COMMUTATIVE RINGS OF ORDINARY LINEAR DIFFERENTIAL OPERATORS

I. M. Krichever UDC 517.43

In the modern theory of exact solutions of the Zakharov—Shabat equations, which include
a number of fundamental equations of mathematical physics, commutative rings of ordinary
linear differential operators play an important role.

The coefficients of the operators of such a ring form an invariant finite-dimensional
space on which the constraints of the original operators can be integrated using methods of
algebraic geometry (see [10]).

In [11-13] a classification was obtained of commutative rings of differential operators
in one variable containing a pair of operators of mutually prime orders. The remarkable pa-
pers [2-4] have recently become well-known, although they were forgotten for a long time;
the classification just mentioned was already (locally with respect to x) obtained in these
papers. However, the method for establishing the coefficients of commuting operators was
not sufficiently effective. For instance, the key result of the modern theory which asserts
that the commutativity equations are completely integrable Hamiltonian systems with a set of
polynomial integrals, and that the coefficients of rings of operators in general position
are almost-periodic functions, was unknown. The relation between commutative algebras and
the spectral theory of operators and the theory of linear Floquet equations with periodic
coefficients is also an achievement of the modern theory.

An abstract algebraic exposition of the construction of the author proposed by Drinfel’d
in [5] has made it possible to obtain interesting but, unfortunately, noneffective results
in the problem of the classification of commutative rings of differential operators with or-—

ders which are not mutually prime, the geometric meaning of which was pointed out by Mumford
[14].

In [10, Sec. 2, pp. 191-193] an idea was stated for effective analytic construction of
commutative ordinary differential operators of arbitrary orders. The ideal itself is cor-
rect, but its implementation in [10, p. 192] contains some serious errors. In this paper
these errors are corrected, and the solution of the problem of classifying commutative rings
of differential operators in one variable corresponding to nonsingular Riemann surfaces
("rings in general position') is thereby completed.

In Sec. 1 we discuss in more detail a comparison of two approaches to describing commu-
tative algebras, the approach of the author and that of [5, 14].

The methods of this paper have other applications as well. We recall that the construc-
tion of exact solutions of nonlinear partial differential equations does not require solving
the classification problem of commutative rings of ordinary differential operators of orders
which are multiples of 7, but requires rather the construction of the (I x 1) matrix analog
of the multiparameter Baker—Akhiezer functions (see [10, Sec. 1]).

The corresponding constructions were undertaken by S. P. Novikov and the author. They
give a large class of solutions of the Zakharov—Shabat equations depending on functional
parameters, and in particular, they give solutions of the Kadomtsev—Petviashvili equation

[—%——L, -(%———A] =0,

where

L=d2+ll(x’y1t)1 Azdi;’.+%ll—(l—-+w(x’y’t)

dx* ax

This work of Novikov and the author will be published shortly in the journal "Funk-
tsional'nyi Analiz i Ego Prilozheniya."
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1. Algebraic "Spectral Data" for Commutative Rings of Differential Operators

We consider a system of Novikov equations, i.e., a system of equations for the coeffi-
cients of the operators

n 3 m 3
1

d d
LIZE ui(x)[;;—, Lg'—‘—‘ Zvi(x)—g‘;{,

i=0 i=0
which is equivalent to the commutativity condition [L,, L] = 0.

For the sake of definiteness, we agree that the coefficients of operators are scalar
functions. Moreover, let vm = up = 1, un~-: = 0. The last restrictions are unimportant
since they can always be made to hold by a change of the variable x and a suitable conjuga-
tion I, = u (2)Lu! (z), L, = u (x)Lu? (2).

The following result lies at the heart of the application of the methods of algebraic
geometry in solving the Novikov equations.

THEOREM 1.1 (Burchnall and Chaundy [4]). There exists a polynomial Q(w, E) in two var-
iables such that Q(L., L,) = 0.

Proof. The operator L, on the space % (E) of solutions of the equation L,y = Ey de-
fines a linear operator L,(E). Its matrix coefficients L¥ (E) in the canonical basis cj(x,

K
E; Xo), -(;(;;-cj(x, E; xﬂ)|x=x°=6;j, 0 i, j<<n—1, are polynomials in E. Let Q (w, E) = det (w-1 —

LY (E)) be the characteristic polynomial of L.(E). The kernel of the operator Q(L., L:)
contains % (£) for all E and is therefore infinite dimensional. Hence the operator itself
is zero.

