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INTEGRATION OF NONLINEAR EQUATIONS BY THE METHODS OF ALGEBRAIC GEOMETRY 

I. M. Krichever UDC 513.015.7+517.944 

A method discovered in the late 1960s (see [I]) for integrating nonlinear partial dif- 
ferential equations in the Zakharov-Shabat form is based on the possibility of representing 
a number of such equations in operator form [2] 

[ L,---~j':~,L.z--"~ =0, 
(o.l) 

where L, and L2 are linear differential operators in the variable x whose coefficients are 
matrix functions of x, y, and t. Originally this method was associated with the inverse- 
problem method of the scattering theory. A general scheme for using it was described in 
[2]. The use of the scattering theory restricted the possibilities of integration to the 
class of rapidly decreasing solutions. 

An investigation Of the periodic and almost-periodic solutions of the Korteweg--de Vries 
equation, the first equation for which a representation of the form (0.I) was found, revealed 
its deep algebrogeometric nature. (A detailed description of the results obtained along this 
line and a complete bibliography are given in [3].) 

In the present paper we propose a general scheme for constructing periodic and almost- 
perlodic~solutions of Eqs. (0.i) by using the methods of algebraic geometry. (A brief de- 
scription is given in [4, 5].) 

These methods enable us to find and express in explicit form, in terms of the Riemann 
8 function, all stationary solutions of Eqs. (0.1), i.e., solutions that are independent of 
the variables y, t, and, consequently, to give a classification of commutative rings of dif- 
ferential operators in one variable. 

The construction is based on the concept of the algebraicity of a differential operator, 
which means that it has a family of eigenfunctions, parametrized points of the nonslngular 
algebraic curve ~, which has "good" analytic properties on ~ . The inverse problem of re- 
constructing an operator from such a family is solvable in the case of operators in several 
variables as well (see also [6]). 
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~ i. THE NOVlKOV EQUATION 

We consider a system of nonlinear equations in the coefficients of the operators 
~ ~% 

r, r, Lt = ~ (z)  e~--r, L~ = ~ (z)  e ~  , 
~z=O ,~=0  

which is equivalent to the condition that they commute, i.e., to the condition* 

[L,, L~] = O. (1.1) 

We assume a priori that this is a set of equations in the class of germs of matrix functions 
u~ (z), u~ ~ (z), I ~ f, ] ~ ~, of a real variable. Anticipating some later results, we may point 
out that, as will be shown in Sec. 4, all of their solutions admit of a meromorphic contin- 
uation to the entire complex region and, in addition, almost, all the solutions are condi- 
tionally periodic functions. 

First of all, we stipulate that in all operators, unless otherwise specified, the lead- 
ing coefficients are constant, nonsingular diagonal matrices u~ (x) = c~, Um (x) ~- bi~i~. In 
addition, for those i, j for which ci = cj (the set of such pairs will be denoted by A) we 

U set un-x (X) ~ O. 

Since commutativity of the operators is "equivalent" to the existence of a "sufficiently 
large" number of joint eigenfunctions, we introduce the formal solutions of the equation 

L~V (z, ~) = ~ ' ~  (x, ~) u , .  ( 1 . 2 )  

which have the following form: 

• 

where k is a formal variable and the ~s(x) are matrix functions. 

LEMMA i.i. There exists a unique formal solution of Eq. (1.2), denoted by ~(x, k; Xo), 
which satisfies the "normalization" conditions ~ = ~, ~(z,) = 0, ~>~, (~, j)~A. 

Proof. The matrices ~s(X) are determined successively from the equations obtained by 
equating the coefficients of k -s s =-n + i, , 0, i, , on the two sides of Eq. 
( 1 . 2 ) .  ' . . . .  

These equations 

l ~9 ~ - !  Y.°. 
~ 0  l=-O 

can be converted to the form 

0 = [u,. ~,,+s] --', nu,, "~'~n+s-x + (terms containing only ~-#, i<. + s--l). 

Consequently, from the s-th equation we find those elements ~ (x), for which (~, j)~A, and 
0 ~i 

the elements -~-~,+,-x, if (i, ])~ A. This assertion not only completes the proof of the lem- 

ma but also enables us easily to derive the following 

COROLLARY. The series (1.3) is a solution of Eq. (1.2) if and only if it is repre- 
sentable in the form 

• " (z ,  ~) = V (x, k; Zo) ,4 (k, Zo), (1.s) 

*These equations were integrated completely by S. P. Novikov and B. A. Dubrovin for the case 
in which Lx is a second-order operator with scalar coefficient (see [3]). Equations (i.i) 
in the case when one of the operators with matrix coefficients is of first order were con- 
sidered by B. A. Dubrovin (see [3]). 
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where the series A (k, x0) = a,(xo)k ~ has nonzero matrix elements of th~ coefficients as (x0) 
8~0 

oniy for the indices (i, ])~ ~. 

Proof. Let us verify that the series given by the right-hand side of Eq. (1.5) satis- 
fies Eq. (1.2). We have 

L,~  (x, k) = k ~  (x, k; xo) u~A (k, xo) = k~T (x, k) u~, 

s i n c e  [A(k,  x o ) ,  un] = 0. 

For  any s o l u t i o n  ~ (x ,  k) we t a k e  as  o u r  s e r i e s  A(k,  xo) t h e  s e r i e s  T- l ( xo ,  k; xv) • (xo, k). 
We can verify at once that this satisfies the requirements of the corollary. 

Hereafter we shall assume that all c~=cj, if i=/=]; i.e., the set A consists of the 
pairs (i, i). 

THEOREM 1.2. The operators L, and L~ are commutative if and only if in the coeffi- 
cients of the series 

• -I (xo, k; x0) L ~  (xo, k; z~) = A (k, z~) = A (k) 

t he  o n l y  n o n z e r o  e l e m e n t s  a r e  d i a g o n a l  ones  and t h e s e  a r e  i n d e p e n d e n t  o f  xo .  

F r o o f .  I f  t h e  o p e r a t o r s  a r e  c o m m u t a t i v e ,  t h e n  t h e  s e r i e s  L ~ ( x ,  k; xo) s a t i s f i e s  Eq. 
( 1 . 2 ) .  To s e e  t h i s ,  we n o t e  t h a t  L , L ~  (x, k; xo) = L~L~W (x , k ;  xo) = k"Lz~ (x, k; x0) u,.  

