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In the modern theory of exact solutions of the Zakharov-Shabat equations, which include 
a number of fundamental equations of mathematical physics, commutative rings of ordinary 
linear differential operators play an important role. 

The coefficients of the operators of such a ring form an invariant finite-dimensional 
space on which the constraints of the original operators can be integrated using methods of 
algebraic geometry (see [i0]). 

In [11-13] a classification was obtained of commutative rings of differential operators 
in one variable containing a pair of operators of mutually prime orders. The remarkable pa- 
pers [2-4] have recently become well-known, although they were forgotten for a long time; 
the classification just mentioned was already (locally with respect to x) obtained in these 
papers. However, the method for establishing the coefficients of commuting operators was 
not sufficiently effective. For instance, the key result of the modern theory which asserts 
that the commutativity equations are completely integrable Hamiltonian systems with a set of 
polynomial integrals, and that the coefficients of rings of operators in general position 
are almost-periodic functions, was unknown. The relation between commutative algebras and 
the spectral theory of operators and the theory of linear Floquet equations with periodic 
coefficients is also an achievement of the modern theory. 

An abstract algebraic exposition of the construction of the author proposed by Drinfel'd 
in [5] has made it possible to obtain interesting but, unfortunately, noneffective results 
in the problem of the classification of commutative rings of differential operators with or- 
ders which are not mutually prime, the geometric meaning of which was pointed out by Mumford 
[14]. 

In [i0, Sec. 2, pp. 191-193] an idea was stated for effective analytic construction of 
commutative ordinary differential operatorsof arbitrary orders. The ideal itself is cor- 
rect, but its implementation in [i0, p. 192] contains some serious errors. In this paper 
these errors are corrected, and the solution of the problem of classifying commutative rings 
of differential operators in one variable corresponding to nonsingular Riemann surfaces 
("rings in general position") is thereby completed. 

In Sec. 1 we discuss in more detail a comparison of two approaches to describing commu- 
tative algebras, the approach of the author and that of [5, 14]. 

The methods of this paper have other applications as well. We recall that the construc- 
tion of exact solutions of nonlinear partial differential equations does not require solving 
the classification problem of commutative rings of ordinary differential operators of orders 
which are multiples of l, but requires rather the construction of the (~ × l) matrix analog 
of the multiparameter Baker--Akhiezer functions (see [i0, Sec. i]). 

The corresponding constructions were undertaken by S. P. Novikov and the author. They 
give a large class of solutions of the Zakharov--Shabat equations depending on functional 
parameters, and in particular, they give solutions of the Kadomtsev--Petviashvili equation 

0 ] 
-~y--L,  - sF - -A  ----0, 

where 

~ d~ 3 ~ ÷ w (x, y, t). L=-~.,~u(x,y,t), A=-~7~-fu ~-7 

This work of  Novikov and the  au thor  w i l l  be p u b l i s h e d  s h o r t l y  in  the  j o u r n a l  "Funk- 
tsional'nyi Analiz i Ego Prilozheniya." 
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!. Algebraic "Spectral Data" for Commutative Rings of Differential Operators 

We consider .a system of Novikov equations, i.e., a system of equations for the coeffi- 
cients of the operators 

~ di i di LI = u~ (x) ~ , L~ = v~ (x) dx ~ , 
i=0 i ~ O  

which is equivalent to the commutativity condition [Lz, Lz] = 0. 

For the sake of definiteness, we agree that the coefficients of operators are scalar 
functions. Moreover, let Vm = Un = i, un-1 = 0. The last restrictions are unimportant 
since they can always be made to hold by a change of the variable x and a suitable conjuga- 
tion L I = u (x)LIu -'~ (x), ~2 = u (x)L~u -1 (x). 

The f o l l o w i n g  r e s u l t  l i e s  a t  t he  h e a r t  o f  t h e  a p p l i c a t i o n  o f  t h e  methods  o f  a l g e b r a i c  
g e o m e t r y  in  s o l v i n g  t h e  Nov ikov  e q u a t i o n s .  

THEOREM 1 .1  ( B u r c h n a l l  and Chaundy [ 4 ] ) ,  The re  e x i s t s  a p o l y n o m i a l  Q(w, E) i n  two v a r -  
i a b l e s  such  t h a t  Q(Lz,  L1) = 0. 

P r o o f .  The o p e r a t o r  Lz on t h e  s p a c e  ~ (E) o f  s o l u t i o n s  o f  t h e  e q u a t i o n  L l y  = Ey de -  
f i n e s  a l i n e a r  o p e r a t o r  L~(E) .  I t s  m a t r i x  c o e f f i c i e n t s  L~j(E) in  t h e  c a n o n i c a l  b a s i s  c j ( x ,  

d ~ 
E; Xo), d-~-f-Cj(x,E;xo)IX=Xo=6~j, 0 ~ i,]~n-- I, are polynomials in E. Let Q(w,E) = det (w.l -- 

L~(E)) be the characteristic polynomial of L=(E). The kernel of the operator Q(L=, LI) 
contains ~ (E) for all E and is therefore infinite dimensional. Hence the operator itself 
is zero. 

In order to study questions associated with the compactification of an affine curve de- 
fined by the equation Q(w, E) and the behavior of the common eigenfunctions of the operators 
L~ and L~ at infinity, we introduce the term of a formal Bloch function for each operator. 

LEMMA 1.2. There exists a unique solution of the equation 

L ~  (x, k) = ~ ¢  (x, ~) ( 1 . 1 )  

i n  t h e  s p a c e  o f  f o r m a l  power s e r i e s  o f  t h e  form 

, ( x, k ) = e ~ (~-~) (~ ~_~_~_~ ~ ( x ) k -~) 

(N an i n t e g e r )  w i t h  t h e  " n o r m a l i z a t i o n "  c o n d i t i o n  ~ = 0, s ~.  0, ~0 (x) = i .  ~ (x0) = 0, s ~ i .  
We d e n o t e  t h i s  s o l u t i o n  by  ~ ( x ,  k;  x o ) .  Any o t h e r  s o l u t i o n  o f  t h i s  t y p e  i s  e q u a l  to  ~ (x, 

k) = A (k ) ,  (x, k; x o ) , A ( k ) =  ~ A , k  -~. 
$ ~  

A p r o o f  o f  t h i s  p r o p o s i t i o n  and many i m p o r t a n t  c o r o l l a r i e s  which  we omi t  i s  c o n t a i n e d  
in [13]. 

