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The graphical calculus of Penrose-Kauffman describes representation theory of
the quantum group U,(slz) via plane diagrams. We show that in this interpretation
bases dual to Lusztig’s canonical bases in tensor products of finite dimensional
U,(sly)-modules have a simple realization and we compute these bases explicitly.
We further develop graphical calculus and, in particular, obtain factorization of
Clebsch-Gordan and Racah-Wigner coefficients for Uy(sl,) via the intermediate dual
canonical basis.

Next, we give formulas for canonical bases via compositions of Jones-Wenzl pro-
jectors. We also prove that Lusztig’s canonical bases in tensor powers of the two-
dimensional fundamental U,(sly) representation coincide with the Kazhdan-Lusztig
basis for the maximal parabolic (=grassmannian) case of the Weyl group S, and its
subgroup Sg X Sp—k. As a byproduct we get a very simple description of Kazhdan-
Lusztig basis vectors in the grassmannian case in terms of compositions of Jones-

Wenzl projectors.
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INTRODUCTION

In this dissertation we show how the combinatorics of Penrose-Kauffman graphi-
cal calculus relates to two fundamental concepts of representation theory: Lusztig’s
canonical bases and Kazhdan-Lusztig theory. The graphical calculus was invented
by Penrose for a diagrammatical description of the tensor category of representations
of the simple Lie algebra sly. This was generalized later by Kauffman to the calcu-
lus of g-spin networks on the plane, and used by Kauffman and Lins to construct
invariants of 3-manifolds. It was soon shown by Piunikhin [Pi] that their invariants
coincide with Turaev-Viro invariants [TV]. Reshetikhin-Turaev invariants [RT] are
a refinement of Turaev-Viro invariants. With Penrose-Kauffman calculus in hand,
Lickorish [Le] succeeded in providing an elementary construction of Reshetikhin-
Turaev invariants of 3-manifolds. The original Reshetikhin-Turaev approach was
based on a difficult concept of modular Hopf algebra and required understanding

of the representation theory of the quantum group Uy(sl;) at roots of unity.

Piuﬁikhin [Pi] also showed that the g-spin network calculus provides a graphical
interpretation of the representation theory of Uy(slz). In particular, 65-symbols and
other structure cénstants for the braided tensor category of U,(sly)-representations
can be derived using ¢-spin networks (see [CFS], [KaL], [MV]).

Interestingly, the graphical calculus provides natural bases for U,(sls)-invariants
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of tens;or products of ﬁnitéﬂimeﬂsioﬁﬁl U,(slp)-modules. It was conjectured by
Greg Kuperberg that these bases are closely related to Lusztlg s canomcal bases in
invariants of tensor products The premse relation between the two was found by
'Igor Frenkel and the author {FK} Namely, slightly generahzmg gra.phxcal calculus,
one cau define a gra,phlca,l basis not only in the invariants, but in the whole tensor

product of U,(sly)-modules. Then it turns out that the graphlcal basis in a tensor

product is dual to Lusztig’s canonical basis in the tensor product.

Lusztig’s canonical bages are bases in tensor products of finite-dimensional mod-
ules over quantum deformations of finite dimensional simple Lie algebras. Origi- -
‘nally, canonical bases were discovered by M.Kashiwara [Ks| and G.Lusztig [L1] in
- nilpotent subalgebras U (g) of quantum groups g and in finite-dimensional irre-
ducible U,(g)-modules. Later Lusztig extended this notion to give bases in tensor
products of finite-dimensional U,(g)-modules. He also found other generalizations
which we will not bé discussing here and instead refer the reader to [L3]. Canon-
ical bases have remarkable properties of positivity and integrality, namely, various
structure coefficients of the quantum group (multiplication, the action of generators
E; and F;) are positive integral. This is explainea by the fact that canonical bases
come from certain complexes of sheaves on quiver varieties, and, from this point of

view, structure coefficients are dimensions of intersection cohomology groups.

Exact formulas for canonical bases are unknown except for a few cases. Most
of the work on the canonical basis has been done towards understanding a canon-
ical basis in the n.ilpo’sent subalgebra U, (g) of the quantum group g (for example
[BFZ],{Ks],[L3]). In this dissertation we go in a different direction: we restrict to
the case_ of sly, but we obtain exaét formulas for the canonical and dual canonical
bases 1 afbitrary tensor products of finite-dimensional Uq(sig)-ﬁlo&ules. As we
already mentioned, the dual canonical basis naturally pops up from the graphical

calculus of g-spin networks. Aided by the graphical calculus, we are also able to
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give formulas for the 'canonicai basis itself. Nameiy,l we show that canonical basis

vectors in tensor products are given by compositions of Jones-Wenzl projectors.

‘These are projections from a tensor power of the fundamental repreSenta,tidn onto

the highest weight irreducible subrepresentation. The intuitive reason for this an-

swer is clear: the dual canonical basis vectors admit a graphical presentation by
systems of ‘disjoint arcs, while the Jones-Wenazl projector, éomposed with an are,
becomes the trivial operator. So, one expeci:s that Jones-Wenz] ‘projggtors can be
used as building blocks for vectors-of the canonical basis— the basis dual to the basis

of systems of disjoint arcs.

This intuitive guess is correct and we get simple inductive formulas for-canonical
basis vecfors in tensor products. One can now take these formulas and rewrite them
coordinatewise, i.e., write inductive formﬁla_s for coefficients of canonical vectors in
the standard basis of the tensor product. Surprisingly, in the special case when
the tensor product is a tensor power of the fundamental representation, we obtain
Zelevinsky’s recursive formula for Kazhdan-Lusztig polynomials in the grassmanian
case [Z]. That implies the coincidence of Lusztig’s canonical basis in tensor powers
of the fundamental represeﬁtation and Kazhdan-Lusztig bases in the grassmanian

case.

We prove here that these two bases coincide, using‘a more invariant approach: by
identifying the two vector spaces, the elementary bases of these spaces and showing
that under this identification the two involutions - needed for defining canonical,
respectively, Kazhdan-Lusztig bases, coincide. The proof is concluded by observing
that thé integrality properties of the two bases also match. This is a joint result

with Igor Frenkel and Alexander Kirillov Jr. [FKK].

This proof does not use the specifics of sl; and can be generalized to establish the
coincidence of the canonical basis of a tensor power of the fundamental represen-

tation of slp with the Kazhdan-Lustig basis for the relative case of the symmetric
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group and its parabolic subgroup ﬁ(ith k blocks. We‘chose not do this general case
in our dissertation and the proof wili é,ppea.r in [FKK].

;aet us say al few words about the organization of this dissertation. Chaptel:s
1 and 4 contain results of a joint work with Igor Fx‘enkel.l Chapter 5 is a joint
work with Ig_or Frenkel and Alexander Kirillov J r Chapter 3 contains results of my
preprint [Kh]. In Cha,pter 1 we recall the finite-dimensional representation theory of
the quantvim group U,(slz) and, specializing results of Lusztig [L3] to the sl case,
we define tﬁe canonical basis of a tensor product of finite-dimensional irreducible
Uy(slz)-modules. Using the invariant form, we define the dual canonical basis in
the dual tensor product. Our main results about the exact form of the canonical

and dual canonical bases are stated in section 1.4.

 In Chapter 2 we recall the graphical calculus of ¢-spin networks (more details can
be found in [CFS], [Kal], [MV]) and, following [FK], construct the dual canonical
basis of tensor products. In Chap’se;; 3 we explicitly construct the canonical basis of
a tensor prodiict and prove that it is indeed canonical by computing scalar products

with the elements of the dual canonical basis.

The standard approach to the graphical calculus treats the Jones-Wenzl projec-
tor as an elementary unit and studies networks composed of these projectors. In
Chapter 4 we go the other way and look at how the projector itself decomposes in
the graphical basis of the Temperley-Lieb algebra. We refine the Jones recursive
formula for the projector and in sections 4.1 and 4.2 obtain interesting formulas
for the coefficients of the projector in the graphical basis. In the later sections
we reap the fruits“ of our work by giving a very simple non-recursive derivation of
formulas for the 63 -symbol {compare with [MV]) and Clebsch-Gordan coefficients.
We mtend to write a separate paper where we will apply the results of section 4.2

to Kazhdan-Lusztig theory.
In the last chapter we prove the coincidence of the canonical basis and Kazhdan-
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Lusztig basis. )

Before we conclude our introduction. let us quickly review the related works by
a number of authors. First, books b}' Carter, Flath, Saito [CFS] and Kauffman,.
Lins [Kal/] are excellentl sourees to learn about graphical calculus and its relation to
representation theory of U,(slz). These two books have different emphasis: [Kal)]

'~ has primary interest in constructing 3-manifold invariants from g-spin networks

while [CF'S] is mostly about applications of graphical caleulus to the representation

theory of Uy(slz).

The geometry of the graphical calculus for U,(sl;) becomes transparent in the
identification of tensor products with homology groups of certain configuration
spaces, studied by R.Lawrence and, independently, by A.Varchénko. Under this
identification the diagrams representing the dual canonical basis acquii"e the mean-

ing of actual cycles in these homology groups [FKV].

An atternpt to understand Lusztig’s canonical bases for tensor pr'oducts beyond
the case of sl; was made in a joint paper with Greg Kuperberg [KhKu]. We com-
pared Kuperberg’s graphical bases [Ku] in invariants of tensor products of sz mod-
ules with the bases dual to Lusztig canonical bases. Our result was asymptotically
negative: the two bases coincide for tensor products of less then 12 three-dimensional

-modules and there is exactly one counterexampie when there are 12 modules. As
the number of factors in the tensor product grows, almost all vectors in the two

bases become different.

Fan and Green showed in the preprint [FG] that the image of a certain part
of thé Kazhdan~Lusztig basis in the Hecke algebra of the symmetric group under
homomorphism onto the Tempierley—i;ieb algebra coincides Wif;h the graphical basis
of this algebra. It is an interesting question, answer to which is unknowﬁ to me:a.t

the‘moment, how to relate their results with ours.
I’d like to conclude this introduction by offering the following problem that came
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up in a discussion with Arun Ram. The Kazhdan-Lusztig bases in the relative case of .
the sy rnm(*‘mc group S, and its max1ma1 parabolic subgroup can be constructed via,
the graphical calculus of plane diagrams. It is natural to expect that the Kazhdan-
Lusztig basis for the relative case qf the affine Weyl group Sn and its parabolic
subgroup S X S,—j can be obtained frém the ap.propriate graphical calculus of

diagrams on a cylinder.



CHAPTER]

THE QUANTUM GROUP U,(sl;) AND ITS REPRESENTATIONS

1.1. The quantum group U,(sl,)
1.1.1 Hopf algebra structure.

Let C(g) be the field of complex-valued rational functions in an indeterminate q.

We denote by ~ : C(g) — C(g) the C-algebra involution such that g% = ¢~ for all~

2.

DEFINITION 1.1. The quantum group Uy(sly) is an associative algebra over C(q)

with generators B, F, K, K~ and relations

KK1=1=K"K

KE = ¢*EK
1.1
(L) KF = ¢ ?FK
-1
EF—FEzﬁllir
q—q-

The quantum group U,(sly) has a Hopf algebra structure with comultiplication
A

AI{:EI — K:t} ® I{:i:l
(1.2) | AE=EQi+KQE

AF=F@K '+1@F

&




and counit . o
n(K*)=1, n(E)=n(F)=0
There is an explicit expreSsibn for !i}.lle. antipode, but we do ﬁot need it in this paper.
- We will often use the shorthand notation U for Uy(slz).
. lNext we will define two types of involutions. We call the first one the Cartan

involution and denote it by w: :
wB)=F, w(F)=E, wE*)=K*, w(g*)=®

(1.3) : |

wizy) = w(y)w(z), =z,yeU

The second involution, denoted by o, will be called the “bar” involution:

o(B)=E, o(F)=F, ok*)=K¥, o(g*)=¢"
(1.4) | ‘
o(zy) = o(2)o(y), =z,yeU

It is easy to check that w (respectively, o) is a well-defined antiinvolution (respec-

tively, involution) of U considered as an algebra over Cq) (respectively, over C).

Using the bar involution, we define another comultiplication as follows

Alz) = (e ® 0)A(o(z)), z€U
This implies
ZI{ﬁ:I — Kil ® K:l:l

(1.5) AE=E®1+K'Q®E

| AF=FQK+1QF

Lusztig introduced a certain modified version of the quantum group, denoted
I.}, which has a canonical basis with the remarkable properties of positivity and
integrality. To define I'J, we adjoin to U a system of projectors {1, },ez such that

Imln = 6mnly for all m,n € Z and impose the relations

Elp = 1p42B, Fl,=1,0F, K*1,=1,K* =41,

Then U is defined as the subalgebra (without unit) spanned by the elements z1,,2 €
U,neZ. '



1.1.2 Quasitriangular structure.

The quantum group\ U,(slz) possesses a quasitriangulér structure encoded in the
properties of the universal R-matrix [Dr]. Drinfeld’s original descr.iption of the
universal R-matrix required thq introduction of a related quantum group, denoted
Un(slz). The quantum group Up(slz) is an as'socia.tivel algebra over the ring C[[A]]
of formal power series in a formal variable A. It has generators E, F, H satisfying

the relations

HE — EH = 2E
HF — FH = -2F
RH _ _~hH
EF-FE=2-_"°_
e" — £

and comultiplication A (A is similar)
AH=H®1+1QH
AE=EQ®l+e " gE
AF=F@cH +10F
Note that one‘can embed Uqy(slz) in Up(sly) by defining K*! = eFhH gpd g%t = etk

One can also realize Up(sly) in a completion of U,(sly) by formal power series

Cl[1 — ¢}] so that A =logg (= log(1 — (1 —~ q))), H= l%sé%{-.

