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ACTIONS OF FINITE CYCLIC GROUPS ON
QUASICOMPLEX MANIFOLDS

UDC 513.836
I. M. KRICEVER

Abstract. In this paper a classification is given of actions of finite cyclic groups
on quasicomplex manifolds in terms of the invariants of cobordism theory. Moreover,
the methods of the paper allow one to understand the geometric nature of known results
of a series of authors on actions of cyclic groups of prime order.
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Introduction

As was first remarked in [1], the invariants of bordism theory are always useful
for describing fixed points of actions of a compact Lie group G.

In the present paper, by actions and mappings, if nothing is said to the contrary,
one understands infinitely smooth actions and mappings which preserve the complex
structure in the stable tangent bundle.

In what follows, Uf will denote the unrestricted module of G-bordisms (cf. [1],
§21).

Singular points of an action of the group G on the manifold M are points m € M
whose isotropy subgroup is nontrivial. Fixed points are those singular points whose
isotropy subgroup coincides with G.

The set of fixed points is a disconnected union of smooth submanifolds whose
normal bundles are complex G-bundles.

We consider vector G-bundles over trivial G-manifolds which cannot be represented
as the sum of two vector G-bundles on one of which the action of the group G is trivial,
We introduce in the class of these bundles the natural bordism relation. If U, is the
ring of unitary bordisms, then a U -module structure is given by multiplication of fiber
spaces over a quasicomplex manifold. The Ug-module obtained in this way will be
denoted by Rf. The grading is given by the real dimension of the fiber space.

The map which associates with a G-manifold the collection of G-bundles normal to
the fixed submanifolds gives a homomorphism of graded U, -modules BG: Uf - Rf.
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Collections of G-bundles which are collections of bundles normal to fixed submanifolds
of actions of the group G, i.e. which belong to Im ,BG, will be called admissible. For
the group Zp (p prime) admissible collections of fixed submanifolds with trivial normal
bundle were found in [2]-[4]; a proof which does not use the techniques of formal groups
was obtained in [S]. With the use of the methods of the paper [6] the answer for arbitrary
normal bundles was found in [7].

The basic goal of $1 is the description of the admissible collections of normal G-
bundles to the fixed submanifolds of actions of the groups Zpk; however, the method of -
proof allows one in addition to obtain a more geometric interpretation of the results of [8].

Reduction to groups of the form Zpk allows us in $2 to obtain necessary and suffi-
cient conditions on the fixed submanifolds of actions of finite cyclic groups of arbitrary
order.

In §3 a homomorphism yg: Rfﬂk -» U, ® O is constructed such that its value on an
admissible collection coincides modulo the ideal pU, with the bordism class of the
manifold which realizes this collection.

The author is greatly obliged to S. P. Novikov for posing the problem, and to V. M.
BuhStaber and S. M. GuseTn-Zade for valuable help and advice.

§1. Admissible collections of fixed submanifolds of actions of the group Zpk

1.1. By a representation of a group G in what follows will be meant a vector space
with an action of G on it given by some linear representation of G. The direct sum
gives the structure of a semigroup to the set of isomorphism classes of representations.
This semigroup is generated by the set of irreducible representations A," i € J(G).

For an arbitrary vector G-bundle over a trivial G-manifold there exists a decomposi-
tion

=0 (i®4)),
1)

where (. = Homg (8 A].) (Proposition 2.2 of {9]). An action of G on the bundle é}.@ A].
is given by the action of G on the second factor. This decomposition gives an isomor=-

phism of modules

RI=aU/([lBu).,

the sum being taken over collections ("1’ RRTRCTEL +) such that all but a finite number
of the n. are equal to zero.

