ОБ ИНВАРИАНТНОСТИ ХАРАКТЕРИСТИЧЕСКИХ КЛАССОВ ДЛЯ МНОГООБРАЗИЙ ГОМОТОПИЧЕСКОГО ТИНА ${\it CP}^n$

И. М. Кричевер

В работе [1] сформулирована гипотеза о том, что существования нетривиального действия группы S^1 на многообразии X гомотопического типа CP^n достаточно для инвариантности \hat{A} -рода $\hat{A}(x) \subset H^*(X,Q)$, там же доказано, что при некоторых условиях на действия с изолированными неподвижными точками \hat{A} -род действительно инвариантен. В настоящей заметке класс таких условий значительно расширен.

1. Если G — компактная группа Ли, то для любого G-многообразия определен гомоморфизм Гизина $p_1\colon \Omega_{SO}^*\left((M\times EG)/G\right)\to \Omega_{SO}^*\left(BG\right)$. Для векторного G-пучка ξ над M обозначим через ξ_G , соответствующий ему пучок над $(M\times EG)/G$, $e\left(\xi_G\right)$ —его эйлеров класс.

Теорема. Если действие группы G на многообразии M имеет лишь изолированные неподвижные точки, то найдется такое представление $\Delta = \Delta' + \sum_i \Delta_i (\Delta_i - \text{представление } G$ в слое касательного пучка в i-й неподвижной точке; $\widetilde{\Delta}_i - \text{представление } G$ -пучка $\widetilde{\xi}$), что е $(\Delta) \cdot p_!$ е $(\widetilde{\xi}_G) = \sum_i e^*(\widetilde{\Delta}_i)$ е $(\Delta - \Delta_i)$, где $e(\Delta) -$ эйлеров класс пучка над BG, ассоциированного с представлением Δ .

 Π е м м а. Если ε — гомоморфизм аргументации, то ε($p_{\cdot}e(\xi_G)$) = ε $D(e(\xi)$).

2. Пусть на многообразии X h: $X \to CP^n$ —сохраняющая ориентацию гомотопическая эквивалентность, действие S^1 имеет лишь изолированные неподвижные точки. Заметим, что их число равно n+1.

Через δ обозначим представление S^1 с характером z^δ и соответствующий S^1 -пучок над S^1 -многообразием. Пусть δ_i $1\leqslant i\leqslant n+1,$ — представления в слоях над неподвижными точками S^1 -пучка η' , который получен из пучка $h^*\eta$ поднятием действия S^1 с базы.

Применяя результаты предыдущего пункта к S^1 -пучку $m\eta'$, $0\leqslant m\leqslant n$, получим в кольце Ω_{SO}^* (CP^∞) = Ω_{SO}^* [[u]] равенства

(1)
$$\prod_{k} e(\Delta_{k}) p_{!} e(m \eta_{S}^{\prime} 1) = \sum_{i} e(\delta_{i})^{m} \prod_{k=1}^{k \neq i} e(\Delta_{k}),$$

 $p_!e\ (m\eta_S^{'}1)\!=\![h^*v^m\cap X]\!+\!$ чл. старших степеней по u.

Здесь $v = \sigma_1 (\eta) \in \Omega^2_{SO} (CP^n)$, \cap — оператор высечения Чеха. Обозначим $\zeta_j = p_j e\left(\sum_l^{l \neq j} \eta' \otimes (-\delta_l)\right)$, тогда $\prod_k e\left(\Delta_k\right) \zeta_j = \sum_i \prod_l^{l \neq j} e\left(\delta_i - \delta_l\right) \prod_k^{k \neq i} e\left(\Delta_k\right)$. Отсюда следует

(2)
$$\prod_{k} e (\Delta_{k}) \zeta_{j} = \prod_{l}^{l \neq j} e (\delta_{j} - \delta_{l}) \prod_{k}^{k \neq j} e (\Delta_{k}).$$

 $\xi_j = 1 + {
m q} {
m n}$. старших степеней по u. Сравнивая коэффициенты при младшей степени u в равенстве (2), получим

Следствие 1. Пусть представление Δ_j раскладывается в сумму одномерных представлений $x_{js},\ 1\leqslant s\leqslant n,\$ тогда $\prod_{l=1}^{l\neq j}(\delta_j-\delta_l).$

Замечание. Так как все $x_{js} \neq 0$, то $\delta_j \neq \delta_l$, если $j \neq l$. Значит, действие S^1 на CP^n , индуцированное представлением — $\sum\limits_i \delta_i$, имеет изолированные неподвижные точки. Представления, индуцированные этим действием, в слоях касательного и канонического пучков равны $\sum\limits_{j=0}^{l+j} (\delta_j - \delta_l)$ и δ_j соответственно.

