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The main purpose of this p a p e r  is to cons t ruc t  "ac t ion-angle"  type va r i ab le s  for a s y s t e m  of par t i c les  
with a pa i rwise  in teract ion potential,  whose Hamil tonian has the fo rm 

n 

where  ~ (x) is W e i e r s t r a s s '  S - func t ion  (see [1]). The sign of the potential,  cor responding  to an a t t rac t ive  
s y s t e m  of pa r t i c les ,  is chosen to s impl i fy  fo rmulas  used la te r  on f rom which we can exclude the t e r m  ] / - - L  
The change of this sign occurs  when we go over  to imag ina ry  t ime .  The methods we develop allow an in tegra-  
tion of the equations of motion of s y s t e m  (1) in t e r m s  of R iemann ' s  0-function. 

It  is known that  the equations of motion of s y s t e m  (1) have the Lax- type  rep resen ta t ion  (see [2]): 

L : [M, L], (2) 

where the matrices L and M depend on xi and Pi. It follows from this representation that the qualities 

J~=~trL ~, k-~ I . . . . .  n, are integrals of system (1). It is proved in [3] that they are independent and in involu- 

tion. Then by Liouville's theorem, system (i) is  completely integrable. 

In [4] there was reported for the first time a remarkable connection between Hamiltonian systems of par- 
ticles on a line and the dynamics of the poles of special solutions of nonlinear equations that can be integrated 
by a method of an inverse problem. For the Korteweg-de Vries equation it was shown that the dynamics of the 

N 
poles of an elliptic solution u, (x, t) = 2 ~ b ~ (x--x~ (t)) is equivalent to restricting the equations of motion of a 

i=I 

system with the Hamiltonian J3 to fixed points of system (1), grad H = 0. It turns out that N has the form n(n+ 
1)/2. A similar assertion was obtained for the Boussinesq equation. The restriction on the number of particles 
is connected with the need to consider equations of motion on stationary manifolds of Hamiltonian systems. The 
connection between Hamiltonian systems and elliptic solutions of nonlinear equations turns out to be a natural 
one in the case of two-dimensional systems. For example, in the case of the Kadomtsev- Petviashvili (K- P) 
equation: 

1 3 o {ut + 7(6uq,,.--u.,.xx)} (3) 
T '%y = ~ - " " 

The ell iptic solutions of this equation have the fo rm u = const  ÷ 2 ~  e (x --  xl (y, t)). Here  the dynam[cs of the 

poles with r e spec t  to y and t is descr ibed  by the commut ing  Hamiltonian flows cor responding  to H and J3, r e -  
spect ively .  This  a s s e r t i o n  in the case  of a degenera te  W e i e r s t r a s s  F- func t ion  - x  -2 was obtained in [5] (see 
a lso  [6]). 

Subsequently,  pole s y s t e m s  cor responding  to different  nonlinear  equations were  invest igated by many 
w o r k e r s  (see the survey  [7] and [8]). 

The connection between comple te ly  in tegrable  s y s t e m s  of par t i c les  on a line and the pole solutions of non- 
l inear  equations can be used in two di rec t ions .  For  all  degenera te  W e i e r s t r a s s  functions cor responding  to one 
or two infinite per iods  (~ (z) goes into sinh-2(x) or  x -2, respec t ive ly) ,  the in tegra ls  Jk  a r e  known, and m o r e o v e r ,  

G. M. Krzhizhanovski i  Moscow Energy  Inst i tute .  Trans la ted  f rom Funkts ional 'nyi  Anal iz i  Ego Pr i lo -  
zheniya,  Vol. 14, No. 4, pp. 45-54, Oc tobe r -December ,  1980. Original  a r t i c l e  submit ted March 11, 1980. 

282 0016-2663/80/1404-0282507.50 © 1981 Plenum Publishing Corpora t ion  



there is a mechanism of integrating the equations of motion. The coordinates  xj(t) of par t ic les  turn out to be 
the eigenvalues of the matr ix  xj(0)Sij-L(0)t ,  where L(0) depends on the initial coordinates and impulses (see 

[9] and [10]). Substituting these coordinates into the formula u (x, y, t)-----2 ~ (x--x~ (y, t))-"- allows one to obtain 
i = 1  

e.g., rat ional solutions of the K -  P equation. On the other hand, having a const ruct ion for rational solutions of 
the K -  1 ) equation, one can obtain independently the integration of the equations of a sys t em of par t ic les  with the 
potential x -2. The main aim of [5] was prec ise ly  to achieve this second possibil i ty;  there we used the idea of 
"finite-zoned integration ' to find exact  formulas  for the rational solutions of the K -  P equation. 