In order to study questions associated with the compactification of an affine curve de-
fined by the equation Q(w, E) and the behavior of the common eigenfunctions of the operators
L, and L, at infinity, we introduce the term of a formal Bloch function for each operator.

LEMMA 1.2. There exists a unique solution of the equation
Lyp (z, k) = k™ (z, k) (1.1)
in the space of formal power series of the form

BBy = (3 8 @)K

8=,

We denote this solution by y(x, k; %Xo). Any other solution of this type is equal to v (z,
k) = A (R (z, k5 7o), A(k) = D) A5

" os=N

(N an integer) with the '"mormalization™ condition & =0, s<C0,8& (2} = 1. & (z) = 0,s > 1.

A proof of this proposition and many important corollaries which we omit is contained
in [13].

The operator L, leaves the space of solutions of Eq. (1.1) invariant. Hence by the

above lemma, Ly (x, k; zo) = A (b)Y (z, k; z,), where A(k)=A"+ Z_L AE5
S=e—h-11
The functions 1p(;Lkﬁ:nQ,k?:= E, form a basis of the space Z (E), which is an eigenbasis
for L2(E). The space £ (E} is generated by y(x, kj; Xo) over the field of Laurent series
in the variable k™ *. In this space, the matrix elements in the corresponding canonical ba-

n—1
sis are the same as in £(E). Hence Q(w, E) = H (w — A (k).

1=0

If the values of the series A(k) are different for distinct n-th roots of E the curve

® is irreducible and can be completed gt infinity by a single point Py in a neighborhood of
which a local parameter is given by E ' 0(p). 1In addition, this means that for large, and
hence for almost all E, the eigenvalues of the operator L, (E) are distinct. Since this case
has been discussed in detail in the previous papers [10, 13], we turn at once to the general
case.
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The series A(k) is such that its values at certain n~th roots of E coincide if and only
if there exists a series A(k) such that A4 (k) = A (k). Since the leading term in A(k) is
equal to kM, 7 is a common divisor of n and m.

In this case,

n—y n—1
Qw By =l w—a®)= Il w—ZE) = 0w ),

where & = E,E} = E,n’'l = n.

We keep the notation ® for the curve defined by the equation

0w B)= Il w—2@®)=0.

which is irreducible. At infinity R is completed by the single point P, in a neighborhood
1
of which E-¥ (P) is a local parameter.

n
Each point P of the curve R, i.e., each pair P = (w, E), Q(w, E) = 0, corresponds to an
l-dimensional subspace of eigenvectors of L,(E) with eigenvalue w = w(P). We choose in this
subspace a basis with the normalization conditions
' :
—d?'lpj(x, I); xo)lx#ozéi]ﬁ 0<l, ]<l'—i.

All the remaining coordinates of these vectors in the canonical basis of £ (E) are meromor-
phic functions ¥!(P;z,) on the curve ®. Their poles coincide with P, and the zeros of the
determinant of the diagonal minor of the matrix wel — L;(E) formed by elements with indices
<, j<<n—1.

The vector functions %; (P; %) with coordinates ¥; (P;z,) define an algebraic subbundle
n(xe) of dimension 7 in the trivial I-dimensional bundle over %. This subbundle is in es-
sence the starting point of the abstract algebraic approach [5]. How can the dependence of
n(xe) be determined? For I = 1, it has been determined by differential equations, and its
properties play a large role in the papers [6-7, 16, 10-11]. For I >1, as is pointed out in
[14], the situation is more complicated. The "possible'" translations of n turn out to be
covered by a nonintegral I-distribution on the space of moduli of 7-dimensional sheaves over
N with a fixed flag at the point Po. Variation of the point xo defines a path tangent to
this distribution. At this point the studies in [5, 14] are concluded.

The method in [10] does not consist in describing xo for variations of the sheaf, but
finding the eigenfunctions yj (x, P; Xo), Xo = const, themselves which generalize the Baker—
Akhiezer functions (see [1-2, 6, 10, 12}).

