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Introduction

The mechanism of integrating the Kprteweg de Vries equation by the
method of the inverse scattering problem, which was proposed in [1]
(G ardner, Green, Kruskal, Miura), was interpreted from various points of
view by Lax [2] , Zakharov and Faddeev [3] and G ardner [4] . Beginning
with the paper by Zakharov and Shabat [ 5] , many other physically
important equations were found that can be integrated by this method
over the class of rapidly decreasing functions. Among them are the follow 
ing, all familiar in mathematical physics: the non linear Schrodinger equation
oait = uxx ±  \u \ 2u ( [ 5] , [6]) , the "sine G ordon" equation uxt =  sin  
( [7] , [11] , [12]), the Kadomtsev Petviashvili equation

a n d m a n y o t h e r s [ 9 ] — [ 1 7 ] .

185
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A method for finding them was developed by Zakharov and Shabat [18],
[19] .

The use of scattering theory restricted the method to the class of functions
that decrease rapidly in the spatial variable. The periodic problem required
essentially new ideas, the first of which were derived by Novikov in [20].
(Some of the results of this paper were also obtained simultaneously by Lax
[21].) In subsequent papers by Dubrovin [44] , Dubrovin and Novikov [54],
Its and Matveev [36] , and Lax [47] a theory was constructed of the so 
called finite zone periodic and conditionally periodic solutions of the
K dV equation and their profound algebraic geometrical nature was discovered.1

In a series of papers Marchenko and Ostrovskii ( [23] , [24], [25]) obtained
results on the approximation of arbitrary periodic potentials by finite zone
potentials with the same period.2 Novikov and Dubrovin were the first to
introduce the general concept of a finite zone linear differential operator,
for which the Bloch eigenfunction (or the F lock function) is defined on a
Riemann surface of finite genus (an algebraic curve). A survey of these
results and a full bibliography are contained in [26].

The author has proposed an algebraic geometrical construction of a broad
class of periodic and conditionally periodic solutions of the general
Zakharov—Shabat equation L t   Ay = [A, L], which makes it possible to
express them explicitly in terms of the Riemann 0 function. In particular,
the non stationary Schrodinger equation

is incidentally solved by explicit formulae for the so constructed solutions
u(x, y, t) of the physically important Kadomtsev—Petviashvili equation [27].
In addition, this construction gives a solution of the problem of classifying
commutative rings of differential operators in one variable, in the first
instance when the ring contains a pair of operators of relatively prime order
(see [28], [29] , [30]) .

A fruitful discussion of these problems took place in G el'fand's seminar
at the Moscow State University, after talks the author gave in November —
December 1975. Drinfeld [31] indicated an abstract algebraic exposition of
the author's construction, which gave rise to some useful generalizations and,
in particular, made advances in the problem of classifying commutative rings
of differential operators on the real line, without assuming that they are
prime in pairs. A complete solution of this problem was then obtained by
the author (see §2 of this survey). G el'fand and Dikii have investigated the
Hamiltonian structure of equations of Lax type L t =  [L, A] in which L

Some of the results of Novikov Dubrovin—Matveev—Its were later obtained by McKean and van
Moerbeke [22].

An approximation in the class of conditionally periodic potentials clearly follows from [36], [44], but
to establish an approximation with the same period is difficult.
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and A are operators with scalar coefficients and the order of L  is greater
than two. The corresponding analogue to the H amiltonian formalism of
Gardner—Zakharov—Faddeev proved to be rather complicated. The results
are given in [32] and [33] . So far the H amiltonian formalism even for the
stationary equations of the type of the Novikov equation [L, A] = 0 solved
by the author, which give rise to commutative algebras, has not been worked
out (see Appendix 1).

The concept of a finite zone differential operator can be generalized to
the case of several independent variables. Roughly speaking, a linear
differential operator in η variables is said to be ̂  algebraic if it has a family
of eigenfunctions, parametrized by points of a ^ dimensional complex
algebraic variety Mk with "good" analytical properties, similar to the
properties of Bloch functions of a finite zone one dimensional Schrodinger
operator. The broadest is the case   =  1 for an arbitrary number of
variables.

Dubrovin, Novikov, and the author have solved the inverse problem of
the reconstruction of a 1 algebraic (weakly algebraic, in the terminology of
[34]) two dimensional Schrodinger operator. They have shown that systems
of compatible 1 algebraic operators with a common variety Ml in the two 
dimensional case form an analogue to a commutative algebra. The
commutator of any pair of operators from such an "algebra" can be
factored on the right by one and the same Schrodinger operator H:

[Lu Lj] =DtjH, [Lt, H] =DtH,

where the Z>z/· and Dt are linear differential operators.
§4 contains an investigation of ̂  algebraic (k > 1) linear differential

operators. As yet we have no solutions of the inverse problems for them.
This leads to interesting new problems in algebraic geometry.

Finally, in the concluding section of the survey we give an account of
the results of Moser, McKean and Airault, who have discovered a
remarkable connection between the behaviour of singularities of rational
and elliptic solutions of the K dV equation and the motion of η
particles on a straight line [51] .

§ 1. The Akhiezer funct ion and the Zakharov—Shabat equations

We consider the non linear partial differential equations for the
coefficients of the operators

η m „

(1.1) L1=^iua(x,y,t) — 1 L2=^iv(l(x,y,t) jt

α= 0 Χ β= 0

which are equivalent to the operator equation

(1.2) [L1—| ,L2_JLj =  o, where [A, B) = AB BA.
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Zakharov and Shabat [19] were the first to study these equations. They
developed a method of obtaining certain exact solutions that are rapidly
decreasing as | χ \   *•  «».

In this survey we limit ourselves, for the sake of definiteness, to operators
with scalar coefficients. All the results carry over easily to the general case
of matrix coefficients (see [29] , [30]) .

In the subsequent construction of exact solutions of the Zakharov—Shabat
equations a central role is played by the concept of an Akhiezer function.

LEMMA 1.1. For each regular complex curve 9ft of genus g with a
distinguished point Po and a non special effective divisor of degree g (that
is, for a set of g points pi, . . . ,  „  in general position) there exists a

 

unique function  ( ,  , t, Ρ) , Ρ G  9?, having the following properties.
1° Except at Po it is meromorphic, with poles at pu . . . , pg.
2°. Near Po it can be represented in the form
(1.3)

s = i

where   l =    ( ) is a fixed local parameter,   1(PQ) = 0, and
Q(k) =  qmkm+ . . . +  q0 and R(k) = rnk

n+ . . . +  r0 are polynomials.
Functions of this kind were first considered by Akhiezer [35] in the

2n + l
case of th e hyperellip t ic curve w2 =  Π {Ε — E{), with Po, px,. . . ,pn as

bran ch poin ts.
Without proving th e lem m a, we pass on t o the main th eorem of this

sect ion , which was first established in [ 2 8 ] .
THEOREM 1.1. For each Akhiezer function there exist unique operators

Li and L2 of the form (1.1) such that

Ζ  Ψ =  — ib, L<ity =  — \b.ot dy

PROOF. F or any formal series (1.3) there is a unique operator Lx such
that

£ ιψ (#»   ,  ί» Ρ) =  4~ ψ ( ,  , t, Ρ) (mod Ο (A;"1) e**+Q(ft)iH H(ft)*).