In cont ras t  to the rational and t r igonometr ic  cases ,  for a sys tem (1) with a nondegenerate We ie r s t r a s s  
F-funct ion neither a construct ion of "angle" type var iables  corresponding to the involutive integrals  Jk nor a 
more explicit integration of the equations of motion was known. 

An exception is the solutions of the K -  dV equation that are  the sum of the three elliptic functions found 
in [18] without any connection with the theory of integrable sys tems  on a line, 

u = 2F (x --  x, (t)) -~- 26 ~ (x -- x2 (t)) -!~ 2F (x -- x3 (t)). 

For  two part icles  sys tem (1) was integrated in [11], where it was proved that the level manifold of the in- 
tegra ls  J1, H is a two-dimensional  Abelian manifold. 

1. L i n e a r  N o n s t a t i o n a r y  S c h r S d i n g e r  E q u a t i o n  a n d  

a S y s t e m  of  P a r t i c l e s  on a C i r c l e  

Methods of integrating the K -  P equation (3) are based on the following commutat ion representa t ion  (see 
[12] and [13]): 

o _ M] 0, 
(4) 

0~ 0 '3 3 0 L~--Tx.,--u(x,g,t), M~-g~s - - yu~+w(x , y , t ) .  

It will be proved later that the Hamiltonian of a sys tem of type (1) a re  connected with the existence of solutions 
of a specific form for linear opera tors  with elliptic potentials. 

F i r s t  of all, we recal l  the basic definitions and proper t ies  of the c lass ica l  functions of We ie r s t r a s s  (see 
[1]). Let co t and co2 be a pair of periods.  The s igma-funct ion of We ie r s t r a s s  is the ent ire  function defined by 
the product 

n • 
m, n~ o t °mnJ  

where Wmn = m¢~l +n¢02. The remaining functions can be defined by the relat ions 

In contras t  to the 
they t r ans fo rm as follows: 

( a ÷ ( 0 1 ) =  ~(a )+~] l ;  l h (%--~ l~o ,=2n i ;  

(* (a + ,oz) = - -  (~ (a) exp ~lt (a + "~-~z)l. 

In a neighborhood of a = O, the Weie r s t r a s s  functions have the fo rm 

(~) = a-~ + 0 (a'~); F (a) = a-'-' + 0 (~). 

_ ~' (--) _ ~ ,  ( 6 )  

-functions,  the (7_ and ~-functtons are  not doubly periodic.  Under t ransla t ions  of the periods 

,o" (z,) = ~ + 0 ( ,~ ) ;  

THEOREM 1. The equation 

(7) 

has a solution ~ of the form 

(8) 

(9) 

n 
~ -= y,  ai (t, k, (*) • (x - -  x~, ~) e ~'~+~2t, 

,=, (10) 
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where: 

-- ¢ (x,  a)  ~--- z (x - -  a) e~(~)x ' { I i )  

if  and only i f  the x i ( t ) s a t i s f y  the equations of motion of the s y s t e m  of pa r t i c les  (1): 

~i = 4 ~ be' (x~ - -  x~.). ( 12 )  

The choice of this r ep re sen ta t i on  for  ~b is connected with the fact  that  the function @(x, a)  is a solution 
of L a m 6 ' s  equation [14] 

( ~ - -  2~ (x) ) ¢ (x, a) = ~ (a) (l) (x, a). (13) 

F rom t rans la t ion  re la t ions  (7) it eas i ly  follows that  @(x, ~) is doubly periodic in cr, @(x, ~+Wl) = 4Kx, o~). 

As a function of x, 4Kx, ~) sa t i s f ies  the re la t ion  

(1) (x ~- (oz, c¢) = (I) (x, a) exp [~ (a)o) z --  llta]. (7') 

A function ¢ of f o r m  (10) has s imple  poles a t  the poles x = x i. By substi tut ing it into (9) and equating to 
ze ro  the coeff icients  of (x -x i ) -2  and ( x - x i ) - l ,  we obtain the following equations:  

a~i .-{- 2kal + 2 ~, aj~P ( x ~ -  xj, a) -~-O, 
.~i (14) 

I f  we introduce the vec tor  a = (a 1 . . . .  , a n) and the m a t r i c e s  

L u (a) = x ~ u  ÷ 2 (i - -  ~j)~P (xi --  x~, a), 
(15) 