The universal R-matrix has the form
(1.6) R=0C6

where

n —2n-} — ¢ n n

| 0= (~1)rg T (q—{—%I—LF ® E
(1.7) n20 o
h
C = exp(ﬁgﬂ ® H)

Then one has the following properties

@K@_x) = A{z)0
(1'8) __..,u
CA(z) = A(z)C
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where A is the opposite multiplicatioﬁ. These relations imply
(1.9) | : RA(z) = A (z)R

One can also check the quasitriangularity identities

S (A® 1)}R) = Ri3Ras
- {1.10) _ _
(1® A)YR) = RizRaz

The quasitriangularity identitiés imply the (universal) Yang-Baxter relation
(1.11) RizRisRas = RasRizRaz

This element belongs to a completion of U®3. We call it the full braiding and
denote it by R®), Note that

(1.12) RB) = Ry3(1 @ A)R) = Ri2(A ® 1)(R)

The Yang-Baxter relation holds for @ only in a modified form [L3], however the

exact analogue of the identity (1.12) is still valid. Thus we can define
We also define
C®) = Cpu(1 @ AY(C) = Cra(A R 1)(C)

It is easy to see that

(1@ A)(C) = C12Cy3 = C13C2

(A ®1)C) = Cy3Ci3 = C13Co3

We have a generaliza,tion of the factorization (1.6)

(1.13) RE) = cBp®)
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In fact we have :
R = C13012(A ® 1)(08) = C19042(A & }(C’)(K@.@ 1(0) =

= Cy3(A® 1)}(C)O12(A w5 1)(0) = C'Me™ |
Here we use the commutativity of ©y; and (A ® 1)(C) = Cy3C3, which can be
verified as fdllows. First we note that

IQHRH+HRI®H,F"QE"®1]=0

It implies

' ad(m-g-I@H@Hm —gH®1®H)®12 =0

Then exponentiation yields
CsC1301:C 5 = explad(~21 9 H O H - 2H ©10 H)Os2 = O
More generally, we deﬁn¢ a full braiding R(™ in a completion of U®”
R™ = (R, )" DA OA" ) R) = (Ry,...n1)" DB @ 1)(R)
The elements 6{’” and C™ are defined by analogous formulas and one has |

PROPOSITION 1.1. R(® = ¢ngn)
]

1.2. Category of finite-dimensional representations

1.2.1 The fundamental representation.

Let V; = Cvy ® Cv_y be a two-dimensional irreducible representation of U With

the action defined by the formulas

K#*ly, = gtlyy, KFly g = ¢Fly_,
E‘Ul = 0, E’U.__} = U3
-FU;{ﬁ’U_l, F'U..;ZO
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We define a bil_iiuea;: 5yn‘:mcr£ric pairing in V) by
<y >= dijs | 1,] = +1
One can easily check that
< 2v;,v; >=< vj,wlz)v; >, ze€U

We call V the fundamental represeniation of U. We denote by Vy = C the
1-dimensional representation of U given by the counit 7.

1.2.2 Tensor powers of the fundamental representation.

Next we consider a tensor product of two fundamental representations V; ® V1.

4

We define the bilinear symmetric pairing in V; @ 17 by
< v; QUj, vy @ vy >‘= 8ipbi50, 0,47, = &1
Then we have for z ¢ U
< Alz)v; @ vy, 05 @ vy >=< v; @ vy, Aw(z) vy @ vy >

Recall that we work primarily in the dual space with the dual action given by
A, except for chapter III, where we use A when working with the canonical basis.

To indicate the dual space we will use the upper indexes

! =, = vy

We introduce three intertwining operators with respect to the dual action given

13




a:VioVi—-V
61(”3. ® vi) = ei(v' ® v“i.) =0
a(v @) =1, (@ ® v ) = —g
(119) §: Vo Vi@ Vy
61(1) =l @uv !~ g v @l
Ri: Wy ®'Tf1 -V ®W
Ry = PR
Then m‘fe‘ have
(Idv, ® e1) 0 (6 ® Idy) = Idy, = (e ® Idy) 0 (Idy, ® 61)

€106 = —qg—gq "

(1.15) 3 . .
Ry =q%610e;+ ¢ 21d
R}y = —~(¢—q¢ ")g? Ru + qld
Remark: Because of the appearance of the square root ¢%, from now on we,
strictly speaking, work over the fleld (C(q%) of rational functions in q% rather than
in gq.
Now we consider the tensor product of n fundamental repreéentations V1®...0V;

with the pairing
(1.16) < Vi ® e @03, 07 @ @V >= 5.6

One can check that the action of A" !(z) is dual to the action of K”ml(a:) for all
zely. -

1.2.3 Temperley-Lieb algebra.

We recall that the Temperley-Lieb algebra T'L, is an algebra over {(q) with
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generators Uy, ..., Un1 énd defining relations
| | v = ~(¢+q)U;
117y UiUi U; = U;
UiU; =U;U;, Ji—~j|>1

This algebra admits a realization as the algebra of intertwining operators of the

U,(slz)-module V2" as follows
(1.18) | Ui — 190D ® (6, 0 ¢1) @ 182—i~1)

Moreover the Temperley-Lieb algebra T'L,, is a factor al gebra of the Hecke algebra,
Hpy. The latter algebra is also defined over C(g) with generators Ti,...,Th—; and

defining relations
Tl=—(g-¢Ti+gq
(1.19) T T = Ti+1TiTi+1
TTj = TiT;, |i—j]>1

It admits a homomorphism to the algebra of intertwining operators of V,®" by

the formula
(1.20) T; — 186-1) g q—%Rn & 1®(n—i-1)

The Temperley-Lieb algebra has a natural basis formed by reduced monomi-
als in the generators Uy, ...,Un—;. A monomial is called reduced if it camhot be
transformed into another monomial with fewer factors. Also, equal reduced mono-
mials a.re identiﬁéd. We call the resulting basis the dual canonical basis of the
Temnperley-Lieb algebra TL, and denote it by BTL The cardinality of BT% is the

nti

n-th Catalan number WL—( 2??) It follows from a g-version of Schur’s duality [J]

that the Temperlgy—Lieb.algebra T'L, constitutes the whole algebra Endy(V,®™).
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1.2.4 Finite dimensional irreducible representations.

Tensor powers of the fundamental representation decompose into various direct
- sums of irreducible (n+ 1)-dimensional representations V,;,n = 0,1,2,... . One can

always choose a basis
{vn}, —n<m<n, m=n(mod2)

of V,, such that the action of U is the following
K:i:lvm - q:E:m,vm

n-+m

2
n-—-m

Evy = | + 1}vmt2

F'vmm[

+ 1] VUm—2s

where [m] = ’%-‘1_:11 and vp4p = Vop.g = 0.

We define a bilinear symmetric pairing in V,, by the conditions
< zu,v >=L u,w(ziv >, < Up,vu >=1
where u,v € V,, and = € U. This implies that
n
< Vp—2k) Vn—21 >= Ok [ k} ;

where

B

Let {v™}2 __,. be the dual basis of {vm}n=_, with respect to the form <,> .

Clearly

-1
e[ e

The action of U in the dué,l basis is the following:
I{ﬂ:lvm — gﬁ:mvm

n—m

(1.22) Bt = [
va:[n—;m] m—2



It is well-known that the irreducible represcntétions Ve,n =0,1,2, ..., constitute
a complete set of so-called type [ irreducible finite-dimensional representations; ¢ e:, _
representations such that A acts iu every weight subsp;c‘e by ¢™, for some m-€ Z.
The category of type I finite dimensional representations is closed under the tensor

product. In particular, one has

m+n
Vi.

k=|m~—n]|

iR

Vin @ Vi
where the sum is over those k such that k — |m — n] is even.
1.2.5 Jones-Wenzl projectors.

Any irreducible representation V, can be realized as a g-symmetric power inside
VE". We will write explicit formulas in the dual basis.

Let 5 = (s1,...,8,) and s; = 1,1 < i < n. We denote

n

sl=) s

el
and
(1.23) Isll+ =D {si > s} flsll- = {5 < 55}
i<y i<
where {a > b} = 1if a > b, and 0 otherwise.

ProOPOSITION 1.2. The follo‘wing inclusions end projections intertwine the ac-
tion of Uy(sla)

byt Vi = Vfg’”

-1
tn{v™) = ’: n?m } Z gl @ . v

(1.24) 2

s lsl=m

Tp t V1®“ — V,

,n,n(vsl ® . ® ,0371)-m q—“3”+v|3|

The proof is straightforward. [J




" COROLLARY 1.3. 1p0m, : Vl®" — Vl®“ is @ projector, that is, (tn 07y )% = (nomy.

O

The operator ¢, 0 7, is called the Jones-Wenzl projector and is also denoted Pn-

 As we mentioned earlier, the Hecke algebra H, has a natural homorhorphism to
the Temperley-Lieb algebra T'L,. To simplify notations, we identify the generator

T; pf the Hecke algebra H, with its image in TL,:

(1.25) Ti=q - +U;

The symmetric group S, has a presentation by generators 8y, ..., Sp—1 and rela-
tions

2 v " . - .
8y = 1,  8iSi418: == 8i41848i41, i85 = 8§84, h ——~]| > 1.

For a permutation s € S, denote by I(s) the number of pairs (1,71 <1 <3<
n,s(i) > s(j). A presentation of s € 5, as a product $;,...8;, where k = I(s) is
called a reduced representation of s. For general s it is not unique.

For s € S, denote by T(s) the element of the Temperley-Lieb algebra TL,
defined by

(1.26) (¥ 1, .. Ty,

where s;, ...5s, is a reduced representation of s and T; is given by (1.25). 1t is easy
to check that T(s) does not depend on the choice of a reduced representation of s.

The following explicit formula for the Jones-Wenzl projector is proved in [KaLj].

THEOREM 1.4. The Jones-Wenzl projector

(1.27) | Pr = -[-?%-w; > ¢ T(s)
' T eSS,
where ] = [1]-[2]- In]— and [i] o= L=t

18
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- 1.2.6 Duality intertwiners and braiding.

Next we i’ntrodgzée generaﬁzatidns of three inte;'twining operators ¢, 6.1, Ry _from |
the previous subséctiori: | | |
€n: Va®@Ve =V |
tn=60(l@g®1o..0 (1®("-"‘1) Re ® i®(“_1)) 0 (tn @ tn) |
bn Vo> Va®V,

(1.28)
bn = (7 ®7mn) o (1% V@5 @186 . 0(10e; ®1) 06,

Rmn:Vm®Vn‘_>Vn®Vm

Rpn = PR

where P is the permutation z @ ¥y — y @ z.

The quasitriangular properties of R imply that
(1.29) ‘ Rmn = (Wn & Wn) o Rmn o (’»m @ f»n); '

where R, is a composition of mn operators Ry; in the natural order. One can

also derive generalizations of the identities (1.15).

1.3 Lusztig’s canonical bases

1.3.1 Based modules.

We will briefly recall definition and properties of based modules introduced by
Lusztig [L2]. We will use primarily Lusztig’s notations. Let A denote 7 lg,¢7%]. We
will consider finite dimensional U-modules of type I. For any such module M one

has a decomposition M = @& M?, where
) AEZ

M*={me M|Km = ¢ . |
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Let B be a C(g)-basis of M. We define an involution o5 : M — M by
(1.30). . : | op(fb) = fb

for all f € C(q) and all b € B. Then (M, B) is called a based module (with respect

to the choice of generators E, F,‘ K#! of U) if the following conditions are satisfied:
" (a) BN M? is a basis of M"‘,.for any A€ Z.

(b) The A-submodule 4 M generated by B is stable under E™/[n]! and F™/ [n]‘

(¢) The involution op is compatible with the involution o on U in the sense that
(1.31) : op(um) = o(u)op(m)

for all u € U,m € M.
(d) B is a crystal basis of M at oo.

The flotion of a crystal basis was introduced by K_ashiwara [Ks]. For our purposes
we onl‘y need the fact that {vm}%__, is a crystal basis of V,, at co for alln € N.

The direct sum of two based modules (M,B) and (M', B') is again a based
module (M & M', B U B"). |

The tensor product of two based modules M @ M’ with the obvious basis B® B’
does not in general satisfy property (c) of the definition. Lusztig introduces a

modified basis BB’ in the tensor product as follows
let T - MM — M@M’ be given by

(1.32) U(m@m') = O(cp(m)® op(m'))
Then
(1.33) vt =1

because ©0 =1 ® 1. Also

T(u(m@m')) =c(u)¥mem'), uelU
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iy
'I‘he involution \If will be the associated m*;olutzon opeopt for the modxﬁed basxs
Let aM@M' ( respectively Z{gq]M ® M') be the A-submodule (respectwely Z[ “"1]-
submodule) of M ® M ! generated by the bas1s’B ®B. The set B x B'hasa part1a1
ordering such that (by,5,) > (b, ¥,) if and only if
b€ MM B, € M™ by € M, B, € M™,
A2 A2, Ay S A5 A AL = A + A
Then Lusztig proves the following: '
THEOREM 1.5.
(a) For any (b1,b}) € B x B', there is o unique element by &b} €1 M @ M
such that
Wby Ob)) = by b
and

biOb —bi @b € ¢ -y MM .
(b) The element by $b) z'n.(a) is equal to by @b, plus ¢ linear combination of elements
by @ b, with
(b2,04) € B x B, (b2, 85) < (b, b))

and with coefficients in ¢~ Z[g™1].

(c) The elements by by with by, b as above, form o C(q)-basis BOB' of M@ M,
an A-basis of AM ® M' and a Z[q~"]-basis of g4-11M @ M.

This theorem implies that (M @ M', BOB') is a based module with associated

wvolution ¥.

1.3.2 Canonical basis for the tensor product of two irreducible repre-

sentations,

The first class of examples of based modules for U is provided by irreducible
representations and canonical basis
(Vm {vm}n m—-n):n € Z+
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By

Lusztig also gives an example of based modules associated with the tensor product

of two irreducible representar,ibns
(Vin @ Vo, {vrOwmi}),m,n € Zpy—m <k<m,-n <1< n
One has

. _ : l ‘ .
’t)m_zkovzl_ﬁ = Zq s(s+k) [5 j ]vmw2k-~2s & V2l—nt24, k = l >0
o 20 ‘ .

- | s+ k |
Vm—2kQV2Uwn = E q 8(3“)[ j }Um~—2k-—-2s ® vol—nt2s, (k>0
820

One can also derive the inverse relations

_ { '
Um0k & U9fepn = S (—1)%g—sk+1) {S j ]vm—Zk—23<>v2l—n+2sa kE>12>0
_8>0

' ' _ E
Vm—2k @ Vglmpn = E (—1)2g— D) [8—: ]'Umw2k«»2s<>v2l———n+2s$ I2k20
g20

Finally one can compute the action of the generators of U
E(vm—2k0v21-n) = [m — k& + 1}(vm-2k4+20v21-n )+
{I1+1>k}m—2k+ 14+ 1)(vin—2tOv2i—nt2)
Flom2kQuzi—n) = [n ~ 1+ (vm-26Qv21—n—2)+

{k +1> l}[n —2l+ k4 }-](Um—-—?k—?ov?lwn)
where {{+ 1>k} =111+ 1> k and 0 otherwise.

We will rewrite these formulas in the dual basis since it will be more suitable for

the graphical interpretation.

1.3.3 Basis dual to Lusztig’s canonical basis: example of a tensor prod-

uct of two irreducibles.

Let us define the bilinear pairing <, > of Vi, ® Vi, and V,, ® Vi, as the product

of the corresponding bilinear pairing in the factors, i.e.

< Vg ®'Ul,?)i @'U"€ > e 5f 55
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Then we have for z €U
< Alz)vr @ v1,0" @0 >=< vy 1 e D) el ek

Thus the natural action of U in the dual tensor product is given by the comultipli-
cation A.

We define the dualJof Lusztig’é basis in & tensor product with respect to the form
<, > ‘.