Its coefficients can be found from a system of equations equivalent to
this congruence:

η α . η

α= 0 1= 0 i= 0

Then un =  rn, un_x =  rn_lt un_2 = rn_2   nrn ^   ξ1 } . . .

The purpose of the compact curve   is that an exact equation for the Akhiezer
function can be derived from the congruence above. This is a characteristic feature
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in the solution of all the following inverse problems.

We consider the function yLx   ^   ) Ψ(Χ,  , t, Ρ) = 0. It satisfies all

the requirements defining the Akhiezer function except one. The expansion
of the regular factor for an exponent in Po begins with Oik'1). F rom the
uniqueness of ψ(χ,  , t, Ρ) it follows that this function vanishes. The
operator L2 can be found similarly.

COROLLARY. The operators so constructed satisfy the equation

PROOF OF THE COROLLARY. The kernel of the operator

I Lx —  —, L2 — ̂ — j contains a one parameter family of functions

 ( ,  , t, Ρ). Since the operator itself contains differentiation only with
respect to x, its kernel; if it is not zero, is finite dimensional. This
contradiction proves the assertion of the corollary.

We consider an important example of the construction of solutions of
the Kadomtsev—Petviashvili equation, according to this scheme.

Let Q(k) =  q2k
2 +  q0, R(k) = r3k

3 +  rxk + r0. By what has been
proved, each regular complex curve 9? of genus g with a distinguished
point Po and a non special effective divisor of degree g defines the
operators

( )

which satisfying (1.2). Eliminating ux and u2 from the equivalent system
of equations we obtain for υ(χ,  , t) the equation

where a =  q2
l, β — d^1.

From (1.4) it follows that υ = q   2 g— £ 2 . To find an explicit

expression for v(x, y, t), we express ψ(χ,  , t, Ρ) in terms of the Riemann
^ function. In passing we also prove Lemma 1.1. Its [58] first obtained
corresponding expressions for the case of a hyperelliptic curve with a
branch point Po.

On the regular algebraic curve 9? of genus g we fix a basis of cycles
ax, . . . , a , bi,. . . ,  „, with the intersection matrix

CLi   dj — bi   bj =  0, CLi   bj =  6ij.

We now introduce a basis of holomorphic differentials ωζ· on 3?, normalized

by the conditions ^ω^ . =  bik. We denote by   the matrix of ^ periods:
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Bik   φ ω £ · This matrix is known to be symmetric and to have positive 
s 

definite imaginary part.
The integer linear combinations of vectors in Cg with coordinates δί!ζ

and Bik form a lattice, which determines the complex torus /  (9ft),the so 
called Jacobian variety of the curve.

Let Ρ be the distinguished point on $?i then there is a well defined
ρ

mapping ω : 31  *  Jiffi) the coordinates of ω(Ρ) are Γ cofc.
ρ

F rom   we construct the Riemann 0 function, the entire function of g
complex variables

θ ( , . . . , ug)= 2 exp (ni (  , m) +  2ni (  , u)),

where (m, u) = m1ui + . . . + mgug.
I t has the following easily verifiable properties:

( u b . . . , u j  j  l , · · · , ug) = Q(ul1 . . . , uj, ..., ug),

g
In addition, for any non special effective divisor D =  Σ ρ,  of degree

there is a vector W(Z)) such that the function Θ(ω(Ρ) +  iV(D)) defined on
9Ϊ, cut along the cycles ait b} , has exactly g zeros, which coincide with
the Pj (see [37]) .

We denote by ω 2 , ω β , and ωΛ respectively, the normalized Abelian
differentials of the second kind [38] that have a unique singularity at Po

of the form ~ γ> dQi— \ , and dR.( — \ in the local parameter z(P). Let

2mUli 2πίϋ2, and 2iriU3 be the vectors of their b periods.
F rom (1.5) it follows that the function

exp { J (^ω2 +  y<i>Q +  tofl) ) 6(ω(Ρ) +  ΤΓ(Β))
ρ

does not change its value in a circuit around the cycles at and bj and is,
therefore, well defined. N ormalizing it at Po we obtain ψ(χ,  , t, Ρ) in
a form first suggested by Its.

Expanding it near Po we arrive at the following formula for the solutions
of the Kadomtsev—Petviashvili equation

(1.6) v{x,y, t) ^

where W  is an arbitrary point of the Jacobian of the curve.
If U2   0 or U3 = 0 , which means that there is on 9i a function with

a unique pole of the second or third order at Po, then v(x, y, t) satisfies
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either the K dV equation or one of the variants of the equation of the non 
linear string [9]

3   I dv \    / , 3

In the first case   is hyperelliptic, and (1.6) reduces to the Matveev—Its
formula [36] .

From the expression for ψ(χ,  , t, Ρ) and the fact that the Ut determine
rectilinear portions on the Jacobian curve, we derive the following important
corollary.

COROLLARY. All the so constructed solutions of the Zakharov—Shabat
equations are conditionally periodic functions {the surface ffi is regular).

§2. Commutative rings of differential operators

2.1. General properties. We consider the system of non linear equations
η ja m d@

i n t h e c o e f f i c i e n t s o f t h e o p e r a t o r s L x = Σ u a { x ) ,L2 — Σ υΰ{χ) ,
   — 0     β — Q Ct    Ρ

that is equivalent to the condition that they commute. It is assumed a
priori that these are equations in the class of germs of matrix functions of
a real variable ul^{x), υ'Αχ), 1 < i, j < / . It turns out that all these
solutions admit a meromorphic continuation to the whole complex plane.
Almost all the solutions are conditionally periodic.

Novikov and Dubrovin in [54] have integrated the equation [L1, L2] = 0
for the case of scalar operators and η = 2. Dubrovin [39] , [40] has dis 
cussed the case of commuting matrix operators, one of which is of the
first order. Recently, Manakov [41] has found an interesting new example
of their application. He has shown [42] that the equations of motion of an
« dimensional rigid body are equivalent to the condition that the operators

commute, where /  is the inertia tensor. The present author in [29] and
[30] has completely integrated the equations for the commutativity of
matrix operators of relatively prime order.

We recall that within the framework of this survey we limit ourselves to
the case of scalar operators since this permits the most complete and clear
presentation of the ideas involved in applying the methods of algebraic
geometry in the theory of non linear equations. The matrix version gives
rise to an insignificant technical modification of all the constructions.

Let us agree that all the relevant operators have constant leading
coefficients. In addition, let un_1(x) = 0. This can always be achieved
by means of a gradient transformation.

