
RATIONAL SOLUTIONS OF THE ZAKHAROV--SHABAT EQUATIONS AND COMPLETELY 

INTEGRABLE :SYSTEMS OF: N PARTICLES ON A LINE 

I. M. Krichever UDC. 517.93 

One constructs all the decreasing rational solutions of the Kadomtsev--Petviashviii 

equations. The presented method allows us to identify the motion of the poles 

of the obtained functions with the motion of a system of N particles on a line 

with a Hamiltonian of the Calogero--Moser type. Thus, this Hamiltonian system 

is imbedded in the theory of the algebraic--geometric solutions of the Zakharov-- 

Shabat equations. 

The fundamental purpose of the present paper is the construction of all rational solu- 

tions, decreasing for 9C----c>o , of the Kadomtsev--Petviashvili (KP) equations 

9 

This equation~ describing the quasi-one-dimensional waves in a weakly dispersing medium, 

has been obtained for the first time in [i]. It belongs to the type of so-called Zakharov-- 

Shabat equations i.e., equations upon the coefficients of the operators 

equivalent to the operator equation 

ILl-- 

In p a r t i c u l a r ,  i f  

~2 
Li  =  x:z 

<E271 ,k2 

~3 

then the corresponding Zakharov--Shabat equations have the form 

2 ~ -  2 ~ ~ - 2 ~ x  ' 

~-~ ~u. b ~  3 ~ ~ 
~ ~ t = ~ - -2 ~ ~ ~ 

O/(~,~,t), from this system, we obtain the KP equation [3]. Eliminating 

One knows a procedure for the construction of exact quasiperiodic solutions of this 

equation by the methods of algebraic geometry [4, 5]. It has been proved in [6] that the 

equations upon the coefficients of a collection of linear differential operators of ~ vari- 

ables, equivalent to the condition of their commutativity, can be reduced to problems of 
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algebraic geometry if the number of the operators in this collection is equal to Ft + i . 

The last statement refers to the local solutions of the indicated equations. In the present 

paper it is proved that the class of the exactly integrable solutions of the Zakharov--Shabat 

equations can be can be selected by nonlocal requirements on the functions under consideration, 

namely the requirement of the rationality of the obtained solutions. It should be mentioned 

that such a nonlocal requirement was the formulation of a problem by Novikov [7], who has 

proved the complete integrability of the Korteweg-de Vries equation in the class of quasi- 

periodic functions with a finite number of prohibited zones for the corresponding Sturm- 

Liouville operators. 

Making use of the method of the inverse problem in scattering theory, a large class of 

nonsingular rational solutions of the KP equation has been found in [8]. 

The suggested method of integration of the KP equation in the field of the rational func- 

tions allows us to identify the motion of the poles of the obtained functions with the motion 

of a system of N particles on a line with the Hamiltonian H=~p~. +2~(0ct-~i) -2 and 

with flows given by the "higher Hamiltonians," obtained by the integration of the initial 

system in [9]. Thus, the Moser theory of the Hamiltonian system is imbedded in the theory 

of algebraic--geometric solutions of the Zakharov--Shabat equations, as the theory of special 

solutions. The connection between the motion of the poles of the rational solutions of the 

Korteweg-de Vries equation and the motion of a discrete system has been discovered for the 

first time in [i0], stimulating subsequent investigations in this domain. 

i. Rational Solutions of the Kadomtsev--Petviashvili Equations 

Let tL[OC~t) be a solution of the KP equation, depending rationally on the variable 

DC and decreasing for ~ i.o~. It turns out a posteriori that in this case LL~,t) 

will be a rational function of all of its arguments. 

Expanding ~[(3g,~,~) in a Laurent series in the neighborhood of its pole ~ (~ t) 

insertingit into the KP equation and comparing the two principal singular terms in all the 

" , t ) f  terms of the left-hand side, we obtain easily that - 

The function tt {~,~,t) THEOREM i. i. 

solution of the KP equation, decreasing for OC ...... ,OO if and only if 

(Dt-~j(~,t)) -a and there exists a function ~(~,~,~, K) of the form 

K)=  e 

is a rational (with respect to the variable 0C ) 

(i.i) 

such that 

m b 
, , 

~ .b3 +3tLb 
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N 

~ cm,~,t) = ~ [ S (* "maq,t)l-~ + ~ (~ - mf~,t))-~ ~.t~,t)]. 

Befo re  we proceed to the  p r o o f  o f  the  theorem, we f o r m u l a t e  a lemma wh ich  w i l l  a l l o w  

us to i d e n t i f y  the  dynamics r e l a t i v e  to  ~ o f  the  po les  ~ j [ ~ , t )  w i t h  the mot ion o f  a Moser 

system of particles. 