< vpdu ot Qo >= ¥ gF
The above formulas imply

PROPOSITION 1.6. Ezplicit ezpressions for the dual basis in the tensor product
Vo ® Vin and the action of U in this basis are the following
(2) U2l—n ® vmm2k — Zq——sk [i]t{zlﬂmn-—23@vmm2k+2s’ A > | >0
820

— - —alk e -
,U2[ n ® ™ 2k — Zq sl UQI n 23®Um 2k+2s’ I > k >0
. a>0 8

(“) U?l-n(?vmwﬁk — Z(__I)sq—s(kms+1) ’:i]v%wn-—?a ® ,Um-w2k+23, A > I >0
520

vzi—n@,vm——»zk — Z(Wl)sg—s(l_s»m} [i]vzlmn-—% @ ,Umw2k+23 ! > k >0
3>0

(i42) E('{)m""@um“zk) = [n— l]vzl““+2@vm”2k+
{k > [}[n — 21 + ko2 nQym—2k+2
F(o2"Qum=2%) = [m — ko2 mQym-2k-2
{1 > k}m — 2k 4 [~ 2Qym -2k
We will have a.‘ simple graphical interpretation of formulas (ii} and (iii) in Section

2.3.

1.3,4 Canonical and dual canonical bases in tensor product of finite

number of irreducible representations.
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Repmted]y appl)mg the Lusztig comtrmtlon one obtams a canonical basis in’
the tensor product of r irreducible roprm;on'r*atmm Val ®...QV,,. Moreover, Lusztzg‘
* proves the associativity of the tensor product construction that guarantees that the

canonical basis

{or, 0. Qv ), —ai Shi S

is independent of parenthesization. The associated involution ¥(™ is defined by
(1.34) - W =0Mo0sp, ®..003,,,

where B,, denotes the canonical basis in Vg, = 1,...,n, and 0" by abuse of
notation denotes the operator of multiplication by (™ introduced in Section 1.1.2.
We also define ¥ by the same formula with O™ replaced by B,

Lusztig’s theorem implies that the canonical basis can be characterized by the

two conditions:
\l[l("")'(wcl O Qv ) = t;klO...(Svkn
Vg, Q0 QR — Uk ® .. Q Ui, € q""1 Ze-] Vo, ® .. @ Vi,
In fact one can proceed by induction. For n = 2 it is a special case of Theorem
1.5(a). In the inductive step, we apply Theorem 1.5(a)to M =V, ®...QV,,_, and

M' =V, with bases By, {...0B,,_, and B, , respectively. One has the associated

involution
(AP @1)(@) 0 (¥ V@0, ) =
(AP @1)0)o (0" N @1)o(op,, ®..00p, )=Tm™
Theorem 1.5(a) also guarantees the existence of a unique element

o= (Uh <>...<>'Ukn_1)<>vkﬂ,

such that

— (0, 0 0ok ) B0k, € gz (Ve @ @ Ve, ) © Vi,
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Thus to show that r is also the unique element such that
P © QU €V, ® @ Ve, , ®Va,

" we will use the induction 'assumption and the fact that the bases B,,¢...¢B,,_,
and B, ®...® B, _, are related by a triangular matrix With 1’s on diagonal and off
diagonal elements from ¢~?Z{g™*]. For two factors (n = 3) this immediately follows
from Theorem 1.5(b). For general n it is again proved by induction by repeatedly
applying Theorem 1.5(b). o

' For convenience in the graphical interpretation we switch to the dual basis. We
define the bilinea.r pairing <,>of V;, ® ...Q@ V,, and V,, ® ... @ V,,, by

<o, @ QU0 @ @R = 6,’:36::’:

As in the previous subsection, the action of U in the dual basis in given by K(nml).

“We also define the dual of Lusztig’s basis with respect to this form
k! 4 kL oky
< Vg, Q0 Qg , 0 000 > 6,61 ...5,%

We denote by B* the dual canonical basis {v%}, ~a; < ki < a;, k; = ai( mod 2),
of V,; and by B*=0Q...0B* the dual of Lusztig’s canonical basis of Vo, ®...0 V,,..

Then the above argument implies the following

THEOREM 1.7.

(a) For any —a; < k; < a;,1 = 1,..,n,k; = ai{mod 2) there exists o unique

element

(1.35) QLM e Y, ®..8V,,
such that

(1.36) T (k0 Qukt) = Fn O Oy




and

{1.37) vk“@.._.@.vk‘ — @ p ek e g 21 Van @ @ Vay

| (b) The element v*2 Q.. .QuvF1 in (a) is equal to v¥» @ ... ® v¥1 plus @ linear com-
bination of elements v'» @ ... @ v with Y iy i =Y 0, ki and z:’;l L > z:‘;l k;
foralll <n' < O (- ll) # (kn,.;.,kl) and with coefficients in ¢~ Z[g™Y].

(c) The elements v*» Q... QvFr form a C(q)-basis B*~ Q... QB" of.Van ®...0V,,,
an A-basis of AVa, ® ... ® V,, and a Lg~]-basis of gp-11Ve, @ ... @ Va,.

Proof: The proof of the corresponding dual statement is explained above. To
complete the proof we need to transfer it to the dual picﬁure. We will use the

following identity
(1.38) < 0™y, ®...®vkn,vk:* ®...@v% >=« Vi, ® ...®vkﬂ,€~)(“)vk:‘ ®..0vk >

In fact for n = 2 it follows from.the definition of © and the form <,> .

For n = 3 we have
< (AR F™ @ EUYO ® 1)uk, ® vk, ® viy, 0" @ vF2 @ vF1 >=
< Up, Q@ Uiy @ Vi, (1 ® O)(1 @ AYFI™ @ B0 ks @ o2 @ vt >
< VEy ® Uiy ® Uiy, (1 @ ANFI @ E™Y(1 0 0)* @ vfe @ o1 >
For general n the inductive step is similar. '

Then (a) follows from

(1.39) ‘ (-3(”)01 R Qo =01 R..% an@(n)

where we abbreviated oy, to o;,t = 1,...,n.

The other assertions immediately follow from the duality. [J
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1.4 Explicit formulas for canonical and dual

canonical bases in arbitrary tensor products

1.4.1 Dual canonical basis‘.

One of our main results is an explicit form for the dual canonical basis in a
tensor product V, ® ... ® V,, of finitely many irreducible representations. We will
also idéntify the subset of thé dual canonical basis which spans the subspace of
U-invariants, denoted InﬁU(Va" ® ... R V).

First we will describe the dual canonical basis of Vl‘gm. Denote by 1®* the identity

operator V¥ — V8%,

THEOREM 1.8. The following 3 rules provide o recursive construction of dual

canonical vectors v, V...Qv,, € VO®, where €y, ...,en € {1, ~1}:
n 1 1 ’

(2} v-1Qv,_,V..Ovy =v_1 ® (v.,_,9..00,,)
(#1) v, 9..9v,0v; = (v,9...00v,) @ 1
(#1) v, 0..0v, 001 Qv_1Vv,, V.. Dy, =

(1% = g 8, @ 19073y, Q... Qv v, 0...0v,,

Proof: Claims (i) and (ii) of the theorem are trivial, for (iii) we need to check
two conditions of Theorem 1.7(a). Of course, the second condition immediately
follows from the formula (1.14) for é,, the first condition, i.¢., the invariance of the
elements of the dual canonical basis with respect to ﬁ(n) will be verified in Section
2.4 using graphical calculus. [

Next we give a general result about the form of the dual canonical basis.

Given ki, —a; < ki < ai, ki = a;(mod 2),1 <1 < n, \;ve want to have an explicit

formula for the dual canonical vector
pir e OpaTh e Vg )V,

Let (€q,...,€1), where @ = a3 + . + Gn. & € {1,~1}, be a sequence of ones and

negative ones that starts with k, copies of negative one, followed by a, — k,, copies
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of one, followed by k,_; copies of negative one, followed by @y~ ~ kp_y copiés of

one, ..., and ending with a3 — k; copies of one. Then we have

 THEOREM 1.9.

p2 2k Q. Qua~h = (7, ® ... @ Ta, e, VO,

where ver 2B Q| Qper—2k1 5 ¢ dual canonical vector of V4, ®...0V,, and v, 9...Qv,,

a dual canonical vector of V2* with €, ...,€a as defined above.

Proof: We need again to check the two conditions of Theorem 1.7(a). Again,
the second condition is obvious from the formula (1.14), while the invariance with

respect to o™ will be demonstrated in Section 2.4. O

COROLLARY 1.10. Under the isomorphism Endy(VE™) 2 Invy(VEP™) given

by

.

(1.42) S—=(S®1% o (1" VR 1% Mo o(1@6®1)0b

(where S € Endy(V,2")) one has o bijection of the dual canonical basis BTL of the

Temperley-Lieb algebra and the dual canonical basis in Inm(TG@(gn)).

1.4.2 Canonical basis in tensor products.

Denote by v(z1,y1;...; 2k, Yr) the element of the canonical basis of V}@”,n =
Zle z; +y; with the lexicographically highest term v{e”” ®v§’f1 ... ®v£®x’° ® v?i“‘.

We allow some of z; and y; to be 0. Thus,

(1.43) O(1,Y1; s Tk Yk ) = 00 00V G HuPTEOu BT

LEMMA 1.11.

(z) U(O?yl'}x%---;xkayk) = v%%“ ®U($'29y27---1$k1yk);
(33) U('rlayl; ey Yk 11 Ty 0) = U(.mlvyl,'",xk—-}ayk——l) ® Uick-
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3.8

The lemma holds because 'v®y‘

ca.nomcal basis of V@ and so, if bis an element of the canonical basis of an’

is the 1ex1cograph1ca,lly lowest element of the'

: arbitrary tensor- product of ﬁmte d1mens1onal modules, we have v®yl<)b = v®3" t ® b.
A similar argument implies part (zz) of the lemma.. 0o

Recall that we denote by 1®™ the identity operator V¥ — V@™,
THEOREM 1.12. (7)) If yiy 2 z; and y; < xi41 then

m:'i'y:]

V(T1, Y1} s Ty Yi) = [ (1% @ pyypy: ® 1%9)

(B2, Y15 oni Timd Yimd + Yi3 Ti + Tikdy Vit 1} ool Thy Ui )

where 1 =3, ;2 +y,g = Yoesi Tt + Yt
(i) By < zo then

V{21, Y150} Ty Y ) =

_ [301 + i1

HOF ] ](pz1+3’1 @1 )(v®y1 & U(:El + 22, Y25 .- 3 Tk yk‘))a

(4i) If yr—1 > ai then
v(ml,yﬁ---;ﬂ?k,yk) -

_ | Tk + yx
Tk

(1872679 @ popgoyy (@1, Y15 s Thmt, Yot + 3a) ® 0P7F).

Applying this theorem k times, each time to the canonical basis vector that ap-
pears on the RHS, we can get an explicit formula for any canonical basis vector
(@1, Y15 3 Ty Yk )- Thus, the theorem explicitly describes all vectors in the canon-
ical basis of the tensor product V;®". The proof of this theorem will be given in
Section 3.2.

It is easy to extract the canonical basis in an artitrary tensor product from the

canonical basis of a tensor power of the fundamental representation because of the

following theorem.

29



THEOREM 1.13. The element vg, -2k, O - OVa,~2k, Of the canonical basis of a

tensor product V,, ® ® V,, 15 given by
valmz}ﬂ(}...(}vanmzkn = (7g, @ .. @ T, J0(a1 — k1, k155 0 ~ ki, kp).

Thus, the canonical basis of the tensor ﬁroduct Ve, ® ... ® V,,, is obtained by

projecting certain canonical basis vectors of the tensor product T/}@’(q‘"'"'f";'a"). :
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CHAPTER II

GRAPHICAL CALCULUS AND DUAL CANONICAL BASIS

In Sections 2.1 and 2.2 we recall the graphical calculus of U-intertwiners and
slightly generalize it, by introducing oriented arcs, to describe the matrix coefficients
of intertwiners. A similar generalization wé,s independently introduced in [CFS].
Also, in the non-quaﬁtized case (¢ = 1) physicists had long been using arrows to
depict weight vectors of sl; representations (see [M], for instance). In Section 2.3 we
describe the dual canonical basis graphically and in Section 2.4 prove the validity

of our description.

2.1. Temperley-Lieb algebra

Recall that throughout this section the action‘of U,(slz) in tensor products is
given by the dual comultiplication A and its iterations.

We will depict diagrams corresponding to intertwining operators a : V2™ —» V2"
by certain curves connecting m distinct points on one horizontal line and n distinct
points on another horisontal line lying above the first one. Only simple intersections
are allowed. At each intersection we specify the type of intersection: over-crossing
or under-crossing. Thus, any diagram can be viewed as a projection of a system of
curves in three dimensions. The curves will usually be inside the_‘box bounded by the
two horizontal lines and the vertical lines determined by the extreme left and right
points. Composition of two intertwining operators is obtained by concatenating two

boxes vertically from below.
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aoh

The tensor product of two intertwining operators corresponds to concatenating

two boxes horizontally

a®b a b

" The identity map I, : V@ — V2" is given by n parallel vertical lines. The

other basic intertWining operators correspond to the following diagrams

SN e\

, / N\

Ry R
/ | AN

Then the relations (1.15) can be expressed as follows

s N
N TN

To describe the Temperley-Lieb algebra T'L,, one can consider diagrams of n

[

g e

il
=)

simple, pairwise disjoint arcs in R X [0,1] connecting n points on R x {0} (say,

the points (1,0),...,(n,0)) with n points on R x {1} (the points (1,1),...,(n,1)).
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The multiplication is given by the composition as above combined with rescaling to
brinig the endpoints of the composition to the positions fixed as above. . -

The generator U; of the Temperley-Lieh algebra has the following diagram
! i i+i n

and the second defining relation can be visualized as an isotopy
i i+l 42 il 2

or its mirror image. The isotopy classes of diagrams in the Temperley-Lieb algebra
TL, provide a graphical realization of the dual canonical basis BI? introduced in

Section 1.2.3.

The generator T; of the Hecke algebra is given by the diagram

1l
2

multiplied by ¢ % and the second defining relation has the form of the braid relation

Given a diagram a with m bottom and n top ends, by abuse of notations we
denote by the same letter a the intertwiner V®™ — VB2 associated to the diagram

a.
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A matrix coefficient
< a(v® @...0v*"),v"" @...Qvh >

" (where s;,t; = £1,i=1,..,m,j =1,..,n) of a : V2™ — V2" will be depicted b
j 1 1 P 1 Dy

the diagram

o
p.

g

where we denote
' by * and v~ by T
For example, the coefficient < a(v! @ v ® v* ® v71),v™! @ v’ > is depicted by

Ry

H
i

TIT

If a is presented by a set of disjoint arcs then the matrix coefficient is zero unless

LA |

the orientations of two ends of each arcs are compatible. Each arc with a consistent

orientation of ends contributes a factor 1 except in the following two cases

Ve U
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For instance, the value of the diagram below is —g.