The following proposition is the basis for the applicability of methods of
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algebraic geometry to solve equations of the Novikov type [Lx, L2]   0.
THEOREM 2.1. There is a polynomial in two variables Q(w, E) such

that Q{L2, Lx) = 0.
Apparently, Shabat was the first to obtain a theorem of this kind for

the case η =  2.
PROOF. The operator L2 defines a linear operator L2(E) on the space

X (E) of solutions of the equation Lx   =   . I ts matrix elements in the
canonical basis

Cj{x,E);  ^rCj{xQ,E) = bTj, 0< r, / < n  l f

are polynomials in E. Let Q{w, E) =  det (w\  — L2(E)) be its
characteristic polynomial. The kernel of Q{L2, Lx) contains X {E) for all
E, hence, it is infinite dimensional. Therefore, the operator itself is zero.

2.2. The case of one dimensional fiberings. Operators of relative prime
orders. F irst we consider the case when for almost all Ε the eigenvalues of
L2(E) are distinct. Then to each point Ρ =  (it», E) of the algebraic curve
Sft2 given by the equation Q(w, E) =  0 there corresponds a one dimensional
eigenspace of L2(E). This gives a one dimensional fibering1 over 9?· In each
fibre over9?\ oowe select a vector with first coordinate 1 in the basis
Cj(x, E). The remaining coordinates are all meromorphic functions on
ffi \ }(P). Since the Cj(x, E) are entire functions in E, the joint eigenfunction

  1
φ(χ, Ρ) = Σ \AP)    , Ε) of Li and L2 is meromorphic in the affine part

/= i '
of 9?. I ts poles do not depend on x.

To find the form of φ(χ, Ρ) at infinity, we construct for each operator
germ the formal Bloch function.

LEMMA 2.1. There is a unique solution, which we denote by
\ jj(x, k; x0), of the equation

(2.1) Li$(x, k) = knty(x,k)

in the space of formal series of the form

(2.2) Ψ(*,Λ) =  ( 2 L (*) k ή

(where N is an integer) with the "normalization conditions"
£ s =  0, s < 0; %o(x) =  1, £ s(*o) = 0· Any other solution of this kind is of
the form

CO

ψ {χ,  ) =    (χ,  ; χ0)   ( ),   { ) =  2 Ask~s.

PROOF. Equating the coefficients of A;"1, s>   η on both sides of
(2.1) we obtain

In his paper [31] Drinfeld took as the starting point an axiomatization of the properties of this fibering
in contemporary abstract algebraic language.
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Zj a ZJ ^ a , a l ~*+i — fes+ n·
axα= 0 ί= 0

We find %'s+n i(x) from the 5 th equation, since it can easily be brought to
the form 0 =  n£'s+n_1 +  (terms containing £7·, /  < s + η — 1).

The operator L2 leaves the solution space of (2.1) invariant. H ence, by
the lemma just proved,

oo

(2.3) (ψ"1 (χ,  ; x0) £ 2ψ (χ,  ; χ0)) | χ = χ ο =     +  2 Λ3ϊτ
8.

In consequence, the coefficients of the left hand side, which are polynomials
in the ua{xQ) and their derivatives, and in which the υβ(χ0) occur linearly,
give first integrals of the original equations. Inverting the first m integrals
we obtain the following corollary.

COROLLARY 1. The coefficients of L2 are polynomials in the ua(x),
their derivatives, and the constants As, — m < s < 0.

NOTE. To prove the corollary it is sufficient that Lx and L2 commute
to within an operator of order η   2.

From (2.3) it follows that \p(x, k; x0) is an eigenfunction for all
operators commuting with Lx.

COROLLARY 2. The ring of operators that commute with a given one is
commutative.

(This was apparently first rvin ted out in [55].)
The functions φ(χ, k^\  x0), kfl = Ε form a basis of X (E) consisting of

η

eigenvectors for L2(E). Then Q(w, Ε) = Π (w   A(k·)). Hence, if η is
/=o '

relatively prime to m, then for large (and hence for almost all) values of Ε
the eigenvalues of L2(E) are distinct. Therefore, the affine part of 9Ϊ can
be completed at infinity by the single point Po in the neighbourhood of
which (E(P))~lln is a local parameter. The expansion in this local parameter
ψ(χ, Ρ) has the form (2.2).

Thus, with each pair of commuting operators, and so also with the
commutative ring generated by them, we can associate the complex curve
9?, the so called spectrum of the operators, with the distinguished point
Po and the joint eigenfunction φ(χ, Ρ), which is meromorphic away from
PQ, with the divisor of the poles p1} . . . , pg, where g is the genus of the
curve  , which has the form (2.2) in the neighbourhood of Po. H ence,
φ(χ, Ρ) is a function of Akhiezer type.

g
By Lemma 1.1, the spectral data di, Po, D = Σ p}  uniquely define the

Akhiezer function ψ(χ, Ρ). F or any function E(P) having a pole only at
Po (we denote the ring of such functions by A{$1, Po)) Theorem 1.1
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associates with ψ(χ, Ρ) exp (E(P)t) the operator L  such that
L\ jj(x, Ρ) =  Ε(Ρ)ψ(χ, Ρ). Its coefficients do not depend on t. And so
9ft, Po and D determine a homomorphism λ form A (9ft, Po) into the ring of
differential operators.

THEOREM 2.2. For any commutative ring A of differential operators
containing a pair of operators of relatively prime order there is a complex
curve 9ft of genus g with a distinguished point Po and an effective divisor
D of degree g such that λ: .4 (9ft, Po)  *•  A is an isomorphism.

2.3. Multi dimensional fiberings. General commutative rings. We now relax
the condition that the operators are of relatively prime orders. The^operator
L2(E) can have multiple eigenvalues. This means that then A(k) = A(kl),
where /  is the greatest common divisor of η and m.

To each point of 9ft given by the equation

Q (ip, E) =  [I (w A(kj)) = 0, nxl = n,

there corresponds an /  dimensional subspace of eigenvectors of L2(E). This
defines an /  dimensional fibering over 9ft. In each fiber over 9ft \  °° we

dr

select vectors such that φ^ο, Ρ) ~ δη · , 0 < r, i < /    1. As before, all the
dxr

\ fi(x, P) are meromorphic in the affine part of 9ft and the divisor of their
poles Dt is of degree g.

To find the form of φ{(χ, Ρ) near the "poin t at infinity" Po, we construct
the matrix and function ψ(χ, Ρ) whose columns are
iPi(x, Ρ), φ\ χ){χ, Ρ), and φ\~*{χ, Ρ). The matrix function V(x, Ρ^ ^χ,Ρ)
does not depend on the choice of the base φ^χ, Ρ), therefore, to find it
in the neighbourhood of Po we can use the functions \ jj(x,  ^; 0), kl=  .
In the local parameter k~*(P) it has the form

0 1 0 . . . 0 (l·
0 0 1 . . . 0 0

(2.4)
0 . . . 0 1

  ... Uj_2 0^
where the ua(x), 0 < α < /  — 2, are polynomials in the coefficients of.
and their derivatives.

We introduce the operator L  =  Σΐία(χ) ;  , =  1,  _, = 0. Let
dx<* ^

7?j(x, k) be the canonical basis of the space of solutions of Ly =ky.
F rom (2.4) we deduce the following result.