The operator L~ leaves the space of solutions of Eq. (i.i) invariant. Hence by the 

above  lemma, L ~  (x, k; x0) = A (k)~ (x, k; x0), where  A(k)  = k ''~ + ~ A~k -~. 
s = - - m # l  

The f u n c t i o n s  ~ (x~k~; xo) , k~ ~ E,  ' f o r m  a b a s i s  o f  t h e  s p a c e  ~ (E), which  i s  an e i g e n b a s i s  
for L~(E). The space Z (E) is generated by 0(x, kj; xo) over the field of Laurent series 
in the variable k -:. In this space, the matrix elements in the corresponding canonical ba- 

~--I 

sis are the same as in $(E). Hence ~(w~E)= ~ (w--A(k~)). 
j=o 

If the values of the series A(k) are different for distinct n-th roots of E the curve 
• is irreducible and can be completed @t infinity by a single point Po in a neighborhood of 
which a local parameter is given by E-~/n(P). In addition, this means that for large, and 
hence for almost all E, the eigenvalues of the operator L=(E) are distinct. Since this case 
has been discussed in detail in the previous papers [i0, 13],.we turn at once to the general 
case. 
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The series A(k) is s~ch that its values at certain n-th roots of E coincide if and only 
if there exists a series A(k) such that A (k)~ ~ (k~). Since the leading term in A(k) is 
equal to k TM, ~ is a common divisor of n and m. 

In this case, 

?i--i "~'--I 

q (~, E) : 1 ]  (~  - -  A (k~)) = I I  (~, - x (~])f = ~'(~,  ~), 
j=o i=o 

where  k;' : E , " ~ "  : E ,  n ' l  : n. 

We keep t he  n o t a t i o n  ~ f o r  t he  c u r v e  d e f i n e d  by t h e  e q u a t i o n  

~ ' - - i  

~ (~, E) = H (~  - -  ~ (~.)) = 0. 
j = 0  

which  i s  i r r e d u c i b l e .  At i n f i n i t y  ~ i s  c o m p l e t e d  by t h e  s i n g l e  p o i n t  Po i n  a n e i g h b o r h o o d  
1 

- -  

o f  which  E -~' (P) i s  a l o c a l  p a r a m e t e r .  

Each p o i n t  P o f  t h e  c u r v e  ~ ,  i . e . ,  each  p a i r  P = (w, E) ,  Q(w, E) = 0, c o r r e s p o n d s  to  an 
~ - d i m e n s i o n a t  s u b s p a c e  o f  e i g e n v e c t o r s  o f  L~(E) w i t h  e i g e n v a l u e  w = w(P) .  We c h o o s e  i n  t h i s  
s u b s p a c e  a b a s i s  w i t h  t he  n o r m a l i z a t i o n  c o n d i t i o n s  

d i 
dz ~ ~ (z, P; xo)I~--xo = 6~, 0 < i, 1 -~ l -- 1. 

All the remaining coordinates of these vectors in the canonical basis of ~ (E) are meromor- 

phic functions %}(P;x0) on the curve ~. Their poles coincide with Po and the zeros of the 
determinant of the diagonal minor of the matrix wol -- L=(E) formed by elements with indices 
l ~ i , ] ~ . n - - i .  

The v e c t o r  f u n c t i o n s  x~(P;x0)  w i t h  c o o r d i n a t e s  %~(P;xo) d e f i n e  an a l g e b r a i c  s u b b u n d l e  
~(xo)  o f  d i m e n s i o n  ~ in  t h e  t r i v i a l  l - d i m e n s i o n a l  b u n d l e  o v e r  ~ .  Th i s  s u b b u n d l e  i s  i n  e s -  
s e n c e  t he  s t a r t i n g  p o i n t  o f  t h e  a b s t r a c t  a l g e b r a i c  a p p r o a c h  [ 5 ] .  How can the  dependence  o f  
~(xo)  be d e t e r m i n e d ?  For  ~ = 1, i t  has  been  d e t e r m i n e d  by d i f f e r e n t i a l  e q u a t i o n s ,  and i t s  
p r o p e r t i e s  p l a y  a l a r g e  r o l e  i n  the  p a p e r s  [ 6 - 7 ,  16,  1 0 - 1 1 ] .  For  ~ >1, as i s  p o i n t e d  ou t  i n  
[ 1 4 ] ,  t he  s i t u a t i o n  i s  more c o m p l i c a t e d .  The " p o s s i b l e "  t r a n s l a t i o n s  o f  ~ t u r n  ou t  to  be 
c o v e r e d  by a n o n i n t e g r a l  ~ - d i s t r i b u t i o n  on the  s p a c e  o f  modu l i  o f  ~ - d i m e n s i o n a l  s h e a v e s  ove r  
~ w i t h  a f i x e d  f l a g  a t  t h e  p o i n t  Po.  V a r i a t i o n  o f  t he  p o i n t  xo d e f i n e s  a p a t h  t a n g e n t  to  
t h i s  d i s t r i b u t i o n .  At t h i s  p o i n t  t he  s t u d i e s  in  [5 ,  14] a r e  c o n c l u d e d .  

The method i n  [10] does  n o t  c o n s i s t  i n  d e s c r i b i n g  xo f o r  v a r i a t i o n s  o f  t he  s h e a f ,  bu t  
f i n d i n g  t h e  e i g e n f u n c t i o n s  ~ j ( x ,  P; x o ) ,  xo = c o n s t ,  t h e m s e l v e s  which  g e n e r a l i z e  t he  Baker--  
A k h i e z e r  f u n c t i o n s  ( s e e  [ 1 - 2 ,  6, 10,  1 2 ] ) .  