Since the basis functions ci(x, E; Xo) are entire functions of E,
n—1
Y (2, Pyae) = 2 (P o) e (z, E; o)
=0
is meromorphic away from P, with pole divisor D not depending on x. (In general, D depends on.
Xoo)
We consider the Wronskian matrix ¥(x, P; xo) for the functioms yj(x, P; %Xc). The ma-
fd
trix function (#‘F) V1 does not depend on the choice of the basis ¥j. Therefore, in order

to find its behavior in a neighborhood of Py, we can make use of the formal series 4 (x,7cj;
%), kj = k, k=! = k=1 (P) the local parameter near Po.

Since ¥ (z, %;; ;) can be written uniquely in the form
1—1

11;(1) (z, /TJ, o) = Z( @’ P (z, 75,-; xg)) As (z, F),

dz’

§=0

where Ag(x, k) can be written uniquely in the form kY, Ay =k -+ &, (2) -+ O (kY), A, = ¥ (z) +-
0, 1<<s<l—2,h,=0(k"1) , then
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0 0 1. o 0

(F¥)er= - - o |F0e (1.2)
0 0 .... 0 1
kdug up » « v« g O

The functions &S(x) are differential polynomials in the coefficients of the initial
.operator L;.

We return again to the study of the divisor D of the poles of the qg(x P; z,). For‘al-
most all solutions of the Novikov equations, i.e., for almost all commutative rings of dif-
ferential operators, the curve ® is nonsingular. Let P, . . ., Pp' be the inverse images

of the point E under the projection E:®—C,E(P;)=E. They are distinct for almost all E.
We construct the Wronsklan matrix F(x, E; %o) in the functions ¥; (z, P;; Z,). The function
g(x, E; Xo) = (det F)? does not depend on the order of enumeration of the points Pl and is

therefore well defined as a function of the variable E.

By hypothesis, the penultimate coefficient of the operator L, is zero, up-; = 0. Thus,
the Wronskian for any basis in % (E) does not depend on x, so that g (E;x,) = g (z, E; z,) also
does not depend on x. The values of all the derivatives of 4; (z, P; zy) at x = X, are rational
functions on R. Hence g(E; Xo) is a rational function of the variable E. Its zeros coincide
with the points E for which the eigenvalues of L,(E) coalesce. Moreover, the order of a
zero is equal to lv, where v is the multiplicity of a ramification point of the curve .

(The multiplicity of a ramification point is the number of sheets of R, coalescing at that
point, minus 1; for curves in general position, v = 1.)

We will assume that all the poles of ¥;(z, P; z,) are simple, i.e., D is a set of dis-
tinct points v;,..., Y. We let ¢;;(z) denote the residue of the function 4¢; (z, P;x,) at the
point yi. Then the poles of g(E; xo) coincide with the images of the poles yi and the point
at infinity. Moreover, the multiplicity of the pole of g(E; xo) at the image of yi equals
2%; , -twice the number of linearly independent functions ¢;,; (*). The equality of the number
of zeros and poles of g(E; xo) gives the relation

N
IDv=22 %+ Ne.
=1
Using (1.2) we find the multiplicity N_ of the pole of g(E; xXo) at infinity. It equals
I(n' — 1), where n' is the number of sheets of R over C.

‘The usual expression for the genus of a curve in terms of the multiplicity of the rami-
N

fication points of R gives the equality ) x;=1Ig, where g is the genus of R.
=]

In what follows we consider the case of "general position," which corresponds to the

so-called "stable fibrations," so that all x; =1, i.e., the degree of the divisor D is Ig,
and among the functions ¢, ; () there is only one linearly independent function for each
fixed i. Thus, for each point yji there exist 7 — 1 constants aj ,j such that @ ; (z) =

o, P, (@), O0<Cil—2 (we may assume that the complement of th1s closed set is ¢y -3 (2) 7+
0). Here "general position" means that his component has maximal dimension l®g. For arbi-
trary sets x;, the solution of the inverse problem can be obtained in exact analogy to our
construction which follows. We show that the dimension of the corresponding component is
smaller. The corresponding parameters are the coefficients of the expansion of l-— %; func-
tions with respect to %;, which give a basis among the ¢;, ;. The dimension is equal to

N

Z(l—”z)xi i N l"g—z K$+N<l2g’
i=1

i=1
provided at least one of the numbers x; 3= 1.