LEMMA 2.2. Near Po the function φ^χ, Ρ) can be represented in the
form

oo

(2.5) φ, (s, P) =  c, (*, *) (1 +  2 li (*)   
s = l
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We now consider the inverse problem of recovering commuting operators
from 9?, Po, Z>j, . . ., Dh uo(x), . . .,   _2{ ).

LEMMA 2.3. Given a non singular complex curve 9? of genus g, a
distinguished point Po, and non special effective divisors Dj of degree g,
there exist unique functions φ^χ, Ρ), meromorphic away from Po, with the
divisor of poles DJt and having near Po the form (2.5).

PROOF. Let ω be a normalized Abelian differential with a single pole
ρ

at Po of the form ~ γ, ζ (Ρ) =  "1 (Ρ). The function c}(x, f ω) is defined
Ρ

on 9Ϊ cut along the cycles at and has an essential singularity at Po. We
denote by Gj(x, t), t £  aif the ratio of its values on the two edges of the
cut.

We now pose Riemann's problem of finding a function fj{x, P) that is
meromorphic on 9? cut along the a,·, with the divisor of poles D} , and
satisfying the boundary condition on a{

/ /  (x, t) =  Gi1 (x, t) /Γ (*, t); fj (x, PQ) = \ .

The existence, uniqueness, and explicit construction of ft{x, P) in terms of
the Cauchy kernel on 9Ϊ and the Riemann ^ functions is contained in [37]
The required function is

.Ρ

(χ, P)=cj(x,  Ι ω) fj(x,

THEOREM 2.3. For each function E(P) £  ( ,   ) there is a unique
operator L of order nl where η is the multiplicity of the pole E(P), such
that Σφ}.(χ, Ρ) =   (   ,  ).

PROOF. We construct from φ}·(χ, Ρ) a matrix Akhiezer function Ψ(χ, Ρ).

By (2.4), in the neighbourhood of Po, (— , *(x, P) ) *~l(x, P) has the
\dxal '

form ka\  + O(ka~l) where 1 is the unit matrix. As in §1, we find the
  n d<*1

coefficients of the matrix operator L = Σ wa(x) from the congruence
a= 0 dxal

(ΖΨ) Ψ"1 ssE(P) L  (mod   (  1)).

From the uniqueness of the matrix function Ψ(χ, Ρ) it follows that
 (  , Ρ) =  { ) { ,  ). Recalling that the columns of   ,  ) consist
of the derivatives φ^χ, Ρ), we find that the action of L  on the column
vectors is the same as that of L  on φ} (χ, Ρ).

Thus, we have arrived at the following theorem.
THEOREM 2.4. For any commutative ring A of differential operators

there exist: a curve 91 of genus g with a distinguished point Po, a set of
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divisors D 1 ? . . . ,  χ of degree g, a set of arbitrary functions
uo(x), . . . , wz_2(x) such that the homomorphism λ: A(3?, P0) *A defined
by them in accordance with Theorem 2.3 is an isomorphism.

The curve 3Ϊ is called the spectrum of A of multiplicity / . The problem
of selecting commuting operators with coefficients that are polynomials in
χ is interesting. An example of such operators is constructed in [43]. Their
joint spectrum is the elliptic curve w2 — E3 — a. The multiplicity of the
spectrum is 3.

§3. The two dimensional Schrodinger operator and the
algebras associated with it

Here we give an account of the basic ideas in the paper by Dubrovin,
Novikov, and the author [34] , in which the inverse problem of recovering
from "algebraic" spectral data an operator depending essentially on some
spatial variables was first posed and solved. (We recall that in the operators
considered in § 1 derivatives with respect to   occurred only to the first
power.)

In this context a new problem arises naturally: to describe the subrings
A of the ring Θ of differential operators in two variables whose quotient
rings A (mod H) by the left principal ideal generated by the Schrodinger

 2 —   —
o p era t o r   in Θ are co m m u t a t ive , wh ere Η = + υ(ζ, ζ) — +  u{z, ζ).

9ζσζ 9z

We call such rings "commutative modulo # " . This means that for arbitrary
operators L it L2 Ξ A there are operators Dx, D2, and D 3 such that

(3.1) [Lj, L J =  £>!# ; [Lu H) =  D2H\  [L2, H]   DBH.

The latter equations are equivalent to a system of non linear differential
equations for the coefficients of L it L2, H. As we shall see, their solutions
can be expressed explicitly in terms of the Riemann 0 function.

As before, we assume that the leading terms of all the operators in
question are homogeneous differential operators with constant coefficients.

THEOREM 3.1. The operators Lx and L2 satisfying the compatibility
equations (3.1) are connected by an algebraic relation, that is
Q(L2, Ιχ)φ = 0 on the solution space of Ηφ =  0.

The theorem follows from the fact that on the solution space X(E) of
the equation

(3.2) Ιαφ(ζ, ζ, Ε) = Εφ(ζ, z E)\  Hq> (z,~z, £ ) =  0

L2 defines a linear operator L2(E) whose matrix elements in a canonical
basis are polynomials in E, (with dim X(E) =  2n). Then
Q(w, E) = d e t ( u r l   L2(E)) is the characteristic polynomial of L2(E).

We assume that the eigenvalues of L2(E) are distinct for almost all E.
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Then t o each po in t of t h e algebraic curve 9? given by t h e equ a t io n
Q(w, E)   0 there co r respon ds an eigen vector of L2{E) wh ose co o rd in a t es
in the canon ical base Cj(z, ζ, Ε) are all m ero m o rp h ic fun ct ion s \ j{P) o n 9L

Th e correspon din g fun ct ion φ(ζ, ζ, Ρ) = Σ \ j{P)Cj{z, ζ, Ρ) is m e r o m o r p h ic
on 9? away from "in fin it y". I t s divisor of poles is of degree g, t h e gen us o f 9ft,

T o find th e behaviour o f φ(ζ, ζ, Ρ) at "in fin i t y", we co n st ru c t , as befo re ,
th e germ of t h e formal Bloch fun ct ion . With ou t loss of gen erality, we m a y t ake

           

t h e leading t erm s of Ζ ι a n d Z 2 t o be +  q< —=  a n d +  q2 _ ,
 %           % respectively.

LEMMA 3.1. There are unique formal solutions of (3.2) of the form
oo

Z T» \  / ™1 2 Ι Λ I > t (rr rr\  L·*" I If / τ
> "  /  C \   1  "T" ^ J fes \*» */  "   / 5 "   ·* ' »

(3.3) s = 1

"normalization" conditions £ s(0, 0) =  xs(0, 0) =  0, s ~> 1, χο(Ο, 0) =  1.
The series  \   2   =  ™ + 0{k™~1) and  2

1 2 2 — q2k2
n + Ο̂ ψ~ ι)

are expansions of the eigenvalues of L2(E) in the neighbourhoods of the
two "points at infinity" Pi and P2 of 9ϊ, provided that η and m are
relatively prime and q™ Φ q2 . χ

Local parameters in the neighbourhoods Pi and P2 are (E(P))~n and
(E(P)qi1)~n. In terms of these the expansion of φ{ζ, ζ, Ρ) has the form
(3.3).

