: 2
@< (2)
gr (Tz) — gy (z) = fp (2). (3)

1—¢
E A<i<k®, Therefore,

Let us estimate the integral of ¢k(x). To do so, note that 1 (Ef) >

k3

1 1—g 1—=&
g Py, (@) dp > Z & Py (2} dp > K3+ T T =T A £
X =k —k1
E;
Hence
1—s,
(acman=nf gp@an> .
X X
Set My, = {a: gy (z) = 0}.
Bl K . —1 ks S ok
McC UTG.c( U EHUCU . U T7ENED.
i=0 i=k5—2k3+1 j=0 i=ki—ki 41

We have p (Mk)g—:-z—.j.% - 7.:?12‘ . Since nZzH(M ¥ converges, by the Borel—Cantelli lemma ¢ (z) :1:2 g, () con-
== oo =2

verges u-almost everywhere. But by virtue of (2), j(z)= Z f, () converges uniformly, and f(x) is continuous.

k=2
Summing over all k = 2 in (3), we obtain g(Tx) —gx®) = £(x) almost everywhere. In addition, g(x) = 0 and

(eon=3{awa> 3 10 o,
X ' k=2

k=2 x

since gk ~ 0. This proves the theorem,
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ALGEBRAIC CURVES AND COMMUTING MATRICIAL
DIFFERENTIAL OPERATORS ‘

I. M. Krichever

In [11 we have presented the algebraic-geometric construction of the exact solutions of the Zakharov—
Shabat equations which are conditionally periodic functions of their arguments. By the Zakharov—=Shabat
equations [2] we mean nonlinear differential equations which can be represented in the form

[L1—‘%‘,L2—“§T]=0. (1)

The condition of the commutativity of two operators is equivalent with the presence of a "sufficiently
large" (here we do not define this concept more exactly) collection of functions, simultaneously converted by
them into zero, In [1] we have considered operators with scalar coefficients and we have proved that for them
sufficient collections are the functions ¥(x, y, t, P), where P is a point of a nonsingular complex curve given
by its analytic properties on % and having an essential singularity of a specific form at some fixed point. In
the present note we consider functions which have essential singularities in [ points. This brings us to oper-
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ators whose coefficients are I x I matrices, Without examining physically interesting examples (see [2]), we
shall show that the solutions of the corresponding equations, constructed with respect to such functions, can
be explicitly written in terms of Riemann's 6 functions,

1. Let % be a nonsingular complex curve of genus g with the distinguished points Py, . . ., P;. We con-
sider the functions ¥(x, y, t, P), pe, satisfying the conditions:

1. ¥(x, y, £, P) is meromorphic on % outside the points Pj, the divisor D of its poles does not depend on
X, ¥, t, is nonspecial and has degree g + I—1,

2. In the neighborhood of Pj it has the form

exp (k7 + Q; (k) v+ R; (i) 0)- (8 + 3 &l (o9, 01 5.
s=1
Here zj =1 /kj is a local parameter in the neighborhood of Pj, Q; (k) = ¥ + ... + d» Rj (k) = blkm 4. ..+ bl are
polynomials.

As mentioned in [4], for ! = 1 these conditions, together with the normalization £, = 1, determine uniquely
¥, Similarly, for ! > 0 the normalization £j= 5ij determines uniquely the functions ¥i(x, y, t, P).

THEOREM 1, There exist unique operators

n m

\ . da% 48
Iy = Uy, (2, Yy t) e u La= D, v5(2,y,8) —
go : du* ’ Eo P P

a a
such that L0 = oy O L0 =5 @, where ¢ is a vector whose i-th component is ¥j(x, y, t, P).

The matrices uy(X, v, t) are determined from the systems of equations

n o

n
D ) ClEP = e e
y==5

o =8 B=s

The element Eisj of the matrix £ is equal to the coefficient of 2P of the expansion of ¥ (%, y, t, P) in the neigh~
borhood of Pj. The matrix cy is equal to 8;;. One can find similarly the matrices vgix, y, t, P).

COROLLARY 1. The operators Iy and L, satisfy Eq. (1).

If on the curve & there exists a meromorphic function E(p), having poles at the points Pj (the ring of
these functions will be denoted by A %, Py, .. ., ), whose Laurent series expansion at Pj has principal part
Qj (kj), then ¢ (x, y, t, P) can be represented in the form €,(x, t, Plexp (E(P)y).

9L
at

COROLLARY 2. Under the assumptions made, we have Li®o= E®s, L:Do = —ZT @ and SO (Ls, L1] ==

Now, if there exists # (P)e A (R, Py, - . .. P1), equivalent to R4 (kj) in Pj, then &(x, y, t, P) = ®y{x, P) exp (E
(P)y + H(P)t).

COROLLARY 3. The function ¢ satisfies the equalities 1,;®, = E®, and L,®, = H®, while the operators
satisfy the equation [Ly, Ly} =0.

Thus, each divisor of degree [ + g —1 gives a homomorphism Ap of the ring A (%, P;. ..., Py into the ring
of linear differential operators with I x [ matrix coefficients.

Remark. We note that the constructed solutions of the Egs. (1), as well as Ap, depend only on the class
of the divisor D since going over to an equivalent divisor D' reduces to the multiplication of & by a constant
matrix,

THEOREM 2. I in the commutative ring A of linear differential operators with matricial coefficients
there exist two operators with relatively prime orders and with nonsingular leading coefficients, then there

exist a curve %, points Py, . . ., PJ, divisor D such that Ap gives an isomorphism between A%, P, ..., P;) and
A,
P
2. As a local parameter z3 in the neighborhood of Pj we select the function Y @, where Py is a fixed
B,
point, w, is a normalized differential of the second kind with second-order poles at the points Py, .. ., Pr. We
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denote by 21U the vector of its b periods (for all necessary information and missing definitions we refer to
[51) and by 27iV and 27iW the b periods of the differentials w(Q) and w(R), equivalent in Pj with d(QJ- (l/Zj)) and
d(Rj (1/z_1)), respectively., We also introduce the vectors ZTFiUkj, which are the b periods of the differentials

: dz]-

having a unique singularity at Py of the form # —¢.
2
7

We consider the functions Xisj %, y, t), given by the formulas

Xy, N r j=“

[ 5 1 aal+.‘.+as )
ST — e (0 + vy + W - 0¥ 42, }
T & ki i
prial (k:k). ) ;- F) s“sj ( oy’ )

x'=~nh.,-=0
s
The summation is taken with respect to all the collections oy, . . ., ag such that 2 kx,=s . The vectors Zj
k=1 (g1
correspond by Abel's substitution to the divisors p, ... +pgy + Py 1 <1< 1y Where D = Z P,.

sa=1
Explicit expressions for the matrices £5(X, y, t), in terms of which the solutions of the Zakharov —Shabat
equations are expressed, are given by the following theorem.,

THEOREM 3. We have the equality &, = &', where the elements of the matrices Es are given by the
equality

2 Ezjzs = exp{z xﬁ" {z, y.1) zs) .

$==0 8==0
In particular, for the Kadomtsev— Petviashvili equation given in [1] we obtain that its solution is given by
the formula : ' :

. 22
u(r.y.t)=c—-—2‘a—z";1(w,y,t):c+25—5§ln9(Ux+Vy+ Wt 4-Z).
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