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§1. Introduction

In the theory non-linear equations of Korteweg-de Vries type admitting for
example, a Lax representation in the form
1) —€£=[A L] where L—éu-(x t)a—i Azg v; (z, 1)
ot b - I L) azi 9 padl| i Ll

i=0 i=0

i
dxi '

the most interesting multi-soliton and finite zone classes of exact solutions are
singled out by the following condition: there exists an operator B commuting
with L at ¢ = 0:
n 2t N a1
i
(2) (L, B]=[2 ui (z, 0) ==, > wi () —{)_;c—i]
i=0 i=0
(this restriction then holds automatically for any value of ¢#). In the “rank 1
situation” (see below) if, for example, the orders of the operators L and B are
mutually prime (and, in the matrix case, the eigenvalues of the matrices of the

0

i

b This survey is based on a lecture by the authors at the Soviet—American symposium on soliton theory
(Kiev, September 1979).
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leading coefficients of L and B are distinct), the “typical” solutions of (1)
satisfying (2) are periodic or quasi-periodic functions of x and ¢. They can be
expressed in terms of #-functions of Riemann surfaces, and the periodic
operator L has the remarkable spectral property that the Bloch spectrum is
“finite zone”.

Rapidly decreasing multi-soliton solutions (corresponding to non-reflexive
potentials) and also rational solutions of (1) are obtained (see [1], [2], and
[3]) from the periodic solutions by various limit passages. We recall the
Burchnall -Chaundy Lemma (see [4]): Suppose that two commuting ordinary
differential operators (2) are connected by an algebraic relation

3) R(L, B) =0

where R(A, u) is a polynomial with constant coefficients. A common eigen-
function of L and B

Lp=hp. By =pp v=2v@ A w

is then such that Aand u lie on the Riemann surface (3), which we denote by
the symbol I':

(4) R\, p) =0.

The pair (A, ) is thus a point PE ",

DEFINITION. The multiplicity of the eigenfunction y(x, A, u) = Y(x, P) on
the Riemann surface (that is, the dimension of the eigenspace of { when
P €T is fixed) is called the rank ! of the commuting pair L, B.

In this way there arises an /-dimensional holomorphic vector bundle with
base I'.

All the results on the commutativity relations (2) and on exact solutions of
equations of KdV type (1) obtained up to 1978, concern the rank [ = 1.

It is important to emphasize that in the theory of “one-dimensional” systems
of type (1) the condition (2) is imposed on the operator L itself in the Lax pair.
In [5] and [6] for certain physically important ‘““‘two-dimensional’ systems
of KdV type an analogue was observed of the algebraic representation (1) in

which L has the form

d
- M,
5) { . ay

Here M and A are ordinary linear differential operators in x with coefficients
depending on x, y, and ¢.

In the search for exact solutions of ‘‘two-dimensional’ systems of the form
(5) the authors introduced the following Ansatz, which reduces to a set of
conditions involving an auxiliary pair of operators L, and L, :
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{[L, Ll=0 (i=1, 2, [s—4, L =0,
(6) ]

)
[(Ly, L] =0, Lz‘@——‘M-

Here L, and L, are ordinary linear differential operators (in x alone).

In contrast to one-dimensional systems (1), the orders of the operators L,
and L, are arbitrary!

This class of solutions for commuting pairs L, and L, of rank 1 was discovered
in [7}, and for commuting pairs L; and L, of arbitrary rank in [8]} and [9].
Solutions of rank I > 1 depend already on arbitrary functions of a single
variable.

The most important example is the standard two-dimensional KdV (or KP)
equation, where

ik a3 3

3 . 3
{Wx:TDy_TUxxv

3 1
Wy:Ut~Z ny——4—

a
0—5;—+W($, Y, t)v

3
U:xxx + ‘E’ UU:xy

3 a o1 |

T V=57 (Uit 7 (60U, — U ).

Solutions of rank / = 1 (that is, when the pair L,, L, has rank 1) are, according
to [10] of the form

) Uz, y, 1)=const +2 ——log Uz +Vy -+ Zt+ W),
where 8(v,, .. .,v,) is the Riemann #-function corresponding to the Riemann

surface I' (4).

For the case / > 1 even the study of the commutation condition
[Ly, L,] =0 itself is very difficult. In [11] the problem of classifying such
pairs L, and L, for arbitrary I > 1 was solved by reducing the computation of
the coefficients to a certain Riemann problem.

In [8], [9], and [12] we developed a method by which in certain cases the
Riemann problem can be avoided and explicit formulae for the coefficients of
L, and L, of rank / >> 1 can be obtained.

§2. A multi-point vector-valued analogue of the Baker—Akhiezer function

We consider a collection of (I X /) matrix-valued functions
Yz, k) s =1, ..., m), & =(x1, « .., Z)

such that (0, k) = 1 and the matrices

9) Al (z, k) = (*ai—] ¥, (z, b)) ¥ (=, k)
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are polynomials in k.
The Af(x, k) must satisfy the relations
94} 04}

01,‘ 61j =

(10) [43, A}].
The specification of the functions A{ as polynomials in & satisfying (10)
determines W (z,k) uniquely.

Now let I" be an arbitrary non-singular Riemann surface of genus g, and
Py, ..., P, asetof points of I with local parameters z; = k"' (P) in neigh-
bourhoods of them. We select on I' an unordered set of points

() = (1, « « s Va1
and a set (@) of complex (I — 1)-vectors

ai=(ai.i7 ey a;,,_i) (i=='1, ey gl)

NOTE. The combined collection (v, a) is called the “Turin parameters”,
since according to {13] they determine uniquely an /-dimensional holomorphic
vector bundle that is stable in the sense of Mumford, of degree g/ over I’
together with the equipment, that is, the set of holomorphic sectionsn,, ..., n;.
The points v, . . ., v, are in fact the points of linear dependence of the

sections 7;, and the ¢; ; are the coefficients of the linear dependence
-1

(11) () = ,-‘le i, M; (V1)

We consider the following problem: to find a vector-valued function
Y(x, P) on I that is meromorphic except at P, . . ., P,, and such that:

1. the poles of Y(x, P)= (Y, . . ., Y;) are at the points v, and the residues
Y;(x, P) satisfy these relations
(12) resy, §; (&, P) =ay, jresy, i (x, pP),

where ¢; ; and 7; do not depend on x;
2. Y(x, P) can be expanded in a neighbourhood of P, as

(13) y(z, P)= (23 L(@) k) Y, (=, k).