As in the case of the Akhiezer function the properties of φ(ζ, ζ, Ρ)
make it possible to reconstruct it from the "algebraic" data.

LEMMA 3.2. For any non singular complex curve   of genus g, with
fixed local parameters υυλ =  k^(P) and w2 = k2

l(P) in the neighbourhoods
of two distinguished points Px and P2 and an effective non special divisor
D of degree g, there is a unique function φ{ζ, ζ, Ρ) that is meromorphic
away from Ρχ and P2 with the divisor of poles D and whose expansion in
the neighbourhood of P} in the local parameter k7x(P) has the form (3.3).

Two local parameters w}(P) and wj(P) in the neighbourhood of P}· are
said to be equivalent if (wj1 wj){Pj) = 1.

COROLLARY. The function φ(ζ, ζ, Ρ) depends only on the equivalence
class of Wj{P). 2

LEMMA 3.3. There is a unique operator Η =  =  +  v(z, I) —= + u(z, F)
9z9z 3z

such that    =  .
Any operator L  such that    = 0 is divisible on the right by H, that is,

L = DH.
PROOF. F or any two series φ1(ζ, ζ,  ) and φ2{ζ, ζ,  ) of the form

(3.3) there is an operator Η such that Ηφχ = 0(mod O{k~1)) and
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Ηφ2 — O(mod 0(1)) . In a standard way within the framework of our
construction, it follows from the uniqueness of φ(ζ, ζ, Ρ) that
Ηφ{ζ, 7, Ρ) then vanishes identically.

LEMMA 3.4. For any function E(P) G A(4R, P l t P2) having poles only
at Pi and P2 there is a unique operator L of the form

πι α η 2 β

2 u«(z, i)  £ ^+  2 vt(z>2)4r'
α= 0 Ζ β= 1

where the «;· are the orders of the poles of E(P) at Pj, such that

,  , P) = E{P)y(z, 7, P).

The coefficients of L  and Η can be expressed in the standard way by the
Riemann 0 function. F or example, for H we have [34]

}
J '

  (ζ, ζ)= ~^ioge φχΖ+υ2ζ+  7).

Let us summarize our results.
THEOREM 3.2. For any ring A that is "commutative modulo H" and

contains operators of relatively prime order with the leading terms

+ ql —zr and—— +  q2  =  , q? ^ q", there exist a curve 91 of
bzn bzn bzm bzm

genus g with two distinguished points Px and P2, an equivalence class of
local parameters in neighbourhoods of Px and P2 and an effective non special
divisor of degree g such that the homomorphism λ: i4($R, Pu P2) > A(moaH).
defined by them is an isomorphism.

L e t u s dwell o n so m e o p e n p r o b le m s. We have c o n st r u c t ed a class of
Sch ro d in ger o p e r a t o r s wi t h a lm ost  per iod ic p o t en t ia ls for wh ich t h e Bloch
eigen fu n c t ion s can b e fo u n d exac t ly a t t h e zero en ergy level. I t is n o t
clear wh e n t h e p a r a m e t e r s o f o u r c o n st r u c t io n can vary wit h t h e en ergy,
in o t h e r wo r d s: if Η is defin ed by 9?, t h e p o in t s Px an d P2, an d t h e
divisor D, is t h e r e a fam ily of e igen fu n c t io n s of Η wi t h arbit rary energy
(Ηφ =  Εφ, Ε Φ 0) , p a r a m e t r ic ize d by p o in t s of t h e algebraic curves 4R{E)1
I f t h e r e is, t h e n h o w d o es o n e find   ) from t h e in it ial da t a? H o w can
o n e find t h e space M2 o f fiberings over t h e co m p lex p lan e   wit h fibres
81(2?)? Is t h e r e an algebraic var iety Μ2, a co m p ac t ifica t io n of Μ2 

T h is last qu est io n is closely c o n n e c t e d wi t h t h e p r o b le m of select in g
a m o n g t h e o p e r a t o r s we h ave c o n st r u c t e d t h e pu re ly p o t en t ia l o n es, t h a t

 2 —
is, t h e o p e r a t o r s o f t h e fo rm Η =  +  u(z, z ) . On ly in t h e class of

dzbz
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these operators does the condition of reality of coefficients, which arises
naturally within the framework of our constructions, turn into the condition
of being Hermitian, which must hold for the physical Schrodinger operators.

LEMMA 3.5. / / ow 9? there is an anti involution 7\  leaving D invariant
and such that Ti(Pt) = P2 and T*w1 = w2, where νυλ and w2 are local
parameters near Ρλ and P2, then for the operator Η constructed from these
data the function v(z, z) is purely imaginary, and the potential u(z, z) is
real. Hence, Η becomes real after a gauge transformation.

NOTE 1. The real solutions of the Zahkarov—Shabat equations can be
distinguished similarly.

Apparently,   is a potential if and only if the original ring A is
commutative, which implies the existence of the variety M2, that is, in our
terminology, Η is 2 algebraic.

NOTE 2. A necessary condition for Η to be a real potential operator is
the existence on ffi of a second anti involution such that T2wx = —w2. As
Novikov has pointed out, the presence of two anti involutions T i and T2

(under certain restrictions on the situation of D on the set of fixed points
of T1} which are indicated in [34] , Lemma 3) is sufficient for the Bloch
eigenfunction ψ(ζ, F, P), where T2P = P, to be bounded in ζ and z. (We
recall that Ηφ =  0). The set of fixed points T2P = Ρ is called the "real
Fermi surface".

§4. The problem of multi dimensional « algebraic operators

Let A be a commutative ring of differential operators in η variables

where, as usual, χ = (x1} .. . , xn), a = ( c^ , . . . ,

η

ι ι _ V da 5 ' a l

._ ' '     β   ? ι . . . <

It is assumed that all the leading coefficients of the ua(x), \  a. \  = I, are
constant.

Suppose that the symbols of the leading terms of the
L2 G  A (i = 1, . . . , n), the polynomials Pj(k),   =  (klf . . . , kn), are
algebraically independent. Then the quotient ring of the ring of polynomials
C[kx, . . . , kn ] by the ideal generated by Pj(k) —Et is finite dimensional.
We denote by Ga(x) (ex. = 1, . . . , N) representatives of its generators.

LEMMA 4.1. A basis X(E) of the solution space of the equations
Lty = Ety is formed by functions satisfying the "normalization" conditions
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Each operator Lo e A determines a linear operator L0(E) in X{E).
LEMMA 4.2. The matrix elements LSQ of LQ(E) in the base ca(x, E) are

polynomials in the variables Et and Ef1.
THEOREM 4.1. The operators Lit 0 < /  <  , are connected by the

algebraic relations Q(L0, . . . , Ln) =  0, where Q(w, Et, .. . ,En) =
=  d e t O  1   LSJ(E)).

