ELLIPTIC SOLUTIONS OF THE KADOMTSE V-
PETVIASHVILI EQUATION AND INTEGRABLE
SYSTEMS OF PARTICLES

I. M. Krichever UDC 517.9

The main purpose of this paper is to construct "action-angle" type variables for a system of particles
with a pairwise interaction potential, whose Hamiltonian has the form
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where ¢ (z) is Weierstrass' § -function (see [1]). The sign of the potential, corresponding to an attractive
system of particles, is chosen to simplify formulas used later on from which we can exclude the term V=1
The change of this sign occurs when we go over to imaginary time. The methods we develop allow an integra-
tion of the equations of motion of system (1) in terms of Riemann's 6-function,

It is known that the equations of motion of system (1) have the Lax-type representation (see [2]):
L =1, L], (2)
where the matrices L and M depend on xj and pj. It follows from this representation that the qualities
J k=-:ft'r L¥,k=1,..., n, are integrals of system (1). It is proved in [3] that they are independent and in involu-
tion. Then by Liouville's theorem, system (1) is completely integrable.

In [4] there was reported for the first time a remarkable connection between Hamiltonian systems of par-
ticles on a line and the dynamics of the poles of special solutions of nonlinear equations that can be integrated
by a method of an inverse problem. For the Korteweg—de Vries equation it was shown that the dynamics ofthe

poles of an elliptic solution u (z,t)=2 é ® (x—a; () is equivalent to restricting the equations of motion of a

i==1
system with the Hamiltonian J; to fixed points of system (1), grad H= 0. It turns out that N has the form n(n+
1)/2. A similar assertion was obtained for the Boussinesq equation. The restriction on the number of particles
is connected with the need to consider equations of motion on stationary manifolds of Hamiltonian systems. The
connection between Hamiltonian systems and elliptic solutions of nonlinear equations turns out to be a natural
one in the case of two-dimensional systems. For example, in the case of the Kadomtsev— Petviashvili (K- P)
equation:
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T =3; {u, +7 (Gt — umx)} . 3)

The elliptic solutions of this equation have the form u= const + 22§ (zr — z; (y, t)). Here the dynamics of the

poles with respect to y and t is described by the commuting Hamiltonian flows corresponding to H and J;, re-
spectively. This assertion in the case of a degenerate Weierstrass @ -function —x~2 was obtained in [5] (see
also [6]).

Subsequently, pole systems corresponding to different nonlinear equations were investigated by many
workers (see the survey (7] and [8]).

The connection between completely integrable systems of particles on a line and the pole solutions of non-
linear equations can be used in two directions. For all degenerate Weierstrass functions corresponding to one
or two infinite periods (§ (z) goes into sinh™%(x) or x~?, respectively), the integrals Ji are known, and moreover,
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there is a mechanism of integrating the equations of motion. The coordinates x;(t) of particles turn out to be

the eigenvalues of the matrix xj(o)éij— L(0)t, where L(0) depends on the initial coordinates and impulses (see

[91 and {10}). Substituting these coordinates into the formula u(z,y,t)=2 ﬁ (x —z; (y,1))* allows one to obtain
=1

e.g., rational solutions of the K— P equation. On the other hand, having a construction for rational solutions of

the K~ P equation, one can obtain independently the integration of the equations of a system of particles with the

potential x"2, The main aim of [5] was precisely to achieve this second possibility; there we used the idea of

"finite-zoned integration" to find exact formulas for the rational solutions of the K— P equation.

In contrast to the rational and trigonometric cases, for a system (1) with a nondegenerate Weierstrass
§--function neither a construction of "angle" type variables corresponding to the involutive integrals Jy nor a
more explicit integration of the equations of motion was known,

An exception is the solutions of the K— dV equation that are the sum of the three elliptic functions found
in [18] without any connection with the theory of integrable systems on a line,

u =28 (z— 2 (1)) + 26 (z — 7, (1)) -+ 26 (z — 2, (2)).

For two particles system (1) was integrated in [11], where it was proved that the level manifold of the in-
tegrals J;, H is a two-dimensional Abelian manifold.