LEMMA 1.2. The nonstationary Schredinger equation 

N ( ~ _  ~ + y , ,  2 , ~ =  ~ ~ ~_ ~ )  ~ 0 (1.2) 

has a solution ~,~t,~,t) of the form (i.i) (where t must be considered a fixed parameter) 

if and only if the matrines ~ and A 

Aj~ = P,i ~'i ~ + 
2(t- 5"j,) 

satisfy the matrix equation 

Proof. 

we obtain 

[~-T,A] =0 (1.3) 

Inserting the expression for ~ into the left-hand side of the equality (1.2), 

( ~  mJ ~ ] e ~ + ~ ' ~  +K3t �9 = ( ~ _ ~ -  ~_ m~ = 0. 

where the ~eotors ~ = ~ % , . . . ,  %1 and ~=<}~ .. . .  , ~ , I  are given by 

~ = A ~ + 2 M ~ + e o .  9 =  { ~ - T ) ~ ,  

~=~%,  .... %1, %=(2 ..... 2),I is the i d e n t i t y  m a t r i x .  

The equalities 06=0 . ~=0 are consistent for all K if and only if (1.3) holds. Thus, 

the lemms is proved. 

The representation (1.3) of the equations of the motion of a Hamiltonian system of par- 

ticles with the Hamiltonian ~----~ ~ + 2 <~ (~- ~j.)-2 has been found in [9]. Therefore, 

from Theorem i.i and from the proved lemma we obtain the 

COROLLARY. The dynamics relative to ~ of the poles 9C~(~,t) of the rational solutions 

of the dynamics of a Moser system of N particles on a straight line. 

Proof of Theorem i.i. The sufficiency of the conditions of the theorem is obvious. 

Indeed, if k~C~,~t,K) exists, then the operator [Li ~-~ , h~- , containing differ- 

entiation only with respect to ~, annihilates ~(]L,~,K} for allK. Consequently, its 

kernel is infinite-dimensional and the operator is zero. As mentioned above, the latter means 

that LLtgC,~,~) is a solution of the KP equation. 
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Let [l(]C,~t) be a rational solution of the KP equation, decreasing for ~oo Then, 

LL(]C,~,t) -~-~ =~2-( %-= ~(~,~))-~. As in Lemma i.i, in terms of the functions ~ (~,t) one defines 

the matrix functions /X{~,[) and ]-'{t~,t.}. 
We consider the function ll/(~,L~,t,K} of the form (1.1), where CL~{~,t,K} are determined 

from the equation AO~ + ~K~ + e 0-- 0 . A direct computation shows that then 

e , (l.4) 

N V,:c + ~ +~3t 

(1.5) 

where 

( ~ i -  "T-DS " 

right-hand ! 

Applying to the side of the equalities (1.4) and (1.5) the operators Bt L~ 
8 

and ~-- ~ "i ' respectively, we derive that the commutativity of these operators is equiva- 

lent to the fact that ~ ~ 0 and ~--0 . Thus, the theorem is proved. In addition to Eq. 

(1.3) defining the dynamics with respect to ~ of the poles 0c~(~ti , we obtain the equation 

on the dynamics of ~i(~,t) with respect to t in the form 

The system of the Eqs. (1.3) and (1.6), defining the functions I~(~,~) is equivalent to 

the KP equation in the class of rational functions. 

The solution of the Kadomtsev--Petviashvili equation, having N poles, depends on 2 N 

initial data: ~j{0,01 and (~0CjI(0,0). 

In [9] one has introduced "higher Hamiltonian systems" Hp=~d~ ~ , W~---~ �9 For 

Hamiltonian flows corresponding to higher Hamiltonians there exist matrix commutation repre- 

sentations. In particular, equation (1.6) is equivalent to the Hamiltonian system of equations 

for the Hamiltonian W 3 �9 

COROLLARY. The dynamics relative to [ of the poles of the rational solutions of the 

KP equation areidenticalwith the motion of a Hamiltonian system with the Hamiltonian W3. 