The set of points y{ with associated vector multiplicities @; = {o;, ;) is a characteris-
tic of the so-called "matrix divisors" defined by generic sheaves with a fixed '"normaliza-
tion," i.e., set of basis sectiomns [17].
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LEMMA 1.3. The matrix divisor Dy = (y;, &;;) and the functions &, (z), & (), . ., & ()
uniquely determine the eigenfunctions of the operators +;(r, P;z,) for almost all sets o5 5
(belonging to the complement of a closed set).

Proof. It follows from the Riemann—Roch theorem that for every set of polynomials

g k), . .., gy () there exists a unique vector function 4 (P), ..., % (P) such that all its
coordinates have simple zeros at the points yj, and their residues yi,j are related by ¥:; =
i,5, Yig-1» while in a neighborhood of P, the congruences y; (P) = g¢; (k) (mod O (k') hold.. In-
deed, the dimension of the space of vector functions associated with the divisor D and hav-
ing a given singularity in a neighborhood of P, is equal to I(Z — 1)g, which equals the num-
ber of equations for the residues, which for an open set of «i,j may be assumed to be inde-
pendent,

‘Y ]x_xa is uniquely determined by its singular
parts in a neighborhood of P,, where ¥ (z, P; xo) is the Wronskian matrlx of the functions

P; {z, P;xy). Using Eq. (1.2), we find the desired singular parts of d—; ‘\F, successively,
&

X=Xg

which completes the proof of the lemma.

18
Conversely, if we start from the singular parts of the matrices —f—g‘F'x__xo obtained, we
“wx o

find the derivatives, and hence also functions v, (z),....0,— () such that the following state-
ment holds,

LEMMA 1.4. In a neighborhood of Po the vector function ¢ (z, P; xp) = (Yo (x, P;Zo) « s
P, (2, P; 24)) can be written in the form

M@Pm@_(g E (@) A7) Wolm, ks o)y k=& (P),

where ¥, (z, #;x,) 1is a solution of the equation

6] T
0 T
y . e e e e e

— o (z, k3 xo) =| -.--~~--\%m&m (1.3)

([1 . . » - . .
0 F e 1
kv, . . ‘e O

with the normalization W, (z,, k; 2,) =1, the identity matrix.
The values of the vectors E£s(x) at xo are equal to &, {(x,) = (1,0,...,0), E{zg)=0,5s>1.

The curve R is called the spectrum of the commutative ring A containing the operators
L;s Lz. The functions v;(z. P; zy) are eigenfunctions for all the operators in A. The set
consisting of K, Py, the matrix divisor Dy = (yi, ai,j), and functions v, (z),..., v (z) is
called the "algebraic spectral data' and it determlnes the ring A uniquely. In the next
section we solve the problem of reconstructing A in terms of its data.

2. Reconstruction of Commutative Rings of Differential Operators
from "Algebraic Spectral Data"

We consider the space % of vector functions ¢ (z, P; zo), having poles at an arbitrary
set of points y;, 1 i< lg, of a nonsingular complex curve R of genus g and which can be
expressed in a neighborhood of a distinguished point P, in the form

¢ (@ P; zo) (2 E (2) k7)) Fo (2, k; za),
where k™! = k™ *(P) is a local parameter. Here W, (z, k; z,) is the matrix defined in the pre-
ceding paragraph in terms of the functions vy (z), ...,V (7).
LEMMA 2.1. The dimension of £ is equal to I (I —1)g—+1

Proof. Let I' be the boundary of a small neighborhood of Py. We write ®* and R~ for
the exterior and interior domains into which T separates the curve ®R. The vector functions
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¢t (z, P;z0) = o (z, Py z), if P=R*, and ¢ (z, P; ) = ¢ (z, P; o) Vo ! (z, k(P); 2¢), if P = R-,
are meromorphic functions in R+ and $R~, respectively. Hence ¢* and ¢~ are a solution of
the classical Riemann boundary problem

ot (z, t; T) = 9~ (z, t; zo) Yo (z, k(#); o), t =T, (2.1)
(p) + D > 0. (2.2)
Condition (2.2) means that the poles of all the coordinates ¢; (z, P; zy) occur among the
points vjy.
The converse assertion that each solution of the boundary problem (2.1)-(2.2) gives a
function ¢ (z, P; z)) & £ is also true.
Following [9] (see also [18]) we discuss an algorithm for solving this boundary problem.