1. Linear Nonstationary Schrdinger Equation and

a System of Particles on a Circle

Methods of integrating the K— P equation (3) are based on the following commutation representation (see
[12] and [13]):

d [/
[5—L5—¥]=0, "
=2 fy, M=2_2u% L w@yt
=@yt M=gm—gugte@yl.

It will be proved later that the Hamiltonian of a system of type (1) are connected with the existence of solutions
of a specific form for linear operators with elliptic potentials.

First of all, we recall the basic definitions and properties of the classical functions of Weierstrass (see
{1}). Let w, and w, be a pair of periods. The sigma-function of Weierstrass is the entire function defined by

the product _
o(zy=12 H (1__(07' )exp[-(—;——{-_;_(__i_)zJ’ (5)
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where wpmp = mew;+nw,, The remaining functions can be defined by the relations

Q
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In contrast to the ¥ -functions, the o~ and ¢-functions are not doubly periodic. Under translations of the periods
they transform as follows:

Cla + o) = L{a) + ;5 10, — N0, = 200;
i ¢ (7)
0 (a + —g—l-ﬂ .

In a neighborhood of o = 0, the Weierstrass functions have the form

o (a4 )= —o{a)exp

cflay=a-+0(@); L(gy=at50(@); Fa)=a?+0(@ (8)
THEOREM 1. The equation

(;i,—ai;+2i@<x——xi(t>>)¢=0 9)
i==]

has a solution ¥ of the form

t= 3 a;(t ko) O (& — 2z, @) 254,

i=1

(10)
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where.
— @z, 0)= j_g%g%l) ebe@)s, 11)
if and only if the x;(t) satisfy the equations of motion of the system of particles (1):
= 4% & (x5 — zp)- 12)

The choice of this representation for § is connected with the fact that the function ®(x, @) is a solution
of Lamé's equation [14]

(Ed; —2¢ (a:)) D (r,0) =8 (a) D (z, ). a3)

From translation relations (7) it easily follows that ®(x, «) is doubly periodic in o, ®x, a+wy) = &x, @).

As a function of x, ®x, «) satisfies the relation
D (z + @) @) = @ (z, @) exp [{ (¥)o; — nal. (7

A function 3 of form (10) has simple poles at the poles x= xj. By substituting it into (9) and equating to
zero the coefficients of (x— xi)"2 and (x— xi)'i, we obtain the following equations:

a;d; + 2kai + 2 z (I/]‘(D (131' — Zj, (1) ==0,
7t (14)
di —-@(0.) a; -+ a; (I.Z 28 (.’l-'i -—.’l’;,)> 4+ 2 23 aj(I)'(x,- —;, (1) =0. '
i1 it
If we introduce the vector a= (ay,..., ay) and the matrices

Li_i (a) = 1',6” —:’ 2 (1. — (Sij)q) (xi —_ .Zj, a),

Tij(@)==06;; (* ®(a) +2 kgi ® (2 — x,,.)) +2(1—8;) @' (a; — 5, @), s
then Eqgs. (14) can be written in the form )
(L (@) + 2k-1)a=0, (§?+ T)a=0. (16)
For Eqgs. (16) to be compatible, it is necessary and sufficient that the following relation holds:
[L,g—t—]— T}:OHL=[L,T]. (17)

LEMMA 1. Equations (17) hold if and only if the x;(t) satisfy (12).

The assertion of the lemma follows from a straightforward substitution of the expressions for L and T in-
to (17). In addition, we can use the assertion, well known in the theory of system (1), that the commutation rep-
resentation (17) is equivalent to (12) provided that &(x, «) satisfies the functional equation:

[D'(2)D (y) — @ (2)O'(NID™! (x + y) = [® (y) — & (2)] (18)
and the relation
D (z)® (—2) = ® (o) — & (2)- (19)

To verify the first of these relations, notice that the left-hand side of (18) is doubly periodic in both x and y
(this follows from (7)), and it has a second-order pole at x= 0, y = 0. Hence, it is equal to the right-hand side.
Similarly, the left-hand side of (19) is periodic in x and «, and has a second-order pole at x=0and @ = 0,

Thus, we have found the solutions of the functional equations (18), (19), and so the commutation represen-
tations (17) for system (1); these, in contrast to all those used earlier, depend on an additional "spectral pa-
rameter® o defined on an elliptic curve I' with periods w; and w,. This additional parameter also allows us to
proceed to the integration of (1) by using the methods of algebraic geometry.

