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1. Introduction

This paper uses an unoriented version of the Robert–Wagner foam evaluation for-
mula [18], specialized to three colors, to construct and study combinatorial rela-
tives of Kronheimer–Mrowka homology theories for planar unoriented trivalent graphs. 
Kronheimer–Mrowka defined their homology J� in much greater generality, for trivalent 
graphs embedded in oriented 3-manifolds [11–13]. Their theory comes from the SO(3)
gauge theory for 3-orbifolds. As a special case, it gives a functorial homology theory 
for trivalent graphs embedded in R3; such graphs generalize unoriented knots and links. 
Further restricting to graphs in R2 and using the embedding R2 ⊂ R3, Kronheimer and 
Mrowka obtain a homology theory for planar trivalent graphs.

This homology theory is defined over the two-element field k and consists of a single 
vector space, without an additional grading. Conjecturally, for a planar graph K, the 
dimension dimk(J�(K)) is equal to its number of Tait colorings, which are 3-colorings of 
edges of K such that edges that share a vertex carry distinct colors. Kronheimer–Mrowka 
nonvanishing results, utilizing Gabai’s sutured theory, and the conjecture would imply 
the four-color theorem [1,3,2,19], providing an alternative approach to the theorem and 
relating it to gauge theory and topology in low dimensions. Another notable representa-
tion theoretical interpretation is due to Bar-Natan [5].

Robert–Wagner foam evaluation formula [18] relates to a different kind of link ho-
mology, namely to a family of bigraded homology groups for links in R3 that has sl(n)
specializations of the HOMFLYPT polynomial as its Euler characteristic. Their formula 
allows to build equivariant sl(n) homology for links with components labeled by arbitrary 
fundamental representations, starting with the values of closed sl(n)-foams. As shown 
by Ehrig, Tubbenhauer, and Wedrich [7], it also leads to a proof of the full functoriality 
of these sl(n) link homologies.

In this paper we specialize and extend the Robert–Wagner formula to provide a combi-
natorial approach to Kronheimer–Mrowka homology theory for planar graphs and define 
an equivariant combinatorial version of the theory. In our combinatorial definition there 
are no complexes present, and homology (or state space) of a graph is given as the quo-
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tient of a free R-module by the kernel of a bilinear form on it, for a certain commutative 
ring R.

One considers cobordisms, also called foams, in R3 between trivalent planar graphs, 
or webs. A closed foam F in R3 is a cobordism from the empty web to itself. Specializing 
the Robert–Wagner formula to three colors and extending it to unoriented graphs and 
cobordisms requires reducing coefficients modulo two, as in the Kronheimer–Mrowka 
framework, and working over the two-element field k � F2. A portion of the orientabil-
ity property is retained, since foam 3-colorings that we consider give rise to orientable 
surfaces when facets colored by any one out of the three colors are dropped from F . Eval-
uation of closed foams requires extending the ground field k to the ring R = k[E1, E2, E3]
of symmetric polynomials in three variables X1, X2, X3 over k, producing what is usually 
called an equivariant theory (here E1, E2, E3 are the elementary symmetric functions in 
X1, X2, X3). In the absence of geometric interpretation, equivariance refers to the homol-
ogy of the empty web being isomorphic to the equivariant SO(3) cohomology of a point 
(with coefficients in k), and to similar isomorphisms for the simplest planar graphs.

In the equivariant theory, closed foams evaluate to elements of R, via the formula 
(7) in Section 2.3. This formula and many of its implications can be written in greater 
generality, for pre-foams. Pre-foams are compact two-dimensional CW-complexes with 
points that can have neighborhoods of the three types shown in Fig. 1.

Foams are pre-foams that are equipped with an embedding into R3. We consider 
colorings of facets of a pre-foam into three colors such that along any singular edge all 
three colors meet (pre-admissible colorings). We then single out a class of admissible
pre-foams, with the condition that bicolored surfaces for each pre-admissible coloring 
are orientable. The pre-foam underlying a foam is always admissible.

We define a version of Robert–Wagner evaluation formula, our formula (7), to assign a 
rational symmetric function 〈Γ〉 in variables X1, X2, X3 to a pre-foam Γ. We show that, 
for admissible pre-foams, 〈Γ〉 is a polynomial, so takes values in R, see Theorem 2.17.

In Section 2.5 we derive a number of local skein formulas for evaluation of pre-foams 
and foams.

Ring R of symmetric functions in three variables, where evaluations take values, maps 
surjectively onto the field k, by killing everything in R in positive degrees. This leads to 
the corresponding evaluation 〈F 〉k of closed foams, now taking values in k. In Section 2.6
we compare Kronheimer–Mrowka’s conjectural algorithm for pre-foam evaluation [11]
with the evaluation 〈F 〉k and show that the two evaluations coincide on foams (that is, on 
pre-foams embedded in R3). Consequently, we prove Kronheimer–Mrowka Conjecture 8.9 
in [11], restricted to the case of foams, see Theorem 2.35.

Section 2.7 provides an example of a pre-foam not embeddable in R3 for which the 
algorithm does not result in a well-defined value, implying that the conjecture does not 
hold in full generality for all pre-foams. Restriction to foams is a very natural assumption, 
and Kronheimer–Mrowka essentially restrict to this case in the discussion following their 
conjecture.
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We use the foam evaluation formula (7) to associate a graded R-module 〈Γ〉, called 
the state space of Γ, to a planar trivalent graph Γ. This is a standard construction, see 
[4,10,18], where generators of 〈Γ〉 are all possible foams from the empty graph to Γ, and 
a linear combination of generators is zero iff composing these generators with any foam 
from Γ to the empty graph, evaluating resulting closed foams to elements of R, and 
forming the corresponding linear combination always produces zero.

In Proposition 3.9 of Section 3.2 we prove that R-module 〈Γ〉 is finitely-generated 
for any planar graph Γ. In Section 3.3 we derive direct sum decompositions for 〈Γ〉 to 
simplify it when a planar graph Γ has a facet with at most four edges. In particular, this 
allows to decompose 〈Γ〉 for any bipartite graph, showing that in this case it coincides 
with the state space of Mackaay–Vaz [17] equivariant sl(3) link homology modulo two, 
see Proposition 3.17.

It’s unclear whether 〈Γ〉 is a free graded module for any Γ. We consider base changes, 
that is, homomorphisms ψ : R −→ S from R to rings S. The bilinear form that defines 
〈Γ〉 is modified to get a bilinear form over S, such that the quotient by the kernel is the 
S-state space of Γ, denoted 〈Γ〉S .

Suitable base changes give rise to simpler theories. In Section 4.2 we consider base 
change ψD : R −→ R[D−1] given by inverting the discriminant D = E1E2 + E3 ∈ R of 
the polynomial X3 + E1X

2 + E2X + E3.
Kronheimer–Mrowka 4-periodic complex [11, Diagram (21)] exists in our set-up as 

well, see Section 4.3. We prove that the base change ψD makes this complex exact and 
that the corresponding state spaces 〈Γ〉D , which are R[D−1]-modules, are projective of 
rank equal to the number of Tait colorings of web (planar trivalent graph) Γ.

We don’t know whether the rank of 〈Γ〉 is a lower bound of the rank of J�(Γ). A 
naive conjecture for state spaces 〈Γ〉 is that they are free graded R-modules of rank 
equal to the number of Tait colorings of Γ, but the authors are not confident enough to 
propose it, and have not verified it even for the dodecahedral graph, the one-skeleton of 
the dodecahedron stretched out on the plane.

We can degenerate the theory by specializing variables E1 and E3 to zero to get a 
theory over k[E2], via this base change ψ : R −→ k[E2], ψ(E1) = ψ(E3) = 0. One can 
show that the state space 〈Γ〉k[E2] is a free k[E2]-module of rank equal to the number 
of Tait colorings of Γ, but we leave the proof to another paper. Collapsing the grading 
via the homomorphism from k[E2] to the Kronheimer–Mrowka [13] deformed base ring 
k[Z3] by taking E2 to their element P ∈ k[Z3] recovers Kronheimer–Mrowka state space 
for planar graphs in their deformed theory.

Acknowledgments M.K. was partially supported by NSF grants DMS-1406065, DMS-
1664240, and DMS-1807425. L.-H.R. was supported by NCCR SwissMAP, funded by the 
Swiss National Science Foundation. We are grateful to the Simons Center for Geometry 
and Physics for hosting Categorification in Mathematical Physics workshop in April 2018 
which started this collaboration.
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Fig. 1. The three local models of a pre-foam. Facets are colored just to make the figure clearer. The seams 
are depicted in bold black. Standard neighborhoods of a smooth point, a seam point, and a seam vertex 
are depicted from left to right. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

2. Pre-foams and their evaluations

2.1. Pre-foams and their colorings

An (open) tripod T is a topological space obtained by identifying three copies of the 
semi-open interval [0, 1) along the three 0 points. A tripod has a singular point and three 
intervals emanating from it. The subspace {0} × (0, 1) in the direct product T × (0, 1)
of a tripod and an open interval is called a seam or a singular edge of the product.

Definition 2.1. A (closed) pre-foam F is a compact 2-dimensional CW-complex with a 
PL-structure such that each point has an open neighborhood that is either an open disc, 
the product of a tripod and an open interval, or the cone over 1-skeleton of a tetrahedron, 
see Fig. 1.

We call points of the first type regular or smooth points of F , points of the second 
type seam points, and points of the third type seam vertices.

The subspace of seam points and seam vertices in F is denoted s(F ). It’s a topological 
space and can also be thought of as a four-valent graph that may contain circles (seams 
that close on themselves). The vertices of the graph s(F ) are the seam vertices of F . 
We use s(F ) to denote both this subspace of F and the corresponding graph. The set 
of seam vertices is denoted v(F ), and connected components of s(F ) \ v(F ) are called 
seams. Each seam is homeomorphic to either an open interval or a circle.

The space F \ s(F ) is an open surface and we denote by f(F ) the set of its connected 
components, also called facets of F . It is a finite set. A connected component may be 
a compact surface (which then does not bound any seams) or a non-compact surface, 
which is a facet bounding one or more seams.

Standard neighborhood N(v) of a seam vertex v can be visualized as the cone over 
the 1-skeleton of a tetrahedron. The six connected components of N(v) \ s(F ) are six 
portions of facets of F that contain v in the closure. We call these six components the 
corners at v.
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Fig. 2. A pre-admissible coloring in a neighborhood of a seam point. All three colors appear.

Fig. 3. On the left: a pre-admissible coloring of a foam in the neighborhood of a seam vertex. On the right: 
the induced Tait coloring of the graph obtained by intersecting the foam with a small 2-sphere centered at 
the seam vertex. A Tait coloring of a graph is a 3-coloring of edges so that no two edges of the same color 
share a vertex.

Closed pre-foam F may be decorated by finite collections of points (dots). Dots can 
float freely on any facet of F but cannot cross seams or enter seam vertices. A collection 
of several dots on a facet may be denoted by a single dot with the label the number of 
dots it represents.

A coloring c of F is a map f(F ) −→ {1, 2, 3}, that is, an assignment of a number 
from 1 to 3 to each facet of F (Fig. 2).

A coloring c is called pre-admissible if the three facets at each seam of F are colored 
by three distinct colors. A colored pre-foam is a pair (F, c) where F is a pre-foam and c
a pre-admissible coloring of F . A facet of a colored pre-foam whose color is i is called an 
i-facet.

To give an example of a pre-foam without pre-admissible colorings, we can take a 
tripod times an interval, T × [0, 1], and select a homeomorphism h between T ×{0} and 
T × {1} that nontrivially permutes the three legs of T using either a transposition or 
a 3-cycle. Gluing T × [0, 1] onto itself via this homeomorphism produces a surface S′

with a singular circle. Adding either two disks (in case h is a transposition of the three 
edges) or one disk (when h is a 3-cycle) to S′ produces a pre-foam S with a singular 
circle and either two or one facets, homeomorphic to open disks. This pre-foam has no 
pre-admissible colorings.

If v is a seam vertex of F and c a pre-admissible coloring, the six corners at v are 
colored by three colors so that opposite corners carry identical colors (Fig. 3).

For each 1 ≤ i < j ≤ 3 denote by Fij(c) the closure of the union of i- and j-colored 
facets of (F, c). Also let Fji(c) = Fij(c).
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Fig. 4. Neighborhood of a seam vertex in the surface Fij(c).

Proposition 2.2. The set Fij(c) is a closed compact surface that contains the graph s(F ).

Proof. Each seam of F is adjacent to an i-facet and a j-facet, so that s(F ) ⊂ Fij(c) and 
each seam point has a neighborhood in Fij(c) homeomorphic to R2. Points of Fij(c) that 
are not seam vertices in F also have neighborhoods homeomorphic to R2. Likewise, each 
seam vertex v of F , necessarily in Fij(c), has a neighborhood in Fij(c) homeomorphic 
to R2, since a pre-admissible coloring of a neighborhood of a seam vertex is unique 
up to permutation of the colors, and the intersection of Fij(c) with the standard open 
neighborhood of v is homeomorphic to R2 (Fig. 4). �

A coloring c is called admissible if the surfaces Fij(c) are orientable for all 1 ≤ i <
j ≤ 3. We denote by adm(F ) the set of admissible colorings of F .