As a c o r o l l a r y  to  Lemma 1 . 1 ,  L~W(x, k;x~) = T ( x ,  k; xo) A (k; x~). Now we make use  o f  t h e  
f a c t  t h a t  W (x,k;x~) e ~(x'-~*) i s  o f  t h e  form ( 1 . 3 )  and s a t i s f i e s  ( 1 . 2 ) .  Th i s  means t h a t  T (x, k; 
x , ) e  ~(~'-~o)=~(x, k; x0) B ( k ,  x0). Then A ( k , x ~ ) = B  -~(k,x0) A (k, x0) B ( k ,  xo) = A  (k, x0). Here  we 
make use  o f  t h e  f a c t  t h a t  b o t h  s e r i e s  have  d i a g o n a l  m a t r i c e s  as  t h e i r  c o e f f i c i e n t s .  

Now l e t  us p r o v e  t he  s u f f i c i e n c y  o f  t h e  c o n d i t i o n s  o f  t h e  t h e o r e m .  S i n c e  L~L~T (x,k; 
Zo) = ~"T (z, k; Xo) A (k)u~, i t  f o l l o w s  t h a t  [L~, L~] • (x, k; x0) = 0, which  i s  s u f f i c i e n t  to  make 
t h e  o p e r a t o r  [ L , ,  L~] v a n i s h .  

~OROLLARY 1. The r i n g  o f  o p e r a t o r s  which  commute w i t h  t h e  g i v e n  o p e r a t o r  i s  commuta- 
t i v e .  

Proof. Let [L~, L~] ~ 0, [L,, L,] = O; then L~ (x, k; xo) =~ (x, k; x0) A, (k), L,~ (x, k; 
x~) • (x, k; x0) A~ (k), and [L~, Ls]~ (x, k; x0) = 0. This means that [L~, L,] = 0. 

COROLLARY 2. Equations (i.i) have an infinite set of first integrals polynomially de- 
pendent on the matrix elements u~ (x) and v$i(z) and their derivatives. 

Proof. As stated in Theorem 1.2, the first integrals of the system are matrix ele- 
ments of the coefficients of the series 

~F-* (x, k; *) L~F (x, k; x) = ~ A,k -~. 
~ 

d" ~ / ( x , k ;x )  are From Eqs.  ( 1 . 4 )  i t  f o l l o w s  t h a t  t h e  m a t r i x  e l e m e n t s  o f  t h e  s e r i e s  ~z~ 

i and t h e i r  d e r i v a t i v e s .  p o l y n o m i a l l y  d e p e n d e n t  on t h e  m a t r i x  e l e m e n t s  u a 
. .  

COROLLARY 3. The m a t r i x  e l e m e n t s  v~ (x) a r e  p o l y n o m i a l l y  e x p r e s s i b l e  i n  t e rms  o f  the  
m a t r i x  e l e m e n t s  ~ (x), t h e i r  d e r i v a t i v e s ,  and t h e  f i r s t  i n t e g r a l s  o f  t h e  e q u a t i o n s  A~ i, - -m 
<s<0. 

Thus, the system of nonlinear equations in the coefficients of the operators L, and L~ 
in (i.i) turns out to be equivalent to a family of systems of equations in the coefficients 
of the operator L, alone, parametrized by the sets of arbitrary complex constants A~, --m< 
s<0. These last systems will be called Novikov equations, since in the case of the 
Schr~dinger operator --(d~/dx ~) + u(x) they coincide with the equations which describe the 
stationary solutions of higher analogs of the Kortewe~--de Vries equation, the importance of 
which was first noted in [7]. 

As will be shown in the proof of Theorem 1.3, only a finite number of the integrals 
A~ i are independent. 

It should be noted that the proposed scheme is different from the schemes for construct- 
ing the polynomial integrals of the higher analogs of the Kortewe~--de Vries equation in [7, 
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8, 23]. Formulas relating sets of Novikov integrals and Gel'fand--Dikii--Lax integrals are 

given in [9].* 

THEOREM 1.3. Suppose that the coefficients of the operator L satisfy Novikov equations 
for which the constants A ~,~ --m < s~< 0, determining them include at least one nonzero con- 
stant with index s which is relatively prime to n. Then the operator L has a family of 
characteristic vector functions #(x, P), i.e., L#(x, P) = E(P)~(x, P), parametrized by points 
of the nonsingular algebraic curve ~, P 6 ~. The function E(P) is meromorphic on • and 
has Z poles, P~, • •., PZ, of multiplicity n. Furthermore, @(x, P) satisfies the follow- 

ing conditions : 

i) for all x it is meromorphic on ~K outside of P~, • ., P1, and its poles D,, • ., 
D N are independent of x; 

2) in a neighborhood of the point Pj the vector function ~ (z, P)e -~(P)(x-~) is analytic, 

_ ~IE (P) } (P) --[ ~-~--., and its value in Pj is equal to a vector with a single nonzero j-th 

coordinate, which is equal to I. 

For almost all solutions of the original equation the divisor D, + . • + DN is non- 
special, and its degree is equal to g + Z -- i, where g is the genus of the curve ~. 

Proof. For the formal variable E we consider the nZ-dimensional linear complex space 
Z (E), whose basis is constituted by the j-th columns of the matrices ~(x, kjr; xo), defined 
in accordance with Lemma i.i, i<]< l, 0< r< n-- i, where cjk~r = E (c I = u~). By Corollary 
3, the coefficients of the operator L and the constants All determine the operator L~, 
which commutes with L. Consequently, L~ induces on Z (E) a finite-dimensional linear op- 
erator L~ (E), for which the selected basis is characteristic. The characteristic polynomial 
of the operator is equal to 

l n - -  I 

[ I  [ I  - 
~=I , ~=1 ,  

The coefficients of this polynomial are symmetric functions of the variables kjr, and, 
consequently, they are Laurent series in the variable E-*. We shall prove that they are 
polynomials in E. 

Since these polynomials are expressed in terms of A{ i, s< m (,Z -- |) = N, all the other 
integrals of the Novikov equations are consequences of these. The vanishing of the coeffi- 
cients of the powers of E-* enables us to write the linear combinations crA~J, where r = 

h,ra-~-h,~ < N [we denote the number of such pairs (h,, h~) by N(m, n, Z)], in terms of in- 
tegrals with lower indices. 

COROLLARY. Every Novikov equation has a set of ml(nl - i) - N(m, n, l) independent 
polynomial integrals. 