U
[

2.2. Representation category

The irreducible representation V,, is depicted by a box marked by n.

n

'The injector ¢, and the projector 7, are depicted by n lines exiting (resp. enter-

ing) a box marked by n-Sometimes, when it is clear what the marking is, we omit

it.
i
N !
tn Tn
n Hf_')

n
The Jones-Wenzl projector p, = ¢, 0m, is depicted by a box with n lines entering

the bottom and n lines leaving the top:

‘Theorem 1.4.can be easily reformulated in the graphical language, with T(s)

being a diagram of the positive braid representing the permutation s. Thus a
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‘box marked n is a sum of n! diagrams ‘corresponding to all possible permutations -
weighted with an appropriate power of g.

Since p,, is a projector, its iterations are all equal. More generally, Theorem 1.4

implies

e L ‘L—,j‘

It also follows that the composition of a projector with a contraction € or a

generation 6y operator yield zero:

1 n
T L] m
i | —0= | ]
HEEERER L~ 1
k\/—J S —
n 1

All operations of framed isotopy preserve the intertwiner associated to the dia-

gram. For example, we can move p, under or over a line:

i

/

A curve marked by n denotes n parallel lines:

n .
aef "

i
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Curves can bend arbitrarily:

We omit writing down a full set of generating moves for the diagrammatic calculus

and instead refer the reader to [Kal].

Next we consider the diagrams for the dual canonical bases in the irreducible

representations V,,,n = 0,1, ... . For ¥ %% ¢ V,, one has
o2k ﬂn((?)ul)@k ® (v1)®('n——k))

Thus, we depict v™~2¥ by

k n-k

The representation V,, can be viewed as the Linear span of such diagrams with
E=0,1,..,n.

We can also associate a diagram to the element (V' ® ... ® v} of V,, with an
arbitrary sequence s = (s1,...,5,) of 8; € {*1},i = 1,...,n, according to our rule
of orientation of arrows. Then for different orders of arrows we have the following

identification, implied by the formula for 7, in Proposition 1.2

The order of arrows in the left and right pictures are the same except for the two

arrows that are shown.

The action of the generators E (reép. F) of U can be visualized as the reversal

of the rightmost (resp. leftmost) arrow pointing down (resp. up)
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J N \ J
Y Y . hd Y
k n-k k-1 nk+
n I
F l ........ l x ........ T -k l ........ l T ........ '[
\ J J \ J o\ J

e

5

o
=
-+
Pany
7
7‘7‘.
a

The tensor product v®1~2%1 ® ... @ v®~2» is depicted by placing diagrams for

por—2k | 9@n=2ks in parallel

- ¢u .................................... e

It is convenient to introduce a shorthand for n compatibly oriented parallel lines:

"

o denotes

Next we will consider a graphicé,l calculus of diagrams in which all the external
lines are oriented. We will assume that such diagrams lie inside a horizontal strip
R x [0,1] in the (w,y)—plane and that the oriented lines are attached to the top

“and bottom of the diagrams. These diagrams can be evaluated by writing each
projector as a linear combination of positive braids (Theorem 1.4) and then using

the graphical counterparts (see section 2.1) of relations (1.15) to decompose the
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dlagram into a linear combmatxon of d:agrams con51st1ng of simple arcs. Each such

~diagram can be evaluated as in Section 2.1,

n—j?ij S
O -l

This diagram can be viewed as the graphical realization of the scalar product

-1
- - n
< p" ?'k,?) 2i >m5kj[k} .

Generally, if @ is a diagram depicting an intertwiner (denoted by the same letter

Formulas (1.24) 1mply

a)
Vi®..0V, =V, 9.8V,
the matrix coefficients of a admit the following geometric interpretation.
THEOREM 2.1. The matriz coefficient
<alv®h g @ pim=2Emy i g @it

18 equal to the value of the following diagram

=

r
!
i
t
!
|

Proof: Theorem follows from the fact that
o (0 PR (v )8 k)Y = =2k 1 < ] < g and the coefficient of (v!)®li-r) g

(v™1)®™ in the decomposition of (v TP 1< 1< n, 15 1. O
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2.3. Dual canonical basis

Remarkably, the dual canonical basis in the tensor product V" = 1% SR O

3

and the action of the generaf;ors E and F in the dual basis admit a simple gémnetric
interpretatioﬁ, which we now describe. |

Fix positive integers @y, ..., @n and nonnegative integers k1,...kn, ki < d;, 1<:i<
1. Let us depict v2»~2%:Q_ Qp21~2h1 ¢ BanQ, OB, We start with a, diagram for

pen—2kn @ | @ por—2h,

uu ....................................... o

The diagram for ve=~%# Q.. . Qv21=2¥1 js constructed by closing off some of the
pairs of arrows into arcs. N;admeiy, we repeat the following procedure several times
( [915"%} times is enough):

Suppose the diagram has a pair (up arrow, down arrow ) such that

(a) The up arrow is to the left of the down arrow.

{b) No arrows lie between the two arrows.

Then we connect the two arrows into a simple unoriented arc that does not

intersect anything.

Now repeat the procedure with the new diagram. Note that we allow arcs in
between arrows that we connect. We stop when we fail to find a pair satisfying

conditions {a)-(b). This will happen when all down arrows are to the left of all up

aITOWS.

- Example:
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If at some moment there is a choice between several pairs, we choose any one of

them, Clearly, the final diagram does not depend on the order in which we pick the
pa.irs._ |

The final diagram defines (by considering each arc as an intertwiner §;) a vector
inV,, ®...® V, By abuse of notation denote this vector by v~ Q. Qytr1~2k1
Also, we use the same notation for the diagram representing this vector. Algebraic
expressions for these vectors are given by formulas in the statements of Theorems
1.8,1.9. .

We will prove in Section 2.4 that this is indeed the vector v%» 2k Q) Qyai—2k

of the dual canonical basis B*»Q...QB® as defined in Chapter 1.

The diagrammatic calculus provides a geometric way to compute the action of
E and F in the dual canonical basis.

First, denote by u the bijection of sets
Cuw: BQ. QOB — BMQ. QR

given by reflecting a diagram about a vertical axis and reversing orientations of all
arrows. In the notation we suppress the dependence of u on ay, ..., an. We have

2 = 1. Denote by the same letter u the induced isomorphism of linear spaces
u:V,, @.0V, —V,, ®.. Ve

Pick a diagram « of a dual canonical vector in B, ,©..OB,,. We niimerate down

arrows of a from left to right by 1,2,..., | (&) where | («) is the number of down
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arrows of a. Similarly, T. (e} is the number ‘of up arrows of a. For ¢ such that
1 < i <} {a) denote by E;{a) a diagram obtained from‘ « ’Dj connecting the i-th
and 1 + 1-st down a.x;rows of a intc-;a simpie arc. If | (a)‘> 0, denote by E¢ 1(u))(d)
a diagram obfairled by reversing the drientation of the rightmost down arrow of a.

Finally,if ¢ ¢ {1,2,...,| (a)} set Eg)(a) = 0. Define the action of E bjr '

B(a) = ) li1E(e)
ED
" Define the action of K*! by

K# () = g2 (1= U,

Next we introduce the action of F:
dei
Fla) = uw(E(u(a)))

That is, take the definition of the action of £, change down to up, up to down, left
to right everythere and you get the definition of the action of F.

Example: Let ag be

W T

Then

l L
Faten) = FU_TJTTT_TTIT

] a1 C ] | ]
Egyla) = YV MTUTM"'

L1 | 1 |
Bo= T T




Also. Em(dg) = 0 because the diagram for E(;){ag) contains an arc with both

ends attached to the bottom of the same projector. Thus

E(ao) = [2]Eqz)(@0) + [8] E(sy(@0) + [4] Egay (o)

F' acts on ag as follows: F(aq) = [3]F(z)(ao) + [4] F4y(ao) where

Foleol = TO_ITT_ITIT

THEOREM 2.2. The above definition of the action of E,F and K*' yiclds a

representation of U on the vector space Vo, © ... Q V,,.

Proof. We can verify that the opefators E, F, K*' satisfy the quantum group

relations (1.1). All relations except for

K-~ K™}

EF - FE = -
g—q

are obvious and we only check this one.

We have
EF(a)=Y_ > [2]ly]EwyFy(a)
z oy
and

FE(a) =) > [2ly}F) Emy(e)

In both sums, only finitely many terms are non-zero.
Drawing pictuﬁ:es, 1t 1s easy to verify that E,)Fyy(a) = Fiy E.j(e) unless
z =|{a)+1 and y =T (). In the latter case

0if T(a)=0

E F =
(1) +1) {?(&))(Q) { [T (OC}E[-L (Q) + 1]0(! otherwise
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and

o F(T(a)+1)'E(i(.a))(q);—“{

‘Therefore, ;

0if | (a)=0
(L (T () + 1] O#herwise

EF(a) - FE(@) = Eq@+nFae(@) = Fre+nEuw(e) =

K- K=
[1 ()= | (&)}(@) = “‘;,":?.1“(0!)

O

Restricting the action of E and F' described above to the case r = 2 we obtain

proposition 1.6(iii).

PROPOSITION 2.3. This action coincides with the standard action of E and F

in the representation V,, ® ...Q Vq,.

Proof. First , it is enough to prove these formulas in the case of the tensor product
V1®(0'1+"'+a“) and then use the projection 7., ®...®@7,, to deduce it for an arbitrary
tensor product. Next, it suffices to check the formulas for the action of E and F
in the special case when the diagram representing an element of the dual canonical

basis of V2™ has no closed arcs, and this is a straightforward computation. [J

2.4. Proof of the graphical presentation of the dual canonical basis

Given an intertwiner T : V™ — V2" (or a diagram that represents T') and two

sequences (£1,...,tm), (81, -y 8n) of 1’s and —1’s, the matrix coeflicient
< T(vt, ® o ® Vg, ), Vsy ® 1. @ 05, >

is called the evaluation of (T,t,s) and denoted ev(T\t,s).
It turns out that, for a diagram T and sequences t and s of 1’s and —1s, the
evaluation ev(T,1,s) can be computed as a value of a diagram without external

arcs, that is, a diagram that defines an intertwiner from the trivial representation
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Vo to V4. The idea is- to add a projector and plug the ext"erﬁal arcs of T into the
projector in a special way. Beiow we restrict to the case m = 0. The case of general
m can be easily reduced ‘1‘;0 this particular case. |

Let s = (81,...,%2n) be a sequence of 1’s and —1’s such that s1 + ... —i— Son-= 0.
Let T' be an arbitrary element of Ian(VF(z")). For convenience we suppose that

T is given by some diagram

NEEERNY,

—~
-— -
e -

The sequence s and the diagram 7' define a diagram obtained by orienting 2n

ends of T up or down according to s.

o

L

Denote this diagram by (T, s). This diagram defines a matrix coefficient of the
intertwiner T. As before, call this coefficient the evaluation of (T, s) and denote by
ev(T, s).

A diagram is called closed, or a diagram without external arcs if the associated
element goes from the one-dimensional representation Vs to Vy. Thus, a closed
diagram defines a number that we call the evaluation of the diagram and also denote
by ewv.

Define the closure of (7, s) as a diagram obtained from (T, s) by adding a pro-
jector of size n, é.ttaching all down arrows of (T, s) in parallel to the left side of
.the projector and all up arrows to the right side of the projector, so that the down

arrows go over the up arrows, and finally erasing the orientations:
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Denote the closure of (T, s) by cl(T, s).
Remark. This “closure” construction is a g-version of the one used by J.P.Missouris
to evaluate Clebsch-Gordan coefficients for sl; (see [M]).

The closure cl(T, s) is a closed diagram as defined above.

THEOREM 2.4. For any T and s os above

(1) LD cargH

Recall that ||s|.. is the number of pairs (1,7), 1<i<j<2n,8=-~1,5;=1

Proof. By linearity it is enough to prove this theorem as T runs over basis vectors
of Ian(VI®(2n)) for some basis. Qur choice is the dual canonical basis. Pick « from
the dual canonical basis of InVU(V;X}(zn)). The diagram of « consists of n simple,
pairwise nonintersecting ares. Consider the diagram (e, s). Denote the number of
arcs in (a, s) oriented clockwise (respectively, anticlockwise) by y(«, s) (respectively,
by z{a, s)). Then

(a,s) +yla,s) =n

Example. Let s = (=1,1 -1,1,1,—

Mo
(a1,5) = wU U
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and z(ai,s) = 1,y(oa, s) = 3.

Returning to a and s, we have
en(ays) = (=)
It is also easy to verify that

| ' fall - '
ev(cl(a, s)) = (—1)*@trg=l@) =55 ]

Here (—1)*[n + 1} comes from evalﬁating the closure of the Jones-Wenzl projector
" pn (see [Kal), for instance). O
Therefore, the diagrams ¢l(7, s} and (T, s) computé essentially the same number,
up to a simple constant that depends only on s and not on T' € Ian(Vl@’(zn)).
Remark. The representation-theoretical meaning of the closure construction is

that, normalized according to (2.1), it provides the U-module projection VI

Invy (V,E*").

We are ready now to prove that the set of vectors given by the diagrams described
in Section 2.3 is indeed the dual canonical basis. The proof consists of verifying

condition (1.36) of Theorem 1.7(a). Condition (1.37) obviously holds.

We are given a tensor product V,, @ ... ® Vo, This tensor product has an ele-

mentary basis

{vll 0.0 v!"}}—az- < l; < ai,l; = a;( mod 2)
Fix %y, ..., kn such that
—a; <k <a;,  ki=a;( mod 2)

Consider the dual tensor product V,, ® ... @ V,,. We want to show

@(n)vk”@...@vk‘ = Q| Q.
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o

where v5n Q.. Qvh € V, @ ... 2V, isgiven by a diagram as described in Section
2.3. ‘We depict schematically this diagram by

~a a. -
n : 1

RN o
y X

with z (resp. y) being the number of up (resp. down) arrows.