If F has an admissible coloring and a connected component which is a surface S, then 
S is orientable. If a pre-foam F is an unorientable surface, then F has pre-admissible 
colorings but no admissible coloring.

Proposition 2.3. If F has an admissible coloring, the graph s(F ) is bipartite.

Proof. In our convention, a bipartite graph may have circles (edges that close upon 
themselves). To prove that s(F ) is bipartite, it is enough to prove that any cycle in 
s(F ) has an even number of vertices. Let c be an admissible coloring of F , and C :=
(v1, v2, . . . , vn) be a cycle in C(F ). The cycle C consists of edges e1, . . . , en, with ei
connecting vertices vi and vi+1, indices taken modulo n.

We consider a tubular neighborhood N of C in the pre-foam. The boundary ∂N is a 
trivalent graph G with a Tait coloring cG induced by c. Along an edge of C, the graph 
G consists of three “parallel” edges colored by three distinct colors. The structure of G
in a neighborhood of a seam vertex vi ∈ C is depicted in Fig. 5. As they approach vi, 
two out of the three “parallel” edges terminate in trivalent vertices that are connected 
by an edge (an arc in the lower half of the tube in Fig. 5). Then two new edges start out 
at these vertices to continue in parallel with the cycle C.

With the coloring c and the induced Tait coloring cG of G fixed, the vertices of the 
cycle C can be partitioned into three types, determined by the color of the edge that 
continues uninterrupted past the vertex, see Fig. 6. The edge connecting two vertices of G
corresponding to the vertex in the cycle is colored by the same color as the uninterrupted 
edge.
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Fig. 5. On the left: intersection of N with the pre-foam F in a neighborhood of a vertex of C. On the right: 
the graph G in a neighborhood of a vertex of C.

Fig. 6. The three possible induced colorings of G in a neighborhood of a seam vertex v of C. This determines 
the type of the seam vertex v (with respect to the coloring c and the cycle C). From left to right, the seam 
vertex v has type 1, 2 and 3.

Fig. 7. The surface Σ in the neighborhood of vertices of type 1, 2, 3 going from left to right. The boundary 
of Σ is depicted in bold black.

We consider the intersection Σ = F23(c) ∩N . This surface deformation retracts onto 
the cycle C, so it is either an annulus or a Möbius band. Since c is admissible, it is an 
annulus. Its boundary has two connected components, and both components consist of 
a collection of edges attached along some vertices (depicted in red in Fig. 7).

To each seam vertex of type 2 and 3 there correspond two vertices on the boundary 
of Σ that belong to same boundary component, see Fig. 7. To each seam vertex in C of 
type 1 there correspond two vertices on the boundary of Σ: one on each of the boundary 
components, see the leftmost picture on Fig. 7. Since on the boundary components the 
colors of the edges alternate, each of the two components has an even number of vertices. 
This proves that C has an even number of seam vertices of type 1.

Permuting the colors in the previous argument shows that there is an even number of 
seam vertices in C of type 2 (resp. of type 3). Hence C has an even number of vertices. �

Definition 2.4. A pre-foam F is called admissible if any pre-admissible coloring of F is 
admissible.

Remark 2.5. The empty pre-foam ∅ has a unique coloring, which is admissible.
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Fig. 8. On the top: a pre-admissible but not admissible coloring of the pre-foam F , on the bottom: an 
admissible coloring of the pre-foam F . On top and on bottom, the two bold oriented circles are meant to 
identify.

Remark 2.6. Here is an example of a pre-foam which has an admissible coloring and a 
pre-admissible but not admissible coloring. Glue four disks to four parallel disjoint loops 
in a Klein bottle so as to form a pre-foam F with 8 facets, including four disks and four 
annuli. The closure of the union of the four annuli is the original Klein bottle.

The pre-foam F has a pre-admissible but not admissible coloring, given by coloring 
the disks with 1 and the remaining four annuli by 2 and 3 alternatively. For an admissible 
coloring, color the disks by 3, 3, 1 and 1 in this order and complete by coloring the annuli 
with 1, 2, 3 and 2, starting with the annuli adjoint to the 3-colored disks. This is depicted 
in Fig. 8.

In what follows, we will be mainly interested in admissible pre-foams. It is worth 
noticing that the seam graph of an admissible pre-foam has an even number of vertices, 
since it is a 4-regular bipartite graph.

Denote by |Y | the cardinality of a set Y , so that |d(F )| and |v(F )| is the number of 
dots, respectively the number of seam vertices of a pre-foam F .

Definition 2.7. The degree deg(F ) of a pre-foam F is an integer given by

deg(F ) = 2 |d(F )| − 2 χ(F ) − χ(s(F ))

= 2 |d(F )| − 2
∑

f∈f(F )

χ(f) + 3 |v(F )|,

where χ(f) is the Euler characteristic of the open facet f .

The second expression follows from the identities

χ(F ) =
∑

f∈f(F )

χ(f) + χ(s(F )),

χ(s(F )) = −|v(F )|,

since s(F ) has twice as many (non circular) edges as vertices.
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Remark 2.8. Suppose that a foam F carries no dots and admits a pre-admissible color-
ing c. Then

deg(F ) = − (χ(F12(c)) + χ(F13(c)) + χ(F23(c))) . (1)

Indeed, we have

χ(F12(c)) = χ(s(F )) +
∑

f∈f(F )
f colored by 1 or 2

χ(f),

likewise for χ(F13(c)) and χ(F23(c)). The identity (1) follows.
Note that deg(F ) is even if and only if F has an even number of seam vertices. In 

particular, if F has an admissible coloring then deg(F ) ∈ 2Z.
For an admissible foam F ,

deg(F ) = 2 |d(F )| − (χ(F12(c)) + χ(F13(c)) + χ(F23(c))) , (2)

for any admissible coloring c.

2.2. Kempe moves for pre-foam colorings

For a given admissible pre-foam F , the group S3 acts naturally on adm(F ) by permut-
ing the colorings. As we will now see, there are other, more local, coloring modifications. 
In this subsection, i, j and k denote the three elements of {1, 2, 3}, but not necessarily 
in this order.

Definition 2.9. Let us consider an admissible pre-foam F and a coloring c of F . The 
surface Fjk(c) may have several connected components, let Σ be one of them. We can 
define a coloring c′ of F by swapping the colors j and k in all the facets of F which are 
contained in Σ. We say that c and c′ are related by a jk-Kempe move along Σ.

Remark 2.10.

(1) One could define Kempe moves for non-admissible pre-foams, however, when per-
forming such a move, one may not remain in the set of admissible colorings, see 
Remark 2.6 and Fig. 8 for an example of an admissible coloring related by a Kempe 
move to a pre-admissible but not admissible coloring.

(2) Note that a jk-Kempe move does not change the set of facets of F colored by i.

Lemma 2.11. Let F be an admissible pre-foam, and S a subset of facets of F . Consider 
the set adm(F, i = S) of all colorings of F such that the set of facets colored by i is 
exactly S. Suppose that adm(F, i = S) is not empty. Then F \

⋃
f∈S f is a surface Σ with 
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some number n of connected components (necessarily orientable). The set adm(F, i = S)
contains 2n colorings, and they are all related to one another by finite sequences of jk-
Kempe moves along connected components of Σ.

Proof. That Σ = F \
⋃

f∈S f is a surface is clear, since if c is an element of adm(F, i = S)
then F \

⋃
f∈S f = Fjk(c). Let us denote by Σ1, . . .Σn the connected components of Σ and 

for each a in {1, . . . , n}, choose a facet fa contained in Σa. A coloring in adm(F, i = S)
is completely determined by its value on the facets fa. Since a jk-Kempe move along Σa

changes the color of fa, there are precisely 2n colorings in adm(F, i = S) and they relate 
to one another by finite sequences of jk-Kempe moves along the Σa’s. �

Lemma 2.12. Let F be an admissible pre-foam, c an admissible coloring of F , and Σ
a connected component of Fjk(c). Denote by c′ the coloring obtained from c by the jk-
Kempe move along Σ. Then:

(1) The surfaces Fjk(c) and Fjk(c′) are equal.
(2) The surface Fij(c′) is the closure in F of the symmetric difference of Fij(c) and Σ. 

The surface Fik(c′) is the closure in F of the symmetric difference of Fik(c) and Σ.
(3) There exists an integer �Σ(c), such that

χ(Fij(c′)) = χ(Fij(c)) + �Σ(c) and χ(Fik(c′)) = χ(Fik(c)) − �Σ(c).

Moreover, �Σ(c) is necessarily even and only depend on Σ and on the restriction of 
c to Σ.

Remark 2.13. With the above notations, �Σ(c) = −�Σ(c′).

Proof. The only non-trivial point is (3), which follows directly from formula (2) in Re-
mark 2.8. Since χ(Fjk(c)) = χ(Fjk(c′)), equality

χ(Fij(c)) + χ(Fik(c)) = χ(Fij(c′)) + χ(Fik(c′))

holds. That �Σ(c) depends only on Σ and on the restriction of c to Σ follows, since the 
Euler characteristic of a surface can be computed locally. �

2.3. Pre-foam evaluation

Let R′ = k[X1, X2, X3] be the graded ring of polynomials in three variables with 
coefficients in k and deg(Xi) = 2, 1 ≤ i ≤ 3. Denote by R the subring of R′ that consists 
of all symmetric polynomials in X1, X2, X3. Thus, R ∼= k[E1, E2, E3], where

E1 = X1 + X2 + X3,
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E2 = X1X2 + X1X3 + X2X3,

E3 = X1X2X3

are the three elementary symmetric functions in X1, X2, X3. Our degree conventions 
imply that deg(Ei) = 2i for i = 1, 2, 3.

Let

R′′ = R′[(X1 + X2)−1, (X1 + X3)−1, (X2 + X3)−1].

This ring is obtained by inverting elements Xi + Xj of R, for 1 ≤ i < j ≤ 3.
The ring R′′ contains subrings R′′

ij = R[(Xi +Xk)−1, (Xj +Xk)−1] given by inverting 
two elements out of the above three, and not inverting Xi + Xj .

Lemma 2.14.

R′ = R′′
12 ∩R′′

13 ∩R′′
23.

That is, the ring R′ is the intersection of the above three rings.

Proof. Immediate from the division properties of multi-variable polynomials. �

Thus, there are inclusions of rings

R ⊂ R′ ⊂ R′′
ij ⊂ R′′ (3)

For a pre-foam F and c ∈ adm(F ), let

P (F, c) =
∏

f∈f(F )

X
d(f)
c(f) (4)

be the monomial which is the product of Xi’s, over all facets f of F , with the index c(f), 
which is the color of the facet f , and the exponent d(f) – the number of dots on the 
facet f .

For instance, if (F, c) has two facets colored 1 and decorated by three and no dots, 
respectively, one facet colored 2 decorated by four dots, and two facets colored 3 with 
two and three dots, respectively, then P (F, c) = X3+0

1 X4
2X

2+3
3 = X3

1X
4
2X

5
3 .

With F and c as above, let

Q(F, c) =
∏

1≤i<j≤3
(Xi + Xj)

χ(Fij (c))
2 ∈ R′′. (5)

Here χ(S) denotes the Euler characteristic of a surface S. Since c is admissible, closed 
surfaces Fij(c) are orientable and have even Euler characteristic. Consequently, χ(Fij(c))

2
is an integer.
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Now, given a pre-foam F and c ∈ adm(F ), define the evaluation 〈F, c〉 by

〈F, c〉 = P (F, c)
Q(F, c) ∈ R′′. (6)

Note that, if none of the orientable surfaces Fij(c), for 1 ≤ i < j ≤ 3, contains a 
connected component which is a two-sphere, the integers χ(Fij(c)) are non-positive, and 
〈F, c〉 belongs to the ring of polynomials R′ = k[X1, X2, X3]. It’s possible for 〈F, c〉 to 
be a polynomial even if some components of χ(Fij(c)) are spheres, as long as the Euler 
characteristic of each Fij(c) is non-positive.

Finally, we define the evaluation of a pre-foam F as the sum of evaluations 〈F, c〉 over 
all admissible colorings of F :

〈F 〉 =
∑

c∈adm(F )

〈F, c〉. (7)

〈F 〉 is an element of the ring R′′. More precisely, it’s an element of its S3-invariant 
subring (R′′)S3 , under the permutation action of S3 on the generators X1, X2, X3. The 
invariance is implied by the action of S3 on colorings, since σ(〈F, c〉) = 〈F, σ(c)〉 for 
σ ∈ S3.

Example 2.15.

(1) The empty pre-foam ∅ has a unique admissible coloring, and 〈∅〉 = 1.
(2) If F has no admissible colorings, 〈F 〉 = 0. Attaching two disks with disjoint interiors 

to the 2-torus standardly embedded in R3, one along meridian and one along longi-
tude, yields a foam with a single seam vertex. This foam has no admissible colorings 
and evaluates to 0 for any dot assignment.