The map BU(n) x BU(m) » BU(n + m) introduces a multiplicative structure in
v, (H]. BU(n]. ). Since U,(BU(n)) is the polynomial ring in variables (CP”) with
coefficients in U, ((CP™) € U (CP®) is the bordism class corresponding to the im-
bedding of the manifold CP” in CP* = BU(1)), the module R is isomorphic to the
polynomial ring with coefficients in U, in the variables (CP") where (CP:‘) denotes
the G-bundle §®A over CP”, £ being the canonical bundle Generators of R* as a

U,-module are the monomials (CP" 1) X oo X (Cpnr)
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All irreducible representations of the group Zm are one-dimensional. A generator
of Zm acts on C! by multiplication by e?™ii/™m  We denote the corresponding repre-
sentation by A].l . The set of A].l , 1 <j<m-1, is the set of all irreducible representa-
tions of the group Zm

1.2 Ve consider a vector Z ,-bundle with free action of the group Zpk outside
4

the zero section, whose base is the singular submanifold of a fiber space. In the class
of such bundles (analogous to what was done to introduce the module Rf) we define a

module ka . We associate with a vector Zpkobundle ¢, whose bordism class belongs to
gﬁ , the collection of Z =bundles normal to fixed submanifolds in the fiber space. This

correspondence determmes a homomorphism ?Hik » R, i’k The kernel of this homomor-
phism is the submodule ?HZ* of bordism classes of bundles in whose total space there

are no fixed points. Then x is the homomorphism
% YW — R

The subgroups of Z p are directed by inclusion, so the set of singular points of the

action of Zpk coincides with the set of fixed points of the action of the subgroup

Zp C Zpk' This means it is a disconnected union of submanifolds, while the collection
of normal Z p-bundles obviously determines a bordism class which belongs to the
module ?mi . The composition of the corresponding homomorphism U,fi’la - ﬂi and the

projection m: > Emi/ﬁm’; we shall denote by 9,
81 U — ¥y

From the definition of the homomorphism expounded above it follows that ,BZPk =y °d.
This means that the bordism class 7 € Rka’ belongs to Im BZPk if and only if it be-
longs to the image of the monomorphism ¥ and X'l(r) belongs to the image of 4.

1.3. For any bundle £, [{] € ?HZ ,» @ free action of the group Z pk OO the sphere

bundle determines a bordism class a(C) belonging to U (BZ ) Then a: gﬁk
U*(BZ ) is the corresponding homomorphism of graded U =vmodules of degree —1. It

is easy to verify the exactness of the sequence
, ko 7
Ufl‘k — 9)2* £> U,. (BZpk)

This means that to describe Im J, it suffices to study Ker a.
The restriction of the action of the representation A to the unit sphere §in=1 of

the representation space will also be denoted by A. In what follows, BZ p Will be
represented as the limit of the inclusions of the factor manifolds $27~ 1/A'l' , where A;’
is the n-dimensional representation equal to 7 - A; . The inclusion of §"~ l/A'I’ in
BZ, we shall denote by i . We remark that by definition a(A7) =[S?"~1/A", i .

Let [ be a trivial /-dimensional bundle with action of the group Zpk in the fiber
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given by the representation AII. The free action of the group on the sphere bundle of
the vector Zp,;bundle coLI{] e W’;n, gives the bordism class a (¢ @ [) of the
(2(n + ) - 1)-dimensional skeleton of BZpk‘

For the manifold S2N- l/A’;l one has the duality isomorphism
Dy : Us (S™7/AY) — U™ (87 AY).

From Theorem 35.2 of [1] it is easy to get that there exists a homomorphism Da: Wi -
UXBZ ) such that iy Da(()=D 5 ®D.

Lemma. The bordism class [{] € ?Hl’;n belongs to Ker o if and only if
i:+1(u- Da({)) = 0, where u is the Euler class of the canonical bundle over BZpk‘

Proof. In what follows we shall not distinguish in the notation between a vector
bundle over BZDI@ and its restriction to a finite-dimensional skeleton of BZpk, and
likewise for the Euler classes of these bundles.

We recall that the cobordism ring U*(szk) is isomorphic to U*[[u]]/([u]p]e =0),

4] , isthe p*th power in the formal group of *“‘geometric’ cobordism, and
ok b P group g

U* (S™7UAY) = U [[ul}/([u) = 0, u¥ = 0).