We consider a matrix A(t, o) satisfying the equation
(5T W) At =0 (20)

and normalized by the condition A(0, a)=1.
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From (17) it follows that
L(t, )4 (t. o) = A (t, @)L (0, ). (21)
Hence, the function
R (k, o) = det (2k + L (2, a)) (22)
is independent of t. Matrix L({, o}, which has essential singularities at ¢ = 0, can be represented in the form
L(t,a) =G@# a)L (t, )67t (t, o), (23)

where T. does not have an essential singularity, and G is a diagonal matrix, Gjj = 6jj exp (£ (®)X{). Consequently,
the coefficients r;(@) in the expression

Rk,a)= 3 i (@) & (24)
i=0
are elliptic functions with poles at @ = 0. The functions rj(a) are representable as a linear combination of a
& -function and its derivatives. The coefficients in this expansion are integrals of system (1). Each set of fixed
values of these integrals defines an algebraic curve I'y by the equation R(k, @) = 0; Ty is an n-sheeted covering
of the original curve T,

Example 1. Let n= 2, then
R (k, o) = 4k® + 2k (41 + &) + 848, + 48 (2 — z,) — 48 (a0).

In a neighborhood of a = 0 the singular part of the matrix i has the form iii = 0(1), E.ij =—2a~1+ O(1), i#j.,
The eigenvalue — 2a~! of this matrix is (n—1)-fold degenerate; in addition, there is another eigenvalue equalto
2(n—1)a~t,

Thus, in a neighborhood of & = 0 the function R(k, o) can be represented in the form

n—1

R (ky0)=(k— (n — 1) @™ + by (@) [] (k+ ™ + by (@), (25)

l=21

where the by (o) are regular functions of a. Hence, function k defined on I'; has simple poles on all the sheets
at points Pj lying over o = 0. Its expansions in terms of the local parameter o on these sheets are given by the
factors on the right-hand side of (25). It follows from (25) that one of the sheets is isolated; for brevity, we
call it the "upper" sheet,

LEMMA 2, The genus g of the surface Ty is n.

The covering elliptic curve is such that 2g— 2 = v, where v is the number of branch points on the covering
Tp over T. The branch points coincide with the zeros on T, of 8R/8k. By differentiating (25) with respect to k
and substituting for k the corresponding expansions, we obtain that 8R/9k has simple poles on all sheets apart
from the upper one, on which the pole is of order n—1. For any meromorphic function the number of zeros is
equal to the number of poles, Hence, v =2(n—1), org=n,

The Jacobi manifold J(I'y) of T'y is an n-dimensional torus. We show below that the coordinates on this
torus are "angle" type variables for system (1).

To each point P of the curve T'y, i.e., to each pair (k, @) = P connected by relation R(k, &), corresponds
a unique eigenvector (0, P) = (a,(0, P),..., aq(0, P)) of matrix L(0, &), normalized by the condition «,(0, P) =1.
All other coordinates a;(0, P) are meromorphic functions on the curves I'p outside the points Pj. The number
of poles of a(0, P) is n—1. To prove this, we consider a matrix F(a) whose columns are vectors a(0, Pj(oz)),
where the P;(x) are the inverse images of the point . The function |det F(a)l? does not depend on the enumera-
tion of the sheets, i.e., it is properly defined as a function of . It is meromorphic, and has double poles at the
images of the poles of a(0, P). The zeros of this function coincide with the images of the branch points of I,
If N is the number of poles of ¢(0, P), then 2N = v = 2n— 2.

In a neighborhood of "infinitely distant" points Pj, ¢;(0, P) has the form

a.i(ﬂ,P):<—H—1:~i-{—0(&))9}(})['@(0&)(:&?——12)]. i>1, j#an (26)
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On the upper sheet, j=n
a; (0, P) = (1 - O (a)) exp [ (a) (af — aD)]. (27)
Here and in what follows xg = x;(0) is the initial position of a particle.