(3) If F is a 2-sphere with n dots, it has three colorings, one for each color. For the 
coloring of F by color 1, surfaces F12(c) and F13(c) are both 2-spheres, while F23(c)
is the empty surface, and

〈F, c〉 = Xn
1

(X1 + X2)(X1 + X3)
.

We have

〈F 〉 = Xn
1

(X1 + X2)(X1 + X3)
+ Xn

2
(X1 + X2)(X2 + X3)

+ Xn
3

(X1 + X3)(X2 + X3)

= Xn
1 (X2 + X3) + Xn

2 (X1 + X3) + Xn
3 (X1 + X2)

(X1 + X2)(X1 + X3)(X2 + X3)

= sn−2,0,0(X1, X2, X3) = hn−2(X1, X2, X3) =
∑

i+j+k=n−2

Xi
1X

j
2X

k
3 .
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n2

n1

n3

Fig. 9. A theta-foam whose facets are decorated with n1, n2 and n3 dots.

Adding signs to the last ratio above (which does not change the expression, since we 
are in characteristic two) makes it a ratio of an antisymmetrizer with the exponent 
(n, 1, 0) and antisymmetrizer with the exponent (2, 1, 0), that is, a Schur function 
sλ(X1, X2, X3) for the partition λ = (n − 2, 1 − 1, 0 − 0) = (n − 2, 0, 0). In char-
acteristic 0 this Schur function is the character of the (n − 2) symmetric power of 
the fundamental representation V of sl(3), hence equals the complete symmetric 
function hn−2(X1, X2, X3).

Corollary 2.16. A two-sphere with zero or one dot evaluates to 0, a two-dotted two-
sphere evaluates to 1, a three-dotted to E1 = X1 + X2 + X3, and four-dotted to 
E2

1 + E2.

(4) A theta-prefoam Θ consists of three disks glued together along three boundary circles. 
It can be visualized as a 2-sphere with an additional disk glued in along the equatorial 
circle. A theta-foam Θ is a theta-prefoam standardly embedded in R3 (see Fig. 9).

Assume that facets of Θ are decorated by n1 ≥ n2 ≥ n3 dots. We compute the 
evaluation

〈Θ〉 =
∑

σ∈S3
Xn1

σ(1)X
n2
σ(2)X

n3
σ(3)

(X1 + X2)(X1 + X3)(X2 + X3)
= sn1−2,n2−1,n3(X1, X2, X3). (8)

There are six admissible colorings, with surfaces Fij(c) over all i, j, c being 2-spheres. 
The evaluation is the Schur function sλ, for the partition (n1 − 2, n2 − 1, n3). In 
particular, the evaluation is zero if any two numbers among n1, n2, n3 are equal. If 
n1 + n2 + n3 ≤ 3, the only possible triple of dots with a nontrivial evaluation is 
(2, 1, 0), which evaluates to 1 ∈ k.

(5) If Γ is a trivalent graph, then Γ × S1 is a foam. The set of admissible colorings of 
this foam is naturally in bijection with the set of Tait coloring of Γ. For any coloring 
of this foam, the bicolored surfaces are collections of tori. Hence the evaluation of 
this foam is equal to the number of Tait coloring of Γ modulo 2. Since S3 acts on 
coloring by permuting 1, 2 and 3, the evaluation of Γ × S1 is 0 unless Γ is a (maybe 
empty) collection of circles. In this last case the evaluation is 1.

Theorem 2.17. The evaluation 〈F 〉 of an admissible pre-foam F is an element of the ring 
R of symmetric polynomials in X1, X2, X3, homogeneous of degree deg(F ).
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We view 0 ∈ R as a homogeneous polynomial of arbitrary degree.

Proof. The statement about the degree follows from the definition of the evaluation and 
Remark 2.8. Note that if the degree of a pre-foam is not even, Remark 2.8 implies that 
F has no admissible colorings and its evaluation is then automatically 0.

That the evaluation is symmetric in X1, X2 and X3 follows directly from the permu-
tation action of S3 on the set of admissible colorings of F .

From now on, when we speak about colorings, we’ll mean pre-admissible colorings. In 
particular, if a pre-foam is admissible, all its colorings are admissible as well.

The theorem says that the evaluation of an admissible pre-foam lies in the subring 
R of R′′. The evaluation is clearly symmetric in X1, X2, X3, so belongs to (R′′)S3 . It 
suffices to show that 〈F 〉 belongs to the subring R′′

12 of R′′. By S3-symmetry we can then 
conclude that it belongs to the subrings R′′

13, R′′
23 as well, hence to the intersection of 

these three subrings with the subring (R′′)S3 . Intersection of these four subrings is R.
The argument is essentially the same as in [18, Proposition 2.18]. In order to be self-

contained and since in our context the proof is simpler, we repeat it here. It is a direct 
consequence of the following lemma.

Lemma 2.18. Let F be an admissible pre-foam and S a subset of f(F ). Then∑
c∈adm(F,3=S)

〈F, c〉 ∈ R′′
12.

Indeed, we have

〈F 〉 =
∑

S⊆f(F )

∑
c∈adm(F,3=S)

〈F, c〉,

and, therefore, 〈F 〉 is in R′′
12, concluding proof of Theorem 2.17. �

Proof of Lemma 2.18. If adm(F, 3 = S) is empty, the statement is obvious. Suppose that 
c0 is a coloring in adm(F, 3 = S). Let us denote by Σ1, . . . , Σn the connected components 
of Σ := F12(c0) = F \

⋃
f∈S f . For a in {1, . . . , n} and i ∈ {1, 2} let pi(a) be the total 

number of dots located on facets of Σa colored by i (by c0), and p3 be the number of 
dots located on facets in S. It follows from Lemmas 2.11 and 2.12(3) that

∑
c∈adm(F,3=S)

〈F, c〉 =
Xp3

3

n∏
a=1

(
X

p1(a)
1 X

p2(a)
2 + X

p1(a)
2 X

p2(a)
1

(
X1 + X3

X2 + X3

)�Σa(c)/2
)

(X1 + X2)χ(Σ)/2(X1 + X3)χ(F13(c0))/2(X2 + X3)χ(F23(c0))/2
.

If χ(Σ)/2 is non-positive, the statement is obvious. Suppose that it is positive. Each 
factor in the product is divisible by (X1 +X2). Indeed, identifying X1 and X2 one gets 0
(since the ground field has characteristic 2). Since χ(Σ)/2 =

∑n
a=1 χ(Σa)/2 ≤ n, we can 
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use the above factors (X1 + X2) to cancel (X1 + X2)χ(Σ)/2 in the denominator. Hence ∑
c∈adm(F,3=S)〈F, c〉 is in R′′

12. �

2.4. Closed foams

Definition 2.19. A (closed) foam F is a (closed) pre-foam together with a piecewise linear 
embedding into R3.

In this section, foam will refer to a closed foam, and likewise for pre-foams. Later, 
we’ll allow foams and pre-foams to have boundary and will refer to them as foams and 
pre-foams with boundary.

A coloring of a foam F is a coloring of the underlying pre-foam. Unless there’s a 
possibility of confusion, we denote the pre-foam underlying F also by F .

Proposition 2.20. Any (closed) foam F is admissible.

Proof. For any pre-admissible coloring c of F , the closed surfaces Fij(c) are embedded 
in R3, hence orientable, implying the admissibility of c. �

Note that, for a foam F , the evaluation 〈F 〉 does not depend on the embedding of the 
pre-foam of F into R3.

Corollary 2.21. The evaluation 〈F 〉 of a foam F in R3 is a symmetric polynomial in 
X1, X2, X3 homogeneous of degree deg(F ).

The evaluation is multiplicative for the disjoint union of pre-foams, 〈F1  F2〉 =
〈F1〉 · 〈F2〉.

A pre-foam F is called connected if it’s a connected topological space. Suppose that a 
connected pre-foam F has an involutive homeomorphism α that respects the number of 
dots on each facet, fixes at least one facet pointwise, and induces a non-trivial involution 
on the set of facets of F . Then the induced involution on adm(F ) has no fixed points. 
Since 〈F, c〉 = 〈F, α(c)〉 and char(k) = 2, the evaluation of F is equal to 0. An example 
is the theta-prefoam, see Example (4) in (2.15), when some of n1, n2, n3 are equal.

A Klein bottle with a meridional disk is an example of an admissible pre-foam (since 
it does not admit any pre-admissible colorings) which is not embeddable in R3.

2.5. Relations between evaluations

In what follows we will speak about local relations satisfied by evaluations of ad-
missible pre-foams. This is to be understood as follows: Given a collection of pre-foams 
which are all admissible and are identical except in a ball where they are given by the 
terms of a local relation, evaluations of these pre-foams should satisfy the given identity, 
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with coefficients in R. Note that since all foams (i.e., pre-foams embedded in R3) are 
admissible, these relations can be also thought of as local relation on foams.

Proposition 2.22 (Neck-cutting relation). The following local identity holds:

〈 〉
=
〈 〉

+
〈 〉

+
〈 〉

+ E1

⎛⎜⎜⎝
〈 〉

+
〈 〉⎞⎟⎟⎠+ E2

〈 〉
.

Proof. Let us denote the admissible pre-foam on the left-hand side by F . Six admissible 
pre-foams appearing on the right-hand side are the same except from the dots distributed 
on them. We denote these pre-foams by G1, . . . , G6. A coloring c of G1 induces canonically 
a coloring of G2, . . . , G6, still denoted c, and any coloring of the Gi’s, for i ∈ {2, . . . , 6}, 
is obtained as such. By definition of the evaluation of pre-foams, the identity we intend 
to prove is equivalent to:

∑
c∈adm(F )

〈F, c〉 =
∑

c∈adm(G1)

(〈G1, c〉 + 〈G2, c〉 + 〈G3, c〉 + E1 (〈G4, c〉 + 〈G5, c〉) + E2 〈G6, c〉) .

Let c be a coloring of G1. Denote by 〈G, c〉′ the sum on the right-hand side of the above 
equation for a fixed c. There are two types of colorings c:

• The two half-spheres of G1 have the same color. Then coloring c of G1 induces canon-
ically a coloring of F , also denoted by c. Note that all colorings of F are obtained in 
this way. Denote by adm1(G1) this set of colorings of G1; there is a canonical bijection 
between adm1(G1) and adm(F ).

• The two half-spheres have different colors. Denote by adm2(G1) this set of colorings 
of G1.

Suppose first that c is in adm1(G1). Up to an S3-symmetry, we may assume that the 
two half-spheres are colored by 1. Then
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P (F, c) = P (G6, c),
P (G1, c) = P (G2, c) = P (G3, c) = X2

1P (G6, c),
P (G4, c) = P (G5, c) = X1P (G6, c),
Q(G6, c) = Q(F, c)(X1 + X2)(X1 + X3),
Q(G1, c) = Q(G2, c) = Q(G3, c) = Q(G4, c) = Q(G5, c) = Q(G6, c).

Hence,

〈G, c〉′ =
(
3X2

1 + 2E1X1 + E2
)
P (G6, c)

Q(G6, c)

=
(
X2

1 + X1X2 + X2X3 + X1X3
)
P (F, c)

Q(G6, c)

= (X1 + X2)(X1 + X3)P (F, c)
(X1 + X2)(X1 + X3)Q(F, c)

= P (F, c)
Q(F, c) .

Suppose now that c is in adm2(G1). Up to an S3-symmetry, we may suppose that the 
upper half-sphere is colored by 1 while the lower half-sphere is colored by 2. Then⎧⎪⎪⎨⎪⎪⎩

P (G1, c) = X2
1P (G6, c), P (G2, c) = X1X2P (G6, c), P (G3, c) = X2

2P (G6, c),
P (G4, c) = X1P (G6, c), P (G5, c) = X2P (G6, c),
Q(Gi, c) = Q(Gj , c), ∀i, j ∈ {1, . . . , 6}.

Hence,

〈G, c〉′ =
(
X2

1 + X1X2 + X2
2 + (X1 + X2 + X3)(X1 + X2) + E2

)
P (G6, c)

Q(G6, c)

=
(
(X1+X2)2+X1X2+(X1+X2)2+X3(X1+X2)+X1X2+(X1+X2)X3

)
P (G6, c)

Q(G6, c)

= 0

and ∑
c∈adm(G1)

〈G, c〉′ =
∑

c∈adm1(G1)

〈G, c〉′ +
∑

c∈adm2(G1)

〈G, c〉′ =
∑

c∈adm1(G1)

〈F, c〉 + 0

=
∑

c∈adm(F )

〈F, c〉 . �
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Proposition 2.23 (Digon relation). The following local identity holds:

〈 〉
=
〈 〉

+
〈 〉

.

Note that, on the right-hand side of the relation, one dot lies on a half-bubble facet 
that faces the reader, while the other lies on a facet away from the reader.

Proof. The proof is very similar to the previous one. Let us denote by F the foam on the 
left hand side and by G1 and G2 the foams on the right hand side, that differ only by 
placement of a dot. Any coloring c of G1 induces a coloring of G2 (also denoted c), and 
all colorings of G2 are obtained as such. For a coloring c of G1 there are two possibilities:

• The two facets of the two half-bubbles toward the reader have the same color. In this 
case, c induces a coloring of F , still denoted c, and all colorings of F are obtained as 
such. We denote the set of such colorings by adm1(G1); it’s in bijection with adm(F ).