S i n c e  t he  b a s i s  f u n c t i o n s  c i ( x ,  E; xo) a r e  e n t i r e  f u n c t i o n s  o f  E, 

n--i 

¢~. (:~, ~'; xo) = ,~o ~.i (p; xo) ~, (x, E; Xo) 

is meromorphic away from Po with pole divisor D not depending on x. 
XO.) 

(In general, D depends on. 

We consider the Wronskian matrix T(x, P; Xo) for the functions ~j(x, P; xo). The ma- 

I"~-~ ~ ~-i does not depend on the choice of the basis ~j Therefore in order trix function ~z 7 . , 

to find its behavior in a neighborhood of Po, we can make use of the formal series ~ (z,~; 
~xo),~ = k,k -i = k-~) the local parameter near Po. 

Since ~(O(x, ~i;x0) can be written uniquely in the form 

l - - 1  . d s  

x0/= (x, 
$ ~ 0  

where Is(X , k) can be written uniquely in the form k -i,h0 ---- k + ~0 (x) + 0 (k-i),%~ = ~s (x) + 
O (k-i), '1 ~ s ~. l - -  2, i~-i ---- O (k -1) , t h e n  
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=/ 0 0 I . . .  0 

+0~-~) .  

o o . : : :  o 
'~ ÷/~o, ~ . . . .  ~z-~ 

(1,.,2) 

The functions Us(X) are differential polynomials in the coefficients of the initial 
~operator L~. 

We return again to the study of the divisor D of the poles of the ~j(z, P;Z~). For al- 
most all solutions of the Novikov equations, i.e., for almost all commutative rings of dif- 
ferential operators, the curve ~ is nonsingular. Let P~, -, Pn' be the inverse images 
of the point E under the projection E:~-+C. E(P~) = E. They are distinct for almost all E. 
We construct the Wronskian matrix F(x, E; xo) in the functions ~i(z, P~;z0). The function 
g(x, E; xo) = (det F) = does not depend on the order of enumeration of the points Pi and is 
therefore well defined as a function of the variable E. 

By hypothesis, the penultimate coefficient of the operator LI is zero, un-1 = 0. Thus, 
the Wronskian for any basis in ~ (E) does not depend on x, so that g ~E; ~) -- g (~, E; z~) also 
does not depend on x. The values of all the derivatives of ~7(z, ~;z~) at x = xo are rational 
functions on ~. Hence g(E; xo) is a rational function of the variable E. Its zeros coincide 
with the points E for which the eigenvalues of L~(E) coalesce. Moreover, the order of a 
zero is equal to ~, where ~ is the multiplicity of a ramification point of the curve ~. 
(The multiplicity of a ramification point is the number of sheets of ~, coalescing at that 
point, minus i; for curves in general position, ~ = i.) 

We will assume that all the poles of ~(z, ~; z~) are simple, i.e., D is a set of dis- 
tinct points ?~,..., y~. We let ~j(z) denote the residue of the function ~7(=, P;~o) at the 
point Yi. Then the poles of g(E; xo) coincide with the images of the poles Yi and the point 
at infinity. Moreover, the multiplicity of the pole of g(E; xo) at the image of Yi equals 
2×~,,twice the number of linearly independent functions ~z,~(~). The equality of the number 
of zeros and poles of g(E; xo) gives the relation 

N 
IEV 9E" , = . Z i ~- N~o 

i=I 

Using (1.2) we find the multiplicity N~ of the pole of g(E; Xo) at infinity. It equals 
l(n' -- i), where n' is the number of sheets of • over C. 

The usual expression for the genus of a curve in terms of the multiplicity of the rami- 
.v 

fication points of • gives the equality ~ ×~ = ~, where g is the genus of ~. 
i=I 

In what follows we consider the case of "general posit&on," which corresponds to the 
so-called "stable fibrations," so that all ~ = I, i.e., the degree of the divisor D is ~g, 
and ~ong the functions ~, ~ (z) there is only one linearly independent function for each 
fixed ~. Thus, for each point Yi there exist ~ ~i constants ~i,j such that ~,~ (~) = 
=~,~i,~-a (x), 0 < y < I- 2 (we may assume ~hat the complement o'f thi~. closed set is ~, ~_~ (x)~ 
0). Here "general.position" means that his component has maximal dimension ~=g. For arbi- 
trary sets ~, the solution of the inverse problem can be obtained in exact analogy to our 
construction which follows. We show that the dimension of the corresponding component is 
smaller. The corresponding p~ameters are the coefficients of the expansion of ~- ~ func- 
tions with respect to ~i, which give a basis among the ~,~. The dimension is equal to 

N N 

~ (t - ~) ~ + ~ = z~g - ~ ~[ + N < Z~g, 
i = l  ~ =1  

provlded at least one of the numbers ~ = / , ~ .  

The set of polnts y± with associated vector multiplicities ~z = (~, J) is a characteris- 
tic of the so-called "matrix divisors" defined by generic sheaves with a fixed "normaliza- 
tion," i.e., set of basis sections [17]. 
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LEMMA 1.3. The matrix divisor DM = (?i, a~,i) and the functions ~0 (@, ff~ (x),..., gt-~ (x) 
uniquely determine the eigenfunctions of the operators ~i(x, P; x0) for almost all sets ai,j 
(belonging to the complement of a closed set). 

Proof. It follows from the Riemann--Roch theorem that for every set of polynomial~ 
q0 (k) ..... q~_~ (k) there exists a unique vector function %0 (P) ..... %~_~ (P) such that all its 
coordinates have simple zeros at the points Yi, and their residues Xi,j are related by %i,1 = 
_a~j, %i,~-~, while in a neighborhood of Po the congruences %~(P)~- q~(k)(mod O (k-~)) hold.. In- 
deed, the dimension of the space of vector functions associated with the divisor D and hav- 
ing a given singularity in a neighborhood of Po is equal to ~(~ -- l)g, which equals the num- 
ber of equations for the residues, which for an open set of ~i,j may be assumed to be inde- 
pendent. 