When [ = 1 the “bare functions” ¥, are exponentials and  is the m-point
scalar analogue to the classical Baker—Akhiezer function.

Following the scheme of [11], which is based on the technique of [14] and
[{15], we obtain the general result.

THEOREM. The dimension of the linear space of functions satisfying the
requirements listed for fixed x is I. To determine  uniquely it is sufficient, for
example, to specify its value at one point. The determination of Y reduces to a
system of linear singular integral equations on small contours (the boundaries
of neighbourhoods of the points P, , . . ., P,, ). The integral equations are solved
separately for each x; the condition (12) on the residues and the specification
of V(x, Py) uniquely distinguishes the required vector-valued function y(x, P)
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in the solution space of the singular equations.

We call a matrix ¥(x, P) whose rows are linearly independent solutions of
the problem (12)—(13) a complete Baker—Akhiezer matrix-valued function.
According to the theorem, ¥(x, P) is uniquely determined to within
multiplication by a non-degenerate matrix-valued function G(x):

V(z, P)= Gx)¥(z, P).

Apart from the Turin parameters (v, o) the arbitrariness of the construction
reduces to the choice of the matrix ¥,.

EXAMPLE 1.(see [8],(9]). THE KP EQUATION AND COMMUTING
OPERATORS. We consider the single-point Baker—Akhiezer vector-valued
function Y(x, y, ¢, P) with an essentially singular point P, on the Riemann
surface I' of genus g. It is determined by the Turin parameters (v, «) and the
matrix Wy (x, v, t, k). When /=1 it is the classical Clebsch—Gordon—Baker
function [16].

a) Let I = 2. We choose the matrix functions A4;(x, y, ¢, k) (i = 1, 2, 3), which
define ¥, by (1), in the form

A=(20 o)i 4=(5 )

Uy u
4 —% k4
3= ku  u? Ly Uy
g fu W xx Bz ]
2 2 4

4 ’
where u = u(x, y, t).

From the consistency equations (10)if follows that u = u(x, ) does not
depend on y and satisfies the KdV equation:

Ay = Uy, — buu,.

b) Let /= 3. We choose 4; in the form

R
A= , , A3=(0 k 0),

u ¢] 1
A E—w-tuy ——-% 0
2:
u u
— Wyt Uxx E—w+ ; 5

From (10) it follows that u# = u(x, y) does not deﬁend on £ and is a solution of
the Boussinesque equation

3uyy + Urexx — 6(uux)x = (.
¢) When I > 3, the matrices A;(x, y, f, k) are chosen in the form
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010 ...0
0N L [ooto 0
'11___(00 0 0+x, =401 - . . .. ... :
" v 0 00 o1

k0 ... 0

Az:iz—*“az, A3:7Ac3+a3,
where a, and a; are (I X [)-matrices not depending on k, whose elements are
differential polynomials on uy, ..., u;_,.

IMPORTANT PROPOSITION. In all the preceding cases the Baker—Akhiezer
vector-valued function , which in a neighbourhood of P, has the form

14 v oyt D) =(2 5@ v OF) Yolk, y, 1, k),
B=(1, 0, ..., 0); &=E", ..., &),
is annihilated by the pair of scalar operators (7):

a a
(15) (ag—M)w=(5—4)v=0.
where 5 5 5 )
M=—5+U, A=55+5 U5 +W.

The coefficients.of U and W do not depend on P and are determined by

1=2: U=u(z, t)—2%2,
1>3: U= —2t).

CONCLUSION. U(x, y, t) is a solution of the KP equation

1
(16) T U= {Ui= 7 (UUa= U}

Thus, we obtain a class of KP solutions depending on the data
{Fy P07 Yy &y Uoy « ¢ o ul—Z}'

when ! =2, uq(x, t) is a solution of the usual KdV equation.

A vector-valued function Y(x, 0, 0, P) = y(x, P) depending on a single
variable x occurred in [11]. Its components consist of / common eigen-
functions of a pair of commuting scalar ordinary differential operators (in x):

{L‘Ipq(.’l:, P):K(P)‘Pq(xv P)w
I:z‘l’q(xv P)=p (P) yq(z, P),

where A and p are arbitrary algebraic functions on the surface I', having a single
pole at Py of order m and n. The orders of L, and L, are m! and nl, respectively.
Thus, a commuting ring of operators of rank / can be classified by the surface

T, the point P, with a local parameter, the set of Turin parameters v;, . . ., ¥,
(ay, - . ., 0g), and the arbitrary functions ue(x), . . ., #;_,(x). An operator L in
this ring is given by an arbitrary algebraic function A(P) with a single pole at Py.

(17)
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We discuss later the problem of how to calculate the coefficients of these
operators effectively (see [9], [12]).

All the relations (6) follow immediately from (15) and (17). And so the
solutions we have found of the KP equation of rank / correspond to the Ansatz

(6).

§3. The two-dimensional Schrodinger operator and two-point
functions of Baker—Akhiezer type with separate variables

The problem of a natural generalization of equations of Lax type (1) to the
case of operators L that depend essentially on several spatial variables is non-
trivial. We note that for equations of KP type the corresponding operator

contains % only to the first degree. It is known that for a potential in general

position u(x),x =(x,, ..., x,),n > 1, there is no operator that “almost
commutes” with L = Au, that is, an operator A such that [L, 4] is
multiplication by a function. This means that there are no non-trivial dynamical

systems of the form L = [A4, L], preserving the whole spectrum of the operator
L. When n > 1, the eigenvalues of L are infinitely degenerate. Apparently, to
recover L it is sufficient to be given the “inverse problem data’ only for a single
energy value; for example, for £ = 0.