Из (1) и (2) получаем

(3)
$$\prod_{j} \prod_{l}^{l \neq j} e \left(\delta_{j} - \delta_{l} \right) p_{l} \left(m \eta_{S^{1}}' \right) = \sum_{i} \left[e \left(\delta_{i} \right)^{m} \zeta_{i} \prod_{j}^{j \neq i} \prod_{l}^{l \neq j} e \left(\delta_{j} - \delta_{l} \right) \right].$$

Из сделанного выше замечания следует, что

(4)
$$\prod_{j} \prod_{l}^{l \neq j} e \left(\delta_{j} - \delta_{l}\right) \widetilde{p}_{!} e \left(m \eta_{S^{1}}\right) = \sum_{l} e \left(\delta_{i}\right)^{m} \prod_{j}^{j \neq i} \prod_{l}^{l \neq j} e \left(\delta_{j} - \delta_{l}\right)$$

$$\widetilde{p}_{!} e \left(m \eta_{S^{1}}\right) = [CP^{n-m}] + \text{ч.л. старымх стененей но } u_{\bullet}$$

Здесь $p: (CP^n \times S^{\infty})/S^1 \to CP^{\infty}.$

3. Рассмотрим произвольный мультипликативный Q-род. Ему соответствуют гомоморфизмы колец $Q\colon \Omega_{SO}^*\to Z$ и $Q^*\colon \Omega_{SO}^*$ (CP^∞) $\to Z$ [[u]]. Из равенства (2) и из того, что e (δ) = g^{-1} (δg (u)), где g (u) = $\sum_{i=1}^{l} \frac{[CP^n]}{n+1} u^{n+1}$ — логарифм формальной группы «геометрических» кобордизмов, следует $\zeta_j = \prod_l g^{-1}$ ($(\delta_j - \delta_l) g(u)$)· $[\prod_s g^{-1}(x_{js}g(u))]^{-1}$. Тогда Q^* (ζ_j) равны

$$(5) \quad Q^{*}\left(\zeta_{j}\right) = \prod_{l}^{l \neq j} g_{Q}^{-1}\left(\left(\delta_{j} - \delta_{l}\right) g_{Q}\left(u\right)\right) \cdot \left[\prod_{s} g_{Q}^{-1}\left(x_{js}g_{Q}\left(u\right)\right)\right]^{-1}, \quad g_{Q}\left(u\right) = \sum_{l} \frac{Q\left[CP^{n}\right]}{n+1} u^{n+1}.$$

Следствие 2. Пусть для некоторого мультипликативного рода такого, что все $s_n(\lambda_1,\ldots,\lambda_n)\neq 0$, где λ_i — коэффициенты соответствующего ряда Хирцебруха, выполняется условие: Действие группы S^1 на многообразии таково, что выражения (5) не зависят отi, тогда $p_i(X)=h^*p_i(CP^n), p_i$ — характеристические классы Понтрягина. Примеры выражений (5) для некоторых классических родов.

а)
$$\hat{A}$$
-род:
$$\prod_{l}^{l\neq j} (t^{\delta_j-\delta_l} - t^{\delta_l-\delta_j}) \cdot \prod_{s} (t^{x_{j_s}} - t^{-x_{j_s}})^{-1}.$$

b) L-pog:
$$\prod_{l=0}^{l\neq j} \frac{(1+t)^{\delta_{j}-\delta_{l}} - (1-t)^{\delta_{j}-\delta_{l}}}{(1+t)^{\delta_{j}-\delta_{l}} + (1-t)^{\delta_{j}-\delta_{l}}} \cdot \prod_{s} \frac{(1+t)^{x_{js}} + (1-t)^{x_{js}}}{(1+t)^{x_{js}} - (1-t)^{x_{js}}} \bullet$$

Доказательство. Применим к равенствам (3) и (4) гомоморфизм Q^* . Из сравнения коэффициентов при младшей степени u получаем, что $Q([h^*v^m \cap X]) = Q([v^m \cap CP^n])$. Отсюда и из того, что $H^*(X,Z)$ — урезанное кольцо полиномов, и вытекает доказываемое утверждение.

4. Следует отметить, что результаты этой заметки полностью переносятся на тот случай, когда X — квазикомплексное многообразие, а действия S^1 сохраняют комплексную структуру в стабильном касательном пучке.

Спедствие 3. Пусть для некоторого мультипликативного рода $Q: \Omega_u^* \to Z$, удовлетворяющего условиям следствия 2, выражения (5) не зависят от j, тогда классы Черна инвариантны, $c_i(X) = h^*(c_i(CP^n))$.

Дополним набор примеров выражения (5) для некоторых родов.

c)
$$T$$
-род:
$$\prod_{l=1}^{l\neq j} (1-(1-t)^{\delta_j-\delta_l}) \cdot \prod_{s} (1-(1-t)^{x_{js}})^{-1}.$$

d) Эйлерова характеристика
$$c_n\colon \prod_l^{l\neq j} \frac{(\delta_j-\delta_l)\,t}{1-t+(\delta_j-\delta_l)\,t}\cdot\prod_s \frac{1-t+x_{j_s}t}{x_{j_s}t}$$
 •

ЛИТЕРАТУРА

- [1] F. Petrie, Smoth S¹ actions on homotopy complex projective spaces and related topics, Bull. AMS 78:2, 105-154.
- [2] И. М. К р и ч е в е р, Действия конечных циклических групп на квазикомплексных многообразиях, Матем. сб. 90:2 (1973).

Поступило в Правление общества 19 декабря 1972 г.