We introduce a new basis in ~(E), formed by Cjs(X , E) columns of the matrices Cj(x, E), 
d' 

determined by the normalization Cg(z~,E) = ~'f, where I is a unit matrix and 0< r< - -- ~. 
dz" 

~N 
LEMMA 1.4. The matrix elements of the matrices ~zNC~(z~,E) are polynomially expres- 

~ i i  and the variable E. sible in terms of the matrix elements u~ (z.), ~-u=(z~) .... , 

Proof of this lemma can be obtained by repeatedly using, for reducing the order of the 
derivative, the equation 

~%--1 

~" ~ C~ (~, E), u,, d 7  C~ (x, E) = EC~ (x, E) -- 2 u,~ (z) d~---- ~ 
~Y.=f~ 

which is satisfied by virtue of the definition of ~ (E). 

COROLLARY. In the new basis the matrix elements of the operator L~ ij (E) are polynomi- 
ally dependent on the variable E. 

• In the present paper we shall not discuss the question of Hamiltonian mechanics related to 
Eqs. (i.i). I. M. Gel'fand and L. A. Dikii have informed the author that their Hamiltonian 
structure is investigated in [24]. 
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This means that the characteristic polynomial of L2(E) has the form Q(y, E), where 
Q ( , ) is a polynomial in two variables. 

The following lemma reflects a well-known fact concerning self-adjoint operators: 
erators which commute with each other are functionally dependent. 

LEMMA 1.5. The operators L and L~ are algebraically related by the equation Q(L~, 
L) = 0. 

Proof. The eigenvalues of the operator Lm(E) are given by the equation 

Q (y, E) = O, (1 .6)  

Therefore, Q(L,, L)~ (x, k; x0) = Q (y, E)~ ~, k; zo) =0. 

As has already been noted more than once, a linear differential operator vanishes if 
and only if the one-parameter family of functions ~(x, k; Xo) belongs to its kernel. 

The statement of the lemma for the case of the operator L = --(d2/dx 2) + u(x) was first 
obtained by A. B. Shabat for a reformulation of the method of proof of the fundamental 
theorem of [7]. 

Now we shall consider E a complex number. Equation (1.6) defines the algebraic curve 
~, and the correspondence (y,'E) = P ~  -~E specifies a function E(P) on it. 

For large values of E the e~pansion of the eigenvalues of the operator L~(E) in Laurent 
series in the variables (E/cj) -~/n coincides with the series AJJ(kjr). By the hypothesis of 
the theorem, these eigenvalues are distinct. Consequently, they are distinct for almost all 
values of E. Moreover, it follows from the foregoing that the preimage of the "point at 
infinity" of the completed complex plane ~ = CUoo for the mapping. E: ~-+~ consists of 
the Z points PI, . .., PZ, where the local coordinates in a neighborhood of these points 
are constituted by the functions ~;* (P) =(E(P)~I)-~I~. 

To every eigenvalue of the operator L~(E), i.e., to a point P of the curve ~, there 
correspondsan eigenvector which is unique to within a proportionality factor. 

Selecting the normalization for which its first coordinate in the basis Cjs(X, E) is 
constant, we can easily verify that its other coordinates are meromorphic functions on the 
curve ~, which depend, in general, on the choice of the initial point x~. We denote this 
characteristic vector function by ~(x, P; xo): 

q, (x, P; zo) ffi Y, ~,  (xo, P) ~, (z, P; xo), ~ ,  (zo, P) =-- t .  
~, • 

In order to obtain the required eigenfunction 0(x, P), we proceed as follows. The co- 
ordinates ofthe vector function ~ (z0, P), equal to the values of the logarithmic derivatives 
of the coordinates ~(x, P; xo) at the point xo, are independent of the choice of normaliza- 
tion of the elgenvector of L2(E). They are equal to the ratio of the coordinates 12s(Xo, 
P)/l,s(Xo , P), which means that they are meromorphic on ~. 

x 

We can verify at once that the function ~ (z, P) =I ~(z'p)~z satisfies all the require- 

ments of the theorem. ~ 

For almost all solutions of the original Novikov equation, Eq. (1.6) specifies an al- 
gebraic curve with no singularities, and in order to complete the proof of the theorem in 
this case, we need only find the number N of poles of the function ~(x, P). To do this, we 
construct the matrix F(x, E), whose columns consist of the coordinates of the vectors ~(z, 
p~),$,(/,p~) ..... $(,-i)(/,p~), where the Pi are the points at which E(Pi) = E. The function 
g (z, E) = (det~F(z, E)~)' is independent of the order in which the points Pi are numbered 
and is a rational function of the complex variable E. Its zeros are those points E for 
which the functions #(x, Pi) are linearly dependent, i.e., the points for which the eigen- 
values of the operator L2(E) merge into one another. The multiplicity of a zero of g(x, E) 
is equal to the multiplicity of the branch point ~ of the curve ~. (The multiplicity of a 
branch point is one less than the number of sheets of ~ that merge at that point.) The 
poles of g(x, E) coincide with the images of the poles of ~(x, P) and with the "point at 
infinity" E = ~. We have 

~=2N- I -  N~. 
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Let us find the multiplicity of the pole at infinity. It is equal to twice the multiplicity 
of the product of the diagonal elements of the matrix F(x, E). In the local parameter 
E(P) -*/n the multiplicity of a pole of the corresponding coordinate ~(r)(x, P) i~/~qual to 
r. This means that the multiplicity of a pole of g(x, E) in the parameter E(P) -~" is equal 
to 2(I + . . + (n -- I))Z = n(.n -- I)Z. Consequently, N~ = (n -- I) Z. As is known (see 
[i0]), the genus of a curve is equal to half the sum of the multiplicities of all branch 
points minus the number of sheets plus i. The multiplicity of branching at the points Pj 
is equal to n -- i, and therefore 

Then 

2g=Y,.~+(n--l)l--2nl+2= ~ - - n l - - l + 2 .  

2N = ~,v-- hi+ l = 2 g +  21--  2. 

I f  t h e  c u r v e  ~ has  s i n g u l a r i t i e s ,  t h en  t h e r e  e x i s t s  a b i r a t i o n a l  n o n s i n g u l a r  c u r v e  ~,  
which  i s  i s o m o r p h i c  to  i t ,  i . e . ,  a mapping ~ - ~ ,  which  i s  an i somorph i sm a l m o s t  ev~ery- 
whe re .  The f u n c t i o n s  v*E and v*O s a t i s f y  t h e  r e q u i r e m e n t s  o f  t h e  t h e o r e m .  I f  P ~ ,  t h e n  
v*E(P)  = E ( v ( P ) ) ) .  Th i s  c o m p l e t e s  t he  p r o o f  o f  t h e  t h e o r e m .  