Deformations preserving the spectral characteristics for the single energy value
E = ( are described by an equation of the form

(18) S 14, L1+ BL,

where B is a differential operator. Such equations were first considered in [17].
The inverse problem for the two-dimensional Schrodinger operator in a
magnetic field with zero flux, that is, with periodic (or quasi-periodic)
coefficients, was solved in [18] by using the data for a single energy level, in a
class of operators analogous in a certain sense to finite-zone operators.
We recall the basic arguments leading to a statement of the inverse problem for
the recovery of the operator

m=(i1-2—a,)"+ (ia—ay—A,)2+u(x, y).

Suppose that the potential u(x, y) and the vector potentials 4, (x, y) and
A, (x, y) are periodic in x and y with periods T, and T,. For the equation
Hy = EYy it is natural to select the Bloch eigenfunctions as those of the operator
of displacement by the period

,lp (J) + Th y) — eimT:]p (.2", y),

P (z,y+Ty) = ety (, y).
The numbers p; and p, are called quasimomenta. In three-dimensional space
the simultaneous eigenvalues of the monodromy operators T‘ and T2 and of
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the operator H form a two-dimensional submanifold. Its points are sets

Ay, A, E for which there exist solutions of the equation Hy = E such that
Y+ Ty, v)=A P, y), Ylx, v+ T,) =M Y(x, ¥). We say that H has good
analytic properties if this manifold M? for complex values of A;, \,, and E, is a
two-dimensional analytic submanifold. Then the intersection of M? with the
surface E = E, is an analytic curve $(E.), the so-called “complex Fermi
surface”.

H is said to be a finite-zone operator if the genus N (£,) is finite. In this
case we can clarify the asymptotic behaviour of the Bloch functions for large
values of the quasimomenta in the non-physical domain of complex p, and
P, . In this domain they must be subject to p? + p2 = O(1). Hence, the curve

R(E,o) is compactified by two points at infinity P, and P,, in a neighbour-
hood of which the Bloch functions have the following asymptotic expansions:

18

¢:ek, (v im( ) El (x,y) kl—l) ~¢haz,
Q

T

p=ehe oW (3 L (2, y) kyt) ~ et
=0

where k7! and ;! are local coordinates in neighbourhoods of P, and P, .
Except at the points P, and P,, the function Y(x, y, P), P €R,is meromorphic
and has g poles v,,. . ., Ve The problem of recovering H from the curve 3 with
two distinguished points P, and P, and from the set v, , . . ., ¥, was solved in
[18]. We draw attention to the important fact that the asymptotic behaviour
of Y near the points P; and P, depends on the distinct variables z and z.
Functions of Baker—Akhiezer type with this property are called “two-point
functions with separate variables”. The following formulae hold (for rank
I1=1):

A;—_‘A1+ LAZ:‘: —%log e(U1Z+U2i+V1+W) :
z OWiz4+-Uys+Vy+ W)
g2

—log0 (U,z-+U,z+ W).
0202

u’(xv y):

The constant vectors U; and V; depend only on P; and P,, but W is determined
by the divisorvy,, .. ., 7¢- Generally speaking, the operator 4 is not Hermitian.
The choice of the parameters R, Py, P2, Y1, - - -» Vg» for which H is
Hermitian was obtained in [19].

The condition on H to be a finite-zone operator is not stable under a variation
of the energy level. This means that if the genus of the complex Fermi-surface-
curve R(E) of the Bloch functions satisfying the equation Hy = E is finite
for one value E = E,, then it becomes infinite even for neighbouring values. In
the theory of the KdV equation a natural generalization of the language of
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theta-functions enables us to solve the inverse problem for operators whose
Bloch eigenfunction is defined on a hyperelliptic curve of infinite genus [20].
Because of the instability of the finite-zone property, to develop a complete
theory of the two-dimensional Schrodinger operator it is necessary to generalize
the above construction to the case of infinite genus. The first task is to elucidate
the asymptotic behaviour and the disposition of the poles of the Bloch functions
for quasimomenta at a fixed energy value. We note that the corresponding
asymptotic behaviour must be considered in the non-physical domain of complex
values of the quasimomenta.

The following algebraic condition for the two-dimensional Schrodinger
operator, which distinguishes finite-zone solutions of equations of Lax type, is
an analogue of (2). Suppose that there are linear operators L; and L, such that
the commutators have the form

(19) [H7 Ll] == Bl}[’ [L17 Lg] = B3H,

where B,, B, , and B are differential operators.
The simultaneous eigenvalues of the operators

(20) Hy =0, Lap=2rpp
are connected by the algebraic relation
(21) R(;"lv }\'2) = 07

where R(, u) is a polynomial in two variables.

As in the theory of finite-zone solutions of equations of Lax type and their
two-dimensional generalizations (6), we introduce the concept of the rank of
the algebra of operators (19), which is defined as the multiplicity of the eigen-
values, that is, the number of linearly independent solutions of the equations
(20). For an algebra of rank /, the simultaneous eigenfunctions form an
/-dimensional holomorphic bundle over the curve I' given by (21). The operators
H constructed above correspond to algebras of rank 1.

It would be interesting to investigate the interrelation of the concepts of
rank and the “generality of position™ for an operator H with periodic
coefficients. For finite-zone operators this interrelation is as follows. For fixed
values of the orders of L; and L, the number of parameters determining the
algebraic relation (3) for algebras of rank 1 is greater than the number of para-
meters determining these relations for algebras of rank ! > 1. However, in
addition to the parameters specifying I', an algebra of rank ! depends on
2(1 — 1) arbitrary functions, hence, algebras of rank / > 1 are, generally speaking,
not degenerations of algebras of rank [/ = 1.

We now give constructions of finite-zone operators H of rank /. Let
¥, (z, k) and ¥, (Z, k) be matrix-valued functions defined by the equations



62 1. M, Krichever and S. P. Novikov

{ 2 ¥ (2 )= A1z B) Vi (2, B),

22 - - _
(22) a—a_qu(z., k)= A2 (z, k) ¥ (2, k),
where
00 k2+vo
0 10...00 10 »
0 o01... 0 0 010 ... vy
(23) A= e T A =y '
0 0 0
00 10 -
kytup U2 0 00 01 oo

W.(0, k) = 1 and u;(z) and v;(Z) are arbitrary functions.