Theorem i.i reduces the problem of the construction of the rational solutions of the KP 

equation to the construction of the simultaneous eigenfunctions of linear operators. These 

functions, having the form (i.i), can be reduced to another form. Since the vector (L is 

determined from the equality AC~§ q- eo = 01 it follows that O~I~,~,K) depends rational- 

ly on the variable K . The poles O~j t~,t, K) coincide with the zeros of the characteristic 

polynomial ~i(Kl= d~(2Kl + A~. By virtue of (1.3) and (i. 6), this characteristic polynomial 

does not depend on ~ and [ . Consequently, 
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T(~,~,t ,a~:,  ~ %~,) ) 

The d~g~ee of the polynomial ~/=,~,t,*~ is ~t~ictly smaller than N = ~  %/KI. 
In the next section it will be proved that for almost all solutions of the KP equation 

there exist N numbers ~, ~ such that ~<~,~,L,~I~_~:O. The oollectio~ of ZN 

parameters ( ~s and the coefficients of the polynomial ~I(K~ ) determine uniquely the func- 

tion ~(3r and, therefore, also bLig~,~,t). 

Making use of this result, we arrive at the following theorem. 

THEOREM 1.3. For almost all solutions of the KP equation, depending rationally on :](i 

and decreasing for js we have the formula 

a ( ~ , ~ , t ) :  2~-~ [~ &I(9 , (1.7) 

where the matrix elements ~s are given by 

' i~  s.~-~ ~is ) 
COROLLARY. The solutions of the KP equation which depend rationally on 0C are rational 

functions of all of its arguments. 

2. Rational Solutions of the Zakharov-Shabat Equations 

The construction of the rational solutions of the Zakharov-Shabat equations is carried 

out in two steps. First one constructs a class of functions ~,[9s and then one es tab- 

lishes operators for which ~/(O~,~,t,K] are "proper." 

Assume that the following collection of data is given: the polynomials 

~tK) = % ~ + "  +Co , P~,~ " ~  "' :~.~K +'"+%0, 

AS= 5 the points ~, ~t[~e ~ , the rectangular matrices [OSL~) 14L~<[ s , {~<ix<kS , the ranks 

I~$ Then, any polynomial for 

there exists a unique function 

such that the coefficients of the expansions at the points ~$ 

~{x,~ , t ,~  : .~  {~,s <~,~,t)~-~s ~ 

satisfy the system of equations 

Here we assume that ~ %1~, ~,t, K) .< N- i We denote by %Ls (~, ~ ,t) 

K~ eR~+ChtK)(hRl~*P,{~lt ] 
R= ~S 

(2.1) 
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for (X>,{ , 

i,s 

The Eqs. (2.1) can be rewritten in the form 

N-i h,s 

0{=0 "= 

"b '~ e~,Oc +Q(w~+ R{.)f 

]K=~ s ' 

= _  �9 

(2.2) 

M-I 

the coefficients of the polynomial ~ ( ~ , t ~ , t , K )  = - ~ , _ ?  Y=~x,~, t~  = , determined from the Thus, 

equations (2.2), are rational functions of their arguments. Their poles coincide with the 

zeros of the determinant of the matrix ~ , defined by the left-hand sides of the equations 

(2.2) (the rows of the matrix are indexed by CL while the columns by the pairs ( [, $~ , i~< 

i-.,< Is ). 
We note that from here there follows the possibility of the representation of ~,~, 

t,K) in the form 

y ( z , ~ , t , ~  = ({ + ~- m_ =~ , t ) )e  

where 
H 

~=~ 

THEOREM 2.1. There exist unique operators 

such that (L , -~ )~  = tL2-~)~=O. Their coefficients are differentiable polynomials 

of the functions ~(3c,~,~) and, consequently, they depend rationally on their arguments. 

Proof. We consider the expansion of ~(~,~,t,&l in the neighborhood of infinity: 

The functions Ss('E'L~'t) 

~c~,~ .tl= ~._,~,~,t~, . . .  

The coefficients of 

are linear combinations with constant coefficients of ~(~,~,t); 

L i are obtained from the system of linear equations 

(2.4) 

( S = - ~ + i ,  . . . .  O; [ j=O ,j<O). 

This sytem is equivalent to the congruence 

340 



((L,- e 

The c o n g r u e n c e  ( 2 . 5 )  means  t h a t  t h e  f u n c t i o n  

(2.5) 

has the form 

where the degree of the polynomial ~(gC,~,i,K)does not exceed N -- i. 

Since the linear conditions (2.1) are invariant relative to the action of linear opera- 

tors, it follows that they hold also for the coefficients of the expansion of the function 

~(Ds . An equivalent system of homogeneous equations on X~(gC,~t) is ~----(]s 
Nzl 

L~(OC,~t)K~ , whose left-hand sides coincide with the left-hand sides of the nonhomo- 

geneous equations (2.2). The rankof this system is N ; therefore, its solution is necessarily 

the zero solution. Consequently, ~I~C,~,i,K)=0 or (hi-~)y=0 The operator L~ is 

constructed in a similar manner. 