Ti; (a) ~-- 6ij ( - -  be (a) ÷ 2 ~ ~ (xi - -  xs.)~ ÷ 2 (1 - -  6i;) @' (xl - -  x~, a), 
\ k~=i / 

then Eqs.  (14) can be wri t ten  in the f o r m  

( L ( a ) + 2 k . l ) a = O ,  ( ~ + T )  a = 0 .  (16) 

For  Eqs.  (16) to be compat ib le ,  it is n e c e s s a r y  and sufficient that  the following re la t ion  holds: 

[ L , ~ +  T] = 0  ~ L = I L ,  TI" (17) 

LEMMA 1. Equations (17) hold if and only if the xi(t) sa t i s fy  (12). 

The a s s e r t i o n  of the l e m m a  follows f rom a s t ra igh t fo rward  subst i tut ion of the expres s ions  for  L and T in- 
to (17). In addition, we can use the a s se r t ion ,  well  known in the theory  of s y s t e m  (1), that  the commuta t ion  r ep -  
resen ta t ion  (17) is equivalent  to (12) provided that  @(x, ~) sa t i s f i e s  the functional equation: 

[O'(x)q') (y) --  • (z)O'(y)](I) -~ (x + y) = [b e (y) - -  ~ (x)l (18) 

and the re la t ion  

(I) (x)(1) (--x) = ~ (a) -- ~ (x). (19) 

To ver i fy  the f i r s t  of these  re la t ions ,  notice that the left-hand side of (18) is doubly per iodic  in both x and y 
(this follows f r o m  (7')), and it has a s e c o n d - o r d e r  pole at x = 0, y = 0. Hence,  it is equal to the r ight-hand side. 
S imi la r ly ,  the lef t-hand side of (19) is periodic in x and ~,  and has a s e c o n d - o r d e r  pole at  x = 0 and ~ = 0. 

Thus,  we have found the solutions of the functional equations (18), (19), and so the commutat ion  r e p r e s e n -  
tat ions (17) for  s y s t e m  (1); these ,  in con t ras t  to all  those used e a r l i e r ,  depend on an additional " spec t r a l  pa-  
r a m e t e r "  a defined on an el l ipt ic  curve  F with per iods  w 1 and w 2. This  addit ional p a r a m e t e r  a lso  allows us to 
p roceed  to the in tegra t ion of (1) by using the methods of a lgebra ic  geomet ry .  

We cons ider  a ma t r i x  A (t, ~) sa t is fying the equation 

and normal ized  by the condition A(0, ~) -= 1. 
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F r o m  (17) it follows that  

Hence,  the funct ion 

is independent  of t.  

L (t, a)A (t, ~) = A (t, a)L (0, a). (21) 

R (k, a) = det (2k -k L (t, a)) (22) 

Ma t r ix  L(t, ~),  which has e s s e n t i a l  s i ngu la r i t i e s  at  ~ = 0, can be r e p r e s e n t e d  in ~he f o r m  

L (t, a) = G (t, a) Z (t, a) G -~ (t, a), (23) 

where  ~ does not  have an e s sen t i a l  s ingu la r i ty ,  and G is a d iagonal  m a t r i x ,  GIj = 5ij exp (~ (a)x  i). Consequent ly ,  
the coef f ic ien t s  r i ( a )  in the e x p r e s s i o n  

R (k, a) = ~ ri (a) k ~ (24) 

a r e  e l l ipt ic  funct ions with poles  at  ~ = 0. The funct ions r i (~)  a r e  r e p r e s e n t a b l e  as  a l inear  combina t ion  of a 
be-function and its de r i va t i ve s .  The coef f ic ien t s  in this  expans ion  a r e  i n t eg ra l s  of  s y s t e m  (1). Each  se t  of  fixed 
va lues  of these  in t eg ra l s  def ines  an a l g e b r a i c  cu rve  F n by the equat ion  R(k, a )  = 0; F n is an  n - s h e e t e d  c o v e r i n g  
of the or ig ina l  cu rve  F.  

Example  1. Let  n = 2, then 

R (k, a) = 4k 2 -]- 2k (21 q- ~2) + ~x2~ d- 4~ (xa - -  xs) - -  4~ (a). 