Solutions of Novikov equations for which the curve specified by Eq. (1.6) has singu- 
larities may be regarded as the limit of solutions of general type, for which the points of 
the corresponding curves merge with one another. However, we shall give a closed algebro- 
geometric description for them, analogous to the description given in [ii] for a well-known 
class of nonreflective potentials of a Sturm--Liouville operator (see also Appendix II to 
[3]). 

COROLLARY. On the hypothesis of Theorem 1.3, the degree N of a nonspecial divisor of 
the poles of the function ~(x, P) is equal to g + Z -- 1 + d, where d is the number of points 
E~, . ., E d for which 

detl[F (x, Z,)l]----- 0 (1 .7)  
Proof. The points E~, • •., Ed are images under the mapping E: ~-~ of the singu- 

larities of the curve ~. When we remove these singularities, i.e., when we pass to the 
curve ~, we will have identical functions @(x, P) corresponding to all the preimages of one 
singularity. Consequently, Eqs. (1.7) are satisfied. As in the proof of the theorem, mak- 
ing use of the fact that g(x, E) vanishes not only at the images of the branch points but 
also at the points El, we find that N = g + ~ + d -- i. 

2. COMMUTATIVE RINGS OF DIFFERENTIAL OPERATORS 

In Sec. i, to every operator whose coefficients satisfy Novikov equations we assigned 
a set of data: a nonsingular complex curve ~, which, in accordance with the ideology of 
[3] we call the spectrum of the operator, a meromorphic function E(P), which has poles of 
n-th order at the points P,, . ., P~ and is called the spectral parameter, an effective 
divisor D = EksD s (i.e., a set of points with multiplicities k, >0), and also the points 
E,, . ., Ed, where N = Zk s = g + Z -- 1 + d. 

Our purpose in the present section will be to solve the inverse problem and reconstruct 
the operator L from the set (~, E, O, E, ..... Ed). 

First we construct the vector function ~(x, P), which will be an'eigenfunction of the 
operator L. We shall state the necessary theorem in the form in which it can be used in our 
next section for solving the inverse problem for algebraic operators of several variables. 

In a neighborhood of the points P,, • •., PZ of the nonsingular curve ~ we fix the 
local parameters zj(P), zj(Pj) = 0. By analogy with the space ~(D) of meromorphic func- 
tions on ~, associated with the divisor D ~ (P)~(D), if D + DI>~ where Df is the princi- 
pal divisor of f), we introduce the space A(q, D), where q is the set of polynomials qj(k). 

The function $(q, P) belongs to A(q, D) if: 

i) outside of the points Pj it is meromorphic, and for a divisor of its poles D$ (the 
multiplicity with which the point D s occurs in D$ is equal but opposite in sign to the mul- 
tiplicity of the pole of the function in it) we have De + D>0; 
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2) in a neighborhood of Pj the function ~) (q, P) exp {--gl (k~ (P))} is .analytic, k~ (P) = 

~?.(p) .  
T~EOREM 2.1 (hkhiezer). For a nonspecial divisor D >/ 0 of degree N ~ g, dim A (q, D) 

= N - - ~ + I .  

It should be recalled that by nonspecial divisors, which form an open set among all 
dlvlsors, we mean those divisors for which dim Z (D) N -- g -5 ~. 

A logarithmic differential d~ (q, P)/¢9 (q, P) is an Abelian differential on ~,and, 
therefore, the proof of the theorem is in large measure a repetition of the proof of Abel's 
theorem and the solution of Jacobi's inversion problem (see [12]). We shall omit it not 
only because it has been given repeatedly in many studies (see [3, 13-15]), even though 
in somewhat different form, but also because it can easily be obtained from the explicit 
formulas for ~(q, P) given in Sec. 4. 

In the present section we shall confine our attention to the case in which all the 
polynomials qj (k) are equal to k(x- x.). For simplicity, instead of ~(q, P) we shall 
write ~(x, P). 

If on the curve • there exists a meromorphic function E(P) with poles of multiplicity 

n at the points P,, . .., PZ, then as the local parameters zj (P) we take ~/E (P). 

COROLLARY. For a nonspecial divisor D > 0 there exists a unique vector function 
~(x, P) whose coordinates ~ (z, P)~ A(z, P), a matrix with columns O(x, P)exp(-k(P)(x- 
x~))Ip j is unique, and at the points E, .... , Ed, d = N-- g-- Z -- I, Eqs. (1.7) are satis- 
fied. 

Proof. ~e select an arbitrary basis in the space A(x, D). The conditions on the co- 
ordinates of ~(x, P) become a system of linear equations. Their number is equal to the di- 
mension of A(x, D). 

THEOREM 2.2. There exists a unique operator L = ue(x) dz-- E- such that 
tt=O 

L~ (z, P) = E (P) ~; (x, P),  u~ = e ~ .  

Its coefficients satisfy Novikov equations. 

ProDf. We construct for the function ~(x, P) a series of the form (1.3). As the col- 
s umns of the matrices ~s(X) we take the coefficients of the zj in the expansion of a neigh- 

borhood of Pj of the analytic function 

~; (x, P) exp ( - - k  i (P) (x  - -  xo)). 

LEMMA 2.3. For any series of the form (1.3) there exists a unique operator L such 
that 

L ~  (x, k) ----- k ~  @, k) u, (rood 0 (k-~)e~(~-~)). 

Proof. The coefficients of L can be found successively from Eqs. (i.4) for s =--n + 
i, . . . ,  0. If these are satisfied, this is equivalent to the required congruence. 

We shall now prove that for the constructed operator LT(x, k) = kn~(x, k)u n. To do 
this, we consider the function L~(x, P) -- E(P)~(x, P). This satisfies all the requirements 
defining ~(x, P) except one. Its values at all the points Pj are equal to zero. From the 
uniqueness of ~(x, P) it follows that L$(x, P) = E(P)~(x, P). 

In order to complete the proof of the theorem, it is sufficient to show that there 
exists a differential operator which commutes with L. 

Let A (~, Pl ..... P~) be the ring of functions which are meromorphic on ~ and have 
poles at the points P,, . .., Pl. In the case when • = ~ is the completed complex plane 
and P = ~ is the "point at infinity," we find that A(~, =) is the ring of polynomials. 