The fundamental matrix A(t, @) of system (20), A(0, @ =1, is an analytic function of « outside o = 0. If
Aj(t, @) is the i-th column of A, then the column-vector

alt, P)= ¥, a (0, P) 4; (£ ) (28)
i=1
is a solution of system (20) that is eigen for L:
(L (t, @) = 2k-1)a(t. Py =0, P =(k ). (29)

To find the form a(t, P) at the inverse images of a= 0, we turn from a pair L, T satisfying (17) to a calibra-
tionally equivalent pair
I, T =G%9G -+ G TG,

where T and G are as in (23). The following relation holds

P ()d;; ~ T (t,a) = a™iL (t, @) - O (1). (30)
Consequently, the eigenvalues of the matrix T have the following form: for j=n
(o) = —k% = 0 (1) = —(a™ =~ 2b; (O)a™t - O (1)). (31)
Here the ki =— (@~ + b]-(oz)) are the expansions of the eigenvalues of L on different sheets I'y. On the "upper"
sheet we have
W (8, @) = 2™t + a2 -+ 0 (1). (32)

We denote by Vj(oz) = Ky (t, @) +O(1) the singular parts of the eigenvalues of T. They are independent of t, and so
the solutions of the equation

(6% +- T)a(t, P)=0,

which are eigenfunctions of the matrix i, have the form
a(t, P) =a (0, P) (1 + O (a)) exp (v; (@) 1).
The vectors a and @ are connected by the simple relation
a(t.P) =G (t o) al(t, P). (33)
Thus, we have the following result.

LEMMA 3. The coordinates ai(t, P) of the vector-function a(t, P) are meromorphic on the curve T, out-
side the points le Their poles Yiseror Yot do not depend on t. In a neighborhood of Pj, aj(t, P) has the form

a; (¢, P)==c;;(a) exp [§ (o) (z; () — o) + v; (@) ¢], (34)

where the cij(oz) are regular in a neighborhood of o = 0, and
1

-Clj(0)='1, j=’1....,n; cin(0)=11 Cij(0)=——n—_—1, i>1, ];En. (35)

We return again to the eigenfunction

¥ (2,1, P)= i‘l a; (¢ P) D (x — z;, a) eh=+iet,

i==]1

The function ®(x—x;, @) has essential singularities on all the sheets I'y. It follows from (31), (34), and (25) that
¥(x, t, P) does not have essential singularities at the points P;, j#n. From (35) it follows that iy does not have
a pole at this point.

THEOREM 2. The eigenfunction #(x, t, P) of the nonstationary Schrédinger equation (9) is defined on the
n-sheeted covering Iy of the original elliptic curve. ¥(x, t, P) is meromorphic everywhere on I'p except for
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the one essentially singular point P,. Its poles vy,...,% 1 do not depend on t and x. In a neighborhood of P,
Y¥(x, t, P) has the form

Vet P)= (mo™ S & (2, 1) o) exp [A (@) (e —aD) + 224, (36)

i==0
where A(a) =na~!+ by(0)

Thus, ¥(x, t, P) is a classical Baker— Akhiezer function (see [15-17]). It is defined uniquely by its poles
Yisesrs Y1 and by the value x). In fact, by shifting a reference point we can move a pole from a specified point
and so assume that i has n arbitrary poles vy{,..., Y.

It was proved in [15] that a function y(x, t, P), withthe properties stated in Theorem 2, is a solution of the
nonstationary Schrodinger equation. A general scheme for constructing expressions for Baker— Akhiezer type
functions in terms of Riemann's 6-function is given in [16], where there is also a formula for the potential u(x,
t) for the nonstationary Schrodinger equation. A confrontation of results in [15] and [16], and those obtained
above yields the following assertion.

THEOREM 3. Coordinates x;(t) of the system of particles (1) are defined by the equation

8 Tz +TVt+ Wy=0=constx |]o(@—uz;(t)). (37)

fe=]

To prove this, we note that the formula for the potential for a nonstationary Schrddinger equation has the
form

u(z, t)y=2 5?? 6Tz +Vi+ W) -+ const. (38)

As is clear from (9), the poles of u coincide with the zeros of 6 on the one hand, and with the x;(t) on the other.