We consider the two-point Baker—Akhiezer vector-valued function y(z, Z, P)
on the Riemann surface I" of genus g, corresponding to Turin parameters
(v, «) and having the following form in a neighbourhood of the two distinguished
points P, and P, :

@) 005 = (3 8 D A Vi (2 ),
(25) v 5 P =(S 8 6 k) G .

We normalize it by the following condition: £, =(1, 0,0, ..., 0);
£= (E(l)’ e E(l);§= ({(l)) e g—(l).

Here k;'=1#kz* (P), e=1, or 2, are local parameters in neighbourhoods of
P, and P,.

PROPOSITION. The Baker—Akhiezer vector-valued function satisfies the
condition HY = 0, where

H=—-6—2.—+v(z, 2) —i-}—u(z, 2)
020z 0z

is the two-dimensional Schrodinger operator with scalar coefficients

rmb=w§%wW@,

(26) - -
u(z,z)= _2 ED (z, z).
0z

Only Hermitian operators H which for a choice of gauge correspond to the
case of a real ““magnetic field”” B = 9v/0z and “‘electric potential”
U = 2u — dv/0Z are physically meaningful.

As was mentioned above, the conditions on the parameters of our construction
of operators H of rank 1 corresponding to the operators being Hermitian, were
obtained in [19]. Following the ideas there we now give similar conditions for
1=2,

We consider curves I'' with an anti-holomorphic involution o: I' > I
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interchanging the distinguished points, o(P, ) =P,, and the local parameters
k' (o(k;) = —k,). We define an Abelian differential w of the third kind with
simple poles at P, and P, and with residues *1, respectively. Such a differential
exists and is determined to within the addition of an arbitrary holomorphic
differential.
We choose such a differential w, w(P) =— &(o(P)), that is odd with respect to
o. The dimension of the space of such differentials is equal to the dimension of
the odd holomorphic differentials w, (P). Since multiplication by i carries even
differentials into odd ones, this real dimension is equal to g. We denote by
Y15 - - - Vog the zeros of w(P). Since w is odd, the set of points () is invariant
under g, o(y;) = yo(i), where (i) is a corresponding permutation of the indices.
EXAMPLE. Let I be the hyperelliptic curve in C? given by

28
=211 =2,

=
where the set of complex numbers A; is invariant under the involution
A=A and TN = 1.

1

An anti-holomorphic involution on I' interchanging the points
P, =0, P, =00, has the form

P=(y, 7\)+0(P)=(—K_gﬁv %)

The Abelian differentials with poles at P, and P, have the form
a G na
W= — + Z Ci——
i=0
Where the ¢; are constants. The condition on w to be odd means that

C‘i :—cg—l—i'

Thus, v,, ..., Y,g are the zeros of the function
g-1
et (Zen
i=0
onTl.

With each point y; we associate a number «; (we recall that / = 2) for which
o; =0l

In addition to the choice of Turin parameters (v, ), the vector-valued function
¥(z, Z, P) was defined by two functions ug(z) and vy (Z). Let ug(z) = — vy (2).

PROPOSITION. These conditions on the parameters of the problem dist-
inguish Hermitian operators H.

SKETCH OF PROOF. We consider the scalar function

®(z, z, P) = Y(z, 2, P)p*(z, z, o(P))
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(the dagger denotes Hermitian conjugation). From (23) for/ =2 and
o (z) =—ug (2) it easily follows that
¥ilz, H¥E —F) = 1.

2

Hence, v(z, Z, P) is a meromorphic function on the whole curve I". From the
fact that &; = o (li) it follows that the poles of ¢ at the points v; are simple. By
definition of v, . . ., Y24 the differential ¢(z, z, P) w(P) has a total of two
poles at P; and P, . Since the sum of its residues is zero, ¢(z, Z, P;) = ¢(z, Z, P,).
Calculating the values of v at P; and P, we obtain

F 1)

¢ (2, Z—1P1)= 0 1 ¢ (2, z—v Py = :)n'

Hence, by (26), B(z, Z) is real. It is easy to see that V is also real.
§4. Deformations of holomorphic bundles

As we have said above, in the general case the problem of calculating the
vector analogue of the Baker—Akhiezer function ¥ reduces to a system of
singular integral equations equivalent to the Riemann problem. However, we
do not need the function ¥. In the construction of the coefficients of linear
operators and solutions of corresponding non-linear equations, the Riemann
problem can sometimes be avoided. This possibility is based on the study of
conditions on the Turin parameters (7, ®) generalizing rectilinear windings of
Jacobi tori for rank 1.

As before, let I be a non-singular algebraic curve of genus g with distinguished
points Py, . . ., P,, and fixed local parameters k! (P) in neighbourhoods of them.
We consider the logarithmic derivative of the Baker—Akhiezer function ¥(x, P),
which was defined in the preceding section from the “‘bare functions” ¥, (x, k)
and the Turin parameters (y°, o), the matrix functions X;(x, P) being such
that

(27) (—ﬁi_,-_Xi(x’ P)) ¥ (x, P)=0.

The functions x;(x, P) are meromorphic on I', having polesat P, ..., P, .In
addition, the x;(x, P) have g/ simple poles v, (x), . . ., 'ygl(x). The rank of the
matrix of residues of the x; at the points 7 is 1. Thus, at the point vy, we define
the (I — 1)-vectors ag;(x) (=1, .. ., D) so that the following relations hold for
the matrix elements x%2 :

!
(28) resy_ X?b = OLgp TSy XS

The parameters y(x) and a(x) satisfy the “deformation” equations

(29) G = —SPXi,0 (@),
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i 1

a aj 1 o

(30) o= — S aat by (Dt ).
a=1 a=1

where X; , and x; ; are the coefficients of the expansion of x;(x, P) in a

Laurent series in the neighbourhood of the pole vy = v,(x) (the index s is here

omitted for the sake of brevity):
(31) i (@, P) =740 (@) (k—7)1 4%, 1 () + O (k—1).

We denote by u;,(x, k) matrices depending polynomially on & that are equal
to the singularities of x; at P;. This means that

(32) xi(®, P)— wilx, k(P))

is a regular function near P;.