LEMMA 2.4. Thefunction ~(x, P) gives a homomorphlsm A from A (~, PI ..... P~) into the 
ring of linear differential operators, where to the function //(P)~A (~, P~ ..... P~) 
there corresponds an operator A(H) such that 

~. (~)  $ (,~, ~)  = ~ (P) ~ (=:, ~)  
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The construction of the operator %(H) is completely analogous to the construction of 

L. Its coefficients can be found from the congruence 

! % 

,r ° (2.1) 
-s=~- 

where the elements h~ of the diagonal [matrices h~ 9 = h~j are the coefficients of the k~ 

in the Laurent series expansion of the function H(P) in a neighborhood of Pj. 

Since A (~, P,, • •., Pz) is a commutative ring, its image I is also commutative. 

In the definition of the function ~(x, P), and therefore, of the homomorphism I as 
well, we had a function E(P). In order to define I for any curve • with the indicated 
points and for a divisor of degree N = g + I -- i, we stipulate that as E(P) we will always 
select a function from A (~, P, ..... P~) with poles of identical minimal multiplicity at the 
points Pj. Moreover, I depends only on the equivalence class of D. Two divisors are called 
equivalent, D ~ D', if D -- D' is a divisor of some meromorphic function f(P) on ~. The 
vector functions ~(x, p) and ~'(x, P), constructed for D and D', are related by the equa- 
tion ~(x, P) = B(P)~'(x, P), where Bij(p) = f-*(Pj)f(P)~ij; therefore, ~ = ~'. 

Combining the results obtained in Secs. 1 and 2, we obtain the following. 

COROLLARY. For any commutative subring of differential operators A in which there ex- 
ists a pair of operators of relatively prime orders, there exist a nonsingular curve • with 
the indicated points and a class of divisors (D) such that the homomorphism ~ defined by 
them establishes an isomorphism ~: A (~, P~ ..... P~)-+A. 

The space of solutions of Eqs. (i.i) is a complex linear space, which for relatively 
prime n and m, by the corollary we have proved, is isomorphic to a fiber space over the 
variety of the modull of curves with Z indicated points at which there exist functions with 
poles of orders n and m whose fiber consists of the Jacobians of the curves. 

By the Jacoblan of a curve we mean a g-dimensional complex forum formed by the equiva- 
lence classes of divisors of fixed degree (see [12]). We shall discuss this in more detail 
in Sec. 4. 

In the case n = 2 and Z = i, this result was obtained in [16]. 

We now ask: When does the curve ~ corresponding to the commutative ring A have a 
fixed genus? The genus of ~ in terms of the ring A ~, P) is given as follows. Suppose 
that n is the minimal possible multiplicity of a pole of functions belonging to ~{~, P), 
and Pi, i = i, . . ., n -- i, are the minimal numbers for which there exists a function in 
this ring with a pole multiplicity uin + i. Then g = ~x + • • • + ~n-,- 

LEMMA 2.5. The genus of the curve ~ is no greater than g if and only if in the ring 
A there exist operators of orders n, ~in + i, where ~, + . • • + ~n-~ = g. 

For almost all points P of the curve ~ we have n = g + I. All other points are called 
Weierstrass points. For almost all curves of fixed genus g at the Weierstrass points we 
have n = g, ~x = 2, ~i = i, i > 2. 

COROLLARY. The fiber space M over the flnite-sheeted covering ~ + M of the variety 

of moduli of curves of genus g corresponding to the fixation on the curve of a Welerstrass 
point whose fiber is the Jacobian of the curve is isomorphic to the space of solutions of 
the system of equations 

[L, L~] = 0, i = ~, . .., g -- ~, (2.2) 

where L and L i are differential operators with scalar coefficients of orders g, 2g + i, 
g + i (i > 2), respectively. 

The differential equations (2.2) on the complex linear space of solutions of the equa- 

tions [L, L,] = 0 give us the algebraic equations describing the variety.~. 

We must make a careful analysis of the possibilities of such an approach for the solu- 
tion of the problem of unirationality of the complete variety of moduli of curves of genus 
g, which is extremely important in algebraic geometry. 
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3. ALGEBRAIC OPERATORS AND ZAKHAROV--SHABAT EQUATION~ 

AS we noted in the introduction, the possibilities of the inverse problem are consider- 
ably broader than those of the direct problem, and its solution is always possiblewhen 
there exists for the operator the set of "spectral data" listed at the beginning of the pre- 
ceding section. 

In th~s paper we shall confine ourselves to operators of the form 

0~ ~__ F, --L-@. (3.1) 

Definition. An operator L -- 8/~y is called algebraic if there exist a curve ~ of 
genus g with indicated points P~ .... , Pl, an effective divisor D of degree g + I -- i, 
and a vector function ~(x, y, P), P~, such that 

i) (L-- ~-~-~ )@(x,y,P)=O; 
2) outside of the points Pj it 

have D + D ¢ > O ;  

3) in a neighborhood of Pj the 
tic and its value at P~ is equal to 
is equal to i. Here z~(P) = k~(e) 
degree n. 

is meromorphic, and for a divisor of its poles D~ we 

function ~(x, y, P)exp(--kj(P)x -- Qj(kj(P))y) is analy- 
a vector with a single nonzero j-t5 coordinate, which 
is a local parameter, and the Qj(k) are polynomials of 

Remark. This definition of algebraicity corresponds to the properties of operators 
whose coefficients are solutions of the general type of Novikov equations. It is not dif- 
ficult to give a definition of the analogs of separatrlx solutions of these equations (see 
the corollary to Theorem 1.3). 

We consider the problem of reconstructing an algebraic operator from its "spectral 
data." 

We set the polynomials qj(k) appearing in the definition of the space h(q, D) equal 
to qj(k) = kx + Qj(k)y; then, as a corollary to Theorem 2.1, we obtain the following. 

COROLLARY. For fixed local parameters zj(P) and polynomials Qj(k) the conditions 2 
and 3 uniquel# define the function ~(x, y, P)\ 

~ ,  a~ THEOREM 3.1. There exists a unique operator L = u=(x, y)-~-~= such that 
=-~0 

where n is the maximal degree of the Oj (k). 

P r o o f .  As in  t h e  p r o o f  o f  ~heorem 2 .1 ,  we c o n s t r u c t  f o r  t h e  v e c t o r  f u n c t i o n  ~(x ,  y ,  
P) a formal series with matrix coefficients, which h~ the fo~ 

• (~, y, ~) = ( ~ ~., (~., ~) ~ )  ~+~<~, 
'$~0 

(3.2) 

where Q(k) is a polynomial with matrix coefficients, 

j = l  ~ 

By the normalization condition to(x, y) is a unit matrix. 