Formula (1.36) is equivalent to
<_v!-1 ®..0 vl",@;(n)vk" Q... QvM >=< vi‘ ®..Q0v'"" , phn Q?...Q?vk“ >
for all v"* @ ... ® v!» from the elementary basis of V,, @ ... ® V,,. We have
T _8™ o0 and R =M™
Thus we want to show
o @.. @, BB (O DR >=< vt @ @ ol RO Ot >
or
<" ®..® vl",Wn)ﬁ(n)d®“(vk"@...®vkl) S=< o @ .. ® vrﬂ,vk"@...(?vkl >
‘This is equivalent to (using that ¢ =¢ ()
(2.2) < mﬁ(n)C(n)vh®...®vt”,a®”(vk"‘ Q...Ovkt) >=< 21 2..@uin, v Q. OvFt >

We have

. Y
cPlvh @ .. v = (H q_”"ijw)vl‘ & ... ®v1“

i<

Hence, (2.2) is equivalent to

<R e @ v’”,vk“@...@vkl = q;% Zoiei Wl oyl 2 L@l pFe QL Quk >
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Let :
ai — 1 a; +1;
2 b

Ti =

Introduce the following two diagrams (S and T'):

Y“HX Al y‘H

‘b\./ ‘\._/IP

G TIR T

T \
>~
ey

From what was said earlier we deduce

ev(8) =< " @ ... @ v, v Q. 0pF >
(2.3)

ev(T) =< Rl @ . @ ol 0% Q. Qvhr 5

Let us now relate ev(S) and ev(T").

U N 1?
evaluations of S and T are equal to evaluations of the following diagrams

Iy)r ! yI;)H,);n I}HII ??\l{? { \Lx!
RN N N N

First, because

for S,

b ”IM L

=)

FE

i




for T.

Let X and Y be the closures of _thése diagrams:

Then by Theorem 2.4
ev(X) = (~1)F[k + 1)g™F Ei>i "W ey(S)
ev(Y) = (—1)F[k + Lg ™2 Zics “% en(T)

Here
a3 + ... Qpn

F=gittantes=y+otimty=—"7

Untwisting the central part of the diagram ¥ we obtain

g

ev(Y) = q 7 Bies (BB YY) gy X7
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where

Xf

L 4 1 .1 1
N N’

The diagram X' is constructed from X by changing all overcrossings into under-

crossings and vice versa. Therefore, .
ev(X") = ev(X)

“where overline denotes the involution on C(q) that sends ¢ to ¢~ .

Solving the above equatiéns for ev(T") and ev(S) we obtain
ev(T) = E{;_(S—)g"% Toicjloi—zi)(yi—=z;)
Note that {; = y; — z;. Henpe,
ev(T) = ev(S)g F Loi<i lil

Substituting scalar products (2.3) for ev(T') and ev(S) we get

! :
<RMph g . @ol 05O Qpkt »= g Flicllicyh g @ LI VIVITLINEN

We verified that our basis satisfies (1.36). This completes the proof of Theorems
1.8 and 1.9. Thus, the diagrammatical basis described in Section 2.3 is indeed dual
canonical, [}

The formula (1.36) can also be verified without using the closure construction and
working directly with non-closed diagrams. The second approach bette__r explains
why in the diagram for a dual canonical basis vector all down arrows are to the
left of all up arrows. The reason is that the braiding matrix acts on v_; ® vy In a

particularly simple way: Rll[v__l & vy) = g%vl R v_q.
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CHAPTER 1l

GRAPHICAL CALCULUS AND CANONICAL BASIS

3.1. Conjugated graphical calculus

In this chapter we will write explicit expressions for canonical bases in tensor
products of U,(sly) modules and in the invariants of these products. Throughout the
chapter we will use comultiplication A rather than A to define the U,(sl;) module
structure on tensor products of U,(sl;) modules. From Chapter II we already have
explicit formulas for dual canonical basis vectors and to verify that the vectors
given by formulas of theorems 1.12 and 1.13 are canonical we simply compute scalar
products of each of these vectors with dual canonical vectors and check that the

products vanish except for one case when the product is 1,

We again use grahical calculus as a tool, by interpreting the scalar product
graphically and then applying the rules of graphical calculus to simplify the diagram.
Because we work with the canonical basis and, consequently, with the tensor product
structure given by ﬁhe comultiplicatioﬁ A, we need to make a minor modification
of the graphical calculus. In fact, all we do is change ¢ to ¢7! everywhere. Namely,
“change ¢ to ¢~} in formulas (1.14) and (1.24). That will modify the diagrammatic

formulas of Chapter 1I as follows



= —q = —¢

RN

Remark The braiding is not used in this chapter at all, so we do not concern

ourselves with describing the way it changes under the conjugation ¢ to ¢,

Recall that we have a bilinear pairing

<y,z >€ Uq)

for y € Vg, ®‘... Q@Ve,andz eV, ©..0V,, Whére <, > is Just the direct product
of bilinear pairings V; ® V; — C(q) defined in Section 1.2.4.
To prove theorem 112 we will need a graphical presentation of the linear form
Yi{y) =<y, 2>, YEV, .8V,
hy 1 Vo, ®..0V,, — g
where z is an element of the dual canonical basis of V,, ® ... ® V,,. Let z be a dual

canonical basis vector,

T = pon —2Mn @...@UM—“?TPH

for some mq,...,m,;,0 < m; < a;. Form the diagram for z as described in Section

2.3. An‘example is depicted below.




Y
E

Now take the diagram of z, rotate it by 180 degrees and change the orientation
of all oriented arrows. It is easy to_verify that we obtain a diagram for the linear

form ..

v | N o [ ——

In the next section we will use tﬁis presentation of ¥, for a dual canonical basis
vector z to check that the rules of theorem 1.12 give us formulas for the canonical

basis.

3.2. Jones-Wenzl projectors and canonical bases in tensor products

Recall from Section 1.4 that we denoted by v(z1,y1;..;2 g, yk) the element of the
canonical basis of V2", n = Efm x; + 1y; with the lexicographically highest term

2871 @ ¥ @ . @ v®"F @ v®¥ . We allow some of z; and y; to be 0. Thus,
1 1 1 1
(3.1) V{21, Y15 o} Tk Y& ) = O HvBU . ST OuBYE,

We first recall the following lemma from Section 1.4.2.

LeMma 1.11.

(Z) U(Oﬁyl;m25 “es) mkayk) = 'I)??l ®U(x?1y23 ey Thy yk)';

(1) V(@15 Y13 Yh—13 Th> 0) = V(T1, Y1, -oos The1, Yoot ) B VT

O

We will also need the following

54



LEMMA 3.1. Let z,Y, 2, w be nontegative integers and x4+ 2 =y + w. Then

x+y
z w _
x 1y
X+Z y+w

) ‘ X+y

| [:v + y] -1 : |
ifr=w,y==z
= 4 z ‘ '
X+y X+y
U O otherwise

Lemma 3.1 is an immediate corollary of lemma 4 in [MV].
Recall that 1®™ denotes the identity operator A In this section we

are going to prove theorem 1.12. First let us state it again.

THEOREM 1.12. (3) Ifyiy > 2; and Yi < T4y then

Ti + s
z;

U(whyl; sy Lk, yk) = { (1®I ®P:c;+y,- @ 1®J)

V(1,15 5 Tim 1, Yind + Yi3 Ti + Tidkt, Yok 1] o0 Tk Yk )

(%) If yy < x4 then

v(:cl,m;---;wkayk):

- {581 + i

zq } (p3:1+y1 ® 1n~wz‘1—y1)(v§i}1 ® ’U(.ﬁ} + T2, Y25 .05 Tk, yk)):

(m) If yp—1 = z3 then

v(@1, 155 2k, uk) =

. [xk + yr

Tr (1®n~$k—yk @ Dyt )(’U(ml s YL i Tk, Yh—1 + yk) ‘® U?“)'

Before engaging upon thie proof, we would like to show the reader what the

canonical basis vector v(wy,vy1;...; 24, y ) looks like for small values of k.
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i

Example: Vectors v(z1,y1;...; 2k, &) for £ < 3.

() k = 1. In this case’

z _;," " ory '
v(mlsyl):[ lmly;]pxr{*yt(vgf @U? )

or, graphically,

T3 +
v(z1,71) = [ leyl] Xt Y

(ii) k = 2. The tensor product vector

297 @ o3 @ v{@“ Qv is depicted by T l T l

and the canonical basis vectors are given by
v{z1, Y13 T2, ¥2) =
= C1{Pryty, @ 1®(a:2+y2))(1®y1 ®px1+a:2+y2)(v§£yl+y2) ® v?{m?‘+xz))
iy <z,
v(@1,Y1; %2, Y2) =

= 02(1®(m1-§-y1) @ Paz2+y2)(pm1+ya+yz & 1@12)(0?53114'92) ® 'U;@{Iﬁ_xz))

if 1 > 22,
where
Cy = Tyt Y || % T2 T Y2
' Ty - Yz
O, = [Tty Bty
2 Lo 1
Graphicaily,
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v(21, y1;22,12) = C,

v(21,y1; T2,92) = Co

Yit ¥,

Y
if y <y
X+ X,
Y2
if oy 220
X

(iii) £ = 3. We have 5 types of diagrams depending on the values of yy, 29,32, 23

v(x1, Y15 T2, Y2; T3, ¥3) =

23 2 yp,22 211




Ce

Y %y YR Y
il

N1 I
X
3

i |
Yot ys‘l' Txx’*'-xz
N K B N

ifzg 2 y1,y2 2 T3

3 if yo 2 23,41 = 22

if y1 > 22,23 2 Yo, z2+23 2 Y1 +Y2 '



where

Cs

Cq

(21 + 11 |
A
1 by ]
L N

_x3+y3-
3

R + ys |
0P

[ 29 +y2 |

L2

z1 + 22

Y2

(23 + ys
T3

—332 + Y2
I3

EN + 41
|

Te+ 23

Ys

oy > 2,23 2 ¥, y1ty2 > 22423,

+y2] [m +m2+m3+y3]

Ya
Zy+ 22+ y2 + ys
Ty + &2
+ys | {21 +wm + Y2 + Y3
- L :El
+y2 ][z + 2 4+ 23+ ys
1L Ys
+ys ]z +y1 -ty -§~y3]
Ty

Remark: In general, the number of different types of diagrams for

U(Z1, Y155 Tk, Y& ) is equal to the dimension of the Temperley-Lieb algebra T'Ly.

Proof of theorem 1.12.

The second and third claims of the theorem can be easily deduced from the first.

Let us deduce the second claim, for example. We have a sequence zi,...,y with
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11 < 2g. Let z > 27. Then

27 @u(z1,ys; v Zhs Yk) = ( by lemma 1.11 )

v(0, z; 71, y1; ...;mk,yk)_ = ( by part (¢) of Theorem 1.12)

. N | _ o | N
= 1:; 2] (1®z ® Poyty, ® 1®(n zy yl))v(O,z + yl;‘?l + x9,y2; ---;xk,yk) -
n'm - z ) _ _ | ‘
e 1;; Y1 (1® ® Doty @ 1®(n *1 y1))(,u§;§z+y1)_ ® 't)(371 4+ T2, Y2; .03 Ty y:;) ==
- xl::; 1082 @ (pry gy ® 185U E @ v(zy + 22, Y25 -5 2k, k)

That implies (ii). Part (iii) is handled similarly.
Now a piece of notation. If a vector (respectively a covector) in V,®" is given by

a diagram (say, a diagram T'), we enumerate the top (respectively the bottom) lines

of the diagram from 1 to n starting with the leftmost one.

1

Tir,s]
1 T ] n
- L JU _‘_ (R RS, L

—3
- e . -

!
'
f
!
f
1 —_—— — —

We will now prove part (¢) of Theorem 1.12. Simultaneously with proving (z) we

will prove
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LEMMA 3.2.

(P21 @ Pyy ® .. @ Py ® Py, J0{T1, Y15 o3 Zhy Uk ) = 0(1, Y15 i Tk, Yi)

Part (i) of theorem 1.12 and lemma 3.2 are proved by simultaneous induction
on the number of inversions in (21, Y1505 mk,yk) where the number of inversions
is the number of times vi appears to the left of v_; in the tensor product vP** ®
¥ ®..® v2¥* | Thus, the number of inversions is 2i<i Tl |

The induction bése for part (¢): the number of inversions is 0, all —1’s are to the
left of all 1’s and there is nothing to prove. The induction base for lemma 3.2 is

immediate as then the cé,nonica,l basis vector is equal to the tensor product vector:
0(0,91;22,0) = vZ}* @ vf**

and

(Pyy ® Pg ) (2] ®@ 0972 = B @ 0P

The induction step is done simultaneously for part (i) of Theorem 1.12 and for
the lemma. Given a vector v(zy,y1;...; Tk, Y& ), suppose (i) and Lemma 3.2 hold for
any canonical basis vector with the inversion number less than > <j Tilj- We are
also given a number ¢ such that y;—; > z; and y; < zi51. We depict the vector

V{(T1, Y15 5 Tim1, Yim1 + ¥i T + Tit1, Yit1; -3 Tk, Yi ), denoted for simplicity by g, by
a box with dashed boundary

Then the vector
v = (1®l & Pxidy; & 1®j)g
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s

B3

where I == @y +y1 + . + Tgr + Yim1 and J = Tpp1 + Yigp + oo+ T A yp, 18 depicted

by adding a projector to the diagram of g:

l

-T T T
1]

of V" are equal to zero except for one case when the scalar product is [:v, + Y ] .

T

So we pick up a vector b from the dual canonical basis of V", To b there is

associated a diagram (see Section 3.1) that computes the linear form
b5 VE" 5 Olg), @€ VE - (2,0).

Abusing the notations, from now on we identify the dual canonical vector b and the
assoclated diagram.

If the diagram of b has an arc connecting two lines in bl + 1,1 + z; + y;], the
scalar product (v, b) ‘is zero because then in the diagram for (v, b) there is a simple

arc that leaves and enters the top of the projector p;, 4+, and the diagram evaluates

to 0.




(The covector b is depicted above the punctured line, and is shown schematically

by dotted lines except for the above arc.) .

Thus, we can ;iisrega,rd this case. Similari'y,. the scalar product (v, b) is zero if
the dia.gram of b has an arc th#t connects two lines in b{l — yi-1,1] or two lines
in [l + zi + i + 1,1 + i + yi + i41] (to see this apply the induction hypothesis
- for Lemma 3.2 to g). So, we disregard these cases too. Let z be the number of
lines that connect 8[l — y;—1,1] with d[l + 1,1+ z; + y;] and w the number of lines

connecting b[l + 1,1+ z; + y;] with o[l + & + vy + 1,1+ i + yi + xiga] :

i

(@\ /@ B

~

Let t = z; + y; — z — w. Thus, ¢ is the number of lines attached to the top of

the projector p;, 4+, and which are either arrows or their second endpoint lies in

b1,0 —yice —Hor bl + @i +yi + zisa + 4,1+ 2 + v + 5]

Let G be the dual canonical vector dual to g. Then, because of the way the dual
canonical vector is constructed (Chapter~2), there are at least z; + y; lines that
connect Gl —y;_y + 1,1+ y] with Gl + i + 1,1+ vi + @i + zig1]:
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...........................

l+yi

The diagram for (b,v) is schematically depicted below

t
......... A
4 N
........ X+ Y,
N SN
P\ J |
I Y i
i [ g |
1 |

Now we expand the projector ps;+y; into a linear combination of graphical ba-
sis vectors of the Temperley-Lieb algebra TL, (i.e., repeatedly using the identity
(4.4)). After that the diagram for (b,v) becomes a linear combination {with certain
coefficients) of diagrams that compute scalar products (s,g), where s varies over
dual canonical véctors of V®™. By induction hypothesis only one of these scalar
products is non~zlero, namely (G, g).