COROLLARY. The constructed operators satisfy the equation 

~]=0 
In order to obtain the rational solutions of the Kadomtsev--Petviashvili equations it is 

necessary to take ~(~):~2 , ~(K~---K 3 in the scheme we have presented for the construction 

of the rational solutions of the general Zakharov-Shabat equations. 

From Eqs. (2.4) it follows that %Li~C~i]:--2~ Therefore, the poles of 

bt(3C,~t) coincide with the poles of ~N_i{~,~,t) or, which is the same, with the zeros of 

the polynomial d~ ~ By virtue of the fact that tt~,~,t) is the total derivative of a 

rational function, the residues at these poles are equal to zero. Thus, 

M h~ 
-2 

For fixed ~ and t , the number M of the poles of the function ti(gC,~,t) is equal to the 

degree of the polynomial ~ 0 . The degree of the polynomial ~,$ is equal to i ' there- 

fore, for example, for the matrix of general position A s , satisfying the conditions Clsi=0 

for i > m(s , this number is equal to ~---~r~[,S) . From here, a 2N parameter family 

of rational solutions of the KP equation, having N poles, is given by the functions ~(~, 

~,t,M) , for which condition (2.1) has the form 

~(9C,~ ,t,R)IK=, s : 0  (2.7) ~K 

In this case the matrix 0 will have the form (1.8) and, in combination with the equality 

(2.6), we obtain the proof of Theorem 1.3. 
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The solution of the KP equation and the general position correspond to the confluence 

of the points ~i s. In this case the conditions (2.7) turn into the general conditions (2.1). 

3.. Rational Solutions of the Lax Type Equation s. The Korteweg--de 

Vries Equations and the Boussinesq Equation 

We present briefly the general scheme for the construction of the rational solutions of 

the equations of the Lax type. These equations describe the solutions of the Zakharov--Shabat 

equations, independent of the variable ~ and, consequently, they are equivalent to the operator 

equation: 

[~-L,  ,L~]=O. (3.1) 
The equations of Korteweg--de Vries and of Boussinesq 

LLt---- 6LgLI~ + bLm~m , (3.2)  

~t,_+ ~au.+ i ~ t  + 3 ~ ~u. 

also belong to them. We consider the function TIm,L,K) of the form 

CI,(~,I,K) K~+B,~K)L 
y Im, t ,~ )= ( i+  o~,~K) )e t 

~l~,t , .~< ~ % ~ =  N 

We assume tha t  the c o e f f i c i e n t s  of  the expansion of ~(o~, t ,K}  a t  zero,  

satisfy the conditions 

~r 0 , 

where j~ is the i-th number not divisible by ~ , ~4 L~iN . 

For this function, as for the proof of Theorem 2.1, we obtain 

LEMMA 3.1. There exists a unique operator 
~L 

such that (LF ~)Y= 0. 
Expanding y(~,~,K) 

This equality means that 

has the form 

at infinity, one can construct a unique operator L~ such that 

((L~- K ~)TC~, t, K~) e -~~-R~t ~ 0 Im~dO {K-')). 

(3.4) 
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~/uc,t ,R) Koc*R(R)t 
Or{(K) 

Conditions 3.3 are invariant relative to the action of linear operators and relative to 

multiplication by K ~ and, therefore, they hold also for the coefficients of the expansion 

of the function ~[3C,t,K) . As in Sec. 2, we find that from this we obtain the following 

i emma. 

LEM}i& 2;.2. There exists a unique operator 

b ~ 1 

COROLLARY. 

Example i. 

of operators 

The constructed operators satisfy the equality (3.1). 

If I t=  2 , ~K~ = K ~ , then each polynomial (:Ill(K) of degree N defines a pair 

+ and I 

The function tL(Dc,t) is a solution of the Korteweg--de Vries equation (3.2). 

As in Sec. 2, for LL(3C,C] we obtain the formula 

M 

. :  (~c-~{t)) ~ , 
(3.5) 

~SN-2L-S ~)ZN+t eR~+K~t I 1 
where ~ts----- ~3C.3N-~--5 bKP-N+t Ori[K) R=O- 

In order to obtain the last equality it is necessary to replace the expressions for 

~(~,t) in terms of 7~(I,~) I~=(~,t)K ~ = ~(3%,t,K) in Eqs. (3.4). They become 

e7 = %  , 
where ~- ( ~0, .-., ~N-,) , while the s-th coordinate of the vector e 0 is equal to ~s ~- 

b ~ eRz+~3t. ~s The number M of poles of these solutions is equal to N(N+{]. 
2 

Example 2. If FL=~, ~K)=K~+-i, then each polynomial ~{(K) of degree N yields a 

solution tL(I,t) of the Boussinesq equation (3.3). Equality (3.5) holds for them, in which 

The number of poles of ~(]C,i) is equal to N(N+2) if N is even and to IN+i)2 
q q if N is odd. 