The inclusion z'[}J: SzN’l/A[II > SzNﬂ/AI;J+1 determines the bordism class
[SZN'I/AIIV, z}b] eU,n_ 1(SZN“/AI;J*I), while DN+1[52N' 1/AI;J, z[b] = 4. From this

fact and the well-known identity /,(/*(a) ) b) = a () [,(&) follows the commutativity of

the diagram

1
Uzj—], (SzN'l/A;V) lN'_. Uzj—x,(SzNH/AILVH)
1Dy ~ Dwa

Uz(N—/) (SzN—l/A{v) - Uz(N—1)+2 (SZNH/A{VH)v

where the lower arrow corresponds to the.inclusion under which # goes to #, and
multiplication by z The assertion we are proving follows from the fact that Z.N+l*:
Uy, l(SZN +1/A1;l +y Uzj-l(BZpk) is an isomorphism for j < N.

Remark. One can suggest an equivalent formulation of the lemma, namely the
following: [£] € Ker a if and only if u - Da({) is divisible by u™*! in the ring
U(BZ ). '

1.4. We associate with each representation A of the group G a vector bundle v(A)
over BG. If C” is the space of the representation A, then on the product C” x EG the
group G acts diagonally. Then »(A): (C” x EG)/G > BG. For brevity we shall write
e(A) for the Euler class of the bundle v(A). The ideal of the ring U"(BG) generated by
classes which are annihilated by multiplication by the Euler class of some representa-

tion, we shall denote by (6.
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Theorem. The homomorphism Da maps ﬂ’fi’;n epimorphically onto the ideal IO(ZDk)'

Proof. Let M be the base of the vector Z p-bundle ¢ which is a representative of
some bordism class [{] € Smk o+ By definition of the module W the action of Zpk on

M has no fixed points. Then there exists a continuous Zp -equivariant map of M into

§27-1 with the action A", _ . In fact, the factor group Z /Z = Z acts freely
b

-1
on the factor complex M/Zp 4., and on the sphere san=1 Smce the dxmensxon of M

is less than 2n ~ 1, there exists a continuous th -equivariant map of M/Zpk_1 into
§27=1 The composition of it with the projection M - M/Z _ gives the required map
/. M SZn-l

Let S(¢ @ 1) be the sphere bundle of the vector Z k«bundle ¢ @ I Since the
action of Z , on S( @ )) is free, there exists a Z -equivariant map g: S(C @ D) »
§274D=1 into the sphere with the action A’“’ The projection of the vector Zpk'

bundle { & /, and also the corresponding projection of its sphere bundle, we shall de-

note by p. If b is the map obtained by smoothing the continuous map
(Fop*@VZp:SE D NZLr—(S"™ x SH- YAy X AT,
then by construction

RIS B W/Z g bl =a (D D).

We note that (§27-1x §2(n*D)- 1)/A" -1

bundle v(A _sand p P v(A" ) > BZ 4+ From the last equation and the exactness

x AT *! is the sphere bundle of the vector

of the bordxsm sequence of the pair consxstmg of the fiber space Ep (p = v(A 1))
and the sphere bundle Sp it follows that

jr50,0 (D 1) = 0, where j,: U, (Eps) — U, (Epn, Spn),

and S, :s@nth- I/A"H - Ep is the zero section. The homomorphism D = ™~ DnHP*

is an 1somorphlsm D: U (Ep ) U (Ep ). The duality isomorphism of the relative
bordism of the pair Ep , Sp and cobordism of Ep_ we denote by D’,

D’ :U, (Epn, Spu) — U" (Eoyp).

It is easy to verify that the homomor phism U*(Epn) > U*(Epn) given by the multi-

plication by e(A:k_ 1) = e(pn) makes the following diagram commutative:
U, (Epa) = U, (Epn, Spu)
| D } D'

U* (Epn) ~ U* (Epn).

Hence it follows that



310 I. M. KRICEVER

Dot CB 1) - e(Appa) =0 or  Da(l) - e(Aly) =0.

