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ABSTRACT. A doodle is a collection of closed triple point free piecewise-linear curves 
on a surface M . A doodle is called slice if there is a handle body with boundary M 
and a triple point free proper piecewise-linear mapping of a union of discs to the 
handlebody such that the boundary of discs maps ( one-to-one except for a finite 
number of points) to the union of curves representing doodle. We prove that the set 
of slice doodles is NP-complete. 

§0. Introduction 

The boundary of a four-dimensional ball is a three-sphere. A knot in the three
sphere is called slice if it bounds a disc embedded in the four-dimensional ball. The 
problem whether a knot is slice is very complicated and no solution is known at 
this time. 

It turns out that many problems in knot theory admit a "toy" framework where, 
instead of considering isotopy classes of embeddings of circles in S3 (links), we study 
triple point free curves on the 2-sphere up to homotopies that do not create triple 
points. Such curves are called doodles. In the piecewise-linear case, the local moves 
of doodles are depicted on figure 1. 

Doodles have analogues of the braid group and fundamental group of knot com
plement (see [4]). In this paper we define slice doodles and prove that the problem 
whether a doodle is slice is NP-complete. 

We were motivated by the work of Carter [1] where an algorithm for computing 
the genus of a triple point free curve on a surface is given (slice'.::: genus is 0). The 
algorithm runs in exponential time. 

§ 1 is based on the ideas of [ 1]. 
In §1 we transform the problem whether a doodle is slice to a certain com

binatorial problem, COMBINATORIAL SLICE DOODLE. In §2 we reduce 3-
SATISFIABILITY to COMBINATORIAL SLICE DOODLE, proving, therefore, 
NP-completeness of deciding whether a doodle is slice. 

See [2],[5] for the definition of NP-completeness. 
Doodles were originally defined by Fenn and Taylor in [3). Our definition differs 

from theirs in that the curves are not required to be simple. 

§1. Combinatorics of slice doodles . 
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Throughout the paper we work in the piecewise-linear category. The term surface 

will always mean closed oriented 2-manifold. 

Definition 1.1. A doodle is a finite collection of triple point free closed curves on 

a surface M. 

Underlying curves of a doodle constitute a graph on M with nodes of the graph 
being double points of the doodle and edges - pieces of curves between double 
points. All nodes have valency four and the graph might have loops and multiple 
edges. This graph is called a diagram of doodle. 

· Two doodles are called equivalent if there is a homotopy on M of underlying 
systems of curves with no triple points at any time during homotopy. 

In terms of diagrams, there are two elementary moves depicted on figure 1 that 
preserve doodle. Two diagrams represent the same doodle iff they can be connected 
by a sequence of elementary moves. 

Let (C1, ... , Ck) be the curves that constitute doodle. 

Definition 1.2. A doodle ( C1 , ... , Ck) is called slice if for some diagram ~ there 

is a handlebody H, 8H = M and a triple point free proper map 

1 : uf=1 D; --+ H 

with 1(8Di) = Ci c M and the map 

1(8Di)--+M, l~i~k 

is one-to-one except for the double points of sel.fintersections of Ci. 

It is easy to see that if this is true (i.e. such 'If exists) for some diagram of doodle 
~, it is true for any diagram of~- A diagram is called slice if it is a diagram of a 

slice doodle. 

Definition 1.3. SLICE DOODLE is a YES/NO problem that on input: surface 

M and a 4-valent graph ~ on M answers YES iff ~ is a diagram of a slice doodle 

and NO otherwise. 

Suppose that a diagram ~ is slice. Fix 'If as in Definition 1.2. Let S( 'If) c H be 

the set of double points of 'If. The set S( 'If) is a disjoint union of arcs and circles. 

Let 1-1 (S(1)) be the preimage of S(1) on u7=1D;. It is a disjoint union of arcs 

and circles on Uf= 1 D;. 
If /3 is a connected component of the double point set S( 'If) there are 4 possibil

ities: 
(i) /3 is an arc with both ends on M = 8H (figure 2). Then -ip-1 (/3) is a pair of 

arcs on Uf= 1 D;. 
(ii) /3 is an arc with one end on M and the other end in the interior of H (figure 

3). The latter end is a branch point of -ip, and -ip-1 (/3) is an arc on Uf=1 D;. 
(iii) /3 is a circle (figure 4a). In that case -ip-1 (/3) is a pair of circles in the interior 

of Uf= 1D;. 
(iv) /3 is an arc with both ends in the interior of H. The ends of f3 are branch 

points of 'If, and 1-1 (/3) is a circle inside ut= 1D;. 
Note that a connected component, of t/J- 1 (S(1)) is a circle iff t/J(,) is either a 

circle ( case (iii)) or an arc with both ends inside the handle body H ( case (iv)). In 
the latter case 1(,) has two branch points. 



