0 of rank 2.
From the results of [ 11 ] , §3, it follows that the commutative ring is

uniquely determined by (42), (43), and (44), where u(x) is an arbitrary
function. There is, however, no need to solve these equations to obtain all
commutative rings of rank 2 corresponding to an elliptic curve. If we choose
c(x) as an independent functional parameter, then the formulae (51) determine
7, (x), <Xj(x), and u(x). And so the specification of c(x) uniquely determines by
means of (41) the logarithmic derivative

(59) ΨχΨ  ΐ = = χ ι ( β , λ ) =  ( 0 ι ι J J ,
where ψ =  (f1 *f2 ) ; the i/>,· are eigenfunctions of the operator L4\bj (χ, λ) —

=  f (λ) ί , ( ΐ , λ).
From (59), which indicates that φ"  χ2ϊ Φι +  X22 Φ% there follow the

recurrence relations for the higher derivatives. For example,

Ψ" =  £ ιΨι

To determine the coefficients of

(60) L i = JL + V2(x)JL  + Vl{x)jL  + Voix)

we represent L41/ / ,  by means of the succeeding formulae as
biix, X)\pt +  b2(x, λ)ι/ / / . The functions b^x, λ) and b2{x, λ) are meromorphic
in λ and depend linearly on the coefficients of Z,4. These latter can be found
from a comparison of the Laurent expansions of bi and b2 near λ =  0:

bt(z, λ) =  λ"2 +  Ο(λ); &,(*, λ) =  0(λ).

Having done this, we obtain



72 / . Μ. Krichever and S. P. Novikov

(c +  c0)  <§>  (c +  Ci)i 4z 

§6. Equations of zero curvature for algebraic sheaves
of operators

In the preceding section it was shown that the construction of finite zone
solutions of genus g = 1 and rank 2 of the KP equation leads to an integrable
system admitting a representation of zero curvature, but in which the operators
depend algebraically on a "spectral parameter", a point of an elliptic curve.

A general representation of similar type

(62) u t  v x + [u, v] =  0

indicates the compatibility of the equations

(63)

(64)

where Ρ is a point of an algebraic curve Γ of genus g with distinguished points
Px, . . ., Pm , and Φ is a matrix analogue of the Baker—Akhiezer function.

Let u(x, t, P) and υ(χ, t, P) be matrix valued functions determined, as in §4,
by their singularities at the points Ps, and by their values at the fixed point
Po, with uQ = u(x, t, Po) and υ0 — v(x, t, Po)  The singularities of Μ and υ at the
points Ps, that is, the matrix functions

««=  Σ usi (x, t) kl; vs =  2 vst (x, t) k\
i = l i = l

are polynomially dependent on k.
In the case of a curve of genus g =  0, υ and u are rational functions of k. The

equation (62), which must be satisfied for all k, is in this case clearly equivalent
to the finitely many equations obtained by equating to zero the singular parts of
w =  ut   υχ + [u, υ] at i \  , . . ., Pm and the value of w at Po.

If the genus of Γ is g > 1, then, u and υ, in addition to the singularities at Ps,
have singularities connected with the Turin parameters (7, a) and satisfying
(28)—(30). Nevertheless, as before, the equations (62) are equivalent, as before,
to equations connected only with the points Ρ χ, . . ., Pm .

PROPOSITION. The system of equations (63)and (64) is compatible if and
only if

(65) uot — vOx + [u0, v0] = 0,
(66) ut   vx +  [u, v] =  0(1) |P _ p 4 .
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These last equations mean that the function w = ut   vx + [u, υ] has no
singularities at the points Pt, . . ., Pm .

The number of matrix equations equations (65) and (66) is Μ + Ν +  1, where
Μ = Σηι5, Ν   Ση5. But the number of independent matrix valued functions
defining u and υ is Μ + Ν + 2. The indeterminacy of the system is due to its
"gauge invariance". The transformation

u  >  dxgg x + gug 1,
ν  > dtgg~x + gvg 1

where g(x, t) is an arbitrary non degenerate matrix, maps the solution set of
(65)  (66) into itself.