In a ne ighborhood  of c~ -- 0 the s ingu la r  pa r t  of  the m a t r i x  ~ has the f o r m  ~i i  = O(1), ~ij  = -  2 ~ - 1 +  O(1), i ~ j. 
The e igenvalue  - 2 ~  -1 of  this  m a t r i x  is ( n - D - f o l d  d e g e n e r a t e ;  in addit ion,  t he re  is ano the r  e igenvalue  eq u a l t o  
2 ( n -  I)(~ -1. 

Thus ,  in a ne ighborhood  of  t~ = 0 the funct ion R(k, oz) can  be r e p r e s e n t e d  in the f o r m  

R (k, a) = (k - -  (n - -  1) a -I q- bn (a)) I ]  (k -q- a -i q- bz (a)), (25) 
l ~ l  

whe re  the b / (a )  a r e  r e g u l a r  funct ions of  a .  Hence,  funct ion k defined on F n has s imp le  poles  on al l  the shee t s  
at  points  Pi lying over  a = 0. I t s  expans ions  in t e r m s  of the local  p a r a m e t e r  a on these  shee t s  a r e  given by the 
f a c t o r s  on the r i gh t -hand  s ide of  (25). It  follows f r o m  (25) tha t  one of  the shee t s  is i so la ted ;  fo r  b rev i ty ,  we 
ca l l  it the "upper"  shee t .  

LEMMA 2. The genus  g of the s u r f a c e  Fn is n. 

The c o v e r i n g  el l ipt ic  cu rve  is such that  2 g -  2 = v, where  r is the n u m b e r  of b r a n c h  points  on the c o v e r i n g  
F n ove r  F. The b r a n c h  points coincide  with the z e r o s  on F n of aR/ak. By d i f fe ren t i a t ing  (25) with r e s p e c t  to k 
and subs t i tu t ing  for  k the c o r r e s p o n d i n g  expans ions ,  we obtain  tha t  0R/0k  has s imp le  poles  on all  shee t s  a p a r t  
f r o m  the upper  one, on which the pole is of  o r d e r  n -  1. Fo r  any m e r o m o r p h i c  funct ion the n u m b e r  of z e r o s  is 
equal to the n u m b e r  of  po les .  Hence,  v = 2 ( n - l ) ,  o r  g = n.  

The Jacob i  manifold  J (F  n) of F n is an n - d i m e n s i o n a l  t o r u s .  We show below that  the c o o r d i n a t e s  on this  
t o rus  a r e  "angle"  type v a r i a b l e s  for  s y s t e m  (1). 

To each  point P of  the cu rve  F n, i .e . ,  to each  pa i r  (k, a )  = P connec ted  by r e l a t ion  R(k, a ) ,  c o r r e s p o n d s  
a unique e i g e n v e c t o r  a(0, P) = (el(0, P) . . . . .  an(0, P)) of m a t r i x  L(0, a ) ,  n o r m a l i z e d  by the condi t ion al(0, P ) -  1. 
All o ther  coo rd ina t e s  ei(0 , P) a r e  m e r o m o r p h i c  funct ions on the c u r v e s  Fn outside the points Pj.  The n u m b e r  
of poles  of a(0, P ) i s  n - 1 .  To prove  this ,  we c o n s i d e r  a m a t r i x  F(c~) whose  co lumns  a r e  v e c t o r s  a{0, Pj(~)) ,  
where  the P j (a )  a r e  the i nve r se  i m a g e s  of  the point a .  The funct ion [det  F(~)[ 2 does not depend on the e n u m e r a -  
t ion of  the shee t s ,  i .e . ,  it  is p r o p e r l y  defined as  a funct ion of a .  It  is m e r o m o r p h i c ,  and has double poles at  the 
i m a g e s  of the poles of a(0, p). The z e r o s  of  this  funct ion coincide  with the i m a g e s  of  the b r a n c h  points of Dn. 
I f  N is the n u m b e r  of poles of  g(0, P), then 2N = v = 2 n -  2. 

In a ne ighborhood  of " inf ini te ly  d is tant"  points Pj ,  ai(0, P) has  the f o r m  

a~(O,P)=(  1 } - -  ~ -{- 0 (a) ex], [~ (a) (x ° -  x°)], i ) t ,  ] :/~ ~. (26) 
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On the upper  shee t ,  j = n 

ai (0, P) = (1 --i- 0 (a)) exp {~ (a) (x ° - -  2)].  (27) 

H e r e  and in what  fol lows x~ = xi(0) is  the in i t ia l  pos i t ion  of a p a r t i c l e .  