Here 6 is Riemann's theta-function, I_J., Vare constant vectors equal to the periods of Abelian differen-
tials of the second kind with singularities at P,. A more detailed definition of them can be found in [16, 17]. Be-
low we shall only discuss the character of our answer. Both the theta-function and T, V are defined uniquely
by the curve I'y, or equivalently, by the characteristic polynomial R(k, @), which does not deperd on t. Conse-
quently, these parameters depend only on the integrals of system (1). Let vy,..., yp_{ be the roots of the equation
det(2k -1+ Lij) = 0,1, j>1 (i.e., the roots of the lower right minor of the characteristic matrix), onthe curve 1.
Abel's transformation maps the symmetric power S'T',, of the curve (a nonordered collection of n points) into
the Jacobi manifold J(I'y), w :SnI‘n—’J(I‘n). The vector W in (37) is the image of the set Viseers Ynets Pn (xg =0)
under Abel's transformation. It transforms linearly in t, which also proves that the coordinates on the Jacobi
manifold are angle-type variables,

2. Elliptic Solutions of the Kadomtsev—Petviashvili Equation

Without directly substituting elliptic solutions into the K— P equation, we can obtain in a straightforward
way an identification of the poles of these solutions with system (1) from the commutation representation (7).

THEOREM 4. A function u(x, y, t) is an elliptic solution of the K— P equation if and only if

(@, y,t)=c-+2 ;\3 ®lx—az;(y, 1) (39)

7=1

" and the equations

(G v= (5~ )y

have a solution of the form

p= 3 e (b, P) (2 — 2, @) ebssiwei, (40)
i=1

COROLLARY 1. The dynamics of the poles of the xj(y, t) with respect to y coincides with the dynamics
of particles of system (1). '




This assertion follows from results in the preceding section. Similarly to the equation 8/8y— L, the
availability of solutions of form (40) for the equation 5/8y—M is equivalent to a commutation equation of the
type {17), and coircides with the equations of a Hamiltonian flow corresponding to the Hamiltonian Jy.

COROLLARY 2. The dynamics of the x;(y, t) with respect to t coincides with the third Hamiltonian flow
of system (1).

COROLLARY 3. The elliptic solution u(x, y, t) of the K— P equation (39) can be expressed in terms of the
6-function of the covering Iy of the elliptic curve I:

u_c0n<t—!—2 ]nB(Ux+Vy—{— Zt - W), 41)
We uge the connection between the poles of elliptic solutions of the K— P equation and systems of type (1)
in yet another way to prove that under obvious restrictions, these solutions have no singularities for real x,y,t.

We consgider the equation

3o , 8 1 42
Tgy_l: an a [ul + % (6””‘.\' - u‘.\‘.\'.\')] = 01 ( )
which differs from (3) by a sign. It has the commutation representation [i a"—y— L, 5 —J[] 0 and its elliptic

solutions are connected with a Hamiltonian system with the Hamiltonian

szh +2Y) f—z). (43)

k7=j

This Hamiltonian differs from (1) by the sign of the potential energy.

Let w;, w, be the periods of the ¥ -function; they are complex conjugates. Then ¥ (z) =¥ (3). We con-
sider real solutions of the K— P equation of form (39). They are determined by the initial coordmates Xj (0, 0)
and the initial impulses xjy(O, 0). Suppose that these data tolerate conjugation, i.e., n=2m and Xj = J+m’ j=
1,...,m. Then u(x, y, t) is real for all real x, y, t.

COROLLARY. If x]-(O, 0) does not lie on the real axis, then the solution (39), (41) does not have a singu-
larity for real x and y.

The existence of a singularity means that one of the particles falls onto the real axis, but then the conju-
gate particle must collide with it. This contradicts the law of conservation of energy since the potential is re-
pelling and singular.

MATRIX SYSTEMS

We briefly state conditions on curves so that the constructions [16] of "finite- zoned" solutions of the com-
mutation equations

[55—L 5 —M]=0, (44)

where L and M are operators with matrix coefficients, lead to elliptic solutions. We follow the notation in [16].

By [16], every nonsingular algebraic curve I' of genus g with ! distinguished points Py,..., P; and fixed
local parameters z;j(P) in their neighborhoods, and also a set v,,..., Ye +]-1ofpoints in general position, deter-
mines the solution of Eqs. (44).

