Theorem (M. Jacobsson, M.K.)

Homology theory H extends to a (projective) functor from the category of link cobordisms to the category of bigraded abelian groups.

\[H(L_0) \rightarrow H(S) \rightarrow H(L_1) \]
\(\mathcal{L}_0, \mathcal{L}_1 \subset \mathbb{R}^3 \)

\(S \subset \mathbb{R}^3 \times [0, 1] \)

\(\exists S = \mathcal{L}_0 \parallel (-\mathcal{L}_1) \)

\(H(s) \) is well-defined up to overall minus sign.

Sign indeterminacy was taken care of by

David Clark
Scott Morrison
Kevin Walker
Applications

Jacob Rasmussen

Combinatorial proof of Kronheimer-Mrowka theorem (Milnor conjecture) on slice genus of positive knots.

\[M \subset D^4 \quad \subset S^3 \]
\[\partial M = \Lambda \]

Slice genus \(g_s(\Lambda) \)
Positive

\[
g_s(\mathcal{L}) = \frac{C + 1 - s}{2}
\]

\[\begin{array}{ll}
C = 3 \\
S = 2 \\
\end{array}\]

Lenhazd Ng

Effective upper bound on Thurston - Bennequin number of Legendrian links
HOMFLYPT Polynomial

Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki, Traczyk

\[P(\lambda) \in \mathbb{Z}[a^{\pm 1}, b^{\pm 1}] \]

\[a \ P(\uparrow \rightarrow) - a^{-1} \ P(\rightarrow \uparrow) = b \ P(\uparrow \uparrow) \]

\[a = q^n, \ b = q - q^{-1} \]

\(P(\lambda) \) related to representation theory of \(\mathcal{U}_q(sl(n)) \)

Quantum deformation of \(\mathcal{U}(sl(n)) \)
\[q^n P_n(\uparrow \rightarrow) - q^{-n} P_n(\leftarrow \rightarrow) = (q-q^{-1}) P_n(\uparrow \downarrow) \]

\(n = 0 \) Alexander Polynomial

P. Ozsváth, Z. Szabó, J. Rasmussen

Categorification - knot Floer homology

\[
H_0(L) = \oplus_{i,j \in \mathbb{Z}} H_0^{i,j}(L)
\]

\[
P_0(L) = \sum (-1)^i q^d z_k H_0^{i,j}(L)
\]

\(n = 2 \) Jones polynomial

\[
H_2(L) = \oplus_{i,j \in \mathbb{Z}} H_2^{i,j}(L)
\]

\[
P_2(L) = \sum (-1)^i q^d z_k H_2^{i,j}(L)
\]
any \(n > 2 \)

\[
H_n(L) = \bigoplus_{i,j \in \mathbb{Z}} H^{i,j}_n(L)
\]

\[
P_n(L) = \sum (-1)^i q^j 2k \ H^{i,j}_n(L)
\]

\[
H_n(O) = \mathbb{Z}[x]/(x^n) \cong H^*(\mathbb{C}P^{n-1}, \mathbb{Z})
\]

\[
P_n(O) = [n] \quad \text{quantum } n
\]

\[
[n] = \frac{q^n - q^{-n}}{q - q^{-1}} = q^{n-1} + q^{n-3} + \ldots + q^{1-n}
\]

Functionality for cobordisms
Alternative approaches to H_n and related theories

<table>
<thead>
<tr>
<th>Author</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Sussan</td>
<td>via highest weight categories for $\mathfrak{sl}(k)$</td>
</tr>
<tr>
<td>V. Mazorchuk, C. Stroppel</td>
<td></td>
</tr>
<tr>
<td>S. Cautis</td>
<td>via derived categories of coherent sheaves</td>
</tr>
<tr>
<td>J. Kamnitzer</td>
<td></td>
</tr>
<tr>
<td>P. Seidel</td>
<td>via Fukaya-Floer categories of quiver varieties</td>
</tr>
<tr>
<td>I. Smith</td>
<td></td>
</tr>
<tr>
<td>C. Manolescu</td>
<td></td>
</tr>
<tr>
<td>M. MacKaay</td>
<td></td>
</tr>
<tr>
<td>M. Stosic</td>
<td></td>
</tr>
<tr>
<td>P. Vaz</td>
<td>cohomology of partial flag varieties + foams + complex residues</td>
</tr>
</tbody>
</table>
Categories \rightarrow functors \rightarrow Natural transformations

Grothendieck group

Vector spaces \rightarrow free abelian groups \rightarrow operators

Dimension

Numbers
Grothendieck group

C - abelian category

$C = R$-mod , R a ring

$G_0(C)$ - abelian group with generators $[M]$, $M \in \text{Ob } C$,
relations

$[M_2] = [M_1] + [M_3]$

for each exact sequence

$0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$
If C - category of finite length modules over a ring R, then $G_0(C)$ is free abelian with basis $[\mathbb{C}]$.

$R = \mathbb{Z}$ basis $[\mathbb{Z}/p]$, p prime

$R = \mathbb{Q}[x]/(x^n)$

$G_0(R\text{-mod}) = \mathbb{Z}$

local ring, has unique simple module \mathbb{Q}, x acts by 0