• The two facets of the two half-bubbles toward the reader have different colors. We 
denote by adm2(G1) the set of such colorings.

Let c be a coloring of G1. Suppose that it is in adm1(G1). Up to S3-symmetries, we may 
suppose that the facets of the half-bubbles toward the reader are colored 1, the other 
two facets of the half-bubbles are colored 2, and the remaining “big” facet is colored 3. 
We have: ⎧⎪⎪⎨⎪⎪⎩

P (G1, c) = X2P (F, c),
P (G2, c) = X1P (F, c),
Q(G1, c) = Q(G2, c) = (X1 + X2)Q(F, c),

so that

〈G1, c〉 + 〈G2, c〉 = P (G1, c)
Q(G1, c)

+ P (G2, c)
Q(G2, c)

= (X1 + X2)P (F, c)
(X1 + X2)Q(F, c) = 〈F, c〉 .

Suppose now that c is in adm2(G1). Up to an S3-symmetry, we may suppose that 
the facet of the upper half-bubble toward the reader and the facet away from the reader 
of the lower half-bubble are colored by 1, the other two facets of the half-bubbles are 
colored by 2, and the remaining “big” facet is colored by 3. Then⎧⎪⎪⎨⎪⎪⎩

P (G1, c) = X2P (F, c),
P (G2, c) = X2P (F, c),
Q(G1, c) = Q(G2, c),

so that 〈G1, c〉+ 〈G2, c〉 = 0, and we conclude exactly as is the previous proposition. �



20 M. Khovanov, L.-H. Robert / Advances in Mathematics 376 (2021) 107433
Proposition 2.24 (Square relation). The following local identity holds:

〈 〉
=
〈 〉

+
〈 〉

.

Proof. Let us denote by F the foam on the left-hand side and by G1 and G2 the foams 
on the right-hand side, respectively. Note that locally foams G1 and G2 are obtained 
from each other by π/2 vertical axis rotation. In order to describe colorings of these 
foams, we slice them along three horizontal planes: at the top, in the middle, and at the 
bottom, and collect the slices in three frames of a movie:

F � , G1 � , G2 � .

Up to an S3-symmetry there are three local types of colorings of F , denoted admm(F ), 
admv(F ) and admh(F ), where the letter m stands for monochrome, v for vertical, and 
h for horizontal, depending on how the four facets on the sides of F are colored: either 
in the same color (monochrome) or ‘horizontally’, or ‘vertically’ when viewed in the 
cross-section presentation of the coloring:

c ∈ admm(F ) �

1

1

1

1 3

3

2 2

1

1

1

1 3

3

2 2

1

1

1

1 3

3

2 2

, c ∈ admh(F ) �

2

1

2

1 2

1

3 3

2

1

2

1 2

1

3 3

2

1

2

1 2

1

3 3

, c ∈ admv(F ) �

1

2

2

1 3

3

2 1

1

2

2

1 3

3

2 1

1

2

2

1 3

3

2 1

.

Up to an S3-symmetry there are three local types of colorings of G1, denoted admm1(G1), 
admm2(G1) and admv(G1):
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c∈admm1(G1) �

1

1

1

1 3

3

2 2

1

1

1

1 3

3

2 2

1 1 , c∈admm2(G1) �

1

1

1

1 3

3

2 2

1

1

1

1 2

2

3 3

1 1 , c∈admv(G1) �

1

2

2

1 3

3

2 1

1

2

2

1 3

3

2 1

1 2 .

Up to an S3-symmetry there are three local types of colorings of G2, denoted admm1(G2), 
admm2(G2) and admh(G1):

c∈admm1(G2) �

1

1

1

1 3

3

2 2

1

1

1

1 3

3

2 2

1

1

, c∈admm2(G1) �

1

1

1

1 3

3

2 2

1

1

1

1 2

2

3 3

1

1

, c∈admh(G2) �

2

1

2

1 2

1

3 3

2

1

2

1 2

1

3 3

2

1

.

Note that we have the following canonical bijections:

admm(F ) � admm1(G1) � admm1(G2), admm2(G1) � admm2(G2),

admv(F ) � admv(G1), admh(F ) � admh(G2).

For c ∈ admm(F ) � admm1(G1) � admm1(G2) we have{
P (F, c) = P (G1, c) = P (G2, c),
Q(F, c) = X1+X3

X2+X3
Q(G1, c) = X1+X2

X2+X3
Q(G2, c),

and

〈G1, c〉 + 〈G2, c〉 =
(
X1 + X3

X2 + X3
+ X1 + X2

X2 + X3

)
〈F, c〉 = 〈F, c〉 .

In the above computation we assumed that the coloring c was given by the movie depicted 
earlier. Modifying c by permuting the colors changes the indices of X in the computation 
but not the final result 〈G1, c〉 + 〈G2, c〉 = 〈F, c〉.

For c ∈ admv(F ) � admv(G1) (resp. c ∈ admh(F ) � admh(G2)) we have:{
P (F, c) = P (G1, c) (resp. P (F, c) = P (G2, c)),
Q(F, c) = Q(G1, c) (resp. Q(F, c) = Q(G2, c)).
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This gives:

〈G1, c〉 = 〈F, c〉 (resp. 〈G2, c〉 = 〈F, c〉) .

For c ∈ admm2(G1) � admm2(G2) we have

P (G1, c) = P (G2, c), Q(G1, c) = Q(G2, c),

so that 〈G1, c〉 + 〈G2, c〉 = 0.
We sum up the case-by-case study:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈F, c〉 = 〈G1, c〉 + 〈G2, c〉 for c ∈ admm(F ) � admm1(G1) � admm1(G2),
〈F, c〉 = 〈G1, c〉 for c ∈ admv(F ) � admv(G1),
〈F, c〉 = 〈G2, c〉 for c ∈ admh(F ) � admh(G2),
〈G1, c〉 + 〈G2, c〉 = 0 for c ∈ admm2(G1) � admm2(G2).

This gives 〈F 〉 = 〈G1〉 + 〈G2〉. �

Proposition 2.25 (Trivalent bubble relation). The following local identity holds:

〈 〉
=
〈 〉

Proof. Let us denote by F the foam on the left-hand side and by G the foam on the 
right-hand side. There is a canonical bijection between colorings of F and G. Denoting 
by c′ the coloring of G that corresponds to a coloring c of F , we have:

P (F, c) = P (G, c′), Q(F, c) = Q(G, c′),

so that 〈F, c〉 = 〈G, c′〉 and 〈F 〉 = 〈G〉. �

The same argument gives the following proposition.

Proposition 2.26 (Vertices removal relation). The following local identity holds:

〈 〉
=
〈 〉

.

Similar computations establish the next two propositions.
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Proposition 2.27. The following local identity holds:

〈 〉
=
〈 〉

+
〈 〉

.

Proposition 2.28. The following local identity holds:

〈 〉
=
〈 〉

+
〈 〉

.

Note that this last proposition is equivalent to 2.23.

Proposition 2.29 (Handle removal). The following local identity holds:〈 〉
=
〈

• •
〉

+ E2
〈 〉

.

Proof. The relation follows immediately from the neck-cutting relation. �

This proposition shows that a handle on a facet can be removed at the cost of multi-
plying polynomial floating on the facet by •2 + E2.

Proposition 2.30 (Bubble removal). Let Fn,m be obtained from an admissible pre-foam F
by adding a bubble that flows on a facet of F , with n and m dots, respectively, on the 
new facets, for n, m ≤ 2. Let Fn be foam F with n dots added to the same facet of F . 
Then

〈Fn,n〉 = 0, n ≥ 0,

〈F0,1〉 = 〈F 〉 ,

〈F0,2〉 = 〈F1〉 + E1 〈F 〉 ,

〈F1,2〉 = 〈F2〉 + E1 〈F1〉 + E2 〈F 〉 ,

where corresponding facets of pre-foams Fn and Fn,m are depicted in Fig. 10.

Proof. Straightforward. �
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n

m

n

Fig. 10. On the left, pre-foam Fn,m; on the right, pre-foam Fn.

n1

n2

n3

Fig. 11. Pre-foam F(n1,n2,n3).

〈 〉
+
〈 〉

+
〈 〉

= E1

〈 〉

Fig. 12. One of the dot migration relations.

Proposition 2.31. The following local identity holds:〈 〉
=
〈

•
〉

+ E1
〈 〉

.

Proof. Straightforward. �

Proposition 2.32 (Dot migration). Let F be an admissible pre-foam with a seam edge. 
Label three portions of facets of F bounding the edge by 1, 2, 3 and denote by F(n1,n2,n3)
for i ∈ {1, 2, 3} and ni ≥ 0 the pre-foam given by adding ni dots to the facet portion of 
F labeled i, see Fig. 11. Then

〈
F(1,0,0)

〉
+
〈
F(0,1,0)

〉
+
〈
F(0,0,1)

〉
= E1 〈F 〉 ,〈

F(2,0,0)
〉

+
〈
F(0,2,0)

〉
+
〈
F(0,0,2)

〉
= E2

1 〈F 〉 ,〈
F(1,1,0)

〉
+
〈
F(1,0,1)

〉
+
〈
F(0,1,1)

〉
= E2 〈F 〉 ,〈

F(1,1,1)
〉

= E3 〈F 〉 .

The first relation is depicted diagrammatically in Fig. 12.
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Proof. Direct computation. �

Proposition 2.33. The following local identity holds:〈
• • •

〉
= E1

〈
• •

〉
+ E2

〈
•

〉
+ E3

〈 〉
.

Proof. This follows from the identity X3
i = E1X

2
i +E2Xi +E3 that holds in the ring R

for i = 1, 2, 3. �

2.6. Kronheimer–Mrowka evaluation for foams

Assume there is a homomorphism ψ : R −→ S of commutative rings. Define the 
ψ-evaluation of a closed pre-foam F as ψ(〈F 〉) ∈ S, by composing the evaluation with 
values in R with the homomorphism ψ. We denote ψ-evaluation by 〈F 〉ψ and also call 
it S-evaluation and denote 〈F 〉S when it’s clear what ψ is from the context. In this 
subsection we’ll use homomorphism ψ : R −→ k into the two-element ground field k
with ψ(Ei) = 0 for i = 1, 2, 3. Note that ψ is a grading-preserving homomorphism, with 
k necessarily in degree zero.

Kronheimer and Mrowka [11, Section 8.3] suggest a combinatorial counterpart of their 
homology for planar graphs and conjecture that it is well-defined. Here we briefly review 
their approach and relate it to foam evaluation.

Let F be a closed pre-foam. Kronheimer-Mrowka’s algorithm aims to define an element 
J�(F ) ∈ k associated with F .

(1) If s(F ) is not bipartite, set J�(F ) = 0. If s(F ) is bipartite, choose a perfect matching 
of s(F ) and cancel all the seam vertices using the relation in Proposition 2.26. Hall’s 
Marriage Theorem implies that any regular bipartite graph has a perfect matching [6, 
Theorem 2.1.2 and Corollary 2.1.4]. This results in a new pre-foam F ′. Set J�(F ) =
J�(F ′). Suppose from now on that the pre-foam F has no seam vertices.

(2) Now s(F ) is a collection of circles. If the monodromy of the three facets along one 
of the circles is non-trivial, set J�(F ) = 0. Suppose from now on that a regular 
neighborhood of s(F ) is homeomorphic to a disjoint union of Y ×S1, where Y is the 
standard tripod.

(3) For each component of the seam having a neighborhood of the form S1 × Y , apply 
neck-cutting [11, Proposition 6.1] on the three circles parallel to the seam in the three 
neighboring facets. Neck-cutting in this algorithm is the same as the specialization 
of neck-cutting in Proposition 2.22 to the quotient ring k, where E1 = E2 = E3 = 0. 
In particular, there are only three terms on the right hand side of the relation in 
Proposition 2.22, since E1 = E2 = 0. The neck-cutting relation reduces computing 
J�(F ) to the case when F is a collection of dotted theta pre-foams and dotted closed 
surfaces.

(4) Set J� to be multiplicative under the disjoint union. For theta pre-foams θ(n1, n2, n3)
with n1, n2, and n3 dots on the three disks and n1 ≥ n2 ≥ n3, define J�(θ(2, 1, 0)) = 1
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and J�(θ(n1, n2, n3)) = 0 for all other triples of non-increasing numbers. Define J� to 
be 1 on a sphere with two dots and on a dotless torus and to be 0 on all other closed 
connected surfaces (that may carry dots). In particular, any unorientable surface 
evaluates to 0 under J�.

Conjecture 2.34 ([11, Conjecture 8.9]). The quantity J�(F ) is well-defined: it does not 
depend on the choices made in step (1).

Recall that we denote by 〈F 〉k the image of 〈F 〉 ∈ R under the ring homomorphism 
R −→ k sending E1, E2, E3 to 0. This homomorphism kills R in all positive degrees, 
keeping only the ground field k, which is exactly the degree zero part of R.

Theorem 2.35. If F is embeddable in R3, then J�(F ) is well-defined and equal to 〈F 〉k.