Thus, every row vector of the matrix 'ds ~]~=x0 is uniquely determined by its singular 
_dx s 

parts in a neighborhood of Po, where ~(x,P;Xo) is the Wronskian matrix of the functions 
d s 

~i(x,P;xo). Using Eq. (1.2) we find the desired singular parts of -- ~'IX=xo successively, 
' dxs  

w h i c h  c o m p l e t e s  t h e  p r o o f  o f  t h e  l e m m a .  
d a 

C o n v e r s e l y ,  i f  we s t a r t  f r o m  t h e  s i n g u l a r  p a r t s  o f  t h e  m a t r i c e s  ~-~xs~lx=xo o b t a i n e d ,  we 

f i n d  t h e  d e r i v a t i v e s ,  a n d  h e n c e  a l s o  f u n c t i o n s  v o ( x ) , . . . , ~ - ~ @ )  

m e n t  h o l d s .  

LEMMA 1.4. In a neighborhood of Po the vector function 
~_~ (x, P; x0) ) can be written in the form 

~ (x, p; x0) = ( Z ~ (~) ~'-~) ~r0 (z, ~.; .~o), $~ 
where T 0 (x, k; x0) is a solution of the equation 

• - -  ~'0 (x, k; x0) = ~I,T. / 

such that the following state- 

¢ (x, P;  Xo) = (~o (x, P;  Xo) . . . . .  

a = ~. (P), 

0 i .... 0 0 \ 
0 0 i . . . 0 0 \ 

: : : : :  : 

0 . . . . .  0 t / k ~ v o, rl-~ 0 

the identity matrix. 

( 1 . 3 )  

with the normalization ~0 (x0, k; xo) ---- i, 

The values of the vectors ~s(x) at xo are equal to ~o(xo)----(i,0 ..... 0), ~(x0)=0, s>i. 

The curve ~ is called the spectrum of the commutative ring A containing the operators 
L~, L~. The functions ~ (x. P; x0) are eigenfunctions for all the operators in A. The set 
consisting of ~, P0, the matrix divisor D M = (Yi, ~i,j), and functions ~ (x) ..... ~_~ (x) is 
called the "algebraic spectral data" and it determines the ring A uniquely. In the next 
section we solve the problem of rec~onstructing A in terms of its data. 

2. Reconstruction of Commutative Rings of Differential Operators_ 
from "Algebraic Spectral Data" 

We consider the space ~ of vector functions ~ (x, P; x0), having poles at an arbitrary 
set of points T~, i ~< i < Ig, of a nonsingular complex curve ~ of genus g and which can be 
expressed in a neighborhood of a distinguished point Po in the form 

p; x0)= ( 2   0(x, xo), -$~0~ 
w h e r e  k - ~  = k - 2 ( P )  i s  a l o c a l  p a r a m e t e r .  H e r e '  g~0 (x, k; xo) i s  t h e  m a t r i x  d e f i n e d  i n  t h e  p r e -  
c e d i n g  p a r a g r a p h  i n  t e r m s  o f  t h e  f u n c t i o n s  v 0 (x), . . . ,  v~_~ (x). 

LEI~*IA 2 . 1 .  T h e  d i m e n s i o n  o f  ~ i s  e q u a l  t o  l (l - -  i )  g ~- l. 

P r o o f .  L e t  ~ b e  t h e  b o u n d a r y  o f  a s m a l l  n e i g h b o r h o o d  o f  P ~ .  We w r i t e  i~ + a n d  ~R- f o r  
the exterior and interior domains into which F separates the curve ~. The vector functions 
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¢+ (x, P; xo) = ¢ (x, P; Xo), i f  P ~ ~÷, and ¢- (x, P; xo) : ~ (x, P; Xo) ~ ' ~ I  @, k (P); Xo), i f  P ~ ~ - ,  
a r e  meromorphic  f u n c t i o n s  i n  ~+ and ~ - ,  r e s p e c t i v e l y ,  f ience ~+ and ¢-  a r e  a s o l u t i o n  of  
the classical Riemann boundary problem 

~+ (x, t; Zo) = ~- ~ ,  t; Xo) ~o ~ ,  k (0; Xo), t ~ r ,  ( 2 . 1 )  
(¢i) + D~> 0. ( 2 . 2 )  

Condition (2.2) means that the poles of all the coordinates ~;@, P; x0) occur among the 
Points Yi. 

The converse assertion that each solution of the boundary problem (2.1)-(2.2)gives a 
function ~(x, P;x0)~Z is also true. 

Following [9] (see also [18]) we discuss an algorithm for solving this boundary problem. 

We consider the function f(P) with poles at Yi and a zero of order Zg -- g at the point 
Po. Such a function exists and is unique up to a proportionality constant. Let ~+ and ~- 
be the functions 

~+(x, P; Xo)= .f-~ (P) ~+ (x, P; xo), 
.Q- (x, P; Xo)= k -~ (P) ~- (x, P; Xo). 

These functions are a solution of the boundary problem 

Q + ( x , t ; x o )  = ~ Z - ( x , t ; x o )  t g o ( x , k ( t ) ; x o ) k ( t ) / - l ( t ) ,  t ~ F ,  ( 2 . 3 )  

(Qj) >~ a.  (2.4) 

The last condition means that the poles of the coordinates of ~j occur among the points 
q~, ., qg. not equal to Po which are zeros of f(P), and the ~j vanish at Po. The divisor 
A = ql + • • + qg- Po. 

Let A(p, q)dp denote the meromorphic analog of the Cauchy kernel on ~, having the fol- 
lowing properties: It is an Abelian differential with respect to the variable p, and with 
respect to the variable q it has poles at q~, . ., qg and a zero at Po. 

