REMARK ON THE PAPER ""ACTIONS OF FINITE CYCLIC GROUPS ON QUASICOMPLEX MANIFOLDS"

UDC 513.836

I. M. KRİČEVER

In the author's paper [1] two theorems were formulated (Theorems 1.11 and 2.2), asserting that certain conditions on a collection of Z_m-bundles were necessary and sufficient for this collection to be the collection of normal bundles to the fixed submanifolds of a unitary Z_m-manifold. Unfortunately, these conditions are in fact only sufficient. However, the methods of [1] allow one, at the cost of purely technical complications, to obtain necessary and sufficient conditions.

We consider the category whose objects are collections $(X, \{\xi_i\})$, where X is a G-manifold and $\{\xi_i\}$ is a finite collection of G-bundles over X. The bordism groups $U^G_{n, \mu}$ in this category ($n = \dim_p X$, $\mu = (\mu_1, \ldots)$) is a "multi-index" set \mathbb{R}^∞ replace for us the bordism groups of G-manifolds, which, incidentally, are the special case of $U^G_{n, \mu}$ for $\mu_i = 0$.

For a collection of Z_p^k-bundles $\{\xi_i\}$ over X (prime), let ξ_{i_1} be the restriction of ξ_i to a fixed submanifold F_{i_1} of X, and ν_{i_1} the normal bundle of F_{i_1} in X. As usual, the collection of Z_p^k-bundles ν_{i_1}, $\{\xi_{i_1}\}$ over the trivial Z_p^k-manifolds F_{i_1} defines a homomorphism

$$p^k : U^Z_{n, \mu} \rightarrow R_{n, \mu} = \sum U_{nl} \left(\prod_{j=1}^{k-1} BU(n_j) \times \prod_i BU(n_i, i) \right),$$

where the sum is taken over those collections of nonnegative integers $(l, \{n_j\}, \{n_{i, j}\})$ for which $2(\sum_j n_j + l) = n$ and $\sum_j n_{i, j} = \mu_i$.

We denote by $\Psi : R_{*, p^k} \rightarrow R_{*, p^k}$ the homomorphism induced by the change of indices $(i, j) \rightarrow (pi + s, j') (0 \leq s \leq p - 1, j \equiv s (\mod p^k), j' = (j - s)/p)$, and also $j \rightarrow (s, j')$.

For $\omega = (i_1, \ldots, i_n)$, let $\nu_{i_1}^\omega (u_1, \ldots, u_n)$ be the series obtained by symmetrization of the series $\sum_{i=1}^n u_i s [CP(u_s)]^{-1}$, where $CP(u) = \sum_0^\infty [CP^m] u^m$. For each collection ω_i of length μ_i there is defined a homomorphism ν_{ω_i}, whose value on the additive generator $[M] \times \Pi_{i,j} [CP^m] (\nu_{i,j}^\omega (u_{i,j}, \ldots, u_n))$ of the group $U_{n, \mu} \prod_{j=0}^{k-1} BU(n_j, i_1)$ is equal to $[u]^N [M] \times \Pi_{i,j} [CP^m] (\nu_{i,j}^\omega (u_{i,j}, \ldots, u_n))$ by replacing u_k^k by $[CP^{m_{s-k}}]$. ν_{ω_i}.

We define homomorphisms $D\alpha_j$ as follows: if $(j, p) = 1$, then

AMS (MOS) subject classifications (1970). Primary 55C35, 57D85; Secondary 57D90.
\[D \alpha_j \left([M] \times \prod_{s=1}^{n_j} (CP_j^m) \right) = \left[u \right]_{p_j}^m \cdot [M] \cdot \prod_{s=1}^{n_j} \left(\frac{u}{\left[u \right]_{p_j}^s} \right)^{m_{s+1}} B_{m_s}(\left[u \right]_s), \]

where \(\dim_{\mathbb{C}} [M] = m \); but if \(p \) divides \(j \), then

\[D \alpha_j \left([M] \times \prod_{s=1}^{n_j} (CP_j^m) \right) = \left[u \right]_{p_j}^{m-1} \cdot [M] \cdot \prod_{s=1}^{n_j} \left(\frac{u}{\left[u \right]_{p_j}^s} \right)^{m_{s+1}} B_{m_s}(\left[u \right]_s). \]

We denote by \([D \alpha]_{\omega} \odot = (\omega_1, \ldots) \), the tensor product of the homomorphisms \(D \alpha_j \) and \(V_{\omega_i} \).

\[[D \alpha]_{\omega} : R_{Z^{n_i, u}} \rightarrow U^* \left(\left[u \right] / \theta_p \left(\left[u \right]_{p_j}^{k-1} \right) \right) = 0. \]

We introduce an additional graduation in \(R^{Z_{p_j}^k} \), by making each collection \(\{ n_{i,j} \} \) correspond to the number \(d = \sum_{(i,j) = 1} n_{i,j} \). Now let \(\rho_d \) be the "homogeneous component" of \(\rho \in R^{Z_{p_j}^k} \).

Theorem. A bordism class \(\rho \in R^{Z_{p_j}^k} \) belongs to \(\text{Im} \beta^k \) if and only if \(\Psi(\rho) \in \text{Im} \beta^{k-1} \) and for any \(\omega \), the quantity

\[\sum_{d=0}^{n} \left(\frac{u}{\left[u \right]_{p_j}^d} \right)^{n-d} [D \alpha]_{\omega}(\rho_d) \]

is divisible by \(u^n \) in the ring \(U^* \left(\left[u \right] / \theta_p \left(\left[u \right]_{p_j}^{k-1} \right) \right) = 0. \)

To describe \(\text{Im} \beta^{Z_{p_j}^m} \) in the case when \(m \) is divisible by at least two primes, it is necessary to insert an analogous correction into the hypothesis of Theorem 2.2 of [1].

Received 20/MAR/74

BIBLIOGRAPHY

Translated by N. STIEK