The  fundamen ta l  m a t r i x  A(t, ~) of s y s t e m  (20), A(0, c~) = 1, is an ana ly t i c  funct ion of a outs ide  ~ = 0. I f  
Ai(t  , ~)  i s  the  i - tb  co lumn of A, then the c o l u m n - v e c t o r  

7~ 

act, P ) =  ~ a~(O,P)A~(t,a) (28) 
i = l  

is  a so lu t ion  of s y s t e m  (20) tha t  is e igen  for  L: 

(L (t, a) -:- 2k-t) a (t, P) = 0, P = (k, a). (29) 

To  find the f o r m  a(t ,  P) a t  the i n v e r s e  i m a g e s  of c~= 0, we tu rn  f r o m  a pa i r  L, T s a t i s fy ing  (17) to a c a l i b r a -  
t iona l ly  equ iva len t  pa i r  

~L, T = G-iOG ~ G-~TG, 

where  ~ and G a r e  as  in (23). The  fol lowing r e l a t i o n  holds 

P (a)~ u -'- 7 (t, a) = c~-i'L (t, a) -I- 0 (1). (30) 

Consequent ly ,  the  e igenva lues  of the m a t r i x  ~" have the fol lowing f o r m :  for  j ¢ n 

p j (t, a) = --k~j + 0 (t) = --(a-'-' -:- 2bj (0)a -~ -!~ 0 (1)). (31) 

H e r e  the k J a : [  (~-1+ b j ( ~ ) ) a r e  the expans ions  of the e igenva lues  of L on d i f f e ren t  shee t s  F n. On the "uppe r "  
shee t  we 

p,~ (t, a) -= 2k~a -~ ~ ~-2 _~ 0 (1). (32) 

We denote  by vj (a) =/lj  (t, c~) + O(1) the s ingu la r  
the so lu t ions  of  the equat ion  

p a r t s  of the e igenva lues  of ~'. T h e y  a r e  independent  of t, and so  

which  a r e  e igenfunc t ions  of the m a t r i x  ~ ,  have  the f o r m  

a (t, P) = a (0, P) (t + 0 (c¢)) exp (v~ (a) t). 

The  v e c t o r s  a and a ' a r e  connec ted  by the s i m p l e  r e l a t i o n  

a (t, P) = G (t, a) a (t, P). (33) 

Thus ,  we have the fol lowing r e s u l t .  

LEMMA 3. The  c o o r d i n a t e s  ai( t ,  P) of the v e c t o r - f u n c t i o n  e(t ,  P) a r e  m e r o m o r p h i c  on the c u r v e  F n out-  
s ide  the points  p j :  T h e i r  po les  T1 . . . . .  Tn_l do not depend on t, In a ne ighborhood  of Pj ,  ai( t ,  P) has  the f o r m  

a~ (t, P) --~ c~j (a) exp [~ (a) (x~ (t) - -  x~) + ~) (a) t], (34) 

w h e r e  the c i j (a )  a r e  r e g u l a r  in a ne ighborhood  of a = 0, and 

c l j ( 0 ) = l ,  ] = 1  . n; c ~ ( 0 ) = l ,  c ~ ( 0 ) =  ~ ~ > 1  ] ~ n .  (35) 

We r e t u r n  aga in  to the e igenfunct ion  

ix, t, P) = ~ ai (t, P) ¢ ( x - -  zi, a) e~'X+~':t. 
i = l  

The  function ~ ( x - x  i, a)  has  e s s e n t i a l  s i n g u l a r i t i e s  on a l l  the shee t s  r n .  I t  fo l lows f r o m  (31), (34), and (25) tha t  
~(x, t, P) does  not have e s s e n t i a l  s i n g u l a r i t i e s  a t  the points  Pj ,  j ¢ n. F r o m  (35) it fol lows tha t  ¢ does  not have 
a pole a t  th is  point.  

T H E O R E M  2. The  e igenfunc t ion  ¢(x, t, P) of  the n o n s t a t i o n a r y  Sch rSd inge r  equa t ion  {9) is  def ined on the 
n - s h e e t e d  c o v e r i n g  Fn of the o r ig ina l  e l l ip t ic  c u r v e .  ~(x, t ,  P) i s  m e r o m o r p h i c  e v e r y w h e r e  on Fn excep t  for  
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the one essen t ia l ly  s ingular  point Pn" I ts  poles 71,.-., 7n-1 do not depend on t and x. In a neighborhood of Pn, 
~(x, t, P) has the fo rm 

, t, p ) =  + + (36) 

where X(~) = n(e-l+ bn(0) 