As p + q we have the relation 

A(p ,  q)dp dp I (2.5) = I regular terms. - p - - q  

In  o r d e r  to  c o n s t r u c t  A(p ,  q )dp  we i n t r o d u c e  t h e  b a s i s  e l , . . . ,  ag, b l , . . . ,  bg of  c a n o n i c a l  
c y c l e s  on i~ w i t h  i n t e r s e c t i o n  m a t r i x  a~ o b; = 8 u,  a~ o a~= biob3 = O. L e t  d~qq o(p)  be a t h i r d -  

order differential with zero a-periods, do)~o(p) = 0, and two simple poles at the points p = 
~{ 

q and p = qo with residues +i and --i, respectively. This differential is a multivalued an- 
alytic function of q. We fix some branch on ~, cut along the cycles ai. If dwi is a basis 

of holomorphic differentials on ~, normalized by the condition j de~ = 6~, then the desired 
~{ 

differential A(p, q)dp is given by the formula (see [8]) 

dO)qq,(p) doh(p) . . .  do)g(p) [ 
d°)qq t (ql) d(o~(ql) do)g(qx) ] 

o o ,  

. . o  

do)qq. (q~) d(o~(q~) . . .  do)~(q&)l 
d°h(q*). "'" dt-°g(qx).l 

d¢ox (qg) do)~ (q~) I 

( 2 . 6 )  

The Sokhotskii--PlemelJ formulas for the limit values of integrals of Cauchy type: 

'I ¢I) (q) = ~x~ ~ (t) A (t, q) dt, (I) + (t) + ¢D- (t) = ~ ¢~ (v) A (v, t) dv, (2.7) 
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(2.8) (D + (t) - -  ~ -  (t) = ~ (t) 

f o l l o w  f rom ( 2 . 5 ) .  

L e t  ~2(x, P; Xo) be  a s o l u t i o n  o f  t h e  b o u n d a r y  p r o b l e m  ( 2 . 3 ) - ( 2 . 4 ) .  Then 

f ~ ( : c , P ; z 0 ) = ~  7 ~P(Z,t;xo)A(t,P)dt, ( 2 . 9 )  

where  ~ (z, t; zo) ~ ~+ (z, ~; z~) - -  ~ -  (x, t; ~o). E q u a t i o n s  ( 2 . 7 ) ,  ( 2 . 8 ) ,  and b o u n d a r y  c o n d i t i o n  
( 2 . 3 )  ~mply t h a t  ~ (z, t; x~) ~s a s o l u t i o n  o f  ~he s y s t e m  o f  s ~ n g u l a r  e q u a t ~ o a s  

1 
z d~] a--~ =0, (2.10) ~ ( z , t ; ~ o ) [ ~ ] + [ ~ ( * * ; z o ) A ( ' , t )  ~ 

~ = ~o (z, t; Zo) ~-~ (t) ~ (t). 

C o n v e r s e l y ,  co e v e r y  s o i u ~ o n  o£ s y s t e m  (2 .~0 )  ~ h e r e  c o r r e s p o n d s  by Eq. ( 2 . 8 )  a so~u~£on o f  
t h e  b o u n d a r y  p r o b i e m  ( 2 . 3 ) - ( 2 . ~ ) .  We show Chac ~h~s s o i u ~ o n  i s  u n i q u e .  E£ ~ (x, P; xo) ~s 
a n o t h e r  s o l u t i o n  w~ch t h e  same jump Q~ (x, t;x0) - - Q ~  (x, t; x 0 ) ~  (x, t; x0) , ~hen ~he v e c t o r  
Q (x, P; x 0 ) -  Q~ (x, P; xo) £s a i r e a d y  con~£nuous  on ~he c o n t o u r  r ,  and t h e r e f o r e  ~ ~s a m e r o -  
morph~c f u n c t i o n  on ~ ,  and e a c h  componen~ h a s  g p o i e s  and v a n i s h e s  a~ t h e  p o i n t  ~o .  ~ f o l -  
lows f rom t h e  R~emann--Roch t h e o r e m  Chac e a c h  componen~ o f  ch~s v e c t o r  f u n c t i o n  mus~ be z e r o ,  
~. e . ,  ~ (x, P; x0) = ~2~ (x, P; x0). 

Thus ,  t h e  number  o£ i i n e a r i y  ~ndependen~ so IuC~ons  o f  ~he b o u n d a r y  p r o b l e m  ( 2 . 3 ) - ( 2 . ~ )  
~s e q u a i  Co t h e  number  o£ ~ £ n e a r ~ y  ~ndependenc  s o l u t i o n s  o£ s y s t e m  ( 2 . ~ 0 ) .  S~nce ~he ~ n ~ a ~  
d ~ v ~ s o r s  a r e  n o n s p e c i a I ,  ch~s  number  ~s e q u a i  co t h e  ~ndex o£ ~he s y s t e m  o£ e q u a t i o n s  

z = [ a ~  det G]r, 

~ . e . ,  co t h e  i n c r e a s e  ~n t h e  argumen~ o f  de~ G in  g o i n g  a round  ~he c u r v e  ~ .  

S i n c e  de~ ~o = ~, we h a v e  x = l [arg, k (t) ~ arg f (t)]r. Each ~erm o£ ~he sum ~s equa~ ~o 
~he d £ f f e r e n c e  o£ t h e  number  o£ z e r o s  and p o i e s  o£ k and £ - ~ ,  ~ . e . ,  x = l ( l - - l ) g +  I. 

~eChods  f o r  s o l v i n g  a s y s t e m  o f  s ~ n g u i a r  e q u a t i o n s  a r e  d £ s c u s s e d  ~n [ ~ 5 ] .  