PROPOSITION. For any functions u;,(x, k) depending polynomially on k
and any vy(x) and o(x) there exists a matrix-valued function x;(x, P) satisfying
(28) and (32). It is uniquely determined by its value at any Py, x;(x, Py) =
=Ujo (X)

The arbitrariness in the definition of x;(x, P) is connected with the fact that
the matrix analogue of the Baker—Akhiezer function is determined by its
singularities at the points P,, . . ., P,, and by the Turin parameters only to
within multiplication by a non-degenerate matrix.

The proof reduces to a simple calculation using the Riemann—Roch theorem
of the dimension of the space of functions having simple poles at the points v,
and poles of multiplicity »; at the points P;. This dimension is equal to the
number of inhomogeneous linear equations equivalent to (28) and (32) and to
the condition

xi(®, Po) = u;o(x).

Let x;(x, P) be the matrix-valued function defined by the parameters
{‘Y(‘z)v a’(x)i usi(x'l k), uio(x)}'

PROPOSITION. The conditions (29) and (30) are necessary and sufficient
for the solution of (27), normalized by the condition ¥(0, P)=1, to bea
Baker—Akhiezer function.

For brevity we omit the index i, that is, we assume that ¥(x, P) depends
only on the single parameter x.

PROOF. First of all, we prove that (29) and (30) are equivalent to ¥(x, P)
being holomorphic at the points ;).

Suppose that ¥(x, P) is holomorphic at y = 7;(x). Then for any column W/
of ¥ we have

1

(33) E aa‘ptz:()v o= 11 q;j= (lrh ey ‘Pl)t»

a=1
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as follows by equating to zero the coefficient of (kK — ) ™! in (27). In addition,
(34) a—i Yo = Z, X Py - Z xGE S 6"”’ )
Differentiating (33) we obtain

Z aax\l)a‘{_ 2 aa‘pax_f_ Z Vx5~ ak ~-=0

or, bearing (33) and (34) in mind,
a (24
(35) 2( axlla—l'aa(z X'l'blL +X )+'\’x al'_j=

= 2 (aax + Z abxll)ﬂ) 'll)a :0.
a b

The condition (29) is a simple consequence of the fact that the logarithmic
derivative of det W is equal to the trace of x(x, P). Since the coefficients of
¥, in (33) and (35) must be proportional, (30) holds.

Now we prove the sufficiency of (29) and (30). We consider the matrix

%= (0:8) g™t +gxg ™",
which is gauge equivalent to x, where

{ [o 2% [« 23 (e 2] 1 ‘
k—vy k—x E—y Ifk—y
0 0 . 0 1 0
8= )
0 1 no, 0 0
v 1 0 0
/0 i .0 0 1
0 .0 1 0
git=1 . ... ... ...
0 1 0. 0 0
k—y —oy_; — 0y — 0Oy

A direct verification shows that if (29) and (30) hold, then’;( has no
singularities at k = . Hence, the solution of

d =~ ~=

has no singularities. But then neither has ¥ = g =1 ¥, which satisfies (27).

To complete the proof we find the form of ¥ in a neighbourhood of the
singular point P;. To do this we raise the following Riemann problem:

To find a matrix-valued function ¥ (x, k) that is holomorphic in k everywhere

except in a neighbourhood of k¥ = o0 and can be represented near k = o0 in the
form

(36) ¥,(z, k) = R(z, O)¥(z, k'(P)),
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where the matrix-valued function
Rz, k)= & (z) k™
1=0

is regular near k = oo,
This problem has a unique solution such that ¥ (x, 0) = 1.
LEMMA. The logarithmic derivative of ¥, is the polynomial

(_d_ IIIS) Yol %i wy; (z) k.

dx
i=1

The lemma is proved by noting that ( gd; ‘1’3) W' has no singularities other

than k = oo, and by (36) and the definition of ¥ has a pole of order n, at
k = oo,

Multiplying (36) by R ~! on the left we find that ¥ can be represented in
the form (13) near P, that is, it is a matrix analogue of the Baker—Akhiezer
function.

§5. Finite-zone solutions of the KP equation of rank 2
and genus 1

In this section we give explicit formulae for equations for the Turin para-
meters corresponding to finite-zone solutions of the KP equations of rank 2 and
genus 1, that is, KP solutions connected with commuting operators L, and Lg
of orders 4 and 6. In general position, such operators are linked by the relations

(37) Lﬁ = 4L§ + g1ly + g9

and are determined by the constants g and g, , the Turin parameters (v, @) on
the elliptic curve I" defined by (37), and by a single arbitrary function
uo(x) ([111).

In this case the Turin parameters are a pair of points v, , v, on the elliptic
curve, with a complex number a;; = oy, a,, = o, given at each of them.

According to §1, Example 1, the KP solution corresponding to the
commutative algebra generated by L4 and L is determined by the set (v, )
and an arbitrary solution ug(x, ¢) of the KdV equation.

The logarithmic derivative of the matrix analogue of the Baker—Akhiezer
function ¥(x, y, t, P) corresponding to this solution has the following form
near A = 0:

0 1

(38) ()W i=y(ay, . N=(, "y o) FOO),

where A = k! is a parameter on the elliptic curve.

The form of the singularity of x; (x, y, ¢, A) in the neighbourhood of A =0
and the specification of the parameters v, , v,, &; , &, determines x, uniquely.
Let us find its explicit form.
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Any elliptic function can be represented in terms of the Weierstrass
¢-function [21]. We are looking for x; in the form

¥1 = AL — 1) + BLA — vo) + CL(A) + D,

where A, B, C, and D are matrices that do not depend on A. The Weierstrass
zeta-function is given by the series

L) =r1+ E 0 [(h— Omn) ! + Omn + A0l Opp = mo +-no,
m, nE

or by the relation {'(A) = —¢(A) . The Weierstrass (A)-function has a unique
pole of the second order at A = 0. In contrast to @(A) ¢{(A) is not doubly-
periodic.

A necessary and sufficient condition for x; to be an elliptic function is

(39) A+B+C=0.
From (38) it follows that C = ((1) 8) By the definition of x, , its residues at

v: and 7, are of rank 1, that is,

a=(2 ) B=(35 5).

