Topology, fall 2022.

Quiz 1 Solutions

I (11 points). Mark the boxes that are followed by correct statements.

1) ■ Collection of sets \(\{\emptyset, \{b\}, \{a, b, c\}\} \) is a topology on the set \(\{a, b, c\}\).
 True. This set is closed under finite intersections and arbitrary unions, contains the empty set and the entire space.

2) ■ If \(B_1, B_2 \) are both bases for a topology \(T \) on \(X \) then their union \(B_1 \cup B_2 \) is also a basis for the topology \(T \).
 True. This is a good exercise. Check basis axioms for \(B_1 \cup B_2 \).

3) ■ If \(X, Y \) have indiscrete topologies, the product topology on \(X \times Y \) is indiscrete.
 True. Use the definition of the product topology to check this.

4) □ Indiscrete topology is finer than any other topology on a set \(X \).
 False. It’s the opposite, in fact. The indiscrete topology is coarser than any topology on \(X \).

5) ■ The ordered square \(I^2_o \) is Hausdorff.
 True. We proved that any order topology is Hausdorff.

6) ■ A finite topological space is Hausdorff if and only if it is discrete (carries discrete topology).
 True. We discussed this briefly in class. A topology is \(T_1 \) if points are closed. In a finite topological space points are closed iff \(X \) is discrete (since then any subset \(Y \subset X \) is closed).

7) □ Set \(\mathbb{N} \) of natural numbers with the finite complement topology is Hausdorff.
 False. The finite complement topology on an infinite set is not...
Hausdorff.

8) ■ If X is a metric space, any subset $Y \subset X$ inherits a metric from X.
 True.

9) □ The interval $[0, \pi]$ with the distance function $d(a, b) = \sin |a - b|$ is a metric space.
 False. What is the distance $d(0, \pi)$ in this topology?
 Suppose you restrict to the open interval $(0, \pi)$. Does that distance function define a metric?

10) ■ Topological space $X = \{a, b, c\}$ with the topology
 \{\emptyset, \{c\}, \{b, c\}, X\} is connected.
 True. There exists no separation of X.

11) □ If both $X \cup Y$ and Y are connected then X is connected.
 False. For a counterexample, take a connected Y and $X \subset Y$ not connected. Say $Y = \mathbb{R}$ and $X = \{0, 1\}$.

II (5 points) Mark the square in the first column, respectively second column, if the corresponding subset of \mathbb{R}^2 with the standard topology is open, respectively closed.

- □ ■ $\{(x, y) | x \geq 0 \text{ or } y \geq 0\}$
- □ □ $\{(x, y) | x < 0 \text{ and } y \geq 0\}$
- □ ■ $\{(x, y) | x = 1 \text{ and } y \leq 2\}$
- □ ■ $\{(x, y) | xy = 1\}$
- □ ■ $\{(x, y) | x^2 + y^2 \geq 1\}$

III (3 points) Mark the boxes that are followed by correct statements.

a) ■ Sequence $x_n = (\frac{1}{n}, \frac{1}{2n}, \frac{1}{3n}, \ldots)$ converges to $0 = (0, 0, 0, \ldots)$
in the uniform topology on \mathbb{R}^N.
True. Take a basis neighbourhood $B(\vec{0}, \epsilon)$, $\epsilon > 0$ and check that all x_n starting with some n are in that neighbourhood.

b) \square The identity map $\mathbb{R} \rightarrow \mathbb{R}_{\ell}$ from \mathbb{R} with the standard topology to \mathbb{R} with the lower limit topology is continuous.
False. \mathbb{R}_{ℓ} is strictly finer than the standard topology and has more open sets, so that not every inverse image of an open set is open.

c) \square The identity map $\mathbb{R}^N \rightarrow \mathbb{R}^N$ from \mathbb{R}^N with the box topology to \mathbb{R}^N with the product topology is continuous. Here each \mathbb{R} in this infinite product carries the standard topology.
True. The box topology is finer than the product topology.