COROLLARY. T h e r e  e x i s t s  a u n i q u e  v e c t o r  £unc~£on ~;(x,P;xo) ~ ,  such  ~ha~ ~he r e s i d u e s  
o£ £Cs c o o r d i n a t e s  ~ , . ~ ( x ) , 0 ~ ] ~  l - - l ,  a~ t h e  po£n~s  y~ a r e  r e f a c e d  by  ~,~ ~ a~ d ~ , ~ - 1 , 0 ~ ] ~  
l ~ 2 ,  and 

~ (z, P; z0) ~ (x, k (P); z0) ~=~, = (1, 0 . . . . .  0). 

He re  a i , j  i s  a seC o f  compiex  numbers  ~n g e n e r a ~  pos~C~on.  

Ne ieC ~ (~,  Po) be  t h e  r~ng  o f  meromorph~c f u n c t i o n s  on ~,  h a v i n g  c h e e r  o n l y  po~e a~ Po.  

L E ~  2 . 2 .  I f  E ( P ) ~  (~,  Po) i s  any  f u n c t i o n ,  t h e r e  e x i s t s  a u n i q u e  o p e r a t o r  L o f  
d e g r e e  ~n, whe re  n ~s t h e  o r d e r  o f  t h e  po~e o£ E(P) aC Po,  such  Chac L~(x,  P ; x 0 ) =  E ( P ) ~ f ( x ,  
P; x0). 

P r o o f .  LeC ~ (x, P;  x0) be  ~he ~ r o n s k i a n  m a t r i x  f o r  t h e  f u n c t i o n s  ~i (x, P; x0). As £ o i -  
iows f rom t h e  d e f i n i t i o n  o£ ~ (x, P; x0), £n a n e £ g h b o r h o o d  o f  Po i~  can  be  w r i t t e n  ~n ~he fo rm 

x0) = ( S *0 :-0). ~" 
s ~  

T h e r e  e x i s t s  a u n i q u e  o p e r a t o r  ~ wi~h m a t r i x  c o e f f i c £ e n ~ s  

n d ~  I 

Z = ~  ~ (~) e~, 
~ 0  

such that 

(2 . l l )  ( ~ r ) ~ - I  = E (P) • I (mod 0 (L:-~)). 

If the matrix functions ×m,j(x) are defined by the equality 
d~ 2¢ (.~) 

.__~}.o(:C ' /~)~ ~%~,j(~)/~m] ~-o(X, ~), ~-(j)~ [~,-1], ~ 
~ ~ = 
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the coefficients of the operator L can be found from the system of equations for s = --n, 
• , 0 

n oal N O )  n 

• C~ { ~t-~ E ogg o, 
r]. =0 3 = 0 m=~ ~=0 

E (.D) ----- 2 E ~ ¢ ¢  (IIlod 0 (/~-I)). 
~_---~ 

We consider the operator 

= ~ w ~ ( x )  ~ m - ~  L = E ~'~ " d~+~_~ 
~=O~:l 

with scalar coefficients. By the construction of L the functions L~i -- E~i satisfy all the 
requirements determining ~i except for one condition. The expansion in a neighborhood of 
Po of the regular vector [(L -- E (P)) ~.~(x, P; x0)] ~ (x, k (e; x0) starts with terms of order O(k-1). 
It follows from the uniqueness of ~ (x, P; x0) that the congruence (2.11) is an exact solution, 
i.e., L~i (x, P; Xo) = E (P)@i (x, P). 

By the lemma just proved, each set of functions v0 (x) ..... v~_~ (x) and matrix divisor 
DM = (Yi, ai,j) defines via the functions ~j (x, P; x0) to which they correspond a homomorphism 
~ of the ring ~ (~, P0) into the ring of linear differential operators. 

Summarizing these results, we obtain the following theorem. 

THEOREM 2.3. For any commutative ring A of differential operators there exists a curve 
• with distinguished point Po such that ~ (~, P0) is isomorphic to A. For almost all rings A 
the curve ~ is nonsingular. Moreover, there exists a matrix divisor (?i,a~,]),l~i<~..Ig, O~< 
]~<I--2, where g is the genus of the curve ~, and a set of functions vo(x),...,v~-2(x ) such 
that the image of the homomorphism k determined by them coincides with A up to a change of 
variable x = f(x') and conjugation by some function, A = u(x)Im k u-:(x). The number ~ is 
the greatest common divisor of the orders of the operators in A. 

3. Induced Deformations of Vector Sheaves over Algebraic Curves 

It was already mentioned above how in contrast to the method of [5, 14] our approach 
to the classification of commutative rings of differential operators does not require cal- 
culation of the deformations in xo of the vector sheaf ~(xo) defined by the coordinates 
of the common eigenfunctions of the operators LI and L~ in the canonical basis ci(x, E; xo) 
of the space of solutions of the equations L:y = Ey (see Sec. i). Nevertheless, dynamical 
systems with "control parameters" uo(z ) ..... u~_~(x) are of interest. 

In [5, 14] a nonintegrable fibration (for I > I) is found on the space of moduli of 
stable sheaves of rank I with a fixed flag at a point. It should be noted that the construc- 
tion of the sheaf ~(xo) itself does not fix a flag, but rather a normalization, i.e., basis 
of sections. There exists a simple parametrization in the space of "stable" sheaves of rank 
I with a fixed normalization obtained with the aid of matrix divisors. That is, in general 
position, this parametrization is given by the set of points Yi with associated "vector mul- 
tiplicities" a~, j~C, 0~7~.<I--2 (see [17]). In this parametrization, we find a fibra- 
tion covering the fibration on the space of moduli of sheaves with flags-which was con- 
structed in [5, 14]. 

Let ~(z,P;z0),0~s~--i, be as before, common eigenfunctions of the operators L~ and 
L= corresponding to a nonsingular curve ~. These functions are meromorphic away from Po 
with constant poles at the points ?~(x0) , i~<._ ~/g. 