If t+ >0, then for all the diagrams (s,g) in this sum the number of lines that
connect g[l — yi—y + 1,1 + y;} with g[l + yi + 1,1+ yi + z; + 2441] will be less then
#; + y;. Therefore, none of these diagrams represents the scalar product (G, g), and,

hence, each of the diagram evaluates to 0. Thus, in this case (b,v) = 0.
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We are now reduced to the case t = 0. In this case the diagram looks schematically

as follows. )

""""""" /\i ym
Xi-{‘y

ity ity
N . I
3 1
i |
! & 1
| i

e m m meh e A M s Al e am UM M T M v mem o nm o o e e mm o wee e w

We now a?ply lemma 3.1 to get rid of the top projector and then contract the two
lower proje;:tors Pz;+y: back into the canonical basis vector g. That this contraction
can be done follows from the induction hypothesis applied to Lemma 3.2. By
induction hypothesis we now see that there is only one b in the dual canonical basis
of V8" such that (b,v) # 0. The quantum binomial in the formula of part {i) of
theorem 1.12 is needed to balance the inverse of the quantum binomial in lemma

3.1.

1

Remark: Suppose we are interested in coefficients of a canonical basis vector
Ve, ©... 00, in the product basis {vs1 ® ... ® vay} of V1®“‘. It it straighforward
to rewrite inductive formulas of Theorem 1.12 coordinatewise, using Proposition
1.2 to describe coefficients of the Jones-Wenzl projector in the product basis of
V2", Then the coordinatewise version of these inductive formulas is exactly the
Zelevinsky's recursive formula (see [Z]) for the Kazhdan-Lusztig polynomials in the

grassmanian case. Therefore, up to a simple normalization Lusztig’s canonical basis
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coincides with the Kazhdan-Lusztig haq:q m the grassmannian case,- Chapter 5 of .
this dissertation contains a more intrinsic derivation of this resuit without usmg

a,ny explicit formulas for uthor ¢ (tn(mua} or Kazhdan-Lusztig bases

Let us now prove Theorem 1.13. For convenience we state it here again.
THEOREM 1.13. The element v, 25, $...OVa, —2k, of the canonical basis of o
tensor product Vo, ® ..QV,, is given by
valﬁ.zkl(}...ovanwgkn ﬂ'(ﬂ'al & ® Tay )v(a; — kl, kl; vy B — kn, kn)
Proof. Recall that the projection

Wan ® - ® 7{,&1 : }'/1®(ag-;+l-.-+ﬂ-1) — Van ® ... ® I/’al

maps each of the dual canonical basis vectors of V1®(“"+"'+“‘) either to 0 or to an
element of the dual canonical basis of V,, ® ... ® V,,, and the preimage of a dual
canonical basis vector of V,, ® ... ® V,, contains exactly one dual canonical basis
vector of Tﬁ®(“"+"'+al). We thus obtain a one-to-one map between dual canonical

bases of V;,, ® ... ® V4, and V’l®(““+“'+ai). Denote this map by

f: B*0..QB% - pYlart-cken)

Then, fory e V,, ® ...@ V,, and x € B*~ Q.. OB,

<Yy >=< (tay ® o @ ta, )y, f(2) >
This is clear from the graphica;l representation of the scalar product and the map
[ (see Chapter 2). Also, : |
(tay ® .. ta, )(Fay ® ... @ 7y, Jo(ag — k1, by ap — ko, kn) =
v{ar — ki, kyy oy an — ko, ka )
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This is because (ial @ .. ®ta, )(May ®...@%a,) = Pa, ®...8Pa, and, for 1 < s S n, .
(1,2 O 1y, ®Pa, ® logys ® . ® 1, Yolay — by, by} oy ap — kn kn) =
v{ay = ki, ki an — kny k). |

(This equality can be easily checked by induction on n.)

‘Now, if z is an element of the dual canonical basis of Vo, ® ... Q® V5, we have
< (Tay ® oo @ Wa, Jo(ag ~ by, k150 — kny Ky, 2 >=
< (tay ® oo ® ta, (Toy ® oo @ 7o, Yo(ay — ki, by o an = kn, kn), f(z) >=

<wv(ay —ky,k1;y.5an —kn, k), f(z) >=
_ 1if f(z) is dual to v{a; — k1, k15 ...; 0, —kn, kn)
B 0 otherwise
Thus, (74, ® ... @ 7o, Jv(ay ~ ki, k1;...; @n — kn, ks belongs to the canonical basis
of V,, ® ...Q V, . It is easy to see that as k; varies from 0 to aiyt = 1,...,n, these
vectors are linearly independent and, therefore, constitute the canonical basis of
Vo, ®...0V,,.
O

3.3. Explicit formulas for canonical

bases in invariants of tensor products

Denote the canonical basis of a tensor product V=V, ®..8V,, by CB(V).

The formula for the decomposition of the tensor product (see Section 1.2.4)
implies that the space of Uy(sl;)-invariants of a tensor product V=V, ® ... ® Ve
is nonzero iff 3 a; is even and a; < Z#i a; for all 1 <7 < n.

The dual canonical basis of the tensor product V' =V, ® ...® V,, intersected
with the subspace of U, (sly)-invariants (relative to A) of the tensor product defines
a basis in this subspace. We call it the graphical basis of invariants. On the other

hand, the canonical basis of the tensor product V = Vo, ® ... ® V,, filters the
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I'Sht()plcal decompomtxon Precisely, for an element X of the welght lattice of Uy(sly)
denote by V[> A] the submodule Uy(slz)V* of V where VX is the subspace of
hweight A of V. Then CB(V) N V][> )] defines a basis in V> )] (see Lusztig [L3]).
Denote ‘by V1> 0] the sum of V[> A] for all A > 0. Then the intersection of CB(V)
and V[> 0] is a basis in V[> 0]. Denote this basis by CB(V[> 0]). Note that
V = V[> 0] ® Inv(V). Therefore, projecting those vectors of CB(V) tha,"cr do not
belong to the subspace V[> 0} onto Inv(V') parallel to V[> 0] we obtain a basis in
the space of invariants of V. Following Lusztig [L3], we call it the canqm’cal basis

in the space of invariants. Denote this basis by CB(Inv(V)). Note that
(_3.2) . < V> 0],Ian(V’) >= 0

This orthogonality relation follows at once if we recall that

(3.3) o < zv,w >=< v,w(z)w >

where z € U,v € V,w € V', the quantum group acts on V via A and on V' via A
We deduce from (3.2) that

(8.4) < z,b >=<inv(z),b >

where z is a vector in V, inv(z) is its projection onto Inv(V') parallel to V[> 0] and
b is an element of the dual canonical basis of Ian(V’ } (where by Inv® we denote
invariants with respect to the action given by A.)

Therefore, the canonical basis CB(Inv(V')) is given by vectors inv(z) for z from
the canonical basis CB(V) such that z ¢ V[> 0].

Let us first consider the case when V is a tensor power of V}, ie, a1 = ap =
.. = G = 1. Then Inv(VE") s 0 if and only if n is even. Let &k = §. From the
theorem 1.12 we know that z € CB(V) is obtained by applying a composition of

®(2k—a)

Jones-Wenzl projectors to the vector v&7 @ vy and then scaling by a product
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of quantum binomials. Denote by cp, the operator V1®2k — V1®2k given by this
particular composition of Jones-Wenzl projectors and scaling. Thus-,' the cano'n'icall

basis vector

z = cps(vS] ® v 7).
Note that inv(z) # 0 implies that z is a vector of weight 0, that is, a = k. Because
Jones-Wenz| projectors intertwine the action of the quantum group U, we have

inv(epu(v%F @ %)) = epa inv(u9} ® 1))

Recall that in the dual case of the action via A, the closure construction, ex-
plained in the beginning of Section 2.4, gives explicit formulas (in the produet basis
of V®2%) of the U-module projectioﬁ VEZE , Inv(VEH),

Of course, the same construction (with ¢ chianged to ¢~1) works in our case of
the action via A. In fact, for our purposes here we only need to know inv(v?f ®vi®"’)

explicitly. It 1s given by the following

' ProprosITION 3.3.

inv(v®F @ v®F) =
(3.5)
(DM k+ 17 (pre @ 199)(1%E D @ 67 @ 190D (10 62 @ 1)8P (1)

where 62 is the intertwiner Vo — Vi @ Vi relative to the action given by A,

28(1) =v1 ®voy — quoy @y

Graphically, the R.H.S. of (3.5) is given by the diagram

k
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Finally for a complete description of canonical basis in the invariants of V,#** we
need to know for which = f_rorﬁ the canonical basis of V32 the projection inv(z) #0.
Using our description of the dual canonical basis in Inv® a;id canonical — dual

canonical duality, we immediately obtain

PROPOSITION 3.4. Let z be a canonical basis vector in Vlmk,

2 = 06 Qu Ve, € € {1,-1},1 <4 < 2k,

Then inv(z) # 0 if and only if zg;l € = 0 and for any ¢,1 < ¢ < 2k we have

Ej‘m‘} & = 0.

Remark: Notice that the number of sequences of length 2k of ones and negative

ones that satisfy Efi; e =0and Y i, & < 0fori=1,..,2k is equal to the k-th

j=1
Catalan number F—%—T(zif ) which is the dimension of the Temperley-Lieb algebra

TLyg.

More generally, for an arbitrary tensor product V;, ® ... ® V,, the canonical
basis vectors in the invariants of this tensor product are given by projecting certain
canonical basis vectors in the invariants of Vi®(a’+”'+a“) via Ty, ® .. @ g, . This
construction is completely analogous to the one stated in Theorem 1.13 and is left

to the reader as an exercise.
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CHAPTER IV

THE POSITIVE INTEGRAL STRUCTURE
OF JONES-WENZL PROJECTOR

4.1. Positive integral decomposition of the prejector

The Jones-Wenzl projector p,, is an elemeént of the Temperley-Lieb algebra TL,,.
We are interested in the coefficients of p, in the dual canonical basis BTL of the
Temperley-Lieb algebra (this basis was defined in Section 1.2.3). Decompose [n]lp,,

as a linear combination of vectors of BIZ:

(4.1) [nlpn = > P(d)d
deBTL
For example,
| /
B C -1 =3 +[2? +
| ™
\_/ ./ \/
[2)? + (2] + (2]
N N N

For s € S, and d € BIZ denote by R(s,d) the coefficient of d in the decomposi-

tion of T(s) as a linear combination of dual canonical basis vectors in TL,:

(4.2) T(s)= > R(s,dyd

deBTL
where T(s) is given by (1.25),(1.26). Denote by {(s) the length of the permutation

5.

7]




THEOREM 4.1. For any n € N and d € BTV the éocﬁicicnt P{d} belongs to

nirn-—1

g7 Ng™].

THEOREM 4.2. For any s € S, and d € BTL the coefficient R{s,d) belongs to
ﬂ_’_l _ .
¢* Nig™'].

Theorem 4.1 fdllows immediately from Theorem 4.2 and Theore;m 1.4.
Proof of theorem 4.2: We use induction on n. The induction base n = 1 is obvious.
fnduction step: Sﬁppose that for any s € S,—; and d € BLL, the coefficient
R(s,d) € qﬂﬁQN[qml}. Teke s € S,. We have s = s's" where s’ € S,_; and

s" = 8p—1...8i4+18; for some 7,1 <7 < n (if £ = n then " = 1). Hence,

T(s) = T(s"YT(s") = T(s"VTn-1...T}

Because all coefficients of T'(s') in the basis BTL, are in qﬂ%‘lN[q‘i], it is enough
to prove that for any dy € BTL, all coefficients of dyT,_;...T; in the basis BL L are

in q”r“i‘“ﬁ_"iN[q””l]'. The element dyTy—1...T; is schematically depicted below.

n

NN

1

i" o
i . .

This picture consists of n arcs that join 2n points ( n top and n bottom points).
These arcs have n — ¢ intersection points. Denote by « the arc that connects the
rightmost top point with the i-th (counted from the left) bottom point. Denote

by Bi1,..., B¢ those of the remaining n — 1 arcs that intersect o twice. We isotop

Bi,..., Bt so that they do not intersect o and lie beneath a.
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After that isotopy each of n—1 arcs intersects « in no more than one point. That
all coefficients of dyT),_;...7; belong to qg% N[¢~?] follows now from the obvious

fact that all coefficients of T;.;.. 77 in the ldual canonical basis Bfl’ belong to
¢ Njg]. O

4.2. Reduction formulas for the coeflficients of the projector

In this section we give new formulas for the Jones-Wenzl projector and its coef-
ficients. These formulas can be used for a simple derivation of various formulas for
Racah-Wigner and Clebsch-Gordan coefficients. We start with the following induc-

tive definition, due to Wenzl (see [KaL] and references therein), of the Jones-Wenzl

projector py:

THEOREM 4.3. The Jones-Wenzl projector p, € TL, satisfies

plﬂla

(4.3) n—1
Pn = Pn—1 + L—[a“lpn—1Un_1pnm1-
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In terms of diagrams, (4.3) says

(4.4) n = n-1 - +

* Jones-Wenzl projectors are also characterized by

THEOREM 4.4(SEE [KaLl}. The elements p,,,r satisfy

(i) i =Pny T 21,

(i) poU; =0, 1<i<n-— 1,

(i5) Uipn =0, 1<i<n-—1

Properties (i),(ii) or (3),(%) uniquely determine pa.