LEMMA 3.2. For any series of the form (3.2) there exists a unique operator of the 
form (3.1) such that _ 

L --  0-'~ ) ~F (x, y, k) ---- 0 (rood 0 (k -~) e!;=+~¢~)~). 
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Proof. 
fied: 

The required congruence is equivalent to having the following equation saris- 

x-~ ~ O=-I 
= . = - . , . . . , o .  

~=0 /=0 m=O 

From these equations we can successively find the matrices u~(x, y). 

Continuing the proof as in Theorem 2.1, we find that for the constructed operator 
(L--O/~y)~(x, y, P) = 0. 

We introduce an equivalence relation between the sets of l?cal parameters zj (P) and 
the polynomials Qj (k). We shall say that (zj (P), Qj (k)) and (zj (P), Qj (k)) are equivalent 

if when we set k~(P)=a_,k~(P) + a~+ a,k~ ~ (P) + . .. we find that 

Q~ (~) ~ Q~ (a_~ + a. + ...) (mod ~-*). 
COROLL~Y. The set of algebraic operators which have a fixed set of "spectral data" 

• , P, ..... P~, D, is in one-to-one correspondence with the equivalence classes of the sets 
(zj(e), Qj(k)). 

We make use of an already proved theorem for the construction of the solutions of 
Z~haro~habat equations. 

g g Le t  the  o p e r a t o r s  L~ = ~ ( x , y ,  and L ~ =  y~(x,y,t) be such  as  to  s a t i s f y  
==~ ~ 

t he  c o ~ u t a t i v i t y  c o n d i t i o n  

0 0 ] OL~ OL~ 
O= Lt---;f, L~--~ <=>[LI, L~]= Oy Ot " (3.4) 

We assume that ~...>~m ; then, since the right-hand side of the last equation contains an 
operator of order less than or equal to n -- 1 (it should be borne in mind that all the op- 
erators under consideration have constant diagonal matrices as their leading coefficients), 
it follows that L, and L= are commutative to within operators of order n -- I. 

We can easily verify that the restricted commutativity of the operators L~ and L~ is 
sufficient for carrying out the proof of Corollary 3 to Theorem 1.2; we have the following. 

LEMMA 3.3. A system of nonlinear equations in the coefficients of the operators L~ 
and L=, which is equivalent to Eq. (3.4). will be equivalent to a family of systems of 
equations in the coefficients of the operator L, alone, parametrized by sets of complex num- 
bers A~, 0<s<m, ~ =~,...,l. 

The corresponding equations in the matrix elements u~(x,y,t) are called Zakharov- 
Shabat equations. 

For every nonsingular complex curve ~ of genus g with fixed local parameters zj(P), 
in a neighborhood of the indicated points Pj we construct (setting the polynomials qj.(k) 
equal to qj(k) = kx + Qj(k)y + Rj(k)t), for every divisor D>0of degree g + ~ -- i, a 

function ~ (x,y,t,P)~(x,y, t,D) normalized as usual at the points Pj. 

Regarding y and t in turn as parameters and making use of Theorem 3.1, we find the 
following. 

COROLLARY. There exist unique operators 

~, ' 0 ~ L1 = us (x ,  y, ,j~--~-, 
~ 0  

a~ 
L~ = Z ua (x, y, t) ox~ 

~=o 

such that (LI--OlOO¢ (x,y,t, P) = O, (L~--O/~y) ~ (x,y,t, P) = 0, where n and m are the degrees 
of the polynomials Rj(k) and Qj(k), respectively. The operators L~ and La depend only on 
the class of the divisor D. 

0 
~ ~ - ~ ,  ~ - -  . ~ , ~ , ~ , P ~ = O ,  i t  fo l lows tha t  ~ - - ~ , ~ - - ~  =0.  
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COROLLARY. The coefficients of the operator L~ constructed for the.set (~ ,P~ ..... 
P~,.D,~ (P), Q$(k), B~{~)are solutions of the Zakharov-Shabat equations. 

Remark. The set of constants parametrizing a Zakharov-Shabat equation is defined as 
! ~ 

follows. If z~ (P) is a localj parameter in which the polynomial R~(k)~ equivalent, to Rj(k) 
is equal to k n, then the A s are equal to the coefficients of the polynomial Qj(k) % Qj(k). 

Let us consider the solutions of Zakharov-Shabat equations which are not dependent on 
one of the variables y, t (e.g., y), i.e., solutions of equations equivalent to the opera- 

[L~ 0 L~]=O. (3.5) - - - ~  

The coefficients of L, and L~ depend on x and t. Among such equations is the Korteweg-de 
Vries equation. 

Suppose that on the curve R there exists a function E(P) with poles of multiplicity 
~ - -  

n at the points P~ ..... P~. As local p~rameters we ~ake the functions z~ (P)= ~E (P). 
By Theorem 3.1, the set of polynomials Rj (k) defines for each class of divisors (D) an alge- 
braic differential operator (L, -- ~/~t) and its eigenfunction ~(x, t, P). Regarding t as 
a parameter, we see that, as in Theorem 2.2, to the function E(P) there corresponds under 

~ 0 ~ 
the homomorphism X an operator L~ = v~(x,t) ~ such that L~0(x, t, P) = E(P)~(x, t, P). 

$=0 

COROLLARY. The coefficients of the operators L, and L= constructed for (~, E (P), D, 
Rj(k)), satisfy Eqs. (3.5). 

4. EXPLICIT FORMULAS AND EXAMPLES 

It follows from Eqs. (3.3) [or (1.4)] that the matrix elements of the coefficients of 
algebraic operators are rational functions of the matrix elements $~J. 

To find the matrices ~s, we express in terms of the Riemann 0-function the generators 
of the linear space A(q, D), after which we obtain formulas for the coefficients of the ex- 
pansion of the corresponding functions in a neighborhood of the points Pj. 

We fix on the nonsingular algebraic curve ~ of genus g a basis of cycles 

az . . . . .  .~,  bz . . . . .  b= 

with a matrix of intersections aioa~=b~o b~= 0, aiob 1=bip We introduce a basis of holo- 

morphlc differentials ~i on ~, normalized by the conditions ~ ~ = ~. We denote by B the 
a~ 

matrix of b-periods, B~ = ~. It is known that this ~is symmetric and has a positive def- 
~ 

inlte imaginary part. 