If the symbol P0(k) of the leading terms of Lo assumes almost always
distinct values at the roots of the equations P({k) =  Et, then for almost all
Ε the eigenvalues of L0(E) are distinct. As before, by associating with each
point of the afflne variety Mn given in   X Cn by the equation
Q(w, E) = 0 the eigenvectors of LQ(E), we obtain the following lemma.

LEMMA 4.3. There is a meromorphic function ψ(χ, m), m G Mn, that
is an eigenfunction for each of the operators Lit

1${χ, m) = Ei(m)q{x, m), L0(^(s, m)) =  w(m)y(x, m).

In contrast to the case η =  1, the compactification of Mn under which
ψ(χ, m) has "good" properties in the neighbourhood D°° of the divisor of
infinity, is not self evident when η > 1. Here D°° denotes a divisor of the
compact algebraic variety Mn for which Mn \  D°° is isomorphic to Mn.

THEOREM 4.2. There exists the system of equations

LMx, k) =  Pt{kyp(x, k) (i =  1, . . ., n),

has a unique solution of the form

(4.1) * ( 1 ,  )  2
s=0

where (k, x) =   :1  1+  . . . +  knxn; the %s(x, k) are homogeneous rational
functions in   of degree  s, and %0(0, k) =  1; £ s(0, k) =  0, s > 1.

PROOF. The functions %s(x, k) can be found successively from the
system of equations

| a | ^ f | r |^| α Ι Χ

From the s th equation we find ^ — £ s(x, k). Since the L t commute, we

can integrate these partial derivatives to find £$(χ,  ). Then %s(x, k) has the
II   ,  II

form Fix, k)G~s{k\  where G(k) = det  ^  .
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NOTE. If deg L{ = //5 0 < / < n, then by a gradient transformation the

Lt can be reduced to the form Pt ( ^ - ) + Li} deg Z,- < // - 2, if and only

if %o(x, k) = £o(*) does not depend on k.
COROLLARY 1. The coefficients of the series  ~1( ,  )   ( , k) = A(k)

are polynomials in the system of first integrals of the equations equivalent
to the conditions [Lif Lj] = 0.

COROLLARY 2. The ring of operators commuting with Lh 1 < /  < n,
is commutative, and  ( ,  ) is an eigenfunction for all the operators
L  e A.

COROLLARY 3. The characteristic polynomial Q(w, E) is
Q(w, Ε) =  Π (w   A (ka)), where the ka are the roots of the system of

a
equations Pj(k) = Et.

Let us introduce a grading in the ring C[w, Ex, . . . , En], by ascribing
to these variables the degrees / 0, . . . , / „ , respectively.

COROLLARY 4. Let Q° be a polynomial of degree Nl0 connecting the
 ), that is, Q°(Po(k), •  •  · ,Pn(k)) = 0. Then Q(w, £ ) =  Q°(w, E) +
+ Q(w,E),degQ(w,E)>Nlo \ .

We now describe the required compactification of Mn. To do this we
regard the "weighted" projective space CP(w), w = (/ 0, . . . , / „ ) , as quotient
space of Cn + 2 \  {0} under the following action of the multiplicative group
of complex numbers. A point ( z 0 , . . . , zn+l) is equivalent to
( / % , ..., fnzn, tzn+1), ίΦ 0.

Then Mn can be specified in CP(w) by the equation

The open subvariety of Μ" : ζη+1 Φ 0 is isomorphic to Mn.
The regular mapping φ: CPn  > CP(w) defined in homogeneous coordinates

by

<P(l>li · · ·» Vn+1) =  ( . . . , Pifa, . . . , Vn), . . . , I 7 n + 1 ) ,

establishes a birational 18     18  between the hyperplane υη+ί = 0 and
the divisor D°° defined by the equations zn+l = 0, Q°(z0, . . . , zn) = 0.

Hence, the functions kt (m) =  are defined in a small neighbourhood
υη+  ι

of /   in Mn .
THEOREM 4.3. Near D°° the function \ jj(x, m) can be expanded in the

form (4.1), where k{ (w) = — —.
υη+ 1

Our assumption is that the variety Mn and the divisor of poles  ( ,  )
uniquely determine the commutative ring A. The solution of the inverse
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problem is complicated by the fact that Mn has singularities at the images

under φ of the points υη + 1 =  0, G(vi,. . . , υη) =  0; G(k) =  det W   I . The
II " * j II

dimension of the variety of singularities η ~ 2. For η = 1 this means that 3?
is smooth. Therefore, we can use the theory of Abelian differentials to
recover φ(χ, Ρ). F or η > 1 the theory of meromorphic differentials is
not effective enough, even on smooth manifolds.

The answer to the problem we have discussed in the previous section of
constructing potential Schrodinger operators must yield a solution to the
inverse problem for the variety Mn whose equation Q(w, E)   0 has the
following form: if Q°(P°(k), . . . , Pn(k)) is an algebraic relation
between the homogeneous polynomials

η

Po{k)=J\kt, then Q(w, E) = Q°(w, E) + Q{w, E), deg? < deg£ ° 2.

APPENDIX 1
THE HAMILTONIAN FORMALISM IN EQUATIONS OF LAX AND NOVIKOV TYPE

The K dV equation and its higher analogues determine flows on function
spaces, which according to G ardner [4] and Zakharov and Faddeev [3] are

formally of the Hamiltonian form ut = ^  j— on any space where the

/„ =  I Ln(u, u', . . .)dx are meaningful and commute. Here / „ is the

system of K dV integrals first found in [45] , and

£— =  Σ (— \ )k . The skew symmetric operator ^— defines the

Poisson bracket (the Gardner—Zakharov— Faddeev bracket) on the space of
functional, by the formula

\ i{u,u\ ...)dx (i =  0, 1).

Zakharov and Faddeev [3] have shown that on the space of rapidly
decreasing functions all the "higher K dV analogues" are completely
integrable H amiltonian systems for which the scattering data of the Sturm—

.2
Liouville operator   —  +  u(x, t) are variables of "action angle" type.

dx
Novikov has shown that a displacement in χ determines on the phase 

N 5/„
space of solutions of the stationary equations Σ cn ^— =  h a completely

n =  o b u

integrable finite dimensional H amiltonian flow [20] . A general proposition
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on the connection of H amiltonian formalisms of stationary and non 

stationary equations of the form uc =  g—  »— was obtained by N ovikov and

Bogoyavlenskii [46].
  H"Suppose that the flows X,  (uf = 5—  z—),i = 1 , 2 commute. H ence, the' l ox ou

fixed points Th of the flow     F— =  h form an invariant set of X2. We
1 \      ι

denote the restriction of X2 to Th by φη (Xt, X2). The commutativity of
the flows is equivalent to the fact that {/ lf / 2} =  0 or

 /<   δ/ο d π , , .
bu 17 bu ~ dx v ^ ' u ' ·'·>·

In K dV theory such a construction of integrals in the stationary problem
was proposed by G el'fand and Dikii [48] and Lax [47] .

THEOREM [46]. The flow φη{Χχ, Χ2) on the phase space Th is
 2

Hamiltonian with the Hamiltonian — Q — h  =:—.
ou

In the case of higher K dV equations there are remarkable canonically
conjugate variables in the phase space T, which were obtained in [49] .