Thus,  ¢(x, t, P) is a c l a s s i ca l  t 3 a k e r - A k h i e z e r  function (see [15-17]). It is defined uniquely by i ts  poles 
Yl ... . .  ~n-1 and by the value x~. In fact ,  by shift ing a r e f e r e n c e  point we can move a pole f r o m  a specif ied point 
and so a s s u m e  that ¢ has n a r b i t r a r y  poles 71, . . . ,  Yn" 

It  was proved in [15] that a function ¢(x, t, P), wi ththe p rope r t i e s  s ta ted in T h e o r e m  2, is a solution of the 
nons ta t ionary  SchrSdinger equation. A genera l  scheme for cons t ruc t ing  exp re s s ions  for  B a k e r - A k h i e z e r  type 
functions in t e r m s  of R iemann ' s  0-function is given in [16], where there  is a l so  a fo rmula  for  the potential  u(x, 
t) for  the nons ta t ionary  SchriSdinger equation. A confrontat ion of r e su l t s  in [15] and [16], and those obtained 
above yields the following as se r t ion .  

THEOREM 3. Coordinates  xi(t) of the s y s t e m  of pa r t i c l e s  (1) a re  defined by the equation 
?1 

0 (~x + Vt A- W) = 0 = const × 1-I (~ (x - -  xi (t)). (37) 

for  m 
To prove this ,  we note that the formula  for  the potential  for  a nons ta t ionary  SchrSdinger  equation has the 

02 --~ 
u (x, t) ~ 2 0-~ In 0 (~x -1- Vt q- W) q- const. (38) 

As is c l ea r  f r o m  (9), the poles of u coincide with the ze ros  of 0 on the one hand, and with the xi(t) on the other .  

Here  0 is R iemann ' s  theta-funct ion,  U, V a re  constant  vec to r s  equal to the per iods  of Abelian d i f fe ren-  
t ia ls  of the second kind with s ingular i t ies  a t  Pn. A more  detai led definit ion of them can be found in [16, 17]. Be-  
low we shall  only d iscuss  the c h a r a c t e r  of our answer .  Both the the ta- funct ion  and ~,  V" a r e  defined uniquely 
by the curve  Fn, or equivalently,  by the c h a r a c t e r i s t i c  polynomial  R(k, v~), which does not depend on t. Conse-  
quently, these  p a r a m e t e r s  depend only on the in tegra l s  of s y s t e m  (1). Let  7i . . . . .  Tn-i be the roots  of the equation 
det(2k.  1 + Lij) = 0, i, j > 1 (i.e., the roots  of the lower r ight  minor  of the c h a r a c t e r i s t i c  ma t r ix ) ,  on the  curve  Fn. 
Abe l ' s  t r an s fo rma t ion  maps  the s y m m e t r i c  power Snrn  of the curve  (a nonordered  collect ion of n points) into 
the Jacobi  manifold J(Fn),  a, : S n F n - - J ( F n  ). The vector  ~ in (37) is the image  of the se t  ~,l . . . . .  Yn-i, Pn (x~=0) 
under  Abe l ' s  t r ans fo rma t ion .  It  t r a n s f o r m s  l inear ly  in t, which a lso  p roves  that  the coordinates  on the Jacobi  
manifold a r e  angle- type v a r i a b l e s ,  

2.  E l l i p t i c  S o l u t i o n s  o f  t h e  K a d o m t s e v - P e t v i a s h v i l i  E q u a t i o n  

Without d i rec t ly  substi tut ing el l ipt ic  solutions into the K -  P equation, we can obtain in a s t r a igh t fo rward  
way an identification of the poles of these  solutions with s y s t e m  (1) f r o m  the commuta t ion  r ep re sen t a t i on  (7). 

THEOREM 4. A function u(x, y, t) is an ell iptic solution of the K -  P equation if and only if 

n 
u (x, y, t) = c  + 2 ~ ~ (x - -x j  (y, t)) (39) 

j ~ l  

and the equations 

have a solution of the fo rm 

~; = ~ ai (t, y, P) (1) (x - -x~ ,  a) e~'x+~'*u+s"q (40) 
~ 1  

COROLLARY 1. The dynamics  of the poles of the xi(y, t) with r e s p e c t  to y coincides with the dynamics  
of pa r t i c les  of s y s t e m  (1). 
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This  a s s e r t i o n  follows f r o m  resu l t s  in the preceding section.  S imi la r ly  to the equation O/Oy- L, the 
avai labi l i ty  of solutions of fo rm (40) for  the equation ~ / 0 y - M  is equivalent  to a commuta t ion  equation of the 
type {17), and coincides w~th the equations of a Hamil tonian flow cor responding  to the Hamil tonian J3. 