The integral combinations of vectors in cg with coordinates 6ik and Bik form a grid 
determining the complex torus ~ (~) which we call the Jacobi manifold of the curve. 

Let Po be an indicated point on ~; then the mapping ~: ~-~ ~(~) is defined. The co- 
P 

ordinates of the vector '"k(P) are equal to ~e~. 

For the matrix of b-periods, as for any matrix with a positive definite imaginary parr, 
we can construct an entire function of g complex variables: 

0 (u~ . . . . .  u~) = ~ exp  (h i  (Bk, k) -}- 2~i  (k,  u)}, 
~ Z ~  

w h e r e  ( k ,  u )  ~ k~u~ + . . . + k g u g .  

This function has the following readily verifiable properties: 

~ ( ~  . . . . .  ~ + ~ . . . . .  =,) = ~ ( ~  . . . . .  =~ . . . . .  ~ ) ,  

e (~  ~ ~ . . . . .  u# % s#~) = exp { - ~ S ~  - -  2=~u~ } ~ ( ~  . . . . .  u#). 
(4. l )  
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g 

In addition, for any nonspecial effective divisor D = LPl of degree g, there exists 
]=~ 

a vector W(D) such that the function ~(~(P) + W(D)), defin-ed on • , cut along the cycles 
=i, b j ,  has  e x a c t l y  g z e r o s ,  which c o i n c i d e  w i t h  t he  p o i n t s  Pj ( see  [ 1 8 ] ) ;  

~ ~ ~ 
, 

W ~ ( D ) = - -  o~(P~.)+ ~ g B ~ +  o~ o~, t ~ a ~ .  
t = l  " =  • 

i ~  

For any set of polynomials q~(k) .... , qz(k) there exists a unique Abelian differen- 
tial of the second kind (see [12]) m (for the sake of simplicity, we do not write the in- 
dex q for this) which has a singularity at the indicated point Pj on ~ of the form dqj (z~!)~ 

in the local parameter zj and is normalized by the conditions ~ ~ = 0. 

a i 

LEMMA 4.1. Let ~ be an arbitrary effective nonspecial divisor of degree g; then the 
function 

P 

,(q, =exp( I o ) - .  o (o~ (p) + w (b))  
(4 .2 )  

where V = (V~ ..... V;) and V~ = ~  ~, is a generator of the one-dimensional space A(q, ~). 

Proof of the lemma can be obtained by simply verifying the properties of the function 
~(q, P). It follows directly from properties (4.1) that the right-hand side of Eq. (4.2) 
correctly defines a function on • ; i.e., its values as we go around the cycles ai, bj re- 
main unchanged. In a neighborhood of Pj, the function ~(q, P) h~s an essential singularity 
of the required kind, and a divisor of its poles coincides with D. (It should be noted 
that formulas of this kind were first obtained by Its [19].). 

For the eigenfunctions of operators whose coefficients satisfy the Zakharov--Shabat 
equations, the polynomials qj(k) have the form qj(k) = k(x -- xo) + Qj(k) (y - yo) + Rj(k)o 
(t -- to). The corresponding-differential m and its periods are equal to 

o = o)~ (z  - -  Zo) + o ~  (y - -  Yo) + ~o~ (t - -  to), 
V = U,  (x - -  zo) + Uz (y - -  Yo) + U3 (t - -  to), 

where ~2, 0~Q, and ~R are normalized differentials with singularities at Pj of the form 
-dz/z 2, d(Q(i/z)), d(R(i/z)), and 2~i[" I, 2aiU.,, 2~iU 3 are the vectors of their b-periods. 

p -I,: 

As a local parameter zj (P) we take the function il o)o.) In this, the function ~ (P) 

can be expanded in a series: ~' 
u ~ 

~ (P) = ~ (P~) + ~ z ~  (P) + . . .  ~ ,~z~ (P) + . . . .  

where 2~i~ ~s the vector of the b-periods of the no~al~zed Abelian differential with a 
unique singularity at Pj of the form dz/z n+: (see [12]). 

COROL~Y. The coefficient ~{ (~, y,, ~) of z~ in the expansion in the neighborhood of 

Pj of the functions 

~ (~, ~, t, P) ~-* (~, y,, ~, P)~-~.~.-~., 

is equal to 

I 
i d * o ~ m ~ °  -r- Uz  (x - -  .-co) + U., (y  - -  Yo) ÷ U~ (t - -  t(,) + W (~)) 

= (4 .3)  
s!  d,~ s s " 

0 ( 2  ' ~ ,~ :  ~ U~ (~ -- ~o) ~ Ua (~ -- to) ~ W (~)) 
~ 0  g ~ O  
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We construct the matrix ~ ---- ~,'-~ (x, y, t) for the effective divisor D of degree g-~ l -- i, 

D=P, ~-... ~-Pz+~-l, substituting for ~ in formula (4.3) the divisors Di = Pi + • • + 
Pg-* +. Pg+i. 

LEMMA 4.2. The matrices ~s, which define from Eqs. (3.3) the coefficients of the al- 
gebraic operators, are equal to 

~, = ~;'~', .  (4.4) 

Proof. The functions ~i(x, y, t, P), given by formulas (4.2), into which the divisors 
D i have been substituted instead of ~, form a basis for the space A(x, y, t, D). The vec- 
tor function ~(x, y, t, P) with such coordinates differs from the vector function ~(x, y, 
t, P) appearing in the preceding section only in the normalization at the points Pj. 
Therefore, 

, (x, y,  t, P) = " ~ ; ~ ( x ,  y, t, P) ,  

which proves Eq. (4.4). 

The vectors ~, ~, U~ give us rectilinear windings on the Jacobian torus of the curve 
~. 

COROLLARY I. The Zakharov--Shabat equations constructed in Sec. 3 are conditionally 
periodic functions of their arguments. 

In order to obtain the formulas for the matrices ~s(X) determining the solutions of 
the Novikov equations, it is sufficient to set U~ ffi U~ = 0 in (4.3). 

COROLLARY 2. Almost. all solutions of the Novikov equations are conditionally periodic 
functions. 

Now let us take a few simple examples. 

Example I. For operators with scalar coefficients, Eqs. (3.4) are nontrivial, begin- 
ning with n -- 3, m = 2; 

8~ 0~ 0 
Lo. = v~ ~-~ 4-. Vo (x, y, t), L~ = u~ ~0=~ ~-' u~ (x, y, t) ~-~ -~' Uo (x, ~u, t). 