It follows from (1.2) that there exists a set of functions Xj(X, P) rational on ~ such 
that 

~--~ d] 

d~ " "x . ~  Z~ (x, P) -- ~ (x, P: Xo). ~-~-~( , P ;  Xo) = d ~  ' 
~=0  

(3.1) 
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In a neighborhood of Po these functions have the form 

Zo (x, p)  = ~ (p) + Uo (z) + 0 (a-~), 
~s (x, P)  = u~ (x) -~ 0 (k-x), t ~ s ~ l - -  2, ( 3 . 2 )  

X~-1 (x, P ) ,  = 0 (k - l ) .  

Away from Po the poles of ×j (x, P) coincide with the zeros Yi(x) of the determinant of 
the Wronskian matrix ~(x, P; xo). 

We remark that by Lemma 1.4 and the fact that for ~ > i, det ~'o(x, k; xo) = i, it fol- 
lows that det P(x, P; Xo) is a rational function with poles at Yi(Xo) and zeros at Yi(X). 
Thus the divisors D(xo)=~?~(xo) and D(x)=~?~(x) are equivalent. The divisor D(x) defines 

• ~ 

a one-dimensional sheaf, viz., the determinant of the sheaf ~(x). Thus, det ~(x) does not 
depend on x. 

We denote by ~ij (x) the ratios of the residues of the functions Xj (x, P) at the points 
Yi(X), i.e., 

ci,~ = ~-i,j ci, ~-1, 0 ~< ] < 1 - -  2, 
% ~ (z) 

Zj (x, k) = k - v~ (x). ~- d~, ~ (x) + 0 (k - -  V~ (x)), ( 3 . 3 )  

where k- yi(x) is a local parameter in a neighborhood of Yi(x). 

Since ~(z,P;z~)=~(z,P;zo)~ (z~,P;z0), the desired dependence of the sheaf ~(xo) on xo 
is given by the dependence on x of the sets ~ (z), ~,7 z), if we put x = xo. 

It follows from Eq. (3.1) that ~-~ (z, ~)= (de~ ~)~/det ~, and therefore the corresponding 
residues ci,~-~(x) are equal to ~,~_~ (z) = -- T~ (z). Since the left-hand side of Eq~ (3.1) has 
no singularities for P = Yi(x), the ~i,j(x) are solutions of the system of equations 

~--~ Oi O~-z 
~ ai, i(x) ~ Cs (x, P; Xo) + ~ ~s (x, P; xo) = O, (3.4) 
2 ~ 0  

s = O  . . . .  ~ - - ~ .  

The s ~ b o ~  3 /3x  £nd£caCes Cha~ P = y£ (x )  £s oaken c o n s t a n t  ~n ~he d L f f e r e n C ~ a ~ £ o n .  

We d ~ £ f e r e n ~ £ a c e  t h e s e  e q u a ~ L e s  w£ch r e s p e c ~  ~o x:  

~-~ Oj+~ ~ 
~ s ( ~  X ~ a~,~(x) ~ ~ (x, p; Xo) P, Xo) + y 

~ 0  
l - - 2  

+ ~ (z) ~ ¢~ (x, ~ (p); z0) + o~,_ 1 x~ ~ (z, k (p); zo)) + 
~j+l ~ 

~=0 

~--~ 

~ a .  °~ o ~ ( e )  
+ e~ ~,~(z)~¢~(z,P;Zo)=O; V~ . . . .  o~ (3.5) 

. 

2 = 0  

E q u a l i t i e s  ( 3 . 1 ) ,  ( 3 .3 )  g2ve 

O~ ~--~ O] t-~ O ~ f  
0~ *~(~' P; ~ ) =  ~e~,~(~)~*~(~'  ~ ; ~ " ) + ~ ' ~ ( ~ )  0~,0~ *~(~' ~(~); ~0)" . . 

9 ~ 0  2 ~ 0  

S u b s e L ~ u ~ n g  ~h£s e x p r e s s L o n  ~ngo ( 3 . 5 )  and u s i n g  t h e  f ac~  ~ha~ c~,y = ~ 7 ~ i , ~ ,  0 ~  
l ~ 2 ,  and ci,~-~-- V~(x), we have  

1 ~ 2  
o, o -1 

a ~ , ~ ( z ) ~ + ~  ~ , ~ + ~ , ~  0 ~  +~,~-~ ~ % = 0 .  
. 

) = 0  ~ 

Hence we g e t  f rom the  f a c t  t h a t  t he  s o l u t i o n s  o f  t he  l a s t  s y s t e m  a r e  p r o p o r t i o n a l  to  
the  o r i g i n a l  s o l u t i o n s  ~ i , j ( x )  o f  t h e  sy s t em o f  e q u a t i o n s  (3 .4 )  t h a t  

183 



d 
a~, o (d~, ~_~ ~- a~, ~-2) ---- d~, o -~ ~ a~, o, 

1 d . _ . ~  ( ~ .  . • a~, ~ (d~, ~_~ ~ a~, ~_~) = d~, ~ ~ d~ ~' : ~ a~, ~_~, (3 6) 

i < 1 < / - - 2 .  

T h e s e  e q u a t i o n s  p e r m i t  c o n s t r u c t i o n  o f  an  (~ --  1 ) - d i m e n s i o n a l  d i s t r i b u t i o n  on an  o p e n  
s e t  o f  t h e  s p a c e  o f  c o l l e c t i o n s  ?~, ~i,~, i , e . ,  on an  o p e n  s u b s e t  o f  t h e  p r o d u c t  S~g~  ~ C ~-~ 
o f  a s y ~ e t r i c  p o w e r  o f  a c u r v e  and  a l i n e a r  s p a c e  C ~-i. 