The coefficients of the formal series V(u, k) =  Σ bft1 satisfying the
/=o

equation  V" + 4V'(u   i ) +  2Vu = 0 (which is equivalent to the
 

recurrent system of equations 4b'n+l = —  
  + 4bnu + 2bnu') are uniquely

determined by the initial data

2c(k) = V"V ^  

The higher analogues of the K dV equation have the form ut =  b'n + l .
00 · 1 v'Let W = Σ Wjk1 =   2 — ; then the variables biwn_1 are canonically

conjugate in the phase space Τ of solutions of the stationary equation
bn + l = 0. A shift in χ defines a H amiltonian flow in Τ with the

Hamiltonian Hn + l , where Η =  Σ   1 = W2 V + ^p    V(u    J ).
/= 0  v

In the language of the Bloch eigenfunction ψ(χ, Ρ) of the finite zone
Sturm—Liouville operator: if χ(χ, Ρ) = —i (log ψ)' = xR + / χ/ 5 then

^ ^  R)>= W = Σ W(ki' H e n c e ' t h e b*
are the elementary symmetric polynomials bk = ok(y1(x), . . . , yn(x)).
Flashka and MacLaflin [50] have constructed canonically conjugate
variables to the bk, but the spectral meaning remains unclear.
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Solutions of the Zakharov—Shabat equations, independent of the variable
  are described by non linear equations for the coefficients of the operators

n    m  0
Lx = Σ     , t) and L2 =  Σ υβ(χ, t) — , which are equivalent to

0   " β0 ΰχΡthe operator equation

(A.1.1) [Ζ,χ, L 2  A] = 0 = > ^ L =  [i!,  Ll].
Since the coefficients of L2, which commutes with L1 by (A.1.1), can

be expressed to within operators of order η — 2 by polynomials in the
derivatives ua(x, t) and constants hs,  m < s < 0 (see Corollary 1 to
Lemma 2.1), these equations are equivalent to systems of equations for the
functions ua(x, t), known as equations of Lax type. In addition to what
was indicated in §2, algorithms for the construction of operators L2,
commuting in this manner with L l s are contained in [19] and [32]. In
the latter paper, Gelfand and Dikii have shown that equations of Lax type
can be represented in the form

N

(A\  2Ϊ ~ l V   ^L
p = i

where   =  (u0, . . . , un_2), =— =    ~—, . . . , ^  J , and /  is a skew 

symmetric operator whose matrix elements are

Y= 0

The construction of the integrals Ap of equations of Lax type uses the
expansion in fractional powers of the resolvent of L  j .

The operator /  determines the Poisson bracket (Gelfand—Dikii bracket)
on the space of functional, by the formula

r, s

The proof of the Jacobi identity for this bracket is non trivial. Gelfand and
Dikii have told the author that a complete proof, not only for scalar but
also for matrix operators, is in [33] . As in the case of the "higher K dV

8APanalogues", all the flows ut = I . commute among each other.

The Lagrangian nature of the equations for stationary solutions of
equations of Lax type does not follow directly from (A. 1.2), since it is
necessarily connected with the inversion of the operator / . The latter
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equations, which indicate that for Lx there is a commuting operator L2

are called equations of Novikov type, [Llt L2] =  0. (The construction of
polynomial integrals for these, and also the complete integration of
equations of Novikov type due to the present author, were quoted in §2
of this survey.)

N    

The Lagrangian part of the Novikov equations Σ cp  ~— was considered

explicitly by Gelfand and Dikii only under the additional assumption that
N

the Lagrangian Σ cnAn is non degenerate. (This assumption seems to be
P =  l

equivalent to our requirement that the orders of the operators Lx and L2

be relatively prime. F or these equations there is an algorithm for the
construction integrals in involution. A count of the number of independent
integrals must yield the complete integrability of the corresponding
Hamiltonian system.1

As the solutions of the equations [L1, L2] =  0 show, when the orders
of the operators are not relatively prime, an interesting variant of the
Hamiltonian formalism with constraints must hold for the corresponding
system.

APPENDIX 2
ELLIPTIC AND RATIONAL SOLUTIONS OF THE K dV EQUATIONS

AND SYSTEMS OF MANY PARTICLES

In October 1976 I received a preprint of the paper by Airault, McKean,
and Moser [51] in which a remarkable connection is discovered between
the evolution of poles of rational and elliptic solutions of the K dV
equation and the motion of a discrete system of interacting particles on a
line.2

It is easy to show that all elliptic solutions of the K dV equation are of
η

the form   (χ, t) = Σ 2 ψ (χ   xAt)), where f is the Weierstrass function.
7 = 1

The K dV equation for them is equivalent to the system

(A.2.1) x J = = 6 [

(A.2.2) S f( ^ ^) =  O,

where Χ: Φ xk (j = 1, . . . , n).

See the concluding remarks.
In January 1977 Olshanitskii and Kolodzhevo pointed out to the author that in the paper [52] of G.V.

and D.V. Chudnovskii the evolution of the poles of elliptic solutions of the K dV and Burgers Hopf equations
and certain others is interpreted in terms of the motion of a Hamiltonian system of particles on a line. Some
of their results on the K dV equation overlap with the results of [51] reported here.
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In this way the question of describing elliptic solutions of the K dV
equation rests upon that of describing Ln, given in Cn by the equations
(A.2.2). Apart from the case η =  3, practically nothing is known about it.
We do not even know the dimension of Ln. Apart from the degenerate
cases of "travelling" waves f(x — ct), elliptic solutions of the K dV equation
with three poles reduce to the two zone solutions u{x, t) (first found by
Novikov and Dubrovin [54]) for which

0,  t=  f —  
J
o V| 2(ft 3| f>"«)]

As is well known, the function x~2 is a degenerate form of the
Weierstrass function.

Thus, if we let both periods of ψ(χ) tend to infinity, we obtain rational
3

solutions of the K dV equation of the form 2 Σ (χ   χ At))'2.

However, we can obtain more complete results. I t is easy to prove that
rational solutions of the K dV equation must be of the form

u(x, t) =  2 Σ (χ   x7(t))~
2. The equations (A.2.1) and (A.2.2) for the

/= i
rat ional case reduce t o th e system x = Σ 6( {~  )~

2, Σ ( . ~  )~
3 = 0

  ]   ]

What is remarkable is the fact that the variety of rational solutions of
the K dV equation is invariant under the flows Xt determined by the
"higher K dV analogues". We denote by Xt the images of these flows on
the variety Ln. Since dim Ln < n, there is a flow Xk that vanishes on
Ln. Consequently, all rational solutions of the K dV equation are stationary
for one of the higher K dV equations, that is, they form a separatrix
family of finite zone potentials of the Sturm—Liouville operator.