The coefficient Vo(X, y, 
Shabat equations have the form 

t) is equal to (2/3)ux(x, y, t) + h. The corresponding Zakharov-- 

0~,~ _ O~-u~ _ _  2 0~o a-~u - ~ ~z ' 

where.a ffi i/v~, ~ = 1/u3. 

Ouo 2a Ou~ cg2u o 2 OSu t , 2 Ou~ 
~ Oy 3 Ot --=--"~F. ~, 3 Oz~ 3 u~ Oz ' 

Eliminating uo(x, y, t) from this system, we find that the coefficient v = Vo(X, y, t) 
satisfies the Kadomtsev-Petviashvili equation (see [20]) 

3 R~ ~ v  ~ f &, . t " 
--~-~ + -~-- i a ÷ = by= + --4-(v== +6vv=)} O. - - ( .  • " ~  . 

I n  o r d e r  t o  o b t a i n  t h e  s o l u t i o n s  o f  t h i s  e q u a t i o n ,  we m u s t  s e t  Q ( k )  = v 2 k  2 + c ,  R ( k )  = 
u 3 k  a + c x k  + c 2 .  F rom E q s .  ( 3 . 3 )  i t  f o l l o w s  t h a t  

~0(x, y,  t) = - 2 ~ , ( , ,  ~, t) + c, . . ,(x, y, t) = - 3 ~ ,  (=, ~, t) + c,, 

and therefore, h = c -- (2/3)c,. 

By Lemma 4.2, the coefficient ~,(x, y, t) is equal to 

_ ~ l n O { ~ ' s ~ + U ~ ( z - - ~ o ) +  U ~ { ~ - - y ~ ) + U , ( t - - t o ) + W  (D))Iz=o 
~ ~  = t'~-+-w~3Y " 

From the definition Of the vectors @~ and U z it follows that ~s=- Uz, 
we finally find that the functions 

@~ 
c -{- 2 ~ In O (U~ (x - -  Xo) + U,. (y - -  Yo) -}- U~ (t - -  to) + %V'~ 

are solutions of ~he ~dom~se~etviashvili equation. 

and therefore, 

(4.~) 
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In those cases when on the curve ~ there exist functions with singularities of second 
or third order at the point P, which are equivalent to the equations U~ = 0, U n = 0, the 
function (4J5) will satisfy either the Korteweg-de Vries equation 

i o~, (~, 0 + hv.~ + T (v~.=: + 6~v~) = 0, 
a 0----7--- 

or the equation 

3 ~,~%, . 0% ! ,9~. 3 0 ( 0~.) 
. . . .  h - -  -- ' Oy"- ' o~ 40~ ~ ~ v~ =0, 

3 = 
which for E = --~ = ~ ~ is a variant of the equation of a nonlinear string (see [21]). 

(If in (4.5) we set U~ = 0, we arrive at the Matvee~Its fo~ula [15].) 

Example 2. For the first-order matrix operators 

d tj d U L x ~ u ~  ~ uo(x,y,t) ,  u~ =ci~ii, L ~ = y ~  yo(X,y,t), ~ ~di~ii 

E q s .  ( 3 . 5 )  a r e  n o n t r f v ~ a ~  b e ~ i n n f n g  w £ t h  ~ = 3.  

From E q s .  ( 3 . 3 )  f~  f o l l o w s  t h a :  u~ = [u~, ~ ] ,  v 0 = Ivy, ~:]. Zn [2]  £~ was  n o t e d  t h a t  f o r  

t h e  a d d f t f o n a ~  s y ~ e t r y  c o n d f t f o n s  ~ = ~ a f t e r  a r e ~ a t f v e ~ y  s f m p ~ e  s u b s t f t u t f o n ,  E q s .  
( 3 . ~ )  f o r  ~ = 3 r e d u c e  t o  e q u a t i o n s  d e s c r f b f n g  t h e  r e s o n a n c e  f n t ~ r a c ~ f o n  o f  t h ~  w a v e s  f n  
a nonlinear medium. 

In order to obtain the solutions of these equations by our scheme, we must have exist- 
ing on ~ the antiinvolutions T,, T~, such that 2, o T= = T=oT,, T, (P0= P,, T, (P~)= Pv 
T~ (P=)= P~, T~ (P~)= P~. If the divisor D is invariant with respect to Ti, then, as we can 
readily convince ourselves, ~, = [~. 

In this case, general fo~ula (4.3) can be simplified. We select the cycles ~j, bj 
in such a way that when T i is applied, we have T~ay = --~, T:bj = b~; then ~=I = ~' for all 
j ,  U, = 3~ ~, U~ = c ~ ,  U~ = dP ' ;  c = Sp ~ ,  d = S p v , .  

The c o e f f i c i e n t s  o f  t h e  m a t r i x  ~ i  a r e  g i v e n  b y  t h e  f o ~ u l a  

t d 0 ( o  (P~.) + (3 (z  - -  zo) + ~ (y - -  Yo) + d (t - -  to)) Z" + W ('Di)) 
_ _ _ _  

3 ~/x 0 (~ ~e.~) + (c (y -- y0) + d (t -- to) ) ~ + W (Oi)) 

which enables us to find 6: from Eq. (4.4). 

i. 

2. 

3. 

. 

5. 

6. 

7. 

8. 
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CLASSIFICATION OF IRREDUCIBLE REPRESENTATIONS OF GROUPS 

OF AUTOMORPHISMS OF BRUHAT--TITS TREES 

G. I. Ol'shanskii UDC 519.46 

INTRODUCTION 

Bruhat and Tits [I] constructed, for an arbitrary semisimple algebraic group ~ over 
a local field, an object replacing the symmetric space of a real semisimple Lie group. This 
so-called building is a semisimplicial complex of dimension equal to the relative rank 9 
of ~, on which ~ acts by automorphisms. For ~ = 1 it happens that the group of all auto- 
morphisms of this building (analogous to the group of isometrics of a symmetric group) 
represents a new and interesting family of locally compact groups.* We shall give a series 
of facts about these groups. 

*For v > 2 this group actually coincides with the original semisimple group ~. and ~ can be 
reconstructed from its building, up to isogeny (this result was found by Tits). For ~ = 1 
a given building ~ is connected with infinitely many groups over various fields, and Aut ~ 
is substantially larger than any of them. 
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