This means that D a({) EIO(Zpk ).

We shall show that I"(Z &) coincides with the ideal generated by the series
ep([u]pk— 1) = [u]pk/[u]pk- 1» Where Op(u) is the series equal to [u]p/u. From the
structure of the set of irreducible representations of the group Zpk it follows that
e(Ajl) for any j divides e(A"k_ 1)' This means that the Euler class of any n-dimen-
sional representation divides e(A;’k_ D= [u]:k_ 1+ Let P(u) eU*{[«]] be a representa-

tive of some cobordism class of I*(Zpk); then

P (4) - [u] -1 = (4] 4Q ().

We divide both sides by [u]p b1
P () [u] =y = B (1] jo-1) Q (®):

If n> 1, then pQ(u) = O(mod[u]pk_l). Since the series [u]pk-—l is not divisible by p,
Q) is divisible by [u]pk_ 1- Consequently one can divide both sides of the equation
by [”]pk— 1+ Continuing the division we get P(u) = ep([”]pk-l)Q (@),

We consider the Zpk -space Xp, consisting of p points, on which a generator of
Zpk acts by cyclic permutation. The vector Zpk-bundle X, x A% over Xp determines

a bordism class which belongs to Sﬁgn By what has already been shown,
Da(X, x A =8, ([u]pk_l) Q (u).

The inclusion of the subgroup Zpk—l in Zpk induces a map i: BZpk—l") BZpk .
The proof of the following lemma is obtained by direct verif ication, using the con-

struction of the transfer homomorphism ¢ from [1].

Lemma. On the sphere §27=1 Jet the action of the group Zpk-l be obtained by

restriction of the action AY of Z .. Then the diagram
1 pk

Usmes (S HAY) = Upmos (8™ 72 )
| PN I Dy

U2(N—m) (S 2N“1/A¥) e T -m) (SZN—I/Zpk—l)

is commutative. D;\! is the duality isomorphism for the manifold S*" ’I/Zpk_ 10

Since on Xp the action of the subgroup Zpk—l is trivial,

i'Da (X, XA = Dyt (X, x AY) = p.
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But i*6p([u]pk_l) = p, whence it follows that 0(x) = 1 and DO«(XD x A7) = Gp([u]

The theorem is proved.

)
pk" 1

1.5. This subsection lies somewhat outside the basic goals of this paper; how-
ever, it is connected with the rest of the general methods of proof, which allow one to
obtain a more geometrical interpretation of the *
tained in [8].

~

Let i be an imbedding of the G-manifold M in the space of a representation A}

‘integrality’’ theorem in cobordism ob-

it induces an imbedding of the space (M x EG)/G in the fiber space of the vector bun-

dle U(A) with complex normal bundle The Thom construction gives the cobordlsm class
of the Thom space of the bundle U(A) which will be denoted by MM) € U*(MV(A))

Let @: U*(Mv(A))»U*(BG) be the Thom isomorphism; then there is a well-defined
homomorphism p * Ugn»U—Z"(BG) whose value on M is equal to ®AMM). -
If the action of G on M had no fixed points, one could assume that the imbedding

{ is an equivariant map into the sphere of the representation space. Just as in the pre-

~ o
vious subsection, we remark that AM) under the homomorphism U*(Mv(A))-U*(Ev(A )
is carried to zero. Since this homomorphism coincides with the composition of the iso-

morphism @ and multiplication by e(K), we have proved

Theorem. The homomorphism p maps the submodule l} G into the ideal I*(G).