0 0
2% 1

Thus, A= (az-—ai)_‘( ), B=(a;—a,)* (22 O). The free term in (38)

1
is (_2 (1)) Hence,
(40) D—AL(v)— Bt (v =(_0 o).
Putting everything together, we obtain
@) =g (o 1) 50~ s (5, 1) 50—+
+(5 o) +D,

where D is defined by (40). From (29),

{ Viz= —Sp A= (ot;— a,)"?,

42
(42) Yox = —Sp B=(ay—ay)™".

The matrix x, 1 which defines the dynamics of «; in x, is by virtue of (30)

(o, 1) S (] §) T +D.

Ap—0Cg \ O

Consequently,
(43) e =i + u — D(yy, v2)

Similarly,
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(44) oz = ai + u + D(y;, y2).

Here
D(v1, v2) = L(y2 — v1) + &(v1) — L(v2)-

The expansions of the logarithmic derivatives ¥, ¥ ~*and ¥, ¥ ! nearA =0

are
(kO o
(45) e=Y,¥1=(; o) +00), A=k,
/ © L
(46) xazwt‘lfﬂ:( uk )+0<x>.
kz’—T—"‘ﬁ)z — Wy

As in the case of x, , the expansions (45) and (46) determine ¥, and x;
uniquely, and an explicit representation for them as a sum of ¢-functions can
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be obtained; here the equations for the Turin parameters acquire the following

form:
(47) '\’iyzi; aiyz—v(x’ Y, 1);

(48) = (—1) (et ) (s — ) s

u

(49) s = —2a40 +af =0y — (— 1) (5 + af) O—g (v2)-

We introduce the notation y; =y +c(x, t);v, =y —c(x, t) t ¢co;

co =const; oy —oy =z(x, £); 0 o, =wlx, y, 1); =80, ¢, ¢cp).
From the consistency condition of the flows in x, y, ¢, given by (42)—(44)

and (47)—(49) we obtain
o v={(A— ) (€ (v2) — ¢ (v1))s

Uy

50) 1 o= —EE 5O (1) —© () (e — ),

l

L mzz(’)ix—i;‘ +@ (V) +9 (v2).

In the new variables the equations themselves become
Cx==2"Y z,=2w—20(y, ¢, ¢); ¢y=12,=0;
¢ =2z"'(z>—@);

= 2 2
(01) U(I, Y, t)z_af_'a;_l_q)(xv t):'—'z-;w +CP('1:7 t);
2 2
| we= -2 T+ 20 (x, 1),
Substituting in the equation for w, the expression w = (log z), + 2®z ™!, we
obtain
14 3c2 1
(52) @ (2, 1) =—7z" + Qci—5 —2%,
cix—%

+ 2eyy e} (D, — DY) — 222

2 c
c2 x

(93) u(z, y, H) =



70 I. M. Krichever and S. P. Nolikov

(54) ct:'gc?:;(/l c:m ch+ % Cxxxs 0 CD “]"ch

PROPOSITION. Every solution c(x, t) of (54) determines in accordance with
(53) a solution of the KP equation that is periodicin y. If ¢, =z 1#£0,z#0,
then u(x, y, t) is non-singular and bounded in x.

A comparison of the constructions of solutions of the KP equation by means
of the vector analogue of the Baker—Akhiezer function and the equations for
the Turin parameters shows that (54) is “latently isomorphic” to the KdV
equation, although the isomorphism is somewhat hidden.

Now (54) is an integrable system, admitting a representation of zero
curvature in which the operators depend algebraically on an auxiliary *“‘spectral
parameter’” on an elliptic curve, in contrast to all previously known cases where
A enters rationally. This representation has the form

(55) Y1t — Asx T [Xiy %3] = 0,
X = Xi(x’ Y, t, A)'
The representation (55) enables us to obtain the integrals of (54) in the usual
way from the expansion of x; in the spectral parameter A. An analysis of
general systems of the form (55) is given in the next section of the paper.

Let us consider the stationary solutions of (54) of the form u(x + at, y),
corresponding to solutions of the Boussinesque equation. A simple substitution
(see [3], p. 309) enables us to obtain from them a more general solution of
the KP equation of the type of a conoidal wave u(x + a; ¢, y + b, ¢).

The substitution z = k=% (c) reduces (54) (¢, = ac, ) to the Hamiltonian form

d*h AW (h, ©)
{dc2 - T e
W= —-—Q(c co)hz—l—ah"z——h"

where @ = &, + ®? is an elliptic function. This system is completely integrable.
From (55) it follows that it admits the commutation representation

(57) Ysx = X1, %al-

Consequently, the quantity R(u, N) = det(ul —x5(x, A)) does not depend on x
and is an integral of the equations

R(u, &) = det (u1 — xs(c, A) = p? — ') — I, co).

The corresponding integral I(c, cy) is

(56)

(58) I, c)= —5 (L2 gy + 02

o al—a

(=2

gowz)——) +
O (V) — 5 @ (V) .

a—a

The equations (54) are parametricized by the constant ¢y . The set of their
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stationary solutions for all ¢, is isomorphic to the space of Turin parameters.

The manifold of the level surface I(c, cy) =1 is isomorphic to the three-
dimensional Jacobi manifold (J(T',) of T",, which is a two-sheeted covering of the
initial elliptic curve and is given by the equation R(u, A) = 0. The intersection
of the level lines I = const and ¢y = const determines its odd part, the “Prym
manifold” in the Jacobian I',.

Thus, the variety of the moduli of holomorphic equipped bundles of rank 2
over an elliptic curve stratifies into two Abelian Prym varieties, corresponding
to a covering of the elliptic curve.

RESULT. The conoidal waves of the KP equation of rank 2 and genus 1 can
be expressed in terms of 8-functions of two complex variables; they do not
coincide with the solutions of KP equations of genus 2 and rank 1, which can
also be expressed by #-functions of {wo variables.

These assertions follow directly from results in the Appendix.

To conclude this section we give an explicit formula for the operator L4
that occurs in the commutative pair [L4, Lg] = 0 of rank 2.