SKETCH OF PROOF. We consider the matrix function
w = ut ~vx [u, υ]. The equations (29), which define the dynamics of the poles
js(x, t) of Μ and v, are equivalent to the fact that the function w, which
a priori would have poles of the second order at the points ys, has actually
simple poles at these points. A direct substitution of the Laurent expansions
of u and υ near γ = ys(x, t)

V =  ̂  +  yl f V* (k   y) + 0 ((ft   γ) 2)

in w shows that as a consequence of (30) there is a relation between the
residues of the elements wab at the points 7S:

resY wab =  asb resv wal.

Hence, w is a function of the same type as u and υ and so is uniquely deter 
mined by its singularities at the poin tsPs and the value w(x, t, Po). By
hypothesis, these parameters are zero. Hence,

(67) w =  ut — vx + [u, v] =  0.

To complete the proof of the proposition it is sufficient to show that the pair
of equations for γ and a =  ( a j, . . ., a,_ l , 1) is compatible. Since, by (67),
Sp w =  0, we have

Sp u? — Sp v°x =  0 < * yxt = ytx.

To prove the compatibility of (30) for ax and a, we introduce the row vector
0 =  ( 0 i , . . . , ft) for which

(68) px =   p u \
(69) β# =   β»1 ·

The compatibility of this pair of equations is equivalent to that of the equations
for α and α,  =  βί ft"

1. The compatibility of (68) and (69) means that

(70) β(«}  νχ + [u, v]) =  0.
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By equating to zero the free term of the Laurent expansion of w at
7   ys(x, t), we find that

(71) Mj   V\  +  [U\  V1] =  W, U2] +  [V\  It»].

Thus, for (69) and (68) to be compatible it is sufficient that

(72) β([ίΛ ν*} + [u\  1;°)] =  0.

This relation no longer contains derivatives in χ and t. Let us use the following
device. I t is easy to construct a Baker—Akhiezer function Ψ(χ, t, P) such that

u(xo,t0,P)  ^u(xo,t0,P); y(;r0 t0, P) =v(x0% t0, P).

Here ΐί =  Ψ^Ψ"1 and 'υ = Ψ ,Ψ" 1 . Since for this function (69) and (68) are
compatible,

β([ίΛ ΰη +  ι?2, Ζ°]) = ο

for allx and t. F or χ =  x0, t = t0 it coincides with (72).

§7. Appendix. Algebraic families of commuting flows

In [22] a λ representation was found for the first time of the KdV equation
and all its higher analogues, that is, a representation of the whole system in the
form of equations of zero curvature of sheaves of operators

depending polynomially on the spectral parameter \ ,t = {tltt2, • • ·)',
f ι =x, t2 =  t. In the more general situation of rational sheaves of operators or
even of the algebraic sheaves defined above, an invariant separation of algebraic
families analogous to (2) for equations of KdV type can be obtained as follows.

Let

be a set of algebraic sheaves of operators where the Uj(t, P) are meromorphic
matrix valued functions of the type described earlier on an algebraic curve Γ
of genus g. When g = 0, the u, are rational functions on a Riemann sphere with
constant poles (not depending on t).

DEFINITION 1. The set of operators £,,· is called a commutative family if
for any /  and/  the operators Z,,· and Z,;  commute:

\ '"/  dtj dti '

D EF IN ITION .If there exists a matrix valued function w(t, P) algebraically
dependent on Ρ and such that
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(74) [ ^—»'( *' p)' υ '· ρ ) ] =  °·
then the commutative family is said to be algebraic.

The basic example of an algebraic family is the condition for the whole
system to be stationary with respect to one of the variables

 g = , 0 (7 =  1, 2, 3 . . . ) .
In this case w   ut. However, a priori it is not necessary to assume that w is
connected with the set (Ui, . . ., «,·, . . .). The general case can be reduced to
this.

The linear operators / ,,·=  —   ui (t, P) that occur in the algebraic family (if

they have certain properties of being H ermitian) are "finite zone or finitely
lacunary" in the sense of spectral operator theory [22] . Therefore, these
operators and the corresponding solutions of non linear equations are called
"finite zone".

In relation to any of the equations (73) labelled by (i, / ) , the remaining
equations labelled by (i, k) play the role of "higher KdV analogues". A priori
they are all partial differential equations. However, the hypothesis of being
algebraic ("of finite zone" type) (74) reduces to the fact that these equations
split into a collection of commuting systems of ordinary differential equations
each in one variable, which can be expressed explicitly in the form of a finite 
dimensional analogue of the Lax pair [74] .