We congider the function f(P) with poles at yi and a zero of order Ig — g at the point
Po. Such a function exists and is unique up to a proportionality constant. Let Q+ and Q-
be the functions

Q+(x, P; zo) = f1(P) 9 (z, P; zp),
Q_ (1, P; 1'0): k—l (P) (p— (‘7"7 P; xO)'

These functions are a solution of the boundary problem

Q+ (z, t; zy) = Q (z, 8; 2o) Yo (z, k (t); 2) K (1) 1 (), t&T, (2.3)
Q) > A. (2.4)

The last condition means that the poles of the coordinates of Q3 occur among the points
qQis + « .5 qg not equal to Po which are zeros of f(P), and the Q3 vanish at Po. The divisor
A=gq:+ .. .+qg—Po.

Let A(p, q)dp denote the meromorphic analog of the Cauchy kernel on %, having the fol-
lowing properties: It is an Abelian differential with respect to the variable p, and with
respect to the variable q it has poles at qi, . . ., qg and a zero at Po.

As p =+ q we have the relation

2.5
A(p, q)dp = p—?iq— - regular terms, (' )

In order to cemstruct A(p, q)dp we introduce the basis a4, ..., a4 b;,...,b; of canonical
cycles on R with intersection matrix a; o b; = 8;j, @; o @;= b;ob; = 0. Let duwqq,(p) be a third-

order differential with zero g-periods, j‘deOQﬁzz(L and two simple poles at the points p =
ai .

q and p = qo with residues +1 and —1, respectively. This differential is a multivalued an-

alytic function of q. We fix some branch on R, cut along the cycles aj. If dwi is a basis

of holomorphic differentials on R, normalized by the condition .gd@k==6m, then the desired

differential A(p, q)dp is given by the formula (see [8])

dwqq. (p) dml (p) e d(l)g (p)
d("‘)qq° (QI) dm—l (ql) e dmg (ql)

d"’qq.. (9g) do1(gg) ... doglay) (2.6)
doy(g1) ... dogld) :

dan(gg) .-+ dwg(24)

The Sokhotskii—Plemelj formulas for the limit values of integrals of Cauchy type:

D(g) = iﬁ—iiwm(t, g)dt, @* () + D™ (1) = é—§ ¢ (1) A(t, ) dr, 2.7
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O (1) — (1) = 9 t) (2.8)
follow from (2.5).

Let Q(x, P; Xo) be a solution of the boundary problem (2.3)-(2.4). Then

Q(x,P;zo):i—i—lfScp(x, t; 20) A(t, P)dt, (2.9)
T

where @ (z, t; z,) = Q* (z. t; z9) — Q (x, &; x,). Equations (2.7), (2.8), and boundary conditiomn
(2.3) imply that ¢ (z,? 2o) is a solution of the system of singular equatioms

ol i) [ L5 ]+ [ e may 4 ar] S5 =0, (2.10)
r

G =Y, (2, t; zo) {7 (t) k (&)

Conversely, to every solution of system (2.10) there corresponds by Eq. (2.8) a solution of
the boundary problem (2.3)-(2.4). We show that this solution is unique. If Q, (z, P; z,) is
another solution with the same jump Of (x, %20 — Q7 (z, t; 2) =@ (z, ; o), then the vector

Q (x, P; zo) — @ (x, P; zy) is already continuous on the contour I', and therefore it is a mero-
morphic function on M, and each component has g poles and vanishes at the point Po. It fol-
lows from the Riemanm—Roch theorem that each component of this vector function must be zero,
i.e., Qz, P;xy) = @ (z, P; 7).

Thus, the number of linearly independent solutions of the boundary problem (2.3)-(2.4)
is equal to the number of linearly independent solutions of system (2.10). Since the initial
divisors are nonspecial, this number is equal to the index of the system of equations

% = [arg det G]p,
i.e., to the increase in the argument of det G in going around the curve .

Since det ¥, = 1, we have x = [[arg, k (#) — arg f ({)lr. Each term of the sum is equal to
the difference of the number of zeros and poles of k and £ *, i.e., x=1{ —1)g-+ L

Methods for solving a system of singular equations are discussed in [15].