1.6. As was shown in $1.4, the factor ring U (BZ )/1*(2 k) is isomorphic to
the ring U*[[u]]/(ep([ul ) = 0). Let Do denote the composmon of the homomor-
phism Da and the projeci:ion U (BZpk)» U [[u]]/(ep([u]pk_l) = 0). From Theorem 1.5 it
follows that the homomorphism [)a can be represented in the form

ME > M WE— U BZR)/I° (Z,)-
Recalling the remark to Lemma 1.3, we get

Corollary. A coset of the factor module gﬁ’;n/mgn belongs to Im& if and only if,
for a representative [{] eﬂﬁ’;n of this coset, Da({) is divisible by u™ in the ring
UM/ 0,00, ) =)

1.7. Let M be an n-dimensional manifold with an action of the group Z The

group £ -
free action of L x by AN on SIN-1 gives a free action on the product M x SZN
If ¢y is the pro;ecmon, b M x SZN"I)/ZP SZN'I/A1 , then

o (M) = [(M X S /Z 1, @nl.

It is easy to verify that there exists a cobordism class D¢(M) € U-2"(BZPk) such
that % Dp (M) = Dy (M)
In this subsection we shall assume that M is a singular manifold (this is equiva-

lent to triviality of the action of Zp).
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Theorem. Let [{] =M x (CPJ."II) X oo X (CP?:)] be a bordism class belonging to

ME (from the definition of Mk it follows that (G #) = 1. Then Dal{) satisfies the
equation

1Te@:)Da@) =e@)DoM) - [[e A niem: @ &%),

s s
where 1 is the bundle over CP”S such that its sum with the canonical bundle ¢,
over CP™* is trivial, & is the canonical bundle over BZpk’ and 73 is the Gysin homo-
morphism [10] corresponding to the map n5: CP"S x th,k —»BZPk.
Proof. For any space X, the zero-dimensional bundle over it will be denoted by

Iy. The vector Zpk -bundle Cl by definition is equal to the sum of the vector
Z k-bundles
14

B =1u X Tepre X -+ o X (Es @ Afs) X -+ - X Leptr

By analogy, for the vector bundle 7_ we construct the vector Zpk -bundle ’r\f The fiber
space of the sphere bundle of the vector Zpk-bundle 4 &, '1\]'5 @ I, which we denote
by Fl(é), coincides with the Z p-manifold M x CP*l x «.. x CP"7 « §2(n+D)-1 , on
whose sphere § 2n +l)—1, Al, D, A?:*‘l' acts (N = Es(ns + 1).

By analogy with lemmas of [10] one proves

Lemma 1. Let i: S(C® D/Zpk—» Fl(é')/Zplc be the inclusion, Df the duality iso-
morphism for the manifold Fl(@/Zpk, and ’775, be the Zpk-burzdle over the Zpk-mam'/old F({)
obtained from the bundle '7\7; by the map F;({)»>Mx CP"1x .--x CP™. Then

DIIS (G DLy il =e(D ML)

We consider the Z p-€quivariant map which is the identity on the first 7 + 1 fac-
tors, F, ({) on the Zpk;‘-manifold MxCP™ly ... xCP" xS Z(N"’”—l, whose action
on SZN+D=1 ;o A’;”H. The corresponding map of factor spaces we denote by f,. Re-
peating almost verbatim the proof of Theorem 1 of [5], we get the following lemma.

Lemma 2. If

ANsL: (M X e XSz(NH)—l)/Zpk___) Sz(N+l)—1/A{V+l,
then

[ Mebere @) ] Fa ) = [] e 037

The vector Zpk-bundle over M x+++ x CP"7  § 2(N+D=1 ,piained from "r\]ds by
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.o x 52(N+1)'~1

the projection M x - M x +++ x CP"" we denote by ’;]‘: . From the def-

~n

inition of f, it follows that ?]’; /Zpk = f:(ns/zpk). Further, D N4 is the duality iso-

morphism for the manifold M x+++ x § Z(NH)—I)/Zpk' To the equation proved in Lem-

ma 1 of this subsection we apply the homomorphism /,:

Dot [S € B W2y fao i) = Fyy (Fre (DNIZA) = foy (1 e (DL 1)
Then

[Toieie (A7) Dt [S E @ W oo fro il = [ tnvase (A e (eI Zp)-

By construction we have [S{({ @ I)/Zpk, Tng1 ©f2 o7} = 3(4@ ) if we identify

SEN+D=1/AN+L Gith the skeleton of SZN+Hm=1/An+EN | Then

Dy 10n@ (§ D 1) = €(A}) Dyt [S (€ D D/Z o 7tnas o fy o 6.
We apply the homomorphism 7y ,, to the preceding equation:

TTe 5 ™) Dyorend (€ © ) = e (A e (& /2,0 [T e (A7)

v he projecti in the form of th ition my,, © 7y
e represent the projection 7y, in the form of the composition ny, , 7y,

Tvers (M X o X SEVITYZ S CP™ L. X P x SEVHI AN,
yer: CP1ox L ) CP"r ¢ SENTI=LANHL_ | eVl AN+L

it

If 7 is the vector bundle over CP"! x. .. x CP"" x BZ  equal to
s pk

LepmX oo X (Ms®ES) X ..t X 1 gphr,
then 770/Z , = my*, (7). Then
e (€ (B Ns/Z,p) = e (D s) T (1)-

From the definition of the homomorphism D ¢ it follows that

Ty (1) = niy, D (M).

To complete the proof it remains to note that
ﬂ;vme (@ ?I;”) = H nfe Ms® E,]S )-

1.8. Since multiplication by the Euler class of a representation in the ring
U160 ()= 1) = 0) is a monomorphism, equations which are satisfied by Da({)
are solvable for Da({).

1

Corollary. Let A (v, u) be the series defined by A (v, u)f(v, ) = 1® ™ in the
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ring U*lv, ull/v™ ! = 0, where f(v, u) is the formal group of “‘geometric’’ cobordism.
The sequence B (u) is obtained from A (v, u) by replacing v* by [CP"=k| (¢ =0, 1,
++). For the vector L, -bundle {~ (CPTD x«+ v x (CP, G, 0) =1,
(A'15+1)
Da = H n By (e (Alg))
A

Se( i

Remark. From the definition of the sequence B (u) it is simple to verify that

(ﬁ B (v) l") fu, u)=u (§ [CP"] u"t").

\n=0 n=o
1.9. Since by definition of the module R Zok the restriction of the action of the

group Z ok ©© the sphere bundle of the vector Zp -bundle ¢, [{] € R , has no fixed
points, there exists a continuous Zp -equivariant map of S{ into the sphere §in-1
with the action of A:k-l (cf. $1.4). We extend it by linearity to a continuous Z e
equivariant map of E{ into the space C" of the representation A;‘k_lglz E{scCm.

If Y is a map gotten by smoothing the continuous factor map
(& X id)/Z g2 (EG X S™NT)/Zk— (C X SPNY)/Z f

SZN—I

(the action on the sphere is AI;’), then it determines the corresponding bordism

class

N (c) = [(EC X Sw_l)/lpk: (ST x S2N—1/Zpk); Pl € Uz(N+n)—1 (E on, Soa).

There exists a cobordism class Dy({) € UO(BZ 2) such that * Dl/l( ) = s¥D (l/lN(O)

k
Thus we have corstructed the homomorphism Dl,ll R, p »UO(BZ
Lemma. For an arbitrary Zpk-manifold M,

¢(A-1)D ¢ (M) = Dy (B (M)).

Proof. The complement of a tubular neighborhood of the fixed submanifold of the
action of Z p on the manifold M is mapped continuously and Z g-equivariantly into
the sphere S2N=1 gith the action A"k_ Continuing this map by linearity onto the
tubular neighborhood, we get a conti:ous Zpk-equivariant map g,: M>C”. The map

which is a smoothing of

(G2 X I)Z g2 (M X S*7UYZ p— (C" X S™NTNYZL g,

determines a bordism class which obviously coincides with s g« ¢N(M) €Uy (Nin)- 1(Epn).