4. Rational Solutions of the Novikov Equations 

We have already mentioned that the algebraic~eometric construction of the quasiperiodic 

solutions of the Zakharov--Shabat equations gives solutions of the commutativity equations of 

the extend~id algebra of operators, containing in addition to the operators Li-~% and 
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rings of the operators of the form ~ 'i:+O/[(~,~,[)~-~'~ ~- ~[ isomorphic to the ring of also the 

functions on a nonsingular complex curve and having a unique pole at an isolated point. We 

show that the constructed rational solutions of the Zakharov--Shabat equations are separatrices 

of the family of quasiperiodic solutions in the following sense: there exists a ring of 

among themselves and with L~-~-- , L2-~ , which is isomorphic to operators, commutative 

the ring of functions on a singular curve, birationally isomorphic to a complex line with 

a unique pole at "infinity." 

Multiplication by any polynomial P(K) gives a linear operator in the spaces of series 

of the form ~=~(~](K-~s J . We denote by 0~ the ring of the polynomials for which 

the corresponding homomorphisms form invariant subspaces, given by the equations (2.1). 

THEOREM 4.1. If ~(z,t,~E) is the f~ion defined in Sec. 2, then for any polynomial 

P[K)e 0~ there exists a unique operatorLp=~Ll~{]c,~,i)~ such that 

As a consequence of this we obtain that these operators commute among themselves and 

with the operators Li- ~ , L[-~ 

The proof of the theorem is entirely similar to the proof of Lemma 3.2. 

For example, if the conditions (2. i) have the form ~{DC,~,[,KJl --- 0, then ~ 
K= ~s 

a ring of polynomials such that ~P[K} is divisible by ~(~{-~sl. If we set i: 0 and is 

~--0 , i.e., we consider the function 

y ~ : , K ~ : ( l  + ~)e~I~"K) ~ , 

satisfying the conditions ~-~ ~(T,K)!~=, T0, where ~ ~ i d~j ~i---N , then, by Theorem 4.1, it 

will give a homomorphism I~ from the ring 0[~ ,~---[~s , into the ring of the ordinary 

differential operators. 

The coefficients of these operators satisfy ordinary differential equations which are 

equivalent to the condition of their commutativity . These equations are calle8 Novikov 

type equations. 

Their general solution has been found in [4, 5]. Applying the methods of these papers. 

one obtains easily the following theorem. 

THEOREM 4.2. For any subring i of the ring of the linear differential operators 

isomorphic to 0~ , there exists a polynomial ~{ {El such that the function ~[~,~) cor- 

responding to it and to the conditions ~/IK=~0 , gives a homomorphism of A and 

The corresponding solutions of the Novikov equations are rational functions. 
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LIMIT STATES FOR MODIFIED NAVIER,STOKES EQUATIONS 

IN THREE-DIMENSIONAL SPACE 

O. A, Ladyzhenskaya UDC 517.99 

One gives the description of the limit set m R (when ~-~o=) for all the trajec- 

tories (solutions) of the system 

~-~ ~ s ~ d - 

where ~-}o+#,~#(x,t)~, ~C=ca~,t)0, satisfying the boundary condition ~I~Q=0 at 

the boundary of the bounded domain ~ and emanating at t=0 from the points of 

the sphere ~R={Z(x):~(• In particular, it is proved that for 

greater than some ~o , the semigroup Vt~t>~0 , which corresponds to this prob- 

lem can be extended to a group Vt,%eR ~ , possessing a series of interesting 

properties. 

In [i], for the two-dimensional Navier--Stokes equations 

in a bounded domain ~ C m % , with the boundary conditions 

t *) 
Vlg[~ = 0 (2) 

we have considered the following question: what flows can be seen by an observer during the 

lapse of a very large (mathematically infinite) period of time, if ~(~) and ~ are fixed 

and the initial fields V(X,O) take all values from the Hilbert space ~ (ll) ? In the case 

of small Reynolds numbers, the answer is simple: he will contemplate the unique stationary 

solution of the problem (i), (2). However, as it is known with the increase of the Reynolds 

The statements in [i] hold also for other boundary conditions; for example, for periodic 
conditions with respect to one or both variables • 
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