Tn this paragraph we obtain an inductive formula for the coefficients of the Jones-
Wenzl projector p, in the dual canonical basis BIF of TL,. This formula refines
Wenz] formula (4.3). Notice that the last summand in the Wenzl formula contains
two projectors of size n — 1 connected by n — 2 lines. If we expand one of these
projectors, most of the terms vanish after composing with the other projector. It

turns out that the remains are easy to compute and we get

THEOREM 4.5. For n > 1 the Jones-Wenzl projector decomposes

(4.5) po = T%_pn_l(Z[i]Unm1Un__g...U.;)

where for 1 = n the product Up_1...U; 18 equal o 1. In terms of diagrams,

L]

n—lli

[2]

L

(4.6)

UL
n-1 +~[~a‘

T -

T4



Note that this is equivalent to the formula

(47) . Pn = '[;1]}' H Z[i]Uj*IUj—Q---Ui

" i=li=1

Proof of Theorem 4.5: Expand

in the dual canonical basis of the Temperley-Lieb algebra. Notice that the coefficient
of the unit diagram in this expansion is equal to 1. Thus, by Theorem 4.4, it is

enough to prove that for k = 1,...,n —1,
Pa-1(D [ilUn-1Un—2..U)Uy =0
g1

We use the following easy

LEMMA 4.6. oo

(a) For any k =1,...,n — 2 there are elements z,y € TL, such that

O lilUntUnz..U)Us = Ug gz + Uy
iwml

(b) There is = € TL, such that
O liUna1Un2U)Upor = Up sz
te==l

This lemma follows from the Temperley-Lieb algebra relations and the identity
Il = [k — 1] + [k + 1}. O |
Now, by this lemma, for k= 1,....n — 2,

r-1(YlUn 1Un—2..U)Uk = puos(Us—sz + Usy)
i=1
{for some z,y € TL,)

= {pnaUs—2) + {(pn-1UxJy = 0.
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Also, |
pﬁ——l(z[i}vn—-] LIn -—2--'(;[ }Cn—-i = Pn-1 {-".r: -3.0 = 0

_ - | .
" The proof of Theoi‘em 4.5 is finished. O
To 'apply Theorem 4.5 to the computationé ofl coefficients of Jones-Wenzl projec-
tor we give below an equivalent statement. | |
First a few rﬁore notations. A diagram depicting an element ofht‘_he dual canonical
ba,sis;_- 6f T'Ln consists of n arcs connecting 2n points on the boundary of a rectangle:
‘n péint on the top and n points on the bottom. Numerate these points by 1,2, ...,2n

in the anticlockwise order starting from the lower left corner:

By abuse of notations we identify a diagram with the associated element of the
dual canonical basis of TL,,. An arc of a diagram is called tiny if it connects two
points numbered consequently (1 follows after 2n). For a diagram d € BT define
the set of lower tiny arcs L(d) as a subset of {1,2,...,n} with i € L(d) if and only
if d contains an arc connecting ¢ and i + 1. Note that for any diagram d the set of -
lower tin;v arcs is non-empty. -

Take a diagram d € BFL. The diagram d is described by decomposing the set
{1,2,...,2n} into n pairs so that the n arcs. joining two elements of each pair do
not intersect. Pick an ¢ € L(d). There is an arc connecting polnts numbered ¢ and

t + 1. Delete the pair of points 4,7 4+ 1 and renumerate the rest of points {points
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{1.....7 = 1.1 4+ 2,..,2n}) as follows:
R B e e 1,2“4«2 w— é,...,2n—>2nm§.

Then the splitting of {1,...,2n} into n pairs associated to the diagram d restricts .
to a splitting of {1,...,2n ~ 2} into n'— 1 pairs. This splitting defines a diagram
because no two arcs intersect.

We call this new diagram the reduction of diagram d at i and denote it by d ~ 1.

Example:
N T
: |
I
d:: : :
123 4 56
T\ CT T
| I
d~3= 6= :
1 | | i
|
I I AR S AV W T
COROLLARY 4.7. For any diagram d
(4.8) P(dy= Y P(d~1li,

i€ L{d)
where P(d) is defined in Section 4.1 and L(d) is the set of lower tiny arcs of d as
defined above.

Corollary 4.7 is equivalent to Theorem 4.5.

Remark. The group Z; @ Z; of symmetries of a rectangle acts on the set BI¥
of diagrams of size n. For any diagram d € BLZ the coefficient P(d) is equal to the
coefficient P(d;) of any diagram d; in the Z, & Zs-orbit of d.

Recall that a line marked by n denotes n lines going in parallel.
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PROPOSITION 4.8, Let dy,dy be two diagrams from BTL that differ as shouwn

below,

They are the same outside the part that s shown. Then
(4.9) Py = | "1V | P

Proof. Let the leftmost point shown on the above picture have number  + 1

+2x+1 H2X4y

Introduce a partial order < on the set of triples (q,b,¢) with a,b,c € N:
(a,b,¢) < (a1,b1,c1)iff a<ayora=a3,6 < b ora=ay,b=>0;,c< ¢;. The proof
is by induction on (n,z,y) where n is the size of the diagram dy. The induction
base is the case = 0 or y = 0 and is obvious.

Induction step: Note that the set of lower tiny arcs L{d;), L(dy) of diagrarﬁs
- dy,d; differ only by elements ¢ + @,1 + 22 + y,i + @ + y:

410) L(dy) = {i + 2} U {i + 2¢ +y} U (L(ds) N L(dn)),
4.10
L(dz) = {i+z +y} U (L{d) N L{dz)).

Therefore,
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(4.11)
Pldi)= Y [JP(de)

JeL(dy)

i+ 2lP(dh ~ i)+ i + 20 +yP(d ~it2e+y)+ Y [P(d~ ) =
' JEL(d)NL{dz)

[i+w][m;:y ]P(dg~z+m+y)+[z+2m+y]{m+y ]P(d2~z+:c+y)+

[‘”;y] S [P~ ) =

JeL{d; )NL{ds)
{x+y+z‘][“";y]p(d2 ~id T+ y)+ [""”;‘1"] Y P~ )=
JEL{d1)NL(ds)
[‘”;ﬁ”} > LIP(dy ~ §) = [mjy]P(dz)-
jeL{dz)

The third equality uses the induction hypothesis

Pldy ~it )= I:J:;i_;y]P(dz ~ 14y,

(4.12) P(d1~i+2m+y)m—u[w;EQI]P(dgwi%—w—i-y),

P(dy ~ j) = ["”;Fy]p(dg ~7), where j € L(dy) N L(ds)

In the fourth equality we use the identity

PROPOSITION 4.9. Let dy,dy be two diagrams from BLL that differ as depicted

telow.




" dy da

w4

- They are the same outside the part that 18 shown. Then
(4.14)  P@)= ["’ ;‘I”]P(dz).

Proof is similar to the proof of the previous proposition and is done by induction

on the triple (n, x,y) with respect to the same partial order. We have

L(d) = {o+ v} U (L(d) N L(de)),  L(ds) = {3} U (L() N I(dy))

Therefore,

v

P(d)= > [1P(di~j)=

J€L(d1)

[e+yPld ~z+y)+ Y, UIP(di~j)=
FEL(d1)nL{d2)

z z+y—1 )~ Szt Yy y i) =
ws | +y][ v ]P(d y”,-em;udﬁm[ ’ ]P(d i)

[””;‘;y][y1P(d2~y)+[“"y] Y P~ g) =

[ ]
y

PROPOSITION 4.10. Let d be a diagram

> 1Pt~ i) = |7 Y| P

J€L{ds)




L g
ok

where z,y,2,1 are non-negative integers. satisfying x + y+z+t>1. Then

(416) P(d):[“f_jy][tj”][mqmmjwylf

Proof. By Proposition 4.9 P(d) = [m : y] [t ::; y] P(dy) where diagram dy is

Corollary 4.7 implies -P(‘dl) - Wlllz+y+ 2+t
N

4.3. Factorization of Racah-Wigner coefficients

We first recall the formula for the theta-curve, as in [KaL]. A .triple of nonnegative

integers 4, j, k is called admissible if
i+ + k= 0(mod 2),
i+ ~k20,i+k-520,j+k~-i>0.

DEFINITION 4.1. For an admissible triple (1,7, k) the theta-curve is the following
/_\ PN
; .

A —

Let 8(4, 7, k) be the value of this diagram.

diagram

THEOREM 4.11 (SEE [KAL]). For an admissible triple (i, 7, k)

(4.17) 6(4,7,k) =

(ME)-‘-IIL%“M [i+j+k + }.]g[t-{- '—-k]![z'-‘i-];*j]![j*‘;c“i}i
] -
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Fix four non-negative integers é,j,k,! such that ¢ +j + k +71 is even. In what

follows we suppose, without loss of generality, that ¢ + k> j + L.

We consider the space Hf)myq )y (Vi® Ve, Vi® VJ) which we denote for simplicitsr
by Vi ikt This space can be naturally identified with Invy, si,)(Vi ® V; @ Vi ® Vi), |
that is the s;;ace of invariants of a certain tensor pfoduct. Thus, in Iuvvq(ﬂz)("% ®
V; ® Vi @ V1) the dual canonical basis is defined. We will call the image of this basis

under the natural isomorphism.

Invy, (Vi@ V; @ Vi Vi) —  Homy, (i) (Vi® Vi, Vi® Vj)

the dual canonical basis in Homy, (s1,)(Vi ® Vi, V; @ Vj).

Denote the diagﬁ:a,m

by Ba(i,4,k,1). Number a satisfies the following inequalities

. . —k . b —
(418) ag]sasi"’t’:’?—‘;}—ﬂvaz ﬂ—é’—”——l

Diagrams Bo(%,,k,[) are in a one-to-one correspondence with elements of the dual
canonical basis of V; ;1. For all m such that (¢,7,m) and (m, k,I) are admissible

denote by Tin(i, 7, k,1) the following element of V3 j
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Vectors {T7x(2,7,k,1)}m form a basis of the space V; ;¢ ;. The transition matrix
from the basis {1 (4,7, k, 1)} m to the basis {B,(4,j, k, 1)}, is upper-triangular with

units on the diagonal.

Let us compute transition coefficients from the basis {T1, (4,7, k,D}m to

{Bo(4,7,k,1)},. This is simply a restatement ofDProposif;ion 4.10,

PROPOSITION 4.12. For Lk lym such that i -k > 7+ 1, (4,5, m) and (m, k, 1)

are admissible one has

(4.19) Ton(isdo ks ) = D Ama(iy 4, 5, D)Ba(i, 4, K, 1),

where

(PN — )

[+ 2521 = ai[FHEEE — altfm]t

(4'20) Am,ﬂ(i:jakal) =

The sum is over those a that satisfy the inequalities

il L
(4.21) aij,aﬁz+j; ’GEHJZ =

Proof. Let d be the diagram
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mj-1

Then A, o(2,7,k,0) = [Flz]TP(d) and P(d) is computed using proposition 4.10. U]
For i + k < j + [ everything is as before if we substitute ¢ < j, k & L.

Next we compute coefficients of the inverse matrix — transition matrix from the

basis {Ba(i,j,k, D}a to {Tom(s g ks D}m.

PROPOSITION 4.13. For non-negaiive integers 1,7, k,l, a that satisfy (4.18) and

(4.22) t+j+k+1=0(mod2), i-+tk>j+I

we have

(4.23) Bo(i g, k1) =Y Fam(é, 3, b, NTm(i, 5, b, 1),
-

where

_‘ _ _ e itsn i — git[ikiti=k _ o1
‘ (4_24) - fa,m(i,j, k, l) — ( 1) [m -+ 1] [J a] [ 5 a].

. [m-i—;——k}!{m»!-zi-kj —a+ I]I[m-%jzj*i]![ﬁjzmm _ a]!

and the sum i3 over those m such that (m,: — a;j —a) 18 admissible and m > k-1

Proof. First we will need the following lemmas
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LEMMA 4.14 (seE [KAL}).

o | | ~1)y iz +1
(425) . Bg(.r,y,y,.r-} — Z'WTz(x:yayym)a

where the sum is over those z such that the triple (fc,y,z) s admaissible. []

LEMMA 4.15.

- [y]![3+y~—z]! X+

ify = 2, otherwise (if y < z) the L.H.S. is equal to 0.

Lemma 4.15 is the same as lemma 2 in IMV]. It is also an immediate corollary

of Proposition 4.10. [J

We can now derive (4.23):

i ]
a
Galig k1) = - = e et
1 k : c
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i j

m

: | -
— Z (___1)m [m + 1} \/ Lemma 4.15
#m,i—a,j—a) -
P

m{m,i—a,j—a)—admiss.

N

m

[\

1 k

= (D)7 [ ][RR gt
=2 B(m, i —a,j — a)[ZE=E]I[i ~ gt

m

where the last sum is over those m such that (m,7 — a,j — a) is admissible and

m >k~ 1.0

Note that the matrices A(4, 4, k,1) and F(z, 7, k,} are the inverses of each other:
(4.26) > Am,alis gy By D Fan(i 3,85 ) = Sy

Define the 6j-symbol Wy, n(3,7,k,1) by
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i j

N7 b

m =Y Win(i,j, k1) n
k13

)
RN | if Tk

1 k

Propositions 4.12,4.13 give a factorization of 6f-symbols:

PROPOSITION 4.16. For m,n,i,j,k,1 such that the triples (i, j,m), (m, k, 1),

(2,m,1),(j, k,n) are admissible and ¢ + k > j + 1 we have
(4’-27) ' Wm.,n(iaj: kal) = ZA‘m,a(i‘;j: k: l)fj—a,ﬂ(k!ja i) l)

where the sum is over those a for which the R.H.S. of (4.27) is well-defined.

<

Together Propositions 4.12,4.13,4.16 compute the 65-symbol,

4.4. Factorization of Clebsch-Gordan coefficients

The vector v?="Qu™=2k of the dual canonical basis of V,, ® V;, is given by the

following diagram
n m

T

{ K-

(for £ = I, similarly for k < l.) Using the graphical identity

N R

to.remove all closed arcs from this diagram we immediately obtain Proposition

1.6(ii).
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Clebsch-Gordan coeflicients are matrix coefficients Qf the intértwiner

They are given by
< ,U;zm(,vmwn ® vm——2k)’vj~2i > < vjm2i,vjw2i >-~1

for 0 <1< n0<k<m0<i<j Note that < vi=2i pi=2 5-1- [‘g}'and
the complexity is hidden in the first term of the above product. Clebsch-Gordan
coefficients for bg(ﬁ[z) were oi‘iginally computed in [KR].

The scalar product < v;?“m(vm"“@}vm'“zk), v#~% > which we also denote Ci,,(I, k, 1),

is equal to the evaluation of the following diagram

(4.28)

| This scalar product is 0 unless
(4.29) 2t —-k+D=n+j3—m

i.e. the number of arrows pointing inside the diagram is equal to the number of
arrows pointing outside.

Graphical calculus allows a straightforward computation of the value of the di-
agram {4.28) by applying Proposition 4.10 to expand one of the three projectors.
Let us instead factorize Clebsch-Gordan coefficients via the dual canonical basis of

V., & V... Here and further we restrict to the case & > 1, the other case being similar.
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L
o

The transforma.tmn from the tensor product basis {v¥~"®v™**}, ; to the dual

'~ canonical basis {v?-"Qym—2k}, is gwen by Propomtmn 1.6(1):

p-n ® Uwﬁ.«-Zk — Zq—-sk{ l:’vzl-—-n—2s@vm—~2k+23, k> l‘ >0

8
320

Let Z(L k, 8) = ¢—*% [é]
The coefficient

< v;zm(v2l—-n®vm~2k)’vj—2z‘ ~

is equal to the evaluation of the diagram

i i

o
I

/\
\V\/M

We want to find ev(A4). We impose the condition (4.29), otherwise ev(A) = 0.