COROLLARY 2. The dynamics  of the xi(Y, t) with r e s p e c t  to t coincides with the third Hamiltonian flow 
of s y s t e m  (1). 

COROLLARY 3. The ell iptic solution ti(x, y, t) of the K -  P equation (39) can be e x p r e s s e d  in t e r m s  of the 
0-function of the cover ing  Fn of the ell iptic curve  F: 

u = const -}- 2 ~ ]n 0 (Ux + Vy + -Zt + W). (41) 

We use the connection between the poles of el l ipt ic  solutions of the K -  P equation and s y s t e m s  of type (1) 
in yet  another  way to prove that under obvious r e s t r i c t i ons ,  these solutions have no s ingular i t ies  for r ea l  x, y, t. 

We consider  the equation 

30~u 0 [  ~ )] 
~- oy---e t ~ u.t + -.i (6uu.~. - u,.x.~ ----- 0, 

I° ] which dif fers  f rom (3) by a sign. I t  has the commuta t ion  r ep resen ta t ion  i ~ - - -L ,  ~ - -  M ----- 0 

solutions a r e  connected with a Hamil tonian s y s t e m  with the Hamil tonian 

n 

H----- ~-~-~,Pi + 
k ~ l  k~j  

(42) 

and its el l iptic 

(43) 

This  Hamil tonian dif fers  f r o m  (1) by the sign of the potential  energy.  

Let  wl, w 2 be the per iods  of the F - func t ion ;  they a r e  complex  conjugates .  Then ~ (~) = ~-~). We con- 
s ide r  r ea l  solut ions of the K - P  equation of f o r m  (39). They a re  de te rmined  by the initial coordinates  xj(0, 0) 
and the initial  impulses  Xjy(0, 0). Suppose that  these  data to le ra te  conjugation, i .e . ,  n =2m and xj -- Xj+m, J = 
1 . . . . .  m. Then u(x, y, t) is r ea l  for  all  r e a l  x, y, t. 

COROLLARY. If  xj(0, 0) does not lie on the r ea l  axis ,  then the solution (39), (41) does not have a singu- 
lar i ty  for r ea l  x and y. 

The exis tence  of a s ingular i ty  means  that one of the pa r t i c les  fai ls  onto the r ea l  axis ,  but then the conju- 
gate par t ic le  mus t  coll ide with it. This  cont radic ts  the law of conserva t ion  of energy  since the potential is r e -  
pelling and s ingular .  

M A T R I X  S Y S T E M S  

We br ie f ly  s ta te  conditions on curves  so that  the const ruct ions  [16] of  " f in i te-zoned"  solutions of the com-  
mutation equations 

a a __ M ]  0, (44) 

where  L and M a r e  ope ra to r s  with m a t r i x  coeff ic ients ,  lead to ell iptic solut ions.  We follow the notation in [16]. 

By [16], eve ry  nonsingular  a lgebra ic  curve  F of genus g with l dist inguished points Pl ... .  , Pl and fixed 
local p a r a m e t e r s  zj (P) in the i r  neighborhoods,  and a lso  a se t  T1 .... .  , /g+/_lofpoints in genera l  position, d e t e r -  
mines  the solution of Eqs.  (44). 

If  the curve  F N is  an N-shee ted  cover ing  of the ell iptic curve  F, i .e . ,  it is given by the equation 

N - - 1  
k N ~- ~ ri (a) k i, (45) 

where  the r i (~)  a r e  el l ipt ic  functions with a single pole a t  the point ~ = 0. 

We suppose that F N has no b ranches  over  ~= 0. This  means  that the function k on FN has N s i m p l e p o l e s  
Pl ... . .  PN (the inverse  images  of the point a =  0). We denote by vj the res idue  of k on the j - th  sheet ,  i .e. ,  k -  
vj~ -1 =0{1) in a neighborhood of Pj. 
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Asser t ion .  We a s sume  that vj = 1 if j > l. Then if we take the local p a r a m e t e r s  zj(~) in the neighberhc~ca.~ 
of Pi ... . .  Pl to be zj(a)  = (k j (~) -  ~(~))-1 then the cor responding  solutions of (44) a r e  el l ipt ic .  