From the results of [11], §3, it follows that the commutative ring is
uniquely determined by (42), (43), and (44), where u(x) is an arbitrary
function. There is, however, no need to solve these equations to obtain all
commutative rings of rank 2 corresponding to an elliptic curve. If we choose
¢(x) as an independent functional parameter, then the formulae (51) determine
v;(x), @;(x), and u(x). And so the specification of c(x) uniquely determines by
means of (41) the logarithmic derivative

. _ 0 1

(59) v =@ =, )

where ¥ — ($1 :ﬁ” ) ; the y; are eigenfunctions of the operator L,y; (z, )=
1x 2x

— @ (M) p; (2, M)
From (59), which indicates that ;" = x,; ¥; + X22 ¥}, there follow the
recurrence relations for the higher derivatives. For example,

P o= %yyP: + Xa¥i + YooWi T+ Kool 4 YaoWhi)-

To determine the coefficients of
d4 d2 d
(60) Ly = o 02 (2) 5o 01 (2) 57 +-v (2)

T

we represent L, y; by means of the succeeding formulae as

by (x, NY; + by (x, MY, The functions b, (x, N) and b, (x, A) are meromorphic
in A and depend linearly on the coefficients of L,. These latter can be found
from a comparison of the Laurent expansions of b, and b, near A= 0:

bi(z, A) =A"2 4 O(A);  bo(z, ) = O().

Having done this, we obtain
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Li=L2 4 [ (c+co) —§ (4 ¢0)) me— (c+ o) — @ (c+ e);
d2

(61)

§6. Equations of zero curvature for algebraic sheaves
of operators

In the preceding section it was shown that the construction of finite-zone
solutions of genus g = 1 and rank 2 of the KP equation leads to an integrable
system admitting a representation of zero curvature, but in which the operators
depend algebraically on a ‘“‘spectral parameter”, a point of an elliptic curve.

A general representation of similar type

(62) up — vy + [u, 1] =0
indicates the compatibility of the equations

(63) (Z—ut, /) ¥z, t, P)=0,

(64) (& —v(@t, P)) ¥ (2, t, P) ==,

where P is a point of an algebraic curve I'' of genus g with distinguished points
Py, ..., P, and ¥is a matrix analogue of the Baker—Akhiezer function.

Let u(x, ¢t, P) and v(x, ¢, P) be matrix-valued functions determined, as in §4,
by their singularities at the points P, and by their values at the fixed point
Py, with uy =u(x, t, Py) and vy = v(x, t, Py). The singularities of u and v at the
points P, that is, the matrix functions

us=~21 usi (2, ) ki; Usz_Ei vs; (z, ) ki,
are polynomially dependent on k.

In the case of a curve of genus g = 0, v and u are rational functions of k. The
equation (62), which must be satisfied for all k, is in this case clearly equivalent
to the finitely many equations obtained by equating to zero the singular parts of
w=u, ~v, +[u v] at Py, ..., P, and the value of w at P,. '

If the genus of " is g 2 1, then, u and v, in addition to the singularities at P,
have singularities connected with the Turin parameters (v, ) and satisfying
(28)—(30). Nevertheless, as before, the equations (62) are equivalent, as before,
to equations connected only with the points Py, .. ., P, .

PROPOSITION. The system of equations (63) and (64) is compatible if and
only if

(65) Uor — Vox + [Uo, vo] =0,

(66) Uy — Uy + [u1 U] = 0(1) ,P=Ps'
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These last equations mean that the function w =u, —v, + [, v] has no
singularities at the points Py, .. ., P, .

The number of matrix equations equations (65) and (66) isM + N + 1, where
M =Zmg, N = Zn,. But the number of independent matrix valued functions
defining u and v is M + N + 2. The indeterminacy of the system is due to its
“gauge invariance”. The transformation

u —d.gg™t + gug,
v —>0,g¢7" + gug™!

where g(x, ) is an arbitrary non-degenerate matrix, maps the solution set of
(65)—(66) into itself.

SKETCH OF PROOF. We consider the matrix function
w =u, — v, [u, v]. The equations (29), which define the dynamics of the poles
v, (x, t) of u and v, are equivalent to the fact that the function w, which
a priori would have poles of the second order at the points 7, has actually
simple poles at these points. A direct substitution of the Laurent expansions
of u and v near y =y, (x, 1)

ut

u= g L ut o (k=) + O (k—)?),
0
v=gs vt v (k=) + 0 (k—7)?)
in w shows that as a consequence of (30) there is a relation between the
residues of the elements w?® at the points v, :
resy, w? = o, resy, wel,

Hence, w is a function of the same type as «# and v and so is uniquely deter-
mined by its singularities at the points P; and the value w(x, ¢, Py). By
hypothesis, these parameters are zero. Hence,

(67) w = u; — vy + [u, v] =0.
To complete the proof of the proposition it is sufficient to show that the pair
of equations for y and a=(a;, . . ., &_,, 1) is compatible. Since, by (67),

Sp w = 0, we have
Spul —Sp1f =0 > Vut = Vta
To prove the compatibility of (30) for &, and &, we introduce the row vector
B=(B, ..., B) for which
(68) B = —Pul,
(69) B; = —Put.

The compatibility of this pair of equations is equivalent to that of the equations
for « and oy = B; B . The compatibility of (68) and (69) means that

(70) Blut — vk + [u, v]) = 0.
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By equating to zero the free term of the Laurent expansion of w at
Y = 7,(x, t), we find that

(71) wb — vt [, vl =, w?l 4 [, ull.
Thus, for (69) and (68) to be compatible it is sufficient that
(72) B(lu®, vl + [u?, v°)] = 0.