Proof. We start by proving a sequence of lemmas.

Lemma 2.36. If a pre-foam F has a non-zero degree, J�(F ) is well-defined and equal to 0.

Proof. The non-deterministic rules given to evaluate J� respect the degree, i.e., at each 
step a pre-foam of a given degree is simplified into a linear combination of pre-foams of 
the same degree. At the last step, only elementary pre-foams of degree 0 are evaluated 
to a non-zero value. �

Lemma 2.37. If a pre-foam F has a non-orientable facet, J�(F ) is well-defined and equal 
to 0.

Proof. The non-orientability of a facet is preserved by steps (1), (2) and (3). �

Lemma 2.38. Let F be a connected pre-foam of degree 0 with no seam vertices such that 
all its facets are orientable. Then one of the following holds:

• F has a disk facet,
• all facets of F are annuli and F carries no dots,
• F is a sphere with two dots,
• F is a dotless torus.

Proof. The degree of a pre-foam F with no seam vertices is given by

deg(F ) = 2 |d(F )| − 2
∑

f∈f(F )

χ(f),

see Definition 2.7. Let F be a pre-foam as in the lemma. If F has no seam circles, it is 
a surface. This surface is orientable and therefore it is either a torus (with no dots) or a 
sphere with two dots.
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Fig. 13. A Klein bottle (in blue) onto which is glued an annulus (in yellow) along two parallel circles. This 
is an example of a pre-foam fulfilling the hypothesis of Lemma 2.39 (every facet is an annulus), which is 
not a web times S1.

If F is not a surface, all of its facets have boundaries. The only way for a facet to 
have positive Euler characteristic is to be a disk. Likewise, the only way for a facet to 
have zero Euler characteristic is to be an annulus. This shows that if none of the facets 
of F is a disk, then all its facets are annuli and F carries no dots. �

Lemma 2.39. Let F be a (non-empty) pre-foam without seam vertices such that every 
facet of F is an annulus. Then J�(F ) = 0.

Before moving onto a proof, note that one can take the direct product of a trivalent 
graph G, not necessarily planar, and S1, to get such a pre-foam. More generally, one 
can construct pre-foams which are non-trivial S1-bundles over a given trivalent graph G. 
Given α an element of H1(G, Z/2), one can form a pre-foam by taking the product of 
S1 with the set of vertices of G as the set of seam circles of pre-foam, and gluing annuli 
to the product, one for each edge of G. The gluing is such that for any 1-cycle y in G its 
preimage in the pre-foam is a 2-torus if α(y) = 0 and a Klein bottle in α(y) = 1.

Such an example is depicted in Fig. 13. The underlying graph is the θ-graph. The 
cohomology class α is equal to 1 on two simple cycles and zero on the third.

Proof. We know that J�(F ) is well-defined for pre-foams without seam vertices, since 
there are no choices to make in the evaluation algorithm.

Let F be a pre-foam satisfying the hypothesis of the proposition. If F carries some 
dots, then its degree is positive and therefore J�(F ) = 0. If the monodromy of the facets 
along a circle is non-trivial, then J�(F ) = 0 thanks to step (2) in the algorithm. Else, 
we consider the graph GF given by the following data:

• The vertices of GF are seam circles of F .
• The edges of GF are facets of F . They join their two boundary components.

Thus the graph GF is trivalent. We allow a degenerate case of an annulus facet that 
bounds the same circle on both sides. The closure of that facet is either a two-torus or 
a Klein bottle, but the facet itself it orientable.
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Fig. 14. A graph GF and partial orientations related by the involution.

Let us denote by v (resp. e) the number of vertices (resp. edges) of GF . We have 
3v = 2e. After performing step (3) in the Kronheimer–Mrowka algorithm, we end up 
with a sum S of 33v terms. Each of these terms is a disjoint union of v dotted theta 
pre-foams and e dotted spheres. The evaluation of each of these terms is either 0 or 1. 
We want to prove that the number of terms which evaluate to 1 is even.

A sphere evaluates to 0 unless it carries exactly two dots and a theta pre-foam evalu-
ates to 0 unless its three facets carry exactly 0, 1 and 2 dots. Hence J�(F ) is equal (in k) 
to the number of terms in S which are unions of spheres with two dots and (2, 1, 0)-theta 
pre-foams.

On each annulus we perform two neck-cuttings, yielding nine terms with a dotted 
sphere. The sphere has two dots in only three out of these nine terms, and these three 
terms correspond to a single neck-cutting, in the middle of the annulus. Hence, instead 
of performing two neck-cutting operations per annulus, we can only perform one.

For each facet f of F , let us encode the three terms in the neck-cutting relation by 
a semi-orientation of the corresponding edge e in GF . An oriented edge e contributes 
to the cutting with the term which places two dots on the half-sphere bounding the 
circle corresponding to the target vertex relative to the orientation, and no dots on the 
opposite half-sphere. If an edge is not oriented, it contributes one dot to each half-sphere 
into which the annulus is split by neck-cutting.

�→

�→

�→

�

�

�

A term of S which evaluates to 1 is encoded by a semi-orientation of GF such that at 
each vertex one edge points in, one edge points out, and one edge is unoriented. We claim 
that the number of such semi-orientations is even. Indeed, there is an involution without 
fixed points on the set of such semi-orientations given by reversing the orientations of 
all edges (see Fig. 14). �

Lemma 2.40. Let F be a non-empty foam without seam vertices such that every facet of 
F is an annulus. Then 〈F 〉k = 0.
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Proof. If F carries some dots, then its degree is non-zero and the result is immediate. 
Suppose that F carries no dots. Then every bicolored surface is a collection of tori and 
has therefore Euler characteristic equal to 0. This implies that 〈F 〉k is equal to the 
number of admissible colorings modulo 2. Since F is non-empty, it contains at least one 
facet and hence contains one seam circle. There is an action of S3 on the set of admissible 
colorings by permuting the colors. This action has no fixed point (it suffices to look at the 
color of the facets adjacent to a seam circle). This proves that the number of admissible 
colorings of F is even. Finally 〈F 〉k = 0. �

Lemma 2.41. For any pre-foam F without seam vertices that admits an embedding in R3

J�(F ) = 〈F 〉k .

Proof. Since both J�(•) and 〈•〉k are multiplicative with respect to the disjoint union, 
we can assume that the pre-foam F is connected. Thanks to Lemma 2.36, we can suppose 
that F has degree 0.

We prove the lemma by induction on the number of seam circles. If there is no seam 
circle, F is a surface and the result is clear. Otherwise we apply Lemma 2.38: F is either 
a theta pre-foam (in which case the result is clear), has only annulus-like facets (in this 
case the result follows from Lemmas 2.39 and 2.40), or contains a disk. If it contains a 
disk, denote by C the circle bounded by this disk. We can use the neck-cutting relation 
“non-abstractly”, for foams rather than pre-foams, on the three facets bounding C. This 
operation and the matching operation for J�(F ) allows to express the values of J�(F ) and 
〈F 〉k as sums of evaluations of the union of a dotted theta-foam and foams with fewer 
seam circles. We can now apply induction on the number of seam circles to conclude 
that J�(F ) = 〈F 〉k for F as in the lemma. �

To complete the proof of Theorem 2.35, choose any foam F . If the graph s(F ) is 
not bipartite, J�(F ) is well-defined, equal to 0, and 〈F 〉k = 0 as well, since F has 
no admissible colorings thanks to Proposition 2.3. If s(F ) is bipartite, the evaluation 
〈F 〉k = 〈F ′〉k for any reduction of F to a foam F ′ without seam vertices via canceling 
of pairs of vertices along edges in a perfect matching in s(F ). In view of Lemma 2.41
this matches the procedure in the algorithm, showing that J�(F ) = 〈F 〉k for any such 
F . The theorem follows. �

Remark 2.42. Instead of using a perfect matching in step (1) of the algorithm, one 
can choose to cancel pairs of vertices recursively, possibly via new edges created by 
earlier cancellations, slightly generalizing the algorithm and the invariance property of 
the evaluation. Theorem 2.35 holds for the generalized algorithm as well.
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Fig. 15. Pre-foam F ; the annulus part of the Klein bottle is shown in blue and gray. Disk bounding c and 
carrying a dot is shown in yellow.

2.7. Mismatched evaluations

Consider the pre-foam F constructed by adding three disks to a Klein bottle, as 
depicted in Fig. 15. The tube depicts an annulus portion of the Klein bottle, and the 
oriented boundary circles are identified to match their orientations as shown in the 
figure, resulting in a Klein bottle. Three disks are attached to the Klein bottle, along 
the circles c, c1, c2 as shown. The circles c1, c2 are homotopic on the Klein bottle, while 
c is contractible. The pre-foam F carries a single dot, placed on the disk that bounds c. 
Facet portions A1 and A2 are parts of the same facet, denoted A. Note that all facets of 
F are orientable: they consist of 7 disks and one annulus.

The three circles have four intersection points, denoted v1 through v4. The graph 
s(F ) has four vertices v1, . . . , v4 and eight edges connecting them. We consider the edges 
denoted e1, e2, e3, e4, respectively, that span a four-cycle in the graph. These four edges 
together bound a square facet of the pre-foam and belong to circles c, c1, c, c2, respec-
tively. The portion of the pre-foam shown is embeddable in R3, but not the entire 
pre-foam.

The graph s(F ) is bipartite. The edges e1, e3 constitute one possible perfect matching 
of s(F ), another is given by the edges e2, e4. Let us apply step (1) of the algorithm to 
the perfect matching {e1, e3}, canceling the vertices (v1, v2) and (v3, v4) in pairs along 
the seams e1 and e3. In the resulting pre-foam F0, the facet A acquires two additional 
strips, turning it into an unorientable surface with boundary, see Fig. 16. Consequently, 
J�(F0) = 0, since F0 contains an unorientable facet.

Now instead apply step (1) to the matching {e2, e4}, canceling vertices (v1, v4) and 
(v2, v3) in pairs, and denote the resulting pre-foam F1, as shown in Fig. 17.

For step (2), we see that the monodromy along each singular circle is trivial. We should 
next apply neck-cutting at the three circles near each singular circle. We can choose the 
order in which the neck-cutting is done.
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Fig. 16. The facet A in F0.

Fig. 17. The pre-foam F1. The red dashed lines are where the neck-cutting are performed, the number 
indicates the order, the • indicates the only terms which are non-zero when applying the neck-cutting 
relations.

Note that F1 has a Z/2-symmetry τ , which in the portion shown is given by reflecting 
about a vertical axis through the center. We’ll be cutting along pairs of circles that are 
symmetric under τ , each time resulting in nine possible terms that differ by numbers 
of dots. Six of these terms will come in τ -symmetric pairs. Both terms of each pair will 
evaluate to the same element of the ground field k and will always add up to 0.

Hence, each symmetric cutting along a pair of τ -opposite circles only contributes three 
terms to the sum (some of which may be zero). Also, if a pre-foam has a facet with three 
or more dots, it evaluates to zero by definition of J�.

If we neck-cut along symmetric pairs in the order given in Fig. 17, each time we sum 
reduces to exactly one non-trivial term.

We start by cutting along the circle pair labeled 1. The three non-canceling terms 
differ by distribution of dots, with either 0, 1 or 2 dots added on each side to the cut 
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central disk in the top of the picture. This results in adding 0, 2 or 4 dots to a disk 
that already carries a dot. Unless no dots are added, the resulting pre-foam has a facet 
with at least 3 dots and evaluates to 0. Consequently, only the term where two dots are 
added to each of the outer yellow disks survives in the sum. This situation is depicted 
by placing •2 on the corresponding side of the cut circle.

We continue by cutting along the pair of circles labeled 2. After the cuts there is a 
theta-foam in the middle, with one and zero dots, respectively, on the top and middle 
facets, requiring exactly two dots on the bottom facet for a nonzero evaluation. Hence, 
the only possible distribution is to place one dot on each side of each circle labeled 2
upon the cuts.

Next, performing cuts along circles labeled 3 splits off two theta-foams, in a symmetric 
fashion. These theta-foams already have facets with 0 and 1 dots, requiring two dots to 
appear on the new facets after the cuts. This determines the unique distribution of dots 
for the third pair of cuts as well.

The same argument shows that for cuts number 4 the only distribution is to place one 
dot on each side of the cuts. These cuts will produce two theta-foams, each evaluating 
to 1 (with these dot distributions) and a two-dotted sphere, evaluating to 1 as well.

Notice that the assumption that the order of cuts is inessential is built into the defi-
nition and the algorithm. We also bypass cutting along circles that already bounds disks 
after the previous cuts, since consistency for such cuts is an easy exercise going back 
to [10].

The computation results in J�(F1) = 1, which differs from J�(F0) = 0. This shows 
that for pre-foam F the value produced by the above algorithm depends on the choices 
made in step (1). Consequently, Conjecture 8.9 in [11] needs to be augmented for the 
evaluation to be well-defined. Theorem 2.35 implies that one possible modification is to 
restrict to pre-foams embeddable in R3.

3. Homology of webs

3.1. Webs and their homology

A closed web, or just a web, is a trivalent oriented graph Γ, possibly with vertexless 
loops, embedded in R2 piecewise-linearly.

