POTENTIALS WITH ZERO COEFFICIENT OF REFLECTION
ON A BACKGROUND OF FINITE-ZONE POTENTIALS

I. M. Krichever

Very recently, the class of finite-zone potentials u(x) for the Sturm— Liouville operator —(d%/dx?) +
u(x) has been studied from various points of view (see [1, 2, 3]). In this paper, we give an algebraic geo-
metrical construction of potentials of which both the finite-zone and the well-known rapidly decreasing po-
tentials with zero coefficient of reflection are particular cases, In the general case, these potentials cor-
respond to potentials without reflection on a background of finite-zone potentials, The construction of a
scattering theory for asymptotically finite-zone potentials will be given in a succeeding paper.

It should be noted that, for nonreflective potentials, the idea of the present construction coincides
with the idea of interpolation [4], to which the author was directed by A. B. Shabat and which stimulated
further investigation.

1. Let E be a rational function with simple poles on a smooth algebraic curve X, A complex func-
tion u(x), x € (a, b), has regular analytic properties if there exist Y- X, a two-sheeted covering of X,
and a function ¥(x, P), P € Y, such that: 1°) except at the poles of E = 7*E, the function is meromorphic,

and its poles do not depend on x; 2°) in a neighborhood of the poles of E, ¥ (x, P) A Eer s a regular func-
tion with value 1 at these poles;

3°) — ¥ (5 P)+u@ ¥ (2, P) =L (P) ¥ (z, P). (1)

Before formulating the first theorem, we introduce, for every effective divisor » =2k5i’s >0, i.e,,
kg = 0, on Y the concept of an admissible diviﬁs)r. Let T be the involution of Y which transposes the sheets,
D+ = T*D, and —2D,, be the divisor of poles of E. We denote by £- (D) the subspace of functions odd with
respect to T* in the linear space £(®) of the divisor D=0 + p*+ D, . We recall that the linear space of
a divisor is the space of rational functions for which the sum of the given divisor with their divisors of
zeros and poles is an effective divisor., We admit a divisor d = 0 for D if degd = dim 2. (D) — 1, while
dim (- (D) N (D —d)) = 1.
THEOREM 1. A function ¥(x, P} which satisfies conditions 1° and 2° satisfies Eq (1) with some po-
tential u(x) if and only if there exists a divisor ¢ = ) %, admissible for its divisor D of poles, such that
di
dzt

8

(FE)Y |, =1, i=0,..., 1 (2)

Here ¥ = T*0,

Under the premises of the theorem, for every x the Wronskian r=¥'¥+ — ¥¥+ =g_ (D). The asser-
tion of the theorem is equivalent to the fact that F does not depend on x. Here Eq. (2) holds at the zeros
of F. (We agree to choose, between the possibilities, a divisor d, admissible for D, on the upper sheet,)
Conversely, by the definition of d, it follows from (2) that F is constant,

Definition, The divisors D, d will be called the scattering data for u(x).

THEOREM 2, For an arbitrary set of scattering data, the inverse problem is solvable if and ounly if
E is a function with one simple pole on a rational curve,
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The proof of Theorem 2 follows from comparison of the dimension of the space formed by the func-
tions ¥ (%, P), which satisfy conditions 1° and 2° and have divisor of poles D, for fixed x, andthe number
of Egs. (2), i.e., deg d.

On a hyperelliptic curve of genus g, for a divisor D of degree N, there exists an admissible divisor
d if and only if N =g, Here deg d= N—g. To finite-zone potentials corresponds the condition deg D = g,
Then deg d = 0, and u(x) is uniquely determined by the divisor D. To the case of nonreflective potentials
corresponds a hyperelliptic curve of genus 0, i

Remark, It is easy to obtain the "formula for traces" for u(x) given by the divisors D and 4 = 2“3
2841
on the hyperelliptic curve T, (yZ: HeE—-5) ) :
=1
28+1 N—g N

u@= 2 B+2 X Foe)—2 3 @)

i=1 s=1 k=1
Here the yi(x) are the values of E at the zeros of ¥(x, P).

COROLLARY. ILet — oo = ;< ... < E,,,, < be real, the g lie in the intervals (Eqp, Egn+y), and the
points of D lie such that one is in each of the intervals obtained; then u(x) will be a smooth real function
as x — + «, exponentially approaching finite-zone potentials u,(x). The potential u , (%) is given by the ef-
fective divisor equivalent to D — d, and u_(x) by the divisor equivalent to D — d*.

Thus, the divisor d determines a displacement on the set of finite-zone potentials. For it to be zero
(u,(x) = u_(x)), it is necessary that deg d = g + 1, (Our attention was directed by V. B. Matveev to the
presence of a displacement in the case of soliton perturbations of single-zone potentials, the study of which
from other points of view was undertaken in [5].)

2. In this paragraph, we give explicit formulas for a k-soliton potential on the background of an n-
zone potential and also an analog of the superposition laws for nonreflective potentials {1].

Let the potential u(x) be given by the divisors D=P; +. ..+ Pptk andd = »; +. .. + nk on the hy-
perelliptic curve T'n. We denote by uj(x) the n-zone potentials given by the divisors Py~ ...+ P, + P
0< i<k ;the ¥i(x, P) are their corresponding Bloch functions.

x X .
THEOREM 3. Let X (2) =S u(z)dz, K () =S u; (z) dz; then K (z) = Z 5,@) K, (@) s where the aj(x) are the
solutions of the system ® %o i=0
Zai (-77) (T‘.,' (I, 743) -— ‘F,T (:t, ‘/(3)) = 0, Zai (z) =1. (3)

i i

The functions @i(x) are rational functions of the ¥i(x, ®g) — \If;'(x, Mng). These, in turn, can be ex~
pressed rationally in terms of single-soliton potentials on a background of n-zone potentials, Only the
awkwardness of the expressions obtained forces us to confine ourselves to the formulation in the theorem.

THEOREM 4. K(x) is a rational function of integrals of n-zone potentials and of single-soliton po-
tentials on a background of n-zone potentials,

To obtain effective formulas in the case of k-soliton perturbations of single-zone potentials, it is
necessary to use, in addition to Theorem 3, the fact that the Bloch function corresponding to a single-zone
potential given by a point z, is

¥z, 5= O (2—20—i (T — &) ile)x-m0)
’ G (z — 20) )

Here, s(z) = s (z] @, o) and § (2 ={(z]w, ') are the Weierstrass o- and {-functions.
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