This relation no longer contains derivatives in x and ¢. Let us use the following
device. It is easy to construct a Baker—Akhiezer function ¥(x, ¢, P) such that

J(xo’ ty, P) =u(xg, 5, P); ;(xo Lo, P) =0 (xo, toy P)e

~

Herew = ¥, ¥ and ¥ = 6, ¥, Since for this function (69) and (68) are

X
compatible,

B (100, u?l + 12, u®) =0
forallx and ¢. For x = x,, t = ¢, it coincides with (72).
§7. Appendix. Algebraic families of commuting flows

In [22] a A-representation was found for the first time of the KdV equation
and all its higher analogues, that is, a representation of the whole system in the
form of equations of zero curvature of sheaves of operators

7} . a
[Tﬁi— U; (t, /u), 'a—tj'—le (t, ;\)] =0.

depending polynomially on the spectral parameter A,z = (¢4, #5, .. .);

t; =x, t, =t. In the more general situation of rational sheaves of operators or

even of the algebraic sheaves defined above, an invariant separation of algebraic

families analogous to (2) for equations of KdV type can be obtained as follows.
Let

a
Li=5m it P)

I

be a set of algebraic sheaves of operators where the u;(¢, P) are meromorphic
matrix-valued functions of the type described earlier on an algebraic curve I’
of genus g. When g = 0, the u; are rational functions on a Riemann sphere with
constant poles (not depending on ¢).

DEFINITION 1. The set of operators L; is called a commutative family if
for any i and j the operators L; and L; commute:

i duy _
(13) %’:7——6—‘;7’Tlui,ull—0'

DEFINITION. If there exists a matrix-valued function w(z, P) algebraically
dependent on P and such that



Holomorphic bundles over algebraic curves and non-linear equations 75

(74) [ati_-ui (t. P), ot P)]=0,

then the commutative family is said to be algebraic.
The basic example of an algebraic family is the condition for the whole
system to be stationary with respect to one of the variables

%’0 (=1, 2,3 ...

In this case w = u;. However, a priori it is not necessary to assume that w is
connected with the set (4, ..., %;,...). The general case can be reduced to
this.

The linear operators L; = _éét- —u; (¢, P) that occur in the algebraic family (if

1
they have certain properties of being Hermitian) are “finite-zone or finitely
lacunary” in the sense of spectral operator theory [22]. Therefore, these
operators and the corresponding solutions of non-linear equations are called
“finite-zone”.

In relation to any of the equations (73) labelled by (i, j), the remaining
equations labelled by (i, k) play the r0le of “higher KdV analogues”. A priori
they are all partial differential equations. However, the hypothesis of being
algebraic (“‘of finite-zone” type) (74) reduces to the fact that these equations
split into a collection of commuting systems of ordinary differential equations
each in one variable, which can be expressed explicitly in the form of a finite-
dimensional analogue of the Lax pair [74].

PROPOSITION. If the operators L; commute with w, then they commute
among themselves, that is, (73) follows from (74).

For a fixed number and order of poles of w the space of the corresponding
matrices is finite-dimensional, and (74) determine commuting deformations of
it. All the equations (74) have common integrals. Let ¥(¢, P) be a solution of
the equations

(75) (;t—i—u,) W(t, P)=0; W(0, P)=1.
From (74) it follows that

(76) w(t, P)¥(t, P) = ¥Y(t, P)w(0, P).
Hence, the characteristic polynomial

(77) Qu, P) =det A\l —w(, P)=0

does not depend on z. Its coefficients are integrals of (74).

DEFINITION 3. An algebraic family is said to be complete if the flows
defined by (74) cover the whole variety of levels of the integrals (77).

In general position, for almost all P the eigenvalues of w(0, P) are distinct and
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the curve I defiged by (77) is an /-sheeted covering of the initial curve I'. To
each point y of I" there corresponds a unique eigenvector w(0, P) with first
coordinate normalized to 1. The remaining coordinates 4;(y) are meromorphic
functions on I. The vector-valued function

t v= Z hi (v) Yi(t, P),

where ¥, (¢, P) is the i-th column of the matrix ¥(#, P), has the following
analytic properties.

1. Since ¥(¢, P) is_meromorphic except at Py, ..., P, , (¢, v) is mero-
morphic except at P/(j =1, . . ., 1), the inverse image of P; on T'. The poles of
Y(#, v) do not depend on 7, and there are g+ /—1 of them, where g is the
genus of I'.

2. From (74) and the fact that the characteristic polynomial Q does not
depend on ¢ it follows that the eigenvalues u;(¢, P) for P = P, do not depend on
t. Hence, near P! the coordinates of y(#, ) have the form

p=exp (3 Aatak) (T B (1) k),

where the A, are constants and k™! = k1 () are local parameters near P;.

Thus, y(r, v) is a Baker—Akhiezer function of rank 1 and is uniquely deter-
mined by the divisor of the poles 7;, . . ., 744, . In accordance with the
general rules, Y(¢, v) can be expressed explicitly in terms of a #-function. The
matrix w for ¢ is defined by

w(t, PYp(t, v) = w(y)(¢, v),

where v = (P, w) is the inverse image of P on I'" given by (77).

If we identify the matrices w and AwA ™!, where A4 is a constant diagonal
matrix, then the quotient variety of the 1ntegra1 levels of (77) is isomorphic to
the Jacobian torus of the curve J(l") while the equations (74) give rectilinear
windings on these tori (see [18], Ch. IlI, §3).

In the theory of equations of KAV type the higher analogues formed com-
plete algebraic families. Another example of a family of operators with two
variables t; =x +t', t, =x —t', depending rationally on a parameter A are of
the operators of the form (78), which are used in [23] and [24] for the theory
of chiral fields:

(78) Li= g — 525
Examples of algebraic families, containing arbitrary numbers of operators of the
form (78) were considered by Garnier [25].! The starting point of [25] were
the Schlesinger equations, which describe deformations of ordinary differential

! The authors are grateful to G. Flaschke and A. Newell, who brought this remarkable classic work to
their attention.
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equations that preserve the monodromy of singularities of these equations when
a; > t; in (78).
Garnier considered equations of the type (74) and of the special form:

(19 [, 3525]-0
J

where

A—a;

The family (79) is not complete. :I“he number n of operators is substantially
smaller than the genus of the curve I, given by the equation

n A
Q (., u):det(z L )=o0.
j=1
Garnier used (79) to construct new integrable finite-dimensional systems. The
system he discovered

4 1
g2 g ta), =0 (2 &mita;)

i=1 i=

—

coincides on distinct invariant hyperplanes §; = b; n; with the Neumann system
of harmonic oscillators “forcibly’’ constrained to the sphere Z£? = 1, [26],
(which, of course, destroys the harmonic character), and also with an
anharmonic system of oscillators [27].
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