The assertion of the lemma follows from the definition of the homomorphism D¢ and
the diagram of $1.4.
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1.10. For the homomorphism D¢ one has the analogue of Theorem 1 of [5] and
$ 1.7 of the present paper.
P pap

Theorem 1. Let A be an n-dimensional representation of the group Zpk which
bas no trivial summand. Then e(A)-D yY(A) = e(AZk-l)'

Proof. We consider the inclusion i:E(p )C FXpnGB 1(A)). Obviously the cobordism
class dual to i 1\ (A) is equal to i¥(DyY(A) - e(A)). We are using the fact that the two
Zpk-equivariant maps b, and b, of the space of the representation A into the space of
the representation A + A: Ly are Zp 4-homotopic. This means that the bordism class i,y (A)
coincides with the bordism class given by the inclusion E(v(A)) - E(p, @ v(A)). But
here the normal bundle to the image of the inclusion is p_, and this means that the dual
cobordism class is equal to e(AZk_l). Thus we have obtained the equation we are prove-
ing.

By an insignificant change in the proof of Theorem 1.7, we get the following the-

orem.

Theorem 2. The value of the homomorphism Dy on the vector Zpk-bundle {=
(CP?II) X oo X (CP]."’) satisfies the equation
T

HeA,S )D(Z) = He ATilL) e (s ® E).

Remark. Solving the equation in the ring U*[[un/(ep([ulpk_ 1) = 0), one can write
for the class Dy({)

n+1

_ )
Do =122 5, (e AL
)

sf?(]

1.11. In this subsection we shall sum up all the results obtained above. We as-
sume that one has already gotten the description of Imf3 Zok for l <k.

The vector Zpk-bundle ¢, whose bordism class [{] € R we represent uniquely
in the form

2 (§ am.l;m,l) o

I
where ém ; and él are monomials of the form (Cp;zll) X see X (CP].n'), for which
’ r
(G p) =p and Gy p) = 1, respectively, and a, 1€ U,. The subgroup Zp acts triv-

ially on the fiber space of the bundle Cm ;» so it can be considered as a Zpk— | -bun-

dle (Zpk-—l = Zpk/Zp)'
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Theorem. The bordism class

)

3 (Somns| e R dim g — 2m)

z
belongs to the image of the homomorphism f3 pk if and only if

1) For any 1 the sum Zmaml lém,l , considered as a bordism class belonging to

Z k-1 L £ p-1
2&_"1), liesin ImB ?
n—ny —_—
e(Ar ) D12, D% (L)
2 m - S
) ) Da (%)
It e(A)Dk_1

is divisible by u” in the ring U*[[u1 A0 (u] , _)) =0).
b

(The values of the homomorphisms [Tn'/;(ém ;) and m(gl) are given by the re-

mark to Theorem 2 of the preceding subsection and Corollary 1.8.)

§2. Admissible collections of fixed submanifolds of
the action of a eyclie group. of finite order
The possibility of reducing the problem of admissible collections of fixed subman-
ifolds of the action of the group Zm to the analogous problem for its p-primary compo-
nents was indicated to the author by S. M. Guselin-Zade.
2.1. We assume that for any cyclic group Zm1 of order less than m we have al-

1

z
ready obtained the description of Inf8 ”''. From the results of $1 it follows that with-

. k k
out loss of generality one can assume that m = p 11 x+++xp_ 7, r> 1. Analogous to the

v ~Z
module ini‘, we define the module T « " as the module of vector Zm~bundles on whose

sphere bundle the group acts freely and on whose fiber space there are no fixed points.
~ Z ~
Lemma. The homomorvhism a: M a2 Uy _((BZ ) is an epimorphism.

Remark. Wherever the contrary is not asserted, the definitions and notation are
automatically carried over from S1.

Proof. The group Zm is isomorphic to the direct sum Z £1D @ Z k,. We de-
p1 b,

note by Xpi,z'= 1, 2, the Zm-space consisting of b; points, on which a generator of

the group Z k; acts by cyclic permutation, and the remaining generators act trivially.
b
Just as in the proof of epimorphicity in Theorem 1.4, we get that

Da (X, X A7) = 6y, ([u]i).