Transferring two bottom projectors of A up and closing the diagram, we obtain, by

Theorem 2.4,

yn— ) (i4m—k+2

ev(A) = (—1)'q

€’U(A1 )

[m+i—k+1]

where the diagram A4, is




Moving the line marked 7 over the upper projector and deleting the resulting curl
and érossing we get

ev(Ay) = (~1)ig™ ey ay)

where

Ag =

g

Applying Lemma 4.15 twice to the diagram A,, we reduce A; to a theta-curve (see

Definition 4.1) and obtain

[i![m — E]lfn— I

ev(A2)= [z_}_[um}'[m%»'ﬁ—k]t[’t‘]‘m_.?“k]

0(myn, )

with é{rn,n, ) given by Theorem 4.11. Combining the formulas together,

< v}‘m(vw_“@vm"gk),vj"% >=ev(A) =

o i) m — ke — 1!
Chrl—mlm+i-k+1i+m—7—

(4.30) 0m,n. 7);
1 1.,

Denote this number by HZ, (I, k,7). We now have a factorization of the Clebsch-

Gordan coefficient:

PROPOSITION 4.17. The Clebsch-Gordan coefficient (for k > 1) factorizes through

the intermediate basis as follows

g=0

i
Cho(l b,y =D T( b, 8)HE (1 — 8, k,7).
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CHAPTER V

KAZHDAN-LUSZTIG THEORY AND CANONICAL BASES

5.1. Kazhdan-Lusztig theory in the maximal parabolic case

Here we describe, following Deodhar [D1],[D2), the setting for the relative Kazhdan-
Lusztig theory. From the beginning we restrict to thei case of the symmetric group
W =8, and its maximal parabolic subgroup Wy, = 8; x S,,—1. To avoid confusion
with the quantum group theory, we will ﬁse variable v rather than ¢. Then v (or ¢)

in Kazhdan-Lusztig theory is related to ¢ in quantum group theory by
(5.1) v = g2

Let H,, be the Hecke a,lgebra over (C[vlf, v’“lé‘] of the symmetric group S,. It has

generators T, ..., T,y and relations
T,‘Tj =TT |2"-j| >1

(5.2) LTy = T Tl

(Ti+ 1) ~v)=0
Denote by s; the transposition (3,i + 1) € W. Let 0 € W and ¢ = 8;,...8i, be a

reduced expression for o (i.e. r = {{¢').) Then denote T, = T%,...T}..
Let W’“. be the set of minimal coset'fepresentatives in W/Wy. It’g given by
W = {0 € W|li(os) > l(o) Vs e Wi}
Deodhar in [D1],[D2] considers two different actions of M on the space MF*

spanned by vectors mF,y € W*.
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PROPOSHTION 5.1 (DEGDHAR)Y. Let w = —1 or u = v. Then the following action

defines the stroeture of H,, module on MY,

qu‘y + (g —'l)mg if siy < v

Timb = ¢ mb, if sy >y and sy € W
umg if sy >y and sy ¢ W
To distinguish the two cases v = —1 and u = v, in the second case we will denote

the module by M* and the basis vectors by mk.
Let ~ be the involution (the Kazhdan-Lusztig involution) of H as a C-algebra

given.by

Sl - YwT
In particular, T; = T},

Now deﬁge an involution on M¥* as follows. Let

and

It is straightforward to check that = is an involution:

F— T ok = Tk = -
my = Tymi =Tymi =Tym; =m

Similarly, define an involution  on M* by

and
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PROPOSITION 5. 2(A) (DEODHAR) There emsts ¢ unique set of polynommh
{PE, € Z[v]|r, s € Wk, T < s} satzsﬁymg

(2) 3,3 =1 and degy; P¥ rs < (U(s) —U(r)—1)/2 zf'r < s,

(ii) Elements CF = Erss(ml)’(s)“’(f?v a v PE mk are invariant under the

involution ~ of M*.

PROPOSITION 5.2(3)‘ (DEODHAR). There exists a unigue set of polynomials
{PF, e Zlv)jr,s € W¥,r < s} satisfying |

(i) 133 =1 and deg, P¥, < (I(s) — (t) = 1)/2 if T < s,

(i) Elements CF = ETSS(——l)I(")‘K")v 7 v“’(’")P,ﬁsﬁzf. are invariant under the

involution of ME,

The basis {C*}oewr (vespectively, {C¥},cw+) is called the Kazhdan-Lusztig
basis of M* (respectively, M*).

5.2. Kazhdan-Lusztig basis in M* and Lusztig’s canonical basis

Let us go back to Uy(sly). We have an intertwiner R : V®* — V®2. Let us

<3

introduce a new intertwiner by scaling R by ¢~ 7 :

R,

3
ll
Mw

Also, let
T = —q 271,

Fix an integer k between 0 and n. Consider the subspace V" {n — 2k] of vectors

of weight n — 2k of the vector space V;™. Define operators

.Ti’, Ti : Vl®n[’n - Zk‘] o T/tl@m[n — 2]:;]
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T = 190 g ' @ léuan
T = 1@{:‘—157@ F g 18(r—i-1)

It’s easy to check that operators T ‘and T} satisfy Hecke algebra relations (52)
with v = q"‘z. | 7

Recall from Section 5.1 that W¥ denotes the set of minimal coset representatives
in W/Wg. The set W¥* can be idéntiﬁed with the set SQ of sequences of n — k ones
and k& minus ones:

| (if) Define an action of W on the set SQi in the following way: the trasposition

(z,z-l— 1) exchanges (n — i + 1)-th and (n — ¢)-th elements of a sequence.

(ii) To the identity element e € W, which is also the minimal coset representative

of eWy, associate the séquence of n — k ones followed by k negative ones.

Denote this mapping W¥ —» SQi by Seg.

Now let us establish relation between the canonical basis in V" and the Kazhdan-

Lusztig basis in Deodhar’s module M*. Define the twisted product basis of VAR
2k] by

plet, o €n] = (—g7 )P0y, @ L B v,
where €1, ..., &, € {1,~1} and Iv{ey, ..., €,) is the number of pairs (i,7),7 < j such
that ¢ < ¢;. -
Let Seq be the linear map
Seq: M* = VE"[n ~ 2k]

defined on basis vectors by

Seq(m’;) = pleg, veery €n)

where (ey, ..., €,) is the sequence Seq(y) of ones and negative ones. Notice that we
abuse the notations by denoting both the mapping of sets W¥ s SQp and the

mapping of linear spaces M* — V,®*[n — 2k] by Seq.
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Denote by § the minimal coset representative of an s € W. Let y € W*, Denote

by w the maximal element of the Weyl group 1. Then
wy = (Wyho(k,n ~ k)

‘where w(k,n — k) is the permutation

1. 2 .. n-k n-k+1 n—-k+2 ... ‘n
n—-k n—-k-—1 ... 1 n n—1 . n—Fk+1

Therefore,

Twy = Tuinw(k,n——-k)

We have two Hecke algebra modules: M*, with the action defined in Section 5.1
and V,"[n — 2k], with Hecke algebra generators acting by T/,1 < i < n—1. Denote

by H;, the Hecke=algebra over Clg,q™!] generated by T! with defining relations:
TIT = TIT} |i—j}>1
Tz"Tz"mTz" - T;+1Ti' ﬁ+1
(G+INT -¢7) =0

Let Seqy be the algebra isomorphism

Seqr : Ha — H.,

s
given on generators by

Seqi{v) = g2

We have two pairs: (M, M*) and (H,, V;®"[n— 2k)), consisting of an algebra and
a module over it.

'The next proposition follows from the comparison of actions of 7% on M* and T!

on V" [n — 2k|.




PROPOSITION 5.3. The mappings ch and Seq; define isomorphism of pairs

(Ha, M*) and (H.,.V ‘)"['n = 2k]). .

E} .

To relate Lusztig’s involution (")(’.‘)(q‘g“) with the involution ~ of M¥, Lusztig’é
~ involution needs to be twisted by the permutation operator P(™, where P s
given by |

P(“)($1 ®..®2p) =2, Q...0 1 (z; € V1)

PROPOSITION 5.4. The following diagram of vector spaces and linear maps is

commutatipe
Mk — Mk
J’Seq lSeq
(n)g(n),8nypin)
Ve n — ok) L2 IET, yen, _ o

Proof: We have

(1) TymF=m? fory e W,

(i) Tgrn-rymt = (— 1)““’“‘“ Wmk = (1) 5 k=) k

(i) mE=mk=Tym
=T hmb = (Tu) " LT, mg
= (L) Ty Ty=: T,y m¥ = (T) 7 Tuymy

= (1) Ty Tk ,n—ky e
We thus derive

’yc = (Tw)WITwyTw(k,n—k)mi =

(=) COmI(T, ) Tyl = (<1 ON(T,) by

To prove the Pfoposition, it suffices to check that, for any y € W¥,

Seq(mk) = PV (a®) PM(Seq(my))
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Define (T")" € ‘H similarly to () P("} and T,,. Then
Seqi(Ty) = (T’)('ﬁ}

and (in the quantum gfoup case)
O — (CW)=1 p(m fpim)

o — q——.%En(nwl)w‘ik(nwk)]I

n(n 1) n(ﬂ 1)

B = (-1) (@)

We compute
PeM(5®) P(*)(Seq(mf))
= p<n)@(")(a®n)P<n)[e;, s €]
= P (58 p(r)(g=Io(e1rmtndyy @ . @ v,
. (_qfv(el,..-,fn))P(")@(n)(o—®n)v€n ® .. ® v,
_ (_qru(q,...,en))p(n)(C(n))—lp(n)f{(”)ven ® ... 8 v,
= (=g enmaly e IR,y @ @,

- (_qIU(E1,...,€n)-§-IU(En,...,€1))(C(n))—‘l R(n)[fm ...,61}

= (=g"*RY(C™)T R Seq(mfs,)

(n 1) _ni{n-1)
4

= (—1)Hr R gHn=B o)1 () (")) Seq(mb

wy)
e (___I)M-’i;—lz+k(n——k)qk(n—k)+%{n(n-1}:—4k(n—k)§——-'-‘—(“4—_l—l ((Tl)(n))ml S\‘-’»Q(mf;y)

LIGTIV Iy - nln=1) _pin_ -
= (~1) KB (1)) Seg(ml,) = (1) 7 MR geq (T71)Seq(mb, )

_ Seq ((wl)%ﬁ“k(n_k}Tglmfﬁy> = .S'eg (( )l(w(k Tt k))T“ y)
= Seq(m})
This computation finishes the proof of the proposition. [

Having established that the two involutions correspond, we now check that the

image under Seq of the Kazhdan-Lusztig basis in M* is the canonical basis in

V®”[ - 2k] (permmuted by (n))_
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Applying Seq to an element C k of the Kazhdan-Lusztig basis of M*, we obtain:

Seq(CH) = Seq(Z(wI)I(S}_I(T)vﬂ%lv"l(r)j)};mf.)
TS o ‘
= Y ()OI PO PE [T Seq(m?)
T<3
=Y (=) gTIOPOPE (g=2)plen, ..., 0]
<8 ’ _

( here Seq(7) = ple1, ..y €n))

= z:(_;;k)l(s)wl('-*")q-‘f(é!}q?l(r)p?r_c’s(,:l,—z)(.n._{,l‘wfv(ﬁ,---,en)).ut51 ® ... ®ve,

TS
(using that Iv(ery .oy €)= I(T))
= 3 (- OO IPE (g Toe, © - B v,
<8
When 7 < s, we have

s (157 010 _ Q=201

Therefore, denoting Seg(s) by (g1, ..., itn) and q’(")“l(s)P,’{s(q”) by ¢(El""’€“)

1§72} :“wﬁ‘ﬂ)
we obtain
(—~1)¥)Seq(CHY = vy, @ ... @ vy, + Z ¢EZ§’;‘:_’E‘3)’1}“ ® ... @ Ve,
(‘51"-'7'571)}(”1}---:#:1)
where

Besides, as we already know,
P piM(5%™)Seq(CF) = Seq(CF)
Therefore

PROPOSITION 5.5. The basis {(~1)Seq(CF)|s € W} in VE*[n — 2k] coin-

cides with the (permuted by P™) canonical basis in V1®”[n — 2k].
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5.3. Kazhdan-Lusztig basis in * and dual canonical basis .

Let us idéntify WF* with the set SQy of éequences of n~k ones and k-minus ones
in a way different from the correspondence Seq of the previous sectiqﬁ.

(i) Define an action of W on thé set SQx as follows: the trasposition (i, + 1)
excha,nges; ¢-th and (¢ 4 1)-st elements of a sequence. |

(ii) To the identity element e € W, which is also the minimal coset representative
of eW}, associate the sequence of k negative ones followed by n — k ones.

Denote this mapping W# — ,S'Q;c by Seq. Now define another basis in V®"[n 21::]
by

- ple, .;.,en] = gl¥eirmen)=kln=k)y & ve,
Also denote by Seq the linear map
Seq: M* - VE[n 2k
given on basis vectors by
Seq(iy) = plet, ..., €nl

where (€1,..., €,) is the sequence Seq(s) of ones and negative ones.
Note that the Hecke algebra H, acts on V;*"[n — 2k} via operators T;. Denote
by Seq,; the map of Hecke algebras (we have two copies of the Hecke algebra: one

acting on M*, another on V2" [n — 2k]):
v%q—z, T,;——)Tz' (1<i<n—-1).

Similar to Proposition 5.3, we have

PROPOSITION 5.6. Mappings Seq cmdl Szeql define tsomorphism of pairs (_'Hn, ]\ka)
and (Hn, VE[n — 2k)).

d

We next prove
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PROPOSITION 5.7.- The following diagram of vector spuces and linear maps 13

commutaltivé: | o _
Mk | I Mk
lSEq .. '\I/S"éq
O] :
vEn[n - 2k) 2, yonp, o)

Proof: We mimic the proof of Prop'csition 5.4 substituting in certain places

powers of g for powers of negative one. Specifically, we get

Tw(k o— k)m I(w(k nwk)) ~

mk — Ul(w(k nwk))(T )MITwymwy
- From these identities we deduce

O (a®™)jler, ..., €n] = q 5 k=B (T Gl ]

which easily implies the claim of the proposition.

O

PROPOSITION 5.8. The Kazhden-Lusaztig basis {CF},cms of M* maps under

Seq to the dual canonical basis of V2" [n — 2k).

Proof is completely parallel to the proof of Proposition 5.5 and is omitted. We

only note that due to the scaling difference between

p[617 vy en}”’_’_ (Hg—l )Iv(fl ’.‘-’En)vfl ® - ® ven

and
ﬁ[ela vy fn] — qfv(el,...,en)—-k(n—k)vel ®...0 Ve,

the off-di'agonal coefficients of the decomposition of C¥ in the product basis of V2"
will lie in ¢Z[q] rather than in g~ 'Z[g7"], and that the powers of negative one present
in the identification of {{—1)"®)S5eq(Ck)}, with the canonical basis disappears in
this case. |

[
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