PROPOSITION. If the operators Li commute with w, then they commute
among themselves, that is, ( 3) follows from (74).

For a fixed number and order of poles of w the space of the corresponding
matrices is finite dimensional, and (74) determine commuting deformations of
it. All the equations (74) have common integrals. Let Ψ(ί, Ρ) be a solution of
the equations

(75) ( ^ . _ Β | )ψ ( < ι ρ ) β θ ; Ψ(0, Ρ) =  1.

From (74) it follows that

(76) w(t, P)W(t, Ρ) =  ψ( ί , P)w(0, P).

Hence, the characteristic polynomial

(77) £>(µ, Ρ) = det (λΐ   w(t, Ρ)) =  0

does not depend on t. Its coefficients are integrals of (74).
DEFINITION 3. An algebraic family is said to be complete if the flows

defined by (74) cover the whole variety of levels of the integrals (77).
In general position, for almost all Ρ the eigenvalues of u>(0, P) are distinct and
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the curve Γ defined by (77) is an /  sheeted covering of the initial curve Γ. To
each point γ of Γ there corresponds a unique eigenvector w(0, P) with first
coordinate normalized to 1. The remaining coordinates hj(y) are meromorphic
functions on Γ. The vector valued function

Ψ(«· V) =  S hi(y)Wi(t, Ρ),

where ^{(t, P) is the z' th column of the matrix Φ(ί, Ρ), has the following
analytic properties.

1. Since Ψ(ζ\  Ρ) is meromorphic except at Ρλ, . . ., Pm , \ j/ (t,^y) is mero 
morphic except at Pftf =  1, . . . , / ) , the inverse image of P{ on Γ. The poles of
\ jj(t, y) do not depend on t, and there are g + I   1 of them, where g is the
genus of Γ.

2. From (74) and the fact that the characteristic polynomial Q does not
depend on t it follows that the eigenvalues Μ,·(ί, Ρ) for Ρ = Ps do not depend on
t. Hence, near Pj the coordinates of ψ(ί, y) have the form

2 α ) ( ^ ( ) )
ο s=0

where the \  are constants and k'1 = k'1 (7) are local parameters neari3; .
Thus, ψ(ί, γ) is a Baker—Akhiezer function of rank 1 and is uniquely deter 

mined by the divisor of the poles y^, . . ., yg+i_  t . In accordance with the
general rules, ψ(ί, y) can be expressed explicitly in terms of a 0 function. The
matrix w for φ is defined by

w(t, P)M*, y) =  µ(ν)ψ(ί, γ),

where y =  (Ρ, µ) is the inverse image of Ρ on Γ given by (77).
If we identify the matrices w and Aw A ~x, where A is a constant diagonal

matrix, then the quotient variety of the integral levels of (77) is isomorphic to
the Jacobian torus of the curve / (Γ) , while the equations (74) give rectilinear
windings on these tori (see [ 18], Ch. I ll, §3).

In the theory of equations of KdV type the higher analogues formed com 
plete algebraic families. Another example of a family of operators with two
variables tx =x + t', t2 =x — t', depending rationally on a parameter λ are of
the operators of the form (78), which are used in [23] and [24] for the theory
of chiral fields:

\ lo) Li =  —  =•  .
01% λ— a i

Examples of algebraic families, containing arbitrary numbers of operators of the
form (78) were considered by G amier [25] , 1 The starting point of [25] were
the Schlesinger equations, which describe deformations of ordinary differential

The authors are grateful to G. Flaschke and A. Newell, who brought this remarkable classic work to
their attention.
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equations that preserve the monodromy of singularities of these equations when
at  > t{ in (78).

G amier considered equations of the type (74) and of the special form:

(79) 14—τ  ̂ , Σ τ 1

x /  L σι ι Κ — α ι *• — Λ —Q
where

w ==

The family (79) is not complete. The number η of operators is substantially
smaller than the genus of the curve Γ, given by the equation

Q(k, µ) =  (

G amier used (79) to construct new integrable finite dimensional systems. The
system he discovered

t = l i = l

coincides on distinct invariant hyperplanes ξ,· =  bi η,· with the N eumann system
of harmonic oscillators "forcibly" constrained to the sphere Σξ, 2 =  1, [26] ,
(which, of course, destroys the harmonic character), and also with an
anharmonic system of oscillators [27] .
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