COROLLARY. There exists a unique vector function % (z,P;zy) =%, such that the residues
of its coordinates ¢;, ; (2),0<(j<{1—1, at the points yji are related by @;; = %;,; Qi,-1, 0 < J <
{—2, and

P (2, P; 20) ¥o' (z, k (P); zo) Ip=p, = (1, 0, .. ., 0).
Here a3, j is a set of complex numbers in general position.
We let U (R, Py) be the ring of meromorphic functions on R, having their only pole at Po.

LEMMA 2.2, If EPYe= U (R, P,) is any function, there exists a unique operator L of
degree In, where n is the order of the pole of E(P) at Po, such that Iy (z, P; z)) = E (P); (=,
P oxp).

Proof., Let ¥ (z, P; z5) be the Wronskian matrix for the functions 7; (z, P;z,). As fol-
lows from the definition of ; (x, P; ), in a neighborhood of Py it can be written in the form

o Pz = (386 ) Yo, s 20

There exists a unique operator L with matrix coefficients

n
_ docl
L= E wa ) —a
Ou={

such that
(ZVW-t = E(P)- 1 (mod O (k7). (2.11)
If the matrix functions xp,j(x) are defined by the equality
5 NG
g i Y — R RS I Xy 5]
iz oz, 'b) - [;OX"",J(J) k J {0(11 ]L)’ A U) - []l 1



the coefficients of the operator L can be found from the system of equations for s = — n,
A ¢
s

n ol N(j) n
YOI LR, VN
j=0m=0 =0

n

E(P)= D) eh*(mod O (£71)).

We consider the operator

n i

dal+1-—1

L= ZZ P
a=0j==1

with scalar coefficients. By the construction of L the functions Lyj — Ey4 satisfy all the

requirements determining {j except for one condition. The expansion in a neighborhood of

Po of the regular vector {(L — E (P)) y(z, P; zo)l ¥y (2, k (P; o) starts with terms of order O(k™').

It follows from the uniqueness of 1 (z, P; 2;) that the congruence (2.11) is an exact solution,

il.e., Iy (z, P; o) = E (P); (z, P).

By the lemma just proved, each set of functions wvg(z), ...,V (2) and matrix divisor
DM = (vi, al,J) defines via the functions 4;{(z, P; Zo) to which they correspond a homomorphism
A of the ring % (X, P,) into the ring of linear differential operators.

Summarizing these results, we obtain the following theorem.

THEOREM 2.3. For any commutative ring A of differential operators there exists a curve
R with distinguished point P, such that % (R, Py) is isomorphic to A. For almost all rings A
the curve % is nonsingular. Moreover, there exists a matrix divisor (y;, a;,), 1<:z<flg,0<(
j << !—2, where g is the genus of the curve ®, and a set of functions v, (2),.. 2 (r) such
that the image of the homomorphism ) determined by them coincides with A up to a change of
variable x = f(x') and conjugation by some function, A = u(x)Im X u '(x). The number I is
the greatest common divisor of the orders of the operators in A.

3. 1Induced Deformations of Vector Sheaves over Algebraic Curves

It was already mentioned above how in contrast to the method of [5, 14] our approach
to the classification of commutative rings of differential operators does not require cal-
culation of the deformations in xo of the vector sheaf n(xe) defined by the coordinates
of the common eigenfunctions of the operators L; and L, in the canonical basis cj(x, E; xo)
of the space of solutions of the equations L,y = Ey (see Sec. 1). Nevertheless, dynamical
systems with "control parameters" u, (z),..., %, (¢) are of interest.

In [5, 14] a nonintegrable fibration (for 7 > 1) is found on the space of moduli of
stable sheaves of rank 7 with a fixed flag at a point. It should be noted that the construc-
tion of the sheaf n(xo) itself does not fix a flag, but rather a normalization, i.e., basis
of sections. There exists a simple parametrization in the space of "stable" sheaves of rank
7 with a fixed normalization obtained with the aid of matrix divisors. That is, in general
position, this parametrization is given by the set of points yi with associated "vector mul-
tiplicities" a;, ;&=C, 0<<j <<l —2 (see [17]). 1In this parametrization, we find a fibra-
tion covering the fibration on the space of moduli of sheaves with flags which was con-
structed in [5, 14].