It  follows eas i ly  f rom this a s s e r t i o n  that to eve ry  N-shee ted  cover ing  of an el l ipt ic  curve  the re  c o r r e -  
sponds ell iptic solutions for  s y s t e m s  with (N-  1) x (N-  1) ma t r i x  coeff ic ients .  

The proof  of the a s s e r t i o n  follows f rom the fact that the function 

~ (P) = exp [k (P) (o i --  ~ (a) (~ + ~a ] ,  i = 1, 2, 

is p roper ly  defined as a function of P. Outside the points P, .. . .  , P l  it is holomorphic ,  and in nei~hoo~hoods of 
these  points it has the fo rm 

¢~ (P) = (1 + 0 (~)) exp (aT ~ (~) ~z). 

It  follows f r o m  the definition of B a k e r - A k h i e z e r  type functions that  for  ¢(x, y, t, P) sa t is fying the equations 

( ~ - - L ) * = ( ~ - - ' l l ) , . p = O ,  we have 

(x + o~,, y, t, p) = ~ (x, y, t, P) qh (P). 

Hence, the coeff icients  of the opera to r s  L and M a re  m e r o m o r p h i c  and per iodic  with per iods  co 1 and o:~, ,:.e., 
they a re  el l ipt ic  functions. 

In conclusion, we mention that it would be in te res t ing  to d i scover  how to obtain, byus ing  cover ings  over  a 
curve  $ of genus n, the solutions of nonlinear  equations e x p r e s s e d  in t e r m s  of a 0-flmction of high dimension,  
but leading to solutions with the group of per iods  of ~. I t  is possible  that these  solutions a re  connected with 
new integrable s y s t e m s  of pa r t i c les .  
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EFFECTIVE CONSTRUCTION OF NONDEGENERATE 

H E R M I T I A N - P O S I T I V E  FUNCTIONS OF 

SEVERAL VARIABLES 

L.  A.  S a k h n o v i c h  UDC 517.57 

1. Let  S be some set  of points of n-dimensional  space R n and A ---- S -- S. A function @(x) is called 
Hermit lan-posi t ive  on A if for any choice of points x l, x 2 .... , xNES and numbers  ~l, ~2,.'., ~N one has 

N 

i,  j ~ l  

Let n = 2. We consider  the lattice S(N l, N2) consist ing of points M(m, Z) with integral  coordinates  
0 ~ m ~ N1, 0 ~ l ~  No.. The set  h (N~, N2) consists  of the points M(m, l) for which ] m [ ~ Ni, [ l [ ~.~ N,,.. By 
~(N~, N~) we denote the class of functions, Hermit ian-posi t ive  on h (Nt, N.~). Calderon,  Pepinsky [1], and 
Rudin [2] proved the following theorem.  

THEOREM. In order  that any function of the class  ~ (N~, N~) should admit  an extension to a function of 
class  ~ (co, co), it is  nece s sa ry  and sufficient that any nonnegative polynomial of the form 

admit  a represen ta t ion  

i(x, y )=  ~ ~ a~.~x~y z 
0~/¢-. .~2N10~l~2N~ 

r 
](x, y)= .~ q~(x, y), (2) 

where qj(x, y) a re  rea l  polynomials.  

As Hilber t  [3] proved, there  exis ts  a nonnegative polynomial in two var iables  of the sixth degree  which 
cannot be represen ted  in the form (2). Consequently,  one has the following: 

Asser t ion (see [1, 2]). There  exis t  functions of c lass  ~ (3,3) which cannot be extended to !p(co, co). 

However,  there  have not been until now concre te  examples of such functions. In the present  paper  c lasses  
of concrete  functions of. 0(2, 2) and ~ ( l ,  i, i) I which cannot be extended, respect ive ly ,  to !p (2, 3) and 

(l, i, 2) a re  constructed.  We note that functions of the class  !p(i, 2) can always be extended to fp (co, co) 

(see [4-61i, 

2. With each function @(m, l) f rom ~ (Ni, N2) we associa te  the Toepli tz  mat r ix  

Fo (0, k) • O, k) ... • (,v,, ~) ] 
. lO ( - t ,  k) • (0, k) ... • (NI-- i, k) ] 0 < k ~ N~ (3) 

Fromthe  mat r ices  C k we const ruct  the block Teopl i tz  matr ix:  

[-Co c, ... ON, -[ 

A(N~, ,Y2)~/c~* . . . . . . .  co .... . . . .  c. , ._~[.  (4) 

• $ 
LCN ~ - CN~-I " ' '  Co J 
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