By t h e  R i e m a n ~ R o c h  t h e o r e m ,  e a c h  s u c h  c o l l e c t i o n  u n i q u e l y  d e t e r m i n e s  a s e t  o f  r a t i o n a l  
f u n c t i o n s  Xj (P)  w i t h  p o l e s  a t  Yi  h a v i n g  t h e  f o r m  

~0(P)  = k ( P )  + ~ o +  O ( k -  D, X~(P) = ~ + O ( k - D ,  i g s <  ~ - -  2, 

x~_~ ( p )  = o (a-~) 

i n  a n e i g h b o r h o o d  o f  P o ,  a n d  s u c h  t h a t  t h e  r a t i o  o f  t h e  r e s i d u e s  c i , j  a t  t h e  p o i n t s  Yi  i s  
e q u a l  t o  a~,~ ( a i d  i n  g e n e r a l  p o s i t i o n ) ,  

a,,~ c,,,_~ = c,.~, 0 < 1 < l - -  2.  

H e r e  u0, • • • , u,_: a r e  a r b i t r a r y  n u m b e r s  w h i c h  p a r a m e t r i z e  t h e  f i b r a t i o n . ,  F o r  f i x e d  v a l u e s  
o f  u o ,  . ,  u Z - ,  we d e f i n e  a v e c t o r  w i t h  c o o r d i n a t e s  ?~ = -  c~,~_~ a n d  a i , j ,  s a t i s f y i n g  E q s .  
(3 .6) .  

The s e t  o f  f u n c t i o n s  u 0 (x), . . .  , u~-~ (x) d e t e r m i n e s  a p a t h  t a n g e n t  t o  t h e  f i b r a t i o n  c o n -  
s t r u c t e d .  C o n v e r s e l y ,  e a c h  s u c h  p a t h  w i t h  i n i t i a l  p o i n t  ?~; a,,~ m a k e s  i t  p o s s i b l e  t o  r e -  
c o n s t r u c t  t h e  c o ~ u t a t i v e  r i n g  o f  d i f f e r e n t i a l  o p e r a t o r s .  I n d e e d ,  u s i n g  t h e s e  d a t a  t h e  f u n c -  
t i o n s  X j ( x ,  P)  a r e  c o n s t r u c t e d ,  f o l l o w e d  b y  t h e  f u n c t i o n s  0 s ( x ,  P ;  x o )  w h i c h  a r e  s o l u t i o n s  

d ~ 
o f  Eq.  ( 3 . 1 )  w i t h  n o r m a l i z a t i o n  c o n d i t i o n s  ~ ( x ,  P ; x 0 ) ~ = ~ , = 6 i , .  

T h e s e  f u n c t i o n s  a r e  c o ~ o n  e i g e n f u n c t i o n s  o f  t h e  o r i g i n a l  o p e r a t o r s .  We w i l l  n o t  g i v e  
a d e t a i l e d  d i s c u s s i o n  o f  t h e  c o n s t r u c t i o n  i n  t e r m s  o f  t h e  ~ s ( x ,  P ;  x o )  o f  t h e  o p e r a t o r s  
t h e m s e l v e s  i n  t h e  f r a m e w o r k  o f  t h i s  s e c t i o n .  
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UNITARY REPRESENTATIONS OF THE INFINITE-DIMENSIONAL cLAssICAL GROUPS 

U(p, oo), SO0(P, oo)~ Sp{p, oo} AND THE CORRESPONDING MOTION GROUPS 

G. I. Ol'shanskii UDC 519.46 

0. Introduction 

0.i. We denote by U (oo),SO (oo),Sp(oo) the completions with respect to the operator 
norm of the groups U U (n), U SO (n), U Sp(n). They are infinite-dimensional Banach Lie 

groups. Kirillov [i] discovered the following remarkable fact: He found that it is possible 
to classify all their irreducible unitary representations, and gave a heuristic explanation 
why these groups lack the pathological features which seemed to be inevitable in the infi- 
nite-dimensional situation. It is natural to try to take the next step and study the repre- 
sentations of the infinite-dimensional analogs of the noncompact classical groups. The pur- 
pose of this paper is to point out that there exists for the groups indicated in the title 
a quite substantial theory which exhibits many analogies with the finite-dimensional case. 
In particular, all these groups are of type I in the sense of von Neumann and it is possible 
to construct many of their irreducible unitary representations. 

0.2. We describe the contents of this paper (for notation, see Sec. 0.3). In Sec. 1 
a proof of the main result of [i] is given. It follows in its entirety the scheme indicated 
in [i], with the exception of the derivation of Kirillov's theorem from his Lemma 3, which 
differs from the original proof (which remains unpublished). The approach proposed here 
(Secs. 1.6-1.8) is based on a mapping into a certain semigroup, the "unitary trick," and a 
theorem of Nelson [2]. This approach is then generalized in Sec. 4. It is moreover shown 
that every unitary representation of K(~) decomposes into a discrete sum of irreducibles. 
In Sec. 2 "Laplace operators" are constructed on K(~) which separate the irreducible repre- 
sentations. It is proved in Sec. 3 that G(p, ~) and M(p, ~) are of type I in the sense of 
von Neumann, that their reducible representations can be disintegrated, and that the reduc- 
tion of any irreducible representation to K(p) × K(=) has a spectrum of finite multiplicity 
(sometimes of multiplicity one). Thus, K(p) × K(~) plays the role of a maximal compact sub- 
group. In Sec. 4 an exposition is given of the construction of the irreducible unitary 
representations. 

The results of this paper were announced in [3]. 

0.3. Notation. F denotes any of the fields C, R or the division ring of quaternions 
H; Matm,n(F) is the space of matrices over F with m rows and n columns; L is a separable 
(right) Hilbert space over F with a fixed basis 11,1~, ..., ; K (n) ( = U(n), SO (n) or Sp(n)), 
the connected component of the group of isometries of the quadratic form zlxl + ... ~-~x ~ in 
L~ = laF~ ... ~ InF~L, viewed also as a group of operators in L; K(~) is the closure of the 
groupK0(oo)~ ~K~n) in the operator norm; K~ (n), K~ (oc) , and Km(~) are the stabilizers of 
{ll ..... Ira} i~ K(n), K°(=), and K(~), respectively; G(p, q) (= U(p, q), SOo(p, q), or SP(p, 
q)) is the connected component of the identity of the group of isometries of the quadratic 
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