Pi
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Since the free term in the series Op (u) is equal to p, and (p, p,) =1, the ideal of
1
the ring U™(BZ ) generated by the series Obi([u]m/bi) coincides with the whole ring.
This means that the homomorphism Da is an epimorphism. This implies that the homo-
morphism @ is an epimorphism.
2.2. For any 1<s <r we represent the bordism class 7 € Rx ™ in the form

S s s s s . nl . nj] .
Eamm o where Cm'n and Cn are monomials (CP].I) x x (CP]_I ) for which

G,o0)="0, and (G, 0,) =1 respectively. The subgroup ZPs acts trivially on the
fiber space of the bundle {*

: hence it can be considered as a Z / -bundle. From
m,n m/bs

the lemma of the preceding subsection it is easy to get

Z Z .
Theorem. The bordism class r € R,)™ belongs to Im 3" ™ if and only if for any s and

zm/Ps

% , belongs to

n the sum 2 a5 (5 , considered as a bordism class in R
m m,n m, n

z
Im 8 m/ps‘

$3. Manifolds which realize admissible
collections of fixed submanifolds

3.1. The kernel of the homomorphism ﬁG is the submodule of Z/E of bordism
classes of manifolds on which the action of the group has no fixed points. Hence the
problem of reconstructing the bordism class of a manifold by fixed invariants has a
solution only modulo Kerw, where m: Uf—» U, is the homomorphism “‘forgetting’’ the
action of G on the manifold.

We shall show that 70 Zm_ U, for m = plil X s X p]:', r > 1. In fact, there exist
integers @ and b such that ap + bp, = 1. Recalling the definition of the spaces Xp

1
and XPZ’ we get that

M X (aXp, 4 X, 1€ 7™ and w[M X (aXp + bX )] = [M]

for any Ml €U, .

3.2. We consider any n-dimensional manifold M with an action of the group Z B>
14
and let the normal bundle to the singular submanifold of the action give the bordism

class [{1, belonging to n gn. From Theorem 35.2 of [1] it follows that {® 1 - [M] A}

belongs to Ker &. This means Da{{) - [Mlu™ is divisible in the ring U*[[u]]/([u] = 0)
14

by umtl,

Corollary. If on the manifold M the group Zpk acts without fixed points, then the
bordism class of M is divisible by p.

Proof. From Theorem 1.4 it follows that Da({) lies in the ideal generated by the
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series ep([”]z,k-l)‘ Since the free term of this series is equal to p, the corollary is
proved.

~Z
Thus we have obtained the fact that 7 U, ok is isomorphic to pU,.

Ve identify U, with its image under the imbedding in U, ® O, and we then have
z
Theorem. There is defined a homomorphism y:' from the module R, pk, taking

values in U, ® Q, such that, for any manifold which realizes an admissible collection

of Zpk-bundles 7,
[M] = 15(r) (modpU).

The value of y: on an arbitrary collection r = Zam’lém lél (notation of §1.11) is

given by the formula

ey ™) N ap D% Ey)

k p m ““
Yp(r) = Da (%) | »
? tp (1) pmy) 5 (&)

“n

~ o~
where the values of the homomorphisms Dy and Da are given by formulas which co-
incide with the formulas for DY and Da. (It is necessary to remark that division in
~ ~
these formulas for the homomorphisms DYy and Do must be carried out in the ring

U llzll® 0.)

Remark. An analogous theorem for the group Zp was obtained in [11].
Proof. Let P () € U]l represent Da({). Then

Mlur = Py (u) + 0, ([4] 1) Qu () + u1Qy (1)

Since the free term of the series p/ep([u]pk_ 1) is equal to 1, if we multiply both

sides of the preceding equation by it, we get

Ml = —E——Py @) + pQ (@) +u*Q; ().
ep ([u]pk—x)
From Theorem 1.11 and the fact that the difference of the values of the homomorphisms
7~ fand
Dy and Dy, and also of Da and Da, lies in the ideal generated by Gp([”]pk-—l)’ the

assertion we are proving follows.
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