" If the curve I'y is an N-sheeted covering of the elliptic curve T, i.e., it is given by the equation
N-1 .
43 ri(@)F, (45)
i=)
where the r;(o) are elliptic functions with a single pole at the point a = 0.

We suppose that T’y has no branches over o= 0. This means that the function k on T'y has Nsimple poles
Py,..., PN (the inverse images of the point a=0). We denote by Y the residue of k on the j-th sheet, i.e., k—

v]a" =0(1) in a neighborhood of P;.
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Assertion. We assume that vj=1 if j>1. Then if we take the local parameters zj(@) in the neighberiood.
of Py,..., P; to be z4 (a) = (kj(oz)— z{ca))~!, then the corresponding solutions of (44) are elliptic.

It follows easily from this assertion that to every N-sheeted covering of an elliptic curve there corre-
sponds elliptic solutions for systems with (N—1) x (N—1) matrix coefficients.

The proof of the assertion follows from the fact that the function
(Pi(P):eXp[k(p)mi—C(“)mi+“ia]z i=1,2,

is properly defined as a function of P. Outside the points Py,..., P; it is holomorphic, and in neighoorhcods of
these points it has the form

9: (P) = (1 + 0 (a)) exp (57 (2) @;).
It follows from the definition of Baker— Akhiezer type functions that for ¥(x, y, t, P) satisfying the equations
a a
(a‘;"‘l‘) P =(W ——MM)=0, we have

/

1P($+‘Di1y,t,P)=‘P($’y»t7p)(9i(P)-

Hence, the coefficients of the operators L and M are meromorphic and periodic with periods w; and w,, i.e.,
they are elliptic functions.

In conclusion, we mention that it would be interesting to discover how to obtain, by using coverings over a
curve R of genus n, the solutions of nonlinear equations expressed in terms of a 6—function of high dimension,
but leading to solutions with the group of periods of ®. It is possible that these solutions are connected with
new integrable systems of particles.
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EFFECTIVE CONSTRUCTION OF NONDEGENERATE
HERMITIAN-POSITIVE FUNCTIONS OF
SEVERAL VARIABLES

L. A. Sakhnovich UDC 517.57

1. Let S be some set of points of n-dimensional space R%and A =8 — §. A function ®(x) is called
Hermitian-positive on A if for any choice of points x;, Xy,..., XN €S and numbers £, £,,..., {N One has

3, 85O (2 —2) >0, ®

i, j=1

Let n= 2. We consider the lattice S(N;, N,) consisting of points M(m, /) with integral coordinates
0K m< Ny, 0IK N, The set A(V,, N, consists of the points M(m, ) for which [m [ <<V, [ 1]V, By
P (N1, No) we denote the class of functions, Hermitian-positive on A (Nl, N,). Calderon, Pepinsky [1], and
Rudin {2] proved the following theorem.

THEOREM. In order that any function of the class $ (¥, N,) should admit an extension to a function of
class P (o0, o0), it is necessary and sufficient that any nonnegative polynomial of the form

f(ﬁ:, y) = Z . Z a;,-]:l:kyl
0CR2N: 0<I2N:

admit a representation
r
faz, y)= 3 ¢ y) (2)
J=1
where qj (X, y) are real polynomials.

As Hilbert [3] proved, there exists a nonnegative polynomial in two variables of the sixth degree which
cannot be represented in the form (2). Consequently, one has the following:

Assertion (see [1, 2]). There exist functions of class ¥ (3,3) which cannot be extended to (o, ).

However, thére have not been until now concrete examples of such functions. In the present paper classes
of concrete functions of $(2,2) and $(1,1,1) which cannot be extended, respectively, to P (2, 3) and
-9 (1,1,2) are constructed. We note that functions of the class $({,2) can always be extended to P (oo, o0)
(see [4-6]).

2. With each function ®(m, ) from (¥, N;) we associate the Toeplitz matrix

D (0, k) o,k e DN, )
oo sh et | osean. ®

®(— Ny k) D(—Ny+1,k) ... ©O, %)

Fromthe matrices Ci we construct the block Teoplitz matrix:
' Co € ... Cy,
%
ANy, Ny) = G G '_" Cver || 4)
CN: Ot Co '
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