Proposition 1.1. If .6. iJ Jlice, there is a mapping 'ljJ1 : Uf=1 D; --+ H such that 
1r;1 (S(1P1)) iJ a diJjoint union of arcJ (no circleJ). 

This is equivalent to S('ljJ1 ) being the union of connected components of types 
(i) and (ii). 

Proof Start with an arbitrary 'ljJ. If 'ljJ-1 (S('ljJ)) has no circles, we are done. 
Otherwise take an innermost circle c. It bounds a disc D inside one of the discs 
Di, ... , D% with no points from 'ljJ-1 (S('ljJ)) inside D . There are two possibilities: 

1) 'ljJ(c) is a circle (c is of type (iii)). Then we cut and paste the neighborhood 
of 'ljJ(D) in H ( see figure 4) and arrive at 'ljJ* with fewer number of double point 
circles. 

(ii) VJ( c) is an arc with both ends inside the handle body H ( c is of type (iv)). 
We throw away D and its image in H, glue c to itself (as on figure 5) and obtain 
'ljJ* with one less double point circle than 'ljJ. 

Repeat till we arrive at the required 'ljJ1 . 

□ 
We call a map 'ljJ1 satisfying the conditions of Proposition 1.1 minimal. 
The complexity of a diagram .6. of a doodle is the pair (dp(.6.), c(.6.)) where dp(.6.) 

is the number of double points of .6. and c( .6.) is the number of components of .6.. 
For example, figure 10 diagram has complexity (6,3). Introduce a partial ordering 
on the set of diagrams with .6.1 :::; .6.2 iff dp(.6.1) ::; dp(.6.2) or dp(.6.1) = dp(.6.2) and 
c(.6.1)::; c(.6.2). 

Let .6. be a diagram of a doodle on M. Suppose there is an oriented 3-manifold 
N, MC 8N and a triple point free mapping 1P: Uf=1D;--+ M that makes diagram 

VJ N 

aT aT 
M 

commute. In this case the doodle ( or the diagram) is called weakly slice. Again, 
this concept is independent from the choice of diagram. The difference from slice 
doodles is that N is not necessarily a handlebody. The next ·proposition shows that 
it does not matter. 

Proposition 1.2. If a doodle is weakly slice, it is slice. 

Proof is by induction on the complexity of some diagram .6. of doodle. 
Step 1: If dp(.6.) = 0, .6. is a union of simple closed pairwise disjoint curves on 

M. Then .6. is slice because there is a handlebody H, 8H =Mand a collection of 
properly embedded pairwise disjoint discs in H whose boundaries are .6.. 

Step 2: Suppose that proposition is true for any diagram that is less than .6. 
w.r .t . :::; . Let us prove it for .6.. Suppose that .6. is weakly slice. We have 
commutative diagram ( *) . By Proposition 1.1 we can assume that discs intersect 
( and selfintersect) only along arcs with ends on the boundaries of discs . More 
precisely, we need the analogue of Proposition 1.1 for weakly slice doodles and it is 
immediate. 



Next, take an outermost arc O:'. on some disc D; (figure 6). Let l be the segment 
on the boundary on that disc such that O:'. U l bound a subdisc with no arcs inside. 
Consider two cases. 

Case 1: 1/J(a) is of type (i), i.e. 1/J-1(1/J(G)) is a union of two arcs. 
Take L = M x [0, 1], ~ E M x {0}. Consider a diagram (~, O:'.) that coinsides 

with~ outside a small neighborhood U of [(figure 7a depicts U). and is as on figure 
7c inside U. 

The complexity of (~, O:'.) is less than the complexity of ~ because ~ has two 
more double points than (~,a). Also, it is easy to see that (~,O:'.) is weakly slice. 
By induction hypothesis, (~, a) is slice. Thus, there is a handlebody H and a set 
R of triple point free discs in H with 8R = (~, O:'.). 