Let ¥, (z, P;a,),0 sl —1, be as before, common eigenfunctions of the operators L, and
L, corresponding to a nonsingular curve ®. These functions are meromorphic away from P,
with constant poles at the points ¥; (z), 1 < i< lg.

It follows from (1.2) that there exists a set of functioms xj(x, P) rational on R such
that

-1

L (o, P xo>—2y (@ P) Lo, P o), (3.1)
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In a neighborhood of Py these functions have the form

%o (@, P) =k (P) + u (z) + O (k)
X (@ P) =u; (2) + O k), 1 s L~ 2, (3.2)
Xi-1 (x’ P)v =0 (k-l)°
Away from Po the poles of xj(x, P) coincide with the zeros yj(x) of the determinant of

the Wronskian matrix ¥(x, P; Xo).

We remark that by Lemma 1.4 and the fact that for 7 > 1, det ¥o(x, k; Xo) = 1, it fol=-
lows that det ¥(x, P; Xo) is a rational function with poles at vj(xo) and zeros at v1(x).
Thus the divisors D(xo):ZYi(xo) and D(x):Zyi(x) are equivalent. The divigor D(x) defines

1 1

a one-dimensional sheaf, viz., the determinant of the sheaf n(x). Thus, det n(x) does not
depend on x. :

We denote by @i (x) the ratios of the residues of the functions X3 (x, P) at the points
yi(x), i.e.,
€i,i = Chiyj Ci, 1y, 0<iKi—2,

e, 5 (@) ,
%3 (@ £) = 2 - dis @)+ Ok — v, (2), (3.3)

where k — yi(x) is a local parameter in a neighborhood of vi(x).

Since Y (z, Pjz;) = ¥(z, P; 20)¥? (z,, P;z,), the desired dependence of the sheaf n{xe) on Xo
is given by the dependence on x of the sets y; (2), a;; r), 1f we put x = x,.

It follows from Eq. (3.1) that Y% (2, P) = (det ¥)'/det ¥, and therefore the corresponding
residues ci,7-:(x) are equal to ¢; ,, (*) = — vi (z). Since the left-hand side of Eq. (3.1) has
no singularities for P = y{(x), the ai’j(x) are solutions of the system of equations

i—2

i 1
D ,5(8) 3o (5 Pi 0) + oy W (5 Py ) = O, (3.4)

j=0
s =0, . . ., L—1.
The symbol 3/9x indicates that P = yi(x) is taken constant in the differentiation.

We differentiate these equalities with respect to x:

1—2 st ,a’ ‘
Z.ai,j(x) Py s (2, P; xo) + EF\PS (2, P, 2o) +
i=o
, = it ) 3" k(P
=+ ¥; () (Z‘; @i, (x)m Ys (z, & (P); To -+ P= s (JCY, {(P); o)} +
J==
1—2 ;
d & . Ok(P)
—l—ZgI—Gi,i(x)-a';;lPs(x, P; o) = 0; Yi=—a—(;—- (3.5)
j=0
Equalities (3.1), (3.3) give
N ol I = it
i (@, P o) = Z di,5 (@)oo oo, Pizo) + ; 61, () g e (@, B(P); 7o)
Substituting this expression into (3.5) and using the fact that Ciyj = — Vi 0 j, 0LJ<C

! —2, and ¢; ;4 = — ¥i (%), we have
N it d o' o o1
]_Zai, 3 (&) o et g o s - iy ”az‘j‘l’sj + i1y o b = 0.

J=0

Hence we get from the fact that the solutions of the last system are proportional to
the original solutions aj j(x) of the system of equations (3.4) that
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i, 0{(di, 1-1 + @i, 1-9) = @i, o + = (,x i,

d
0, 5(di, 11+ O, 10) = g+ - W5+ s (3.6)
1<j< =2

These equations permit construction of an (I — l)-dimensional distribution on an open
set of the space of collections +9;, «;; 1i.e., on an open subset of the product Sleq x -t
of a symmetric power of a curve and a linear space C'-1,

By the Riemann—Roch theorem, each such collection uniquely determines a set of rational
functions Xj(P) with poles at yi having the form

Xo(P) =k (P) + ug+ O (kY), % (P) =u + 0 kY, 1 <s<1—2,
K (P) = O (k)

in a neighborhood of P,, and such that the ratio of the residues cji,j at the points yj is
equal to a;; (2;; in general position),

Cij Ciyma = Cajy 0T KL — 2.