The expansion at infinity of the function Xtu(x, t) has the form

ι [Π (n 
d= 0

When we introduce the functions     =   { 1  .. . , xn), then  (   =  0 if
  < 2i — 1. Since the    ,   < η form a coordinate system on Ln, the flow
Xt must vanish on I " for 2ζ   1 >  . N ow    { , t) = 0 only when η
takes one of the values d{d +  l)/ 2. Otherwise, Ln is empty.
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If η = d(d + l)/ 2, then the closure of Ln is isomorphic to Cd. This
isomorphism is determined by the mapping under which to tl, . . . , td there
correspond the poles of the function u(x, 1), where u(x, t) is the solution
of the Cauchy problem with the initial data u(x, 0) =  d (d + \ )x~2 for
the flow t]_Xx + . . . +  tdXd.

In [53] Moser has established the complete integrability of a system of
particles on a line with the pair potential 2x~2. The H amiltonian of this

ι "system is Η =  =•  Σ ρ2 4  Σ 2(χ  xk)
 2. He found a representation of

1 / = 1 i<k
Lax type: Bt = [A, B] for the equations of motion of this system, where
the matrix elements of A and   are

AJj = Ph Aih =  i (XJ — a*)"1» 7 Φ A,

BJJ = — i S fa — Xh)~2, Bjh =  i (Xj — xk)~
2, ] Φ  .

From this representation, obviously, Fk =  t r Bk and F2
 = Η are integrals

in involution. Hence, the flows defined in the phase space by the Fk

commute. The set of fixed points of the initial system, that is,
grad F2 = 0 or Pj =  0, Σ (χ;·     )~

3 (j = 1, . . . , η), is Ln. A direct
  )

comparison of the formulae shows that the flows on Ln corresponding to
the motion of the poles of the solutions of the K dV equation and the
restriction of the flow grad F3 to Ln are the same. Apparently, there is a
hitherto unproven proposition that the flows Xt and (grad Fj\ Ln) coincide
on Ln.

CONCLUDING REMARKS

1. After the main text of this survey had been sent to the printers, the
author learned that Veselovoi has answered a number of the questions
mentioned in Appendix 1. He proved that the kernel of the operator /  is

  §^4
formed by linear combinations Σ    =  £ . Hence, the stationary

equations /  ^— =  0, X = Σ cpAp are Lagrangian,

δ °
ζ— (X   Σ  „ „) =  0. He proved that when N  and η are relatively
ou p=~n + 2 µ P

  
prime, the Lagrangian is non degenerate and the equation /  γ  =  0 is an
(n   l) parameter family of completely integrable Hamiltonian systems.

2. In [56] Petviashvili, using numerical computations stated a proposition
on the existence of solutions for the Kadomtsev—Petviashvili equations.
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Their explicit form was found by Matveev,

l± 4iy2 — 4( x 1202

  ( ,  , t) = =F

All N  soliton solut ions of th is equat ion were found in the paper [ 57] ,
by Bordag, I ts, M atveev, M anakov, and Z akharov.

where Ann =  (x    /   j ;   (£n +  3 ^ 0) , Anm =  ———  , η Φ  . F or the

solution to have no singularities the constants must be determined by
TV =  2k, R e vn > 0 , vn + k =~vn, %n+k = \ n.

It is interesting that the Kadomtsev—Petviashvili equation turns out to
have no interaction of solitons even of phase shift type.

3. Very recently the author has discovered an algorithm for the
construction of a broad class of rational and elliptic solutions of the
Zakharov—Shabat equations. The evolution of the poles of these solutions,
as in the case of rational solutions of the K dV equation, is closely
connected with the motion of systems of particles on a line.

4. Recently, the author proved that a function u(x, y, t) is a rational
solution of the Kadomtsev—Petviashvili equation, decreasing as χ  * °°, if

N
and only if u{x, y, i) =   2 Σ (χ   xf ( , ΐ)) 2 (where N  is arbitrary), and

/= i
that the dynamics of the poles Xjiy, t) in the variable   coincides with the
motion of the Moser system of particles with the Hamiltonian Η (see
Appendix 2), while in the variable t it coincides with the flow given by the
H amiltonian F3. Explicit forms can be found for u. Thus, the theory of
discrete integrable systems is covered by the theory of algebraic geometrical
solutions of the Zakharov—Shabat equations as a theory of special solutions.

NOTE IN PROOF. Very recently the author learned of three remarkable
long forgotten papers: J. L. Burchnall and T. W. Chaundy, Proc. London
Math. Soc. 21 (1922), 420 440; Proc. Royal Soc. London Ser. A 118
(1928), 557 573; Ser. A 134 (1931), 471; Η. Ε. Baker, Proc. Royal Soc.
London Ser. A 118 (1928), 573 580.

In these papers the problem of the classification of commutative algebras
of ordinary scalar differential operators containing a pair of operators of
relatively prime orders is posed and solved. F or algebras of general type
the problem is reduced to Abelian integrals, although finite formulae for
the coefficients of the operators are not obtained. This result was
rediscovered by the author and forms part of the results of [30]. Some
degenerate cases are considered in the 1931 paper. In the 1922 paper
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commutative algebras are found containing a Sturm Liouville operator; an
algorithm is indicated for the reduction of a potential to hyperelliptic
integrals. Formulae in terms of the θ function discovered in the 70's were
not known in [26], [36], [30]. It is natural to compare these results with
the theory of exact periodic solutions of the K dV equation ([26]) and its
subsequent development, which is reflected in this survey.

1. The K dV equation and its higher analogues are of Lax form. An
important consequence of the results of Gardner Zakharov Faddeev in
K dV theory consists in the fact that all these systems commute, and as a
result of this, the K dV equation and higher K dV equations define a
simultaneous deformation of all commutative algebras containing a Sturm—
Liouville operator. This fact was the starting point of the modern theory
of periodic solutions of the K dV equation [20].

2. The works of the 20's and 30's we have mentioned are entirely of
local character in x. The periodicity (quasiperiodicity) of the coefficients of
the operators is not obtained. Hence, the connection between commutative
algebras and the Flock theory of linear equations with periodic coefficients
is not noted, where the eigenfunction of the operators is determined non 
locally in terms of the translation operator through a period. The key
observation of the modern theory of the K dV equation consists in the fact
that Hill operators with finitely many of lacunae can automatically be
embedded in a commutative algebra. The converse is also true [20], [44],
[21], [22], [36]. The omission of this connection probably accounts for
the fact that the remarkable results of the 20's were unknown in operator
spectral theory and had no influence on the solution of direct and inverse
problems. For example, these papers are not quoted in articles by Ince
(1939—40) and Hochstadt (1965), which study special examples of periodic
operators with finitely many lacunae.

3. In these old papers there is no discussion of all the problems
concerning the construction of polynomial integrals, of the commutativity
equations, of the theory of completely integrable Hamiltonian systems, of
the temporal dynamics by virtue of the K dV equation [26], nor of the
algebraic geometrical method of constructing exact solutions of the
Zakharov—Shabat equations [28], [30]. A classification of commutative
rings of matrix operators or of commuting scalar operators whose orders
are not relatively prime is not achieved; nor are rings of multi dimensional
operators discussed (see §§3 and 4 of this survey).
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