Let Q be the following surface in M x [O, 1] 
(i) 8Q = ~ U (~,a), 
(ii) outside U x [0, 1] (U is a neighborhood of l on M) Q is (~ \ (~ n U)) x [0, 1], 
(iii) inside U x [O, 1] Q has one double point arc. Slices Qn(U x {t} ), t = O; 0.5; 1 

are shown on figure 7. 
Then R Uc~,a) Q is a collection of triple point free discs inside the handlebody 

obtained by gluing Hand M x [0, 1) through the identification 8H ~ M x {l}. 
Therefore, ~ is slice. 
Case 2: 1/J(o:) is of type (ii). This is treated similarly. Intersections of Q with 

U x { t} , t = O; l are depicted on figure 8 . 
D 
For a diagram bi. of a doodle, denote the double points of~ by different letters 

X, Y, .... The doodle is composed of curves, say, C1 , ... , Ck. Pick up an orientation 
of each curve. Also, we fix an orientation of the surface M. For each i = 1, ... , k, 
start at some point of Ci, travel along Ci and read off the letters assigned to double 
points as we cross them. For each i, we get a sequence Si (up to the cyclic order) 
of elements from the set { X, Y, ... } . 

Again, for each i = 1, ... , k start at the same point of Ci, travel along Ci and 
compose the sequence Li of +'sand -'s: each time we cross a double point from 
left to right, we add +, if we cross a double point from right to left we add - (see 
figure 9). 

For each i take a disk Di. Let ni be the number of elements in the i-th sequence. 
Mark ni points on the boundary of Di and assign a letter to each marked point 
so that if we read off letters as we go along 8Di in clockwise order, we get the 
sequence Si. Also, each marked point has a polarization + or - (from Li)-

An example is provided on figure 10. We have a diagram with 6 double points. 
Denote them by X, Y, Z, W, P, Q. Denote the components by Ci, C2, C3. Then 
Si, Li's, up to an obvious ambiguity, are 

S1 = {X, Y, P, Q}, S2 = { Q, W, Y, Z}, S3 = {X, Z, P, W}, 

L1 = {-,-,+,+},L2 = {-,-,+,+},L3 = {+,-,-,+}. 

Suppose now that the doodle is slice. Consider a minimal 1/J of bi. (i.e. 'ljJ satisfies 
the same conditions as 'ljJ1 in Proposition 1.1 ). Take a double point set S( 1/J) and 
its preimage 1/J-1 (S( 'ljJ )) on Uf=1 D;. Then our marked points on the boundary of 
Uf=t D; are pairwise connected by arcs inside discs. The following conditions hold: 



( a) Each letter is assigned to exactly two marked points, 
(b) each marked point is connected by an arc to exactly one other point, 

( c) arcs do not intersect, 
(d) If a marked point with a letter, say, X, is connected to a marked point with 

another letter, say, Y, Y -::f X, then the other two of the marked points with letters 
X, Y are connected with each other, 

( e) ends of each arc have different polarization ( one is +, the other is - ) . 
Vice versa, if we have a diagram ~ of a doodle and it is possible to satisfy 

conditions (a)-(e), the doodle is slice. We leave it to the reader to verify (Hint: 
Prove first that the doodle is weakly slice and then use Proposition 1.2 to deduce 
that it is slice). 

§2. Reduction of :3-SATISFIABILITY to SLICE DOODLE. 

We reduced SLICE DOODLE to the following combinatorial problem: 

There is a.n alphabet (a finite set of cardinality n) of letters: X, Y, Z, ... ,Wand 
k discs D(l), ... D(k). E!ach disc has several marked points on its boundary and to 

each marked point one of the letters is assigned and + or - is assigned ( the latter 
assigment is called polarization ) such that 

(i) Each letter in the alphabet is associated to exactly two marked points and 
these two points have different polarizations, 

(ii) Each disc has at least one marked point (that implies k::; 2n). 

Problem. Is there a way to draw n straight line segments on discs D(l ), ... , D( k) 

so that 
(a*) ends of each segment are marked points of different polarizations, 

(b*) each marked point is the end of exactly one segment, 

(Note that (a*), {b*) imply that the set of marked points is divided into sets of 

cardinality two - boundaries of segments) 

(c*) if two marked points are connected and the letters assigned to them are 

different, then the two other marked points with the same letters are connected, 

( d*) no two segments intersect. 

Figure 11 depicts an example. 
Note that a segment is allowed to connect two points with the same letters 

assigned to them. 
We call this problem COMBINATORIAL SLICE DOODLE, or CSD, because it 

is a combinatorial reformulation of SLICE DOODLE. 

Later in this chapter letters of an alphabet for CSD will always be capital letters 
with indices. 

CSD is, obviously, an NP problem. Next we prove that CSD is NP-complete by 

log- space reducing 3-SATISFIABILITY to CSD. 

An instance of 3-SATISFIABILITY (3SAT) is a finite set of variables {A, B , ... } 
and a finite set of clauses, each clause containing no more than 3 elements from 
the set { A, -,A, B, -,B, .... } . The answer to an instance of 3SAT is YES if we can 
assign values true/false to the variables su.ch that in each clause at least one of the 
elements is true. Otherwise the answer is NO. 



Variables of 3SAT have no indices, but letters of CSD in the reduction from 3SAT 
to CSD will always have indices (placed in brackets), so no misunderstanding should 
arise. 

Now for the reduction. Pick an instance of 3SAT. We fir st construct a variable 
gadget . Each of the variables A , B, ... can take two values tru e/fals e. Pick one 
variable, say, X . 

Let D be a disc (figure 12) with 4 marked points X(1), X(2) , X(3), X ( 4). Let 
X (l ), X (3) have polarization+, X(2) , X(4) - polarization - . There are two ways 
to pairwise connect these points without segments intersecting. If X(l) is connected 
to X ( 4) and, consequently, X(2) to X(3), variable X is true, otherwise X is fals e. 

A variable and its negation may appear several times in different clauses. Thus, 
we need a device to make several copies of X. This is achieved by a configuration 
of 3 discs D1, D2 , D3 on figure 13. Marked point on the boundary of D1 has 
polarization + iff its first index is even. Marked point on the boundary of D2 or 
D3 has polarization + iff its index is odd. 

Each of the 4 points X(l, j),X(2, j),X(3, j),X( 4, j), 1 ~ j ~ s is a "copy" of 
X (l ),X (2), X (3) ,X(4) as the following lemma shows. 

Lemma. If X is true all segments connecting marked points on figure 1 S discs are 
horizontal. If X is false all segments are vertical. 

In other words, if X ( 1) is connected to X ( 4), ( X = true) there is only one 
choice t o connect the rest of the marked points on figure 13 according to the rules 
(a*)-( d* ): 

X (2) is connected to X(3), 
P (l ) to P ( 4), 
P (2) to P (3), 
Q(l ) to Q( 4), 
Q(2) to Q(3), 
X ( 1, j ) to X ( 4, j), 1 ~ j ~ s, 
X (2, j ) to X(3, j), 1 ~ j ~ s. 
Similarly, if X = false, X(I) is connected to X(2), X(3) to X( 4) and 
X ( l , j ) to X(2 , j), 1 ~ j ~ s, 
X (3, j ) to X (4, j) , I~ j ~ s. 
Therefore, for each j = 1, ... , s, quadruple X(l,j),X(2,j),X(3,j),X(4, j) is con

nected exactly as X(l) , X(2),X(3),X(4). In that sense it is a copy of X. If, for 
some j , we want X(l , j) , X(2,j),X(3,j),X(4,j) to beha.ve as the negation of X , 
we exchange X(2, j) and X(3,j) on figure 13. 

Proof of the lemma is straighforward.O 
We chooses to be the number of times X and its negation appear in the clauses 

of our instance of 3SAT. 
Let us construct a clause gadget. Some clauses of 3SAT may have just one or 

two variables . In that case we change them into pseudo-th ree variable clauses : 

(X) -+ (Xu Xu X), 

(X u Y) -+ (X u Xu Y). 

Now, we are given a clause (XU YU Z), where X, Y, Z are some variables/their 
negations. 



From variable gadgets we get a "copy" of each X, Y, Z: 

for some a, b, c. 

X(l, a), X(2, a), X(3, a), X( 4, a), 

Y(l, b), Y(2, b), Y(3, b), Y( 4, b), 

Z(l, c), Z(2, c), Z(3, c), Z(4, c) 

Assign two discs depicted on figures 14-15 to the clause (X U YU Z). Here 
T(l)-T(6),W(l)- W(6) are new letters that appear only on the discs assigned to 
that clause. 

Marked points with polarization+ on the boundary of figure 14 disc are 

X(l, a), X(3, a), W(l ), W(3), W(5), T(2), T( 4), T(6). 

Marked points with polarization - on the boundary of figure 15 disc are 

Y(l, b), Y(3, b), Z(l, c), Z(3, c), W(2), W(4), W(6), T(l), T(3), T(5). 

We claim that (XU YU Z) is true if and only if there is a way to divide marked 
points on discs of figures 14-15 into pairs so that the conditions (a*)-(d*) are sat
isfied. To prove that, consider separate cases. 

Case 1: Xis true. Then X(l) is connected to X(4), X(2) to X(3). Now connect 
T(i) to W( i), 1 :s; i :s; 6. We are left with 8 marked points Y(l)- Y( 4), Z(l)- Z( 4). 
We connect them in the way defined by values true/false of Y, Z. Conditions (a*)
(d*) hold. 

Case 2a: Xis false, Y is true. Connect X(l,a) to X(2,a), X(3,a) to X(4,a). 
Connect Y(l,b) to Y(4,b), Y(2,b) to Y(3,b), W(l) to W(6), W(4) to W(3), 
W(2) to W(5), T(l) to T(6), T(4) to T(3), T(2) to T(5). Four marked points 
Z(l, c), Z(2, c), Z(3, c), Z( 4, c) are left. We connect them according to the value of 
Z. Again no two segments intersect. 

Case 2b: X is false, Z is true . This case is equivalent to the case 2a with roles 
of Y and Z exchanged. 

Case 3: All 3 variables X, Y, Z are false. It is easy to check that there is no way 
to satisfy (a*)-( d*) in this case. 

Thus, starting from an instance of 3SAT with n variables and m clauses, we get 
an instance of COMBINATORIAL SLICE DOODLE with 3n + 2m discs and less 
that 100nm marked points. 

We constructed a log-space reduction from 3SAT to COMBINATORIAL SLICE 
DOODLE. Therefore, CSD is NP-complete and SLICE DOODLE is NP-complete. 

Our reduction from 3SAT to CSD is not parsimonious but the following slightly 
more sophisticated reduction is: 

The variable gadget remains the same except that s ( number of "copies" of a 
variable) might be bigger than the number of appearances of the variable and its 
negation in the clauses of the instance of 3SAT. 

To each clause (XUYUZ) we associate two discs with marked points (in clockwise 
order, up to the cyclic permutation): 



Disk 1: 

X(l, a0) , X( 4, a0), T(l ), X( 4, al), X(3, al), T(2), X( 4, a2), X(3, a2) , T(3) , X( 4, a3) , 
X(3, a3) , T( 4) , X( 4, a4) , X(3, a4), T(5), X( 4, a5), X(3, a5), T(6), X(3, a), X(2 , a) , 
W(6) , X(2, a5),X(l,a5), W(5),X(2,a4),X(l,a4), W(4),X(2,a3),X(l,a3), W(3) , 
X(2, a2) , X(l , a2), W(2), X(2, al), X(l, al), W(l). 

Marked points with polarization+ are X, W's with odd first index and T's with 
even index. 

Disk 2: 

T¥(1), T(l), Y( 4, b2), Y(3, b2), T( 4), W( 4), Y( 4, b3), Y(3, b3), Z( 4, c), Z(l, c), W(5) , 
T (5), T(2), W(2), Z(2, c), Z(3, c), Y(2, b3), Y(l, b3), Y(3, bl), Y(2, bl), W(3), 
T (3), Y(2, b2), Y(l, b2), T(6), W(6), Y(l, bl), Y( 4, bl). 

Marked points with polarization + are Y, Z, T's with odd first index and W's 
with even index. 

aO - a5 are indices for 6 "copies" of X and bl - b3 are indices for 3 "copies" of 
Y . 

We define #C SD as a function problem that, given an instance of COMBINA
TORIAL SLICE DOODLE, says in how many ways we can split marked points into 
pairs with conditions (a*)-( d*) satisfied. The latter reduction is parsimonious, thus, 
it is also a reduction from #3SAT to #CSD. Therefore, #CSD is #P complete. 

Remark. Suppose that we were in the smooth category. The difference is that we 
have only figure la local move of doodles and discs cannot have branched points. 
Conbinatorially, that means that an arc is forbidden to join two marked points with 
the same letter assigned to them. We get a variation of our original problems, that 
we call SMOOTH SLICE DOODLE and COMBINATORIAL SMOOTH SLICE 
DOODLE. It is immediate that our reduction from 3SAT to COMBINATORIAL 
SLICE DOODLE works also in this case and, therefore, SMOOTH SLICE DOO
DLE is NP-complete. 

Que3tion: Is SLICE DOODLE NP-complete if we are restricted to the case of 
(i) one component doodles 
or to the case of 
(ii ) doodles on the two-sphere. 
We do not know the answers. The existence of many components was very 

important because we "localized" each variable and clause by assigning different 
components to them. 
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