Here u4, ..., U;, are arbitrary numbers which parametrize the fibration.' For fixed values
of uo, . . ., ul-2 we define a vector with coordinates vy, = —¢;;; and aj 3, satisfying Egs.
(3.6).

The set of functions u, (z), ..., U2 {(z) determines a path tangent to the fibration con-

structed. Conversely, each such path with initial point Vi @;; makes it possible to re-
construct the commutative ring of differential operators. Indeed, using these data the func-
tions XJ(x, P) are constructed, followed by the functions yPg(x, P; Xo) which are solutions

of Eq. (3.1) with normalization conditions ;——u¢(x,P x@' = 0.

x=Xp

These functions are common eigenfunctions of the original operators. We will not give
a detailed discussion of the construction in terms of the yYg(x, P; Xo) of the operators
themselves in the framework of this section.
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UNITARY REPRESENTATIONS OF THE INFINITE-DIMENSIONAL CLASSTCAL GROUPS
U(p, =), SOy(p, ), Sp(p, ) AND THE CORRESPONDING MOTION GROUPS

G. I. 0l'shanskii UDC 519.46

0. Introduction

0.1. We denote by U (o), 8O (o¢), Sp (00) the completions with respect to the operator
norm of the groups [J U (r), J SO (n), | Sp (n). They are infinite-dimensional Banach Lie

groups. Kirillov [1] discovered the following remarkable fact: He found that it is possible
to classify all their irreducible unitary representations, and gave a heuristic explanation
why these groups lack the pathological features which seemed to be inevitable in the infi-~
nite-dimensional situation. It is natural to try to take the next step and study the repre-
sentations of the infinite-dimensional analogs of the noncompact classical groups. The pur-
pose of this paper is to point out that there exists for the groups indicated in the title

a quite substantial theory which exhibits many analogies with the finite-dimensional case.

In particular, all these groups are of type I in the sense of von Neumann and it is possible
to construct many of their irreducible unitary representations.

0.2. We describe the contents of this paper (for notation, see Sec. 0.3). In Sec., 1-
a proof of the main result of [1] is given. It follows in its entirety the scheme indicated
in [1], with the exception of the derivation of Kirillov's theorem from his Lemma 3, which
differs from the original proof (which remains unpublished). The approach proposed here
(Secs. 1.6-1.8) is based .on a mapping into a certain semigroup, the "unitary trick," and a
theorem of Nelson [2]. This approach is then generalized in Sec. 4. It is moreover shown
that every unitary representation of K(») decomposes into a discrete sum of irreducibles.
In Sec. 2 "Laplace operators' are constructed on K(=) which separate the irreducible repre-
sentations. It is proved in Sec. 3 that G(p, ») and M(p, =) are of type I in the sense of
von Neumann, that their reducible representations can be disintegrated, and that the reduc-~
tion of any irreducible representation to K(p) x K(») has a spectrum of finite multiplicity
(sometimes of multiplicity one). Thus, K(p) x K(«) plays the role of a maximal compact sub-
group. In Sec. 4 an exposition is given of the construction of the irreducible unitary
representations.

The results of this paper were ammounced in [3].

0.3. Notation. F denotes any of the fields C, R or the division ring of quaternions

H; Matm,n(F) is the space of matrices over F with m rows and n colummns; L is a separable
(right) Hilbert space over F with a fixed basis I, 4, ..., E(m) (= U(m), SO(n) or Spm)),
the connected component of the group of isometries of the quadratic form #' 4+ ... 4+ 22" in
L,=LF4+ ...+ lLFCL, viewed also as a group of operators in L; K(») is the closure of the
group K%(oo)= [J K(#) in the operator norm; K, (n), K% (o<} , and Ky(®) are the stabilizers of
{l,, ..., Ln} ih K(n), K°(=), and K(=), respectively; G(p, q) (= U(p, q), SOo(p, @), or SP(p,
q)) is the connected component of the identity of the group of isometries of the quadratic
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