We say that an oriented plane T ∼= R2 in R3 intersects a (closed) foam F generically
if F ∩ T is a web Γ in T , no dots of F are on T and for a tubular neighborhood N of 
T , (N ∩ F, N) is PL-homeomorphic to (Γ × (−ε, ε), R2 × (−ε, ε)). Define a foam with 
boundary V as the intersection of a closed foam F and T × [0, 1] ⊂ R3 such that T ×{0}
and T × {1} intersect F generically. We view foam V with boundary as a cobordism 

between webs ∂iV
def= V ∩ T × {i} for i = 0, 1 and assume the standard embedding of 

R2 × [0, 1] ∼= T × [0, 1] into R3. Sometimes we will call a foam with boundary simply a 
foam. Two foams are isomorphic if they are isotopic in R2 × [0, 1] through an isotopy 
which fixes all boundary points.
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For example, a closed foam is a foam with the empty boundary and gives a cobordism 
from the empty web to itself.

The notions of admissible and pre-admissible coloring extend without difficulty to 
foams with boundary. A pre-admissible coloring of a foam F induces a Tait coloring 
of its boundary. Note that since foams are properly embedded in R2 × [0, 1], any pre-
admissible coloring of a foam with boundary is admissible.

If U and V are two foams such that the webs ∂0U, ∂1V are identical, define the 
composition UV in the obvious way, by concatenating U and V along their common 
boundary (and rescaling). In this way we obtain a category Foams with webs as objects 
and isomorphism classes of foams with boundary as morphisms.

A foam U is a morphism from ∂0U to ∂1U . If ∂0U is the empty foam, we say that U
is a foam or cobordism into ∂1U . If ∂1U is the empty foam, we say that U is a foam out 
of ∂0U .

The category Foams has an anti-involution ω, which acts as the identity on objects 
and on morphisms is given by reflecting a foam about R2 × {1

2}. The category Foams
also has an involution given by reflecting a foam about � × [0, 1], where � is a line in R2.

For a foam U let d(U) denote the set of dots on U , so that |d(U)| is the total number 
of dots on U . Likewise, |v(U)| is the number of seam vertices of U .

Define the degree of a foam U : Γ0 → Γ1 by

deg(U) = 2 |d(U)| − 2 χ(U) − χ(s(U)) (9)

In particular, for any web Γ, foam IdΓ = Γ × [0, 1] has degree 0. Remark 2.8 remains 
true in the context of foams with boundary.

Proposition 3.1. For composable foams U and V ,

deg(UV ) = deg(U) + deg(V ).

Proof. Consider foams U : Γ1 → Γ2 and V : Γ0 → Γ1. For a finite CW-complex C
obtained by gluing two CW-complexes C1 and C2 along a common CW-subcomplex 
C3 one has χ(C) = χ(C1) + χ(C2) − χ(C3). Since Γ1 is a trivalent graph, we have: 
2χ(Γ1) = −|2v(Γ1)|. This gives:

deg(UV ) =2|d(UV )| − 2χ(UV ) − χ(s(UV ))

=2|d(UV )| − 2χ(U) − 2χ(V ) + 2χ(Γ1) − χ(s(U)) − χ(s(V )) + |v(Γ1)|

= deg(U) + deg(V ) + 2χ(Γ1) + |v(Γ1)|

= deg(U) + deg(V ). �

The proposition says that the degree of foams is well-behaved under composition. The 
antiinvolution ω preserves the degree, deg(ω(U)) = deg(U).
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We next define homology or state space 〈Γ〉 of a web Γ as a graded R-module generated 
by all foams into Γ, modulo the evaluation relations. This definition, called the universal 
construction, goes back to [4] and was used in [10] in the sl(3) foam framework.

Definition 3.2. The state space 〈Γ〉 is an R-module generated by symbols 〈U〉 for all 
foams U from the empty foam ∅ to Γ. A relation 

∑
i ai 〈Ui〉 = 0 for ai ∈ R and Ui ∈

HomFoams(∅, Γ) holds in 〈Γ〉 if and only if

∑
i

ai 〈V Ui〉 = 0

for any foam V from Γ to the empty web. Here 〈V Ui〉 ∈ R is the evaluation of the closed 
foam V Ui.

It follows from the definition that the homology of the empty web is naturally iso-
morphic to the free R-module R, with the generator given by the empty foam.

Definition 3.3. Let Fo(Γ) be the free R-module Fo(Γ) with the basis given by all foams 
into Γ, including foams decorated with dots and those which have connected components 
disjoint from Γ.

Assigning to a foam its degree extends to a grading on Fo(Γ) and 〈Γ〉, turning them 
into graded R-modules over the graded ring R. Fo(Γ) is a free graded R-module.

There is a canonical surjective graded R-module homomorphism

hΓ : Fo(Γ) −→ 〈Γ〉 (10)

induced by sending a foam U into Γ to 〈U〉 ∈ 〈Γ〉. In particular, 〈Γ〉 is isomorphic to a 
quotient of the free R-module Fo(Γ).

Given two foams U and V into Γ, consider the closed foam ω(V )U and evaluate it to 
〈ω(V )U〉 ∈ R, where ω is the anti-involution, defined earlier, that reflects a foam about 
a horizontal plane. Extending bilinearly, one gets a map

Fo(Γ) × Fo(Γ) −→ R

that factors through the tensor product over R,

Fo(Γ) × Fo(Γ) −→ Fo(Γ) ⊗R Fo(Γ) −→ R,

equipping Fo(Γ) with a symmetric R-valued bilinear form (·, ·). This bilinear form is 
degree-preserving, relative to the above gradings on Fo(Γ) and R. The kernel ker((·, ·))
of this bilinear form is a graded R-submodule of Fo(Γ).
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Proposition 3.4. Homomorphism hΓ identifies 〈Γ〉 with the quotient of Fo(Γ) by the kernel 
ker((·, ·)) of the bilinear form:

〈Γ〉 ∼= Fo(Γ)/ker((·, ·)).

The proposition is immediate from the definitions. The form descends to a symmetric 
R-bilinear degree-preserving form

(·, ·) : 〈Γ〉 ⊗R 〈Γ〉 −→ R

on 〈Γ〉 with values in R. This form is non-degenerate, that is, for any a ∈ 〈Γ〉, a �= 0
there is b such that (a, b) �= 0.

Bilinear form (·, ·) : 〈Γ〉 ⊗R 〈Γ〉 −→ R has degree 0, when viewed as a map between 
graded R-modules, due to Proposition 3.1.

Remark 3.5. We don’t know whether the form is a perfect pairing for any Γ, that is, 
whether 〈Γ〉 is always a free graded R-module of finite rank with a homogeneous basis 
b1, . . . , bm and a dual basis b∗1, . . . , b∗m such that (bi, b∗j ) = δi,j .

Denote the assignment of 〈Γ〉 to Γ by 〈•〉. We can promote 〈•〉 to a functor from the 
category Foams of foams to the category of graded R-modules and homogeneous module 
homomorphisms. It assigns a graded R-module 〈Γ〉 to a web Γ and a homogeneous R-
module map 〈∂0U〉 −→ 〈∂1U〉 of degree degU to a foam U . This map can be first 
defined on the level of free modules, as the map Fo(∂0U) −→ Fo(∂1U) taking a foam V
into Γ (a basis element of Fo(∂0U)) to the composition UV , which is an element of the 
basis of Fo(∂1U) and then extending by linearity. This homomorphism of free R-modules 
descends to the quotient map

〈U〉 : 〈∂0U〉 −→ 〈∂1U〉 .

Relative to the bilinear form on 〈Γ〉, for various Γ, the R-linear map 〈U〉 is adjoint to 
the map 〈ω(U)〉 : 〈∂1U〉 −→ 〈∂0U〉, since (ω(U)W, V ) = (W, UV ) for any foam V into 
∂0U and any foam W into ∂1U .

3.2. Boundary colorings and finitely-generated property

We now extend the formula for evaluation of closed foams to foams U with boundary, 
at least when the boundary is on one side of the foam, and use this extension to show 
that the state space 〈Γ〉 is a finitely-generated R-module. We can fix a Tait coloring 
t of the boundary and form a suitable sum over all extensions of the coloring t to a 
pre-admissible coloring c of the foam.

Just like in the closed case, by a pre-admissible coloring of a foam U with boundary 
Γ we mean an assignment of colors {1, 2, 3} to components of U such that along each 
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seam edge the colors are distinct. A pre-admissible coloring of U induces a Tait coloring 
of its boundary Γ.

By admissible coloring of a foam U with boundary, we mean an admissible coloring 
such that all bicolored surfaces are orientable.

Note that, for any pre-admissible coloring c of a foam U ∈ R2 × [0, 1] with boundary 
(even when both boundaries ∂0U , ∂1U are non-empty), all surfaces Fij(c) are orientable, 
although some may have boundary. That’s because we can compose U with its reflection, 
forming the foam ω(U)U with identical top and bottom boundary ∂0U , and then closing 
it up into a foam Ũ without boundary. The coloring c extends to a pre-admissible coloring 
of Ũ , which is then necessarily admissible, since Ũ is closed. Consequently, c is admissible 
as well.

Thus, for foams with boundary there is no difference between pre-admissible and 
admissible colorings. Denote by adm(U) the set of admissible colorings of a foam U with 
boundary.

The surfaces Fij(c) are no longer always closed, although still orientable, and their 
Euler characteristic may be odd. In the extension of the formula, we would need to form 
square roots (Xi + Xj)

1
2 and their inverses. In characteristic two√

Xi + Xj =
√
Xi +

√
Xj

and

1√
Xi + Xj

=
√
Xi +

√
Xj

Xi + Xj
,

so it’s enough to introduce square roots of generators X1, X2, X3.
Recall that so far we have been using the chain of rings R ⊂ R′ ⊂ R′′, where

R = k[E1, E2, E3],

R′ = k[X1, X2, X3],

R′′ = R′[(X1 + X2)−1, (X1 + X3)−1, (X2 + X3)−1].

Form the ring R̃′ by extending R′ by adding square roots of X1, X2, X3,

R̃′ = k[X
1
2
1 , X

1
2
2 , X

1
2
3 ].

Similarly, let

R̃′′ = k[X
1
2
1 , X

1
2
2 , X

1
2
3 , (X1 + X2)−1, (X1 + X3)−1, (X2 + X3)−1].

The ring R̃′′ is a free graded R′′-module with a basis {Xε1
1 Xε2

2 Xε3
3 }, where εi ∈ {0, 12}, 

i = 1, 2, 3. Indeed, this set generates R̃′′ as an R′′-module and it is R′′-linearly indepen-
dent. To see this, suppose that a R′′-linear combination of these eight elements is zero. 



M. Khovanov, L.-H. Robert / Advances in Mathematics 376 (2021) 107433 37
Multiplying by a power of (X1 + X2)(X1 + X3)(X2 + X3), we can suppose that it is an 
R′-linear combination of elements of R̃′. The result follows since R′′ and R′ are domains 
and the above set is a basis of the free R′-module R̃′.

The diagram below depicts inclusions of these five rings.

R̃′ ⊂ R̃′′

∪ ∪

R ⊂ R′ ⊂ R′′

The ring R̃′′ is naturally isomorphic to the ring

k[Y1, Y2, Y3, (Y1 + Y2)−1, (Y1 + Y3)−1, (Y2 + Y3)−1]

via the map that sends Yi to X
1
2
i and (Yi + Yj)−1 to 

√
Xi+

√
Xj

Xi+Xj
.

Given an admissible coloring c of a foam U with boundary, we can form the monomial 
P (U, c) as before, as product of Xd(f)

c(f) over all facets f of U . Likewise, define

Q(U, c) =
∏

1≤i<j≤3
(Xi + Xj)

χ(Fij (c))
2 (11)

as an element of the bigger ring R̃′′ (for closed foams the product lies in the smaller ring 
R′′). The ratio

〈U, c〉 = P (U, c)
Q(U, c)

is an element of R̃′′.
We write c ⊃ t to indicate that a pre-admissible coloring c of U extends a Tait coloring 

t of the web ∂U = ∂0U ∪ ∂1U . Define

〈U, t〉∂ =
∑
c⊃t

〈U, c〉 ∈ R̃′′.

This formula generalizes (7) to foams U with boundary. If t does not extend to an 
admissible coloring of U then 〈U, t〉∂ = 0.

We now specialize to the case when U has boundary only at the top, that is U is a 
foam into a web Γ = ∂1U , with ∂0U = ∅. Fix a web Γ and choose a Tait coloring t of Γ. 
Consider any foam U into Γ.

The subgraph of Γ which consists of all the vertices of Γ and edges of Γ which are 
colored i or j by t is a collection of cycles, called the ij-cycles of t.

The ring R̃′′ contains R′ as a subring, and, when viewed as an R′-module, contains a 
collection of R′-submodules generated by elements
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u(n1, n2, n3) = (X1 + X2)−
n1
2 (X1 + X3)−

n2
2 (X2 + X3)−

n3
2 (12)

for any n1, n2, n3 ∈ Z.

Proposition 3.6. For any Γ, t and U as above, 〈U, t〉∂ ∈ R′u(m12, m13, m23), where mij

is the number of ij-cycles in t.

Proof. The proof is very similar to that of Theorem 2.17. Indeed, if Γ is empty and U is 
then a closed foam, the proposition simply says that 〈U〉 is a polynomial.

By definition,

〈U, t〉∂ =
∑
c⊃t

〈U, c〉 =
∑
c⊃t

P (U, c)
(X1 + X2)

χ(U12,c)
2 (X1 + X3)

χ(U13,c)
2 (X2 + X3)

χ(U23,c)
2

.

For a pair of colors (i, j) and c ⊃ t form the surface Uij(c). Its boundary is the union 
of edges of Γ colored by i or j by t. Denote by U∂

ij(c), respectively Uo
ij(c), the union of 

all connected components of Uij(c) with non-empty, respectively empty, boundary. We 
have χ(U∂

ij) ≤ mij , since the Euler characteristic of a disk is 1, and any other connected 
compact surface with boundary has Euler characteristic 0 or less. Moreover, χ(U∂

ij(c))
and mij have the same parity.

We have:

〈U, t〉∂ =
∑
c⊃t

〈U, c〉

=
∑
c⊃t

P (U, c)
(X1 + X2)

χ(U12,c)
2 (X1 + X3)

χ(U13,c)
2 (X2 + X3)

χ(U23,c)
2

= u
∑
c⊃t

P (U, c)(X1 + X2)
m12−χ(U∂

12(c))
2 (X1 + X3)

m13−χ(U∂
13(c))

2 (X2 + X3)
m23−χ(U∂

23(c))
2

(X1 + X2)
χ(Uo

12(c))
2 (X1 + X3)

χ(Uo
13(c))
2 (X2 + X3)

χ(Uo
23(c))
2

,

where u = u(m12, m13, m23) is given by formula (12). Note that each exponent in the 
numerator is non-negative, since mij ≥ χ(U∂

ij(c)).
Let r be the number of connected components of Uo

ij(c) for a given c ⊃ t. We apply 
Kempe moves along these components and combine together 2r terms in the above sum 
for the 2r ij-Kempe-related colorings to pull out (Xi + Xj)r and cancel potentially 

positive exponent (Xi + Xj)
χ(Uo

ij (c))
2 in the denominator.

Consequently, 〈U, t〉∂ belongs to the R′′
ij-submodule of R̃′′ generated by u, where, 

recall,

R′′
ij = R′

[
1

Xi + Xk
,

1
Xj + Xk

]
and {i, j, k} = {1, 2, 3}. Since the triple intersection of the rings R′′

12, R′′
13, and R′′

23 is R′, 
the sum 〈U, t〉∂ belongs to uR′. �
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Let N(Γ) be the maximal number of 12-colored cycles in any Tait coloring of Γ and

u(Γ) = ((X1 + X2)1/2(X1 + X3)1/2(X1 + X3)1/2)−N(Γ).

By symmetry, N(Γ) is also the maximal number of 23-colored cycles and 13-colored 
cycles.

Corollary 3.7. Fix a web Γ. For any foam U into Γ and any Tait coloring t of Γ, the 
evaluation 〈U, t〉∂ belongs to R̃′u(Γ), that is, the R̃′-submodule of R̃′′ generated by u(Γ). 
In particular, 〈U, t〉∂, over all t, belong to a finitely-generated (and free of rank eight) 
R′-submodule of R̃′′. The degree of 〈U, t〉∂ is bounded below by −3N(Γ).

Recall that Fo(Γ) has a basis {F}F given by all possible foams F from the empty 
foam ∅ to Γ. Degree of F is given by formula (9).

For a web Γ denote by adm(Γ) the set of Tait colorings of Γ. Consider the free graded 
R̃′′-module M(Γ) of rank |adm(Γ)| with a basis {1t}t∈adm(Γ). We place each basis element 
in degree 0.

Assume that U is a foam into Γ. Let us define

〈U〉∂ =
∑

t∈adm(Γ)

〈U, t〉∂ 1t ∈ M(Γ).

In this formula, each admissible coloring c of U contributes to the coefficient of 1t, where 
t is the restriction of c to Γ.

Consider a symmetric bilinear form (·, ·)M on M(Γ) with values in R̃′′ which is or-
thogonal in the basis of 1t’s, so that (1t, 1s)M = δt,s.

Proposition 3.8. For foams U and U1 into Γ one has

(〈U1〉∂ , 〈U〉∂)M = (〈U1〉 , 〈U〉) = 〈ω(U1)U〉 ∈ R. (13)

In particular, the inner product for the bracket evaluation takes values in the subring 
R of R̃′′.

Proof. The evaluation 〈ω(U1)U〉 is given by summing over all admissible colorings of 
ω(U1)U . Each of these colorings restricts to a Tait coloring of Γ, which is the middle 
cross-section of ω(U1)U . Vice versa, a pair of colorings of U and U1 that restrict to the 
same coloring on their boundaries give rise to an admissible coloring of ω(U1)U . Each 
such pair of compatible colorings of U and U1 contributes the same quantity to the LHS 
and the RHS of the formula in the proposition. �

Now consider three graded R-modules: Fo(Γ), M(Γ), and 〈Γ〉. Each of these comes 
with a symmetric bilinear form on it, which is (·, ·)M for the second module and is given 
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by the evaluation 〈ω(U1)U〉 on generating pairs for the first and the third modules. The 
form takes values in R for the first and third spaces and values in the bigger ring R̃′′

for the second module. The third space is the quotient of the first by the kernel of the 
bilinear form, and the forms on the first and second spaces are related by the formula 
(13).

Consider the R-submodule MR(Γ) of M(Γ) generated over R by 〈U〉∂ over all foams 
U into Γ. Due to (13), the restriction of the bilinear form (·, ·)M to this submodule takes 
values in R rather than in the bigger ring R̃′′.

MR(Γ) is an R-submodule of the R̃′-submodule⊕
t∈adm(Γ)

R̃′ u(Γ)1t

of M(Γ).
The latter submodule is a finitely-generated graded R-module (and also a free R-

module), being a finite direct sum of free R̃′-submodules generated by u(Γ)1t, over all 
t.

Finitely-generated property follows by considering the chain of subrings R ⊂ R′ ⊂ R̃′

and observing that R′ is a free graded finitely-generated R-module (of rank six), and R̃′

is graded finitely-generated R′-module (in fact, a free rank eight module).
Since Fo(Γ) is a free graded R-module generated by foams into Γ, there is a surjective 

R-module map Fo(Γ) −→ MR(Γ) given by sending foam U to 〈U〉∂ , for all U . This 
homomorphism respects the bilinear forms, in view of Proposition 3.8. Furthermore, all 
the bilinear forms considered respect the grading of our modules.

Consequently, there is a unique homomorphism of graded R-modules γΓ : MR(Γ) −→
〈Γ〉 that takes 〈U〉∂ to 〈U〉 for all foams U into Γ, due to 〈Γ〉 being the quotient of Fo(Γ)
by the kernel of the bilinear form. This homomorphism is surjective, leading at once to 
the following result.

Proposition 3.9. Graded R-module 〈Γ〉 is finitely-generated, for any web Γ.

Proof. The R-module 〈Γ〉 is a quotient of the finitely-generated graded R-module 
M(Γ). �

We collect the modules and maps from the proof into the diagram below

M(Γ)

∪

Fo(Γ) −→ MR(Γ) γΓ−→ 〈Γ〉.

Each element b of 〈Γ〉 determines an R-linear map Fo(Γ) −→ R taking a to (b, a). 
The form (·, ·) is non-degenerate on 〈Γ〉 and this assignment is an injective R-module 
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homomorphism

〈Γ〉 −→ Fo(Γ)∗ = HomR(Fo(Γ), R)

Since 〈Γ〉 is finitely generated over R, choose a finite collection of homogeneous genera-
tors b1, . . . , bm of this R-module, giving a surjective R-module map Rm −→ 〈Γ〉. Then 
assigning to a ∈ 〈Γ〉 the element

((b1, a), . . . , (bm, a))T ∈ Rm

is an injective R-module map

〈Γ〉 −→ Rm.

The map is that of graded R-modules if we assign to the generator (bi, ∗) of Rm degree 
− deg(bi), i = 1, . . . , m. We frame this into a proposition.

Proposition 3.10. 〈Γ〉, for any web Γ, is isomorphic to a submodule of a free graded 
R-module of finite rank.

Corollary 3.11. Finitely-generated graded R-module 〈Γ〉 has no torsion. It’s equipped with 
a symmetric graded R-valued bilinear form with the trivial kernel.

3.3. Direct sum decompositions

In this subsection we will translate some of the relations satisfied by the local evalu-
ation of foam given in Section 2.5 into local relation satisfied by the homology.

Proposition 3.12. If a graph Γ′ is obtained from a graph Γ by adding an innermost circle, 
then there is a canonical isomorphism

〈Γ′〉 � 〈Γ〉 {2} ⊕ 〈Γ〉 ⊕ 〈Γ〉 {−2}

given by maps in Fig. 18.

Proof. This follows directly from Proposition 2.22 and Corollary 2.16. �

Proposition 3.13. If a graph Γ′ is obtained from a graph Γ by adding a digon region, then 
there is a canonical isomorphism

〈Γ′〉 � 〈Γ〉 {1} ⊕ 〈Γ〉 {−1}

given by Fig. 19.

Proof. This follows directly from Propositions 2.23 and 2.30. �
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∅ {2}
⊕
∅
⊕

∅ {−2}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ E1 + E2

+ E1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

( )

Fig. 18. Isomorphism of Proposition 3.12.

{1}
⊕

{−1}

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

⎛⎝ ⎞⎠
Fig. 19. Isomorphism of Proposition 3.13.

Proposition 3.14. Suppose a graph Γ contains a square. Denote by Γ1 and Γ2 the two 
smoothings of the square of Γ. Then there is a canonical isomorphism

〈Γ〉 � 〈Γ1〉 ⊕ 〈Γ2〉

given by Fig. 20.

Proof. This follows directly from Propositions 2.24 and 2.30. �

Proposition 3.15. If a graph Γ′ is obtained from a graph Γ by replacing a vertex by a 
triangle, then there is a canonical isomorphism

〈Γ′〉 � 〈Γ〉

given by Fig. 21.

Proof. This follows directly from Propositions 2.25 and 2.26. �
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⊕

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

Fig. 20. Isomorphism of Proposition 3.14.

Fig. 21. Isomorphism of Proposition 3.15.

An edge in a graph Γ is called a bridge if removing the edge increases the number of 
connected components of Γ (by one).

Proposition 3.16. If a planar trivalent graph Γ has a bridge, then 〈Γ〉 = 0.

Proof. Such a graph Γ has no Tait colorings. Consequently, for any two foams U, U1 into 
Γ, the foam ω(U1)U has no admissible colorings, since an admissible coloring of ω(U1)U
would restrict to a Tait coloring of Γ. The bilinear form on Fo(Γ) is identically 0, and 
the state space 〈Γ〉 = 0. �

Original definition of sl(3)-link homology [10] included constructing state spaces H(Γ)
for planar trivalent bipartite graphs Γ as an intermediate step. In that case, the state 
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spaces are graded free abelian groups and their graded rank is the quantum sl(3) invariant 
of the graph, a.k.a. the Kuperberg bracket of Γ [14].

An equivariant extension of sl(3) link homology and of these state spaces has been 
constructed by Mackaay and Vaz [17]. Let

RZ = Z[E1, E2, E3]

be the integral version of the ring R. Mackaay and Vaz [17] denote E1 = a, E2 = b and 
E3 = c, so the ring RZ

∼= Z[a, b, c].
For a planar trivalent bipartite graph Γ Mackaay–Vaz state space HMV(Γ) is a free 

graded RZ-module of graded rank (over RZ) equal to the Kuperberg bracket of Γ.

Proposition 3.17. For bipartite webs Γ there are canonical isomorphisms of graded R-
modules, respectively graded k-vector spaces

〈Γ〉k ∼= H(Γ) ⊗Z k,

〈Γ〉 ∼= HMV(Γ) ⊗RZ
R.

These isomorphisms commute with maps between these spaces induced by oriented foams 
in R2 × [0, 1].

Proof. The space H(Γ) (resp. HMV(Γ)) is obtained by quotienting out the free graded Z-
module (resp. RZ-module) generated by foams without seam vertices and with suitable 
orientability conditions on seam lines by the kernel of a bilinear form. Just like in this 
paper, the bilinear form is given by the evaluation of closed foams. This evaluation is 
Z-valued (resp. RZ-valued) and is given by an algorithm rather than a formula. One can 
easily show that, after reducing coefficients from Z to Z/2, this evaluation is precisely 
the same as the one given by 〈•〉k (resp. by〈•〉), restricted to foams without seam vertices 
and with orientability conditions.

The isomorphisms

ΨΓ : H(Γ) ⊗Z k → 〈Γ〉k , ΨΓ
MV : HMV(Γ) ⊗RZ

R → 〈Γ〉

are given by mapping foams generating H(Γ), respectively HMV(Γ), to foams seen as 
elements of 〈Γ〉k, respectively 〈Γ〉.

To prove that these morphisms are well-defined, we need to show that all relations 
valid in H(Γ) ⊗Z k (resp. HMV(Γ) ⊗Z k) are valid in 〈Γ〉k (resp. 〈Γ〉).

This follows from the direct sum decomposition given by Propositions 3.12, 3.13 and 
3.14. Indeed, this proves that a relation 

∑
i aiFi = 0 holds in 〈Γ〉k (resp. 〈Γ〉) if and only 

if 
∑

i ai 〈G ◦ Fi〉k = 0 (resp. 
∑

i ai 〈G ◦ Fi〉 = 0) holds for G without seams vertices and 
respecting the orientability conditions. This proves as well that the maps are injective.

The maps ΨΓ and ΨΓ
MV are isomorphisms, since the same direct sum decomposition 

results show that these maps are surjective. �
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A related but different approach to equivariant sl(3) link homology has been sketched 
by Morrison and Nieh [16, Appendix]. Morrison and Nieh avoid dots on foam’s facets at 
the cost of inverting 2 and 3, while Mackaay and Vaz [17] utilize dots and use Z as the 
degree zero term of the ground ring of the theory. For this reason the match of our state 
spaces 〈Γ〉 with those in Mackaay–Vaz [17] modulo two for bipartite planar graphs is 
immediate, while the relation to Morrison–Nieh’s approach seems less straightforward. 
Division by three in their formulas is not an issue when reducing modulo two, but formula 
(3.5) of [16] contains division by two, obstructing a naive attempt to define a version of 
their construction modulo two.

4. Base change, inverting the discriminant, and graded dimensions

4.1. Base change

One of the immediate questions that we can’t answer is whether 〈Γ〉 is a free graded 
R-module for any planar trivalent graph Γ. This is one of the reasons to introduce base 
changes and work over different commutative rings.

Assume there is a homomorphism ψ : R −→ S of commutative rings. Recall that we 
defined ψ-evaluation 〈F 〉ψ, also called S-evaluation 〈F 〉S , by composing the evaluation 
〈F 〉 of a closed foam F with the homomorphism ψ. This can be naturally extended to 
define ψ-state spaces of graphs Γ.

Consider the free S-module Fo(Γ)ψ, also denoted Fo(Γ)S , to have a basis of all foams 
from the empty graph into Γ. There is a natural isomorphism of S-modules Fo(Γ) ⊗RS ∼=
Fo(Γ)S . If S is Z-graded and ψ is a grading-preserving homomorphism, then Fo(Γ)S is a 
free graded S-module, with the degree of the foam given by the same formula as in the 
original case of Fo(Γ).

There is a symmetric S-valued bilinear form on Fo(Γ)S given by

(U1, U)S = 〈ω(U1)U〉S = ψ(〈ω(U1)U〉)

on foams U1, U into Γ. Define 〈Γ〉ψ as the quotient of Fo(Γ)S by the kernel of this bilinear 
form. Another notation for 〈Γ〉ψ is 〈Γ〉S .

Just like in the original case, a relation 
∑

ai 〈Ui〉 = 0 holds in 〈Γ〉S , with ai ∈ S, 
if for any foam U out of Γ, 

∑
aiψ(〈UUi〉) = 0. If the ring S is graded and ψ is a 

grading-preserving homomorphism, then 〈Γ〉S is naturally a graded S-module.
Note that any element of 〈Γ〉S is a linear combination of foams into Γ with coefficients 

in S. Consequently, the isomorphism Fo(Γ) ⊗R S
∼=−→ Fo(Γ)S descends to a surjective 

map

〈Γ〉 ⊗R S −→ 〈Γ〉S . (14)
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The map is surjective since all generators 〈U〉 of the S-module on the right-hand side 
are in the image of the homomorphism, coming from the corresponding set of generators 
on the left-hand side.

We are mostly interested in the case where S is Z-graded and homomorphism ψ
preserves the grading. We refer to this as a graded base change ψ or S. In this case 〈Γ〉S
is naturally a Z-graded S-module.

Proposition 4.1. The S-module 〈Γ〉S is finitely-generated for any base change (ψ, S). For 
a graded base change (ψ, S), 〈Γ〉S is a finitely-generated graded S-module.

Proof. The R-module on the left-hand side of map (14) is finitely generated. Choose a 
finite set of generators for that module. Their images under ψ span the S-module on the 
right-hand side. In the graded case, generators can be chosen to be homogeneous. �

Proposition 4.2. All direct sum decompositions for state spaces derived in Section 3.3 hold 
with state spaces 〈•〉S for any graded base change (ψ, S). With grading shifts dropped from 
the relations, they hold for any base change.

Proof. All identities on foams used to prove direct sum decompositions hold under any 
homomorphism ψ as well. �

One base change that we have already encountered is the graded homomorphism 
ψ0 : R −→ k with ψ0(Ei) = 0 for i = 1, 2, 3, see Section 2.6. For this base change the k-
state space 〈Γ〉k is a finite-dimensional graded k-vector space. Our proof of Kronheimer–
Mrowka Conjecture 8.9 for foams in R3 implies the following result.

Proposition 4.3. There is a functorial isomorphism

J�(Γ) ∼= 〈Γ〉k

for all planar trivalent graphs Γ.

The isomorphisms are functorial relative to maps in these two homology theories 
induced by foams with boundary. The homology theory J� for planar trivalent graphs is 
defined in [11, Section 8.3] assuming their Conjecture 8.9 for foams in R3.

Proposition 4.4. For any base change (ψ, S) the S-module 〈Γ〉S is a submodule of a free 
S-module of finite rank. For a graded base change, 〈Γ〉S is a submodule of a graded free 
S-module of finite rank.

Proof. Fix a planar graph Γ and choose a collection of homogeneous generators a1, . . . , an
of the R-module 〈Γ〉. The elements b1, . . . , bn, where bi = ψ(ai), generate the S-module 
〈Γ〉S . The bilinear pairing (·, ·)S on 〈Γ〉S is non-degenerate, and an element b ∈ 〈Γ〉S is 
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determined by its couplings (b, bi)S ∈ S over i = 1, . . . , n. Thus, to each b in b ∈ 〈Γ〉S
we can assign an element of Sn, namely

((b, b1)S , (b, b2)S , . . . , (b, bn)S)T .

This assignment is an injective S-module map 〈Γ〉S −→ Sn, realizing 〈Γ〉S as a submod-
ule of a free S-module of finite rank.

If (ψ, S) is graded, the inclusion is that of graded modules. One can be more precise 
and write Sf instead of Sn where f =

∑n
i=1 q

−mi , with mi the degree of ai. Here the 
degrees of generators of a free module are encoded via sum of powers of q. �

If a commutative ring S has no zero divisors, then S-module 〈Γ〉S is torsion-free, that 
is, am = 0 for a ∈ S and m ∈ 〈Γ〉S implies that a = 0 or m = 0.

Recall that PID stands for ‘principal ideal domain’.

Proposition 4.5. If S is a (graded) PID then 〈Γ〉S is a finitely-generated (graded) free 
S-module.

Proof. 〈Γ〉S is a finitely-generated S-module with no torsion, necessarily free of finite 
rank. �

In Section 4.5 we will consider base changes into graded principal ideal domains. In 
the next section we will use the graded base change

ψD : R −→ R[D−1],

where D = E1E2+E3 is the discriminant of the polynomial x3+E1x
2+E2x +E3 ∈ R[x]. 

This polynomial factors into (x + X1)(x + X2)(x + X3) in the larger ring R′[x], and its 
discriminant D is given by:

D
def= (X1 + X2)(X1 + X3)(X2 + X3) = E1E2 + E3. (15)

We denote the state space for this base change by 〈Γ〉D .

4.2. Facet decorations of negative degrees

In this subsection, we introduce some additional decoration which can float on faces 
of foams. To do so we need to work over a ring slightly larger than R. We invert the 
discriminant D given by equation (15) and work over the ring

RD
def= R[D−1] = k[E1, E2, E3,D

−1]. (16)
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Note that

Xi + E1 =Xj + Xk,

X2
i + E2 =(Xi + Xj)(Xi + Xk),

where j, k are the remaining colors, since

E1 = Xi + Xj + Xk, E2 = XiXj + XiXk + XjXk.

The product

(Xi + E1)(X2
i + E2) = (Xj + Xk)(Xi + Xj)(Xi + Xk) = E1E2 + E3 = D (17)

is symmetric in Xi, Xj , Xk and equals the discriminant D .
We introduce two additional decorations on foams which, just like dots, freely float 

on facets: the triangle (denoted by �) and the square (denoted by �). We extend the 
evaluation to foams having these extra decorations. The triangle and square invert the 
expressions • + E1 and •2 + E2, respectively, where • denotes a dot on a facet:

� � 1
• + E1

and � � 1
•2 + E2

.

For a given coloring c, each triangle on a facet colored i contributes (Xi + E1)−1 to the 
product P (F, c) and each square on an i-colored facet contributes (X2

i + E2)−1 to the 
product P (F, c), see (18).

The discriminant will appear in the denominators of our product terms, so to make 
sense out of floating triangles and squares it suffices to invert D in the ring R and work in 
the localized ring RD . Note that the localized ring is still Z-graded, with D−1 in degree 
−6. As a graded R-module or even RD-module, ring RD is periodic with period 6, via 
the multiplication by D±1.

Allowing floating triangles and squares on facets, the definition (5) of Q(F, c) remains 
unchanged, while the definition of P (F, c) becomes:

P (F, c) =
∏

f∈f(F )

X
d(f)
c(f)

(Xc(f) + E1)t(f)(X2
c(f) + E2)s(f) , (18)

where t(f) and s(f) are respectively the number of triangles and squares on facet f .
Finally, define

〈F 〉D =
∑ P (F, c)

Q(F, c) .

c∈adm(F )
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The degrees of � and � are −2 and −4 respectively. For a foam F without triangles 
or squares, 〈F 〉D = 〈F 〉.

Note that P (F, c) is no longer a polynomial, hence Theorem 2.17 does not hold any-
more for 〈•〉D . However, if F is a foam of degree d, 〈F 〉D is an homogeneous element of 
RD of degree d.

Example 4.6. A sphere with one triangle evaluates to D−1.

The next lemma says that the triangle and the square decoration can be expressed 
as a linear combination of dots (provided D−1 exists). Hence they do not enriched the 
theory, but as we shall see, it is convenient to have them in computations.

Lemma 4.7. The following local relations hold:

〈
�

〉
D

= 1
D

(〈
• •

〉
D

+ E2
〈 〉

D

)
,

〈
�

〉
D

= 1
D

(〈
•

〉
D

+ E1
〈 〉

D

)
,

〈
��

〉
D

= 1
D

〈 〉
D
.

Proof. These relations follow directly from the identity

D = (E1 + Xi)(E2 + X2
i ),

for any i in {1, 2, 3}. �

The next lemma says that the square decoration � added to a facet can be interpreted 
as the inverse of forming the connected sum with a two-torus along the facet, that is, 
adding a handle. Likewise, adding the triangle � to a facet is the inverse of connected 
sum with a capped torus. In other words, it’s the inverse of forming a connected sum 
with a torus and gluing on a disk along the connecting circle.

Lemma 4.8. The following local relations hold:

〈
�

〉
D

=
〈 〉

D
,

〈
�

〉
=
〈 〉

D
,

D
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〈 〉
D

= D
〈 〉

D
.

Proof. Straightforward. �

Notice that the connected sum with both torus and capped torus is equivalent to 
connected sum with a genus two surface capped by a disk along a separating curve in 
the middle. This operation, upon foam evaluation, is equivalent to multiplication by 
D = E1E2 +E3, which is an element in R, so it does not matter which facet to apply it 
to.

Lemma 4.9. The following local relation holds:

〈
�

〉
D

+
〈

�

〉
D

=
〈 〉

D

Proof. This follows immediately from the definition of the evaluation of closed foam. 
Indeed for a fixed coloring the identity reads:

Xi

E1 + Xk
+ Xj

E1 + Xk
= Xi

Xi + Xj
+ Xj

Xi + Xj
= 1,

for {i, j, k} = {1, 2, 3} and k the color of the triangle-decorated facet. One can as well 
deduce this identity from Lemma 4.7 and Proposition 2.32. �

Lemma 4.10. The following local relation holds:

〈F0〉D = 〈F1〉D + 〈F2〉D ,

where:

F0 := , F1 :=

�

and F2 := � .
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Fig. 22. From left to right: FI→H , FH→=, F=→|| and F||→I .

In other words, F0 is locally the identity on two strands, F1 is a square-decorated double-
saddle on these two strands and F2 is the composition of a zip and an unzip, with a 
triangle decoration on the inner disk.

Proof. One can prove the relation directly. The computations are similar to the ones in 
the proof of Proposition 2.24. Alternatively, via Lemma 4.7, one can rewrite the square 
and the triangle in terms of dots and D−1, then use the local relations of Subsection 2.5
to complete the proof. �

4.3. The square of four-end graphs

Let us consider four webs (Γi)i∈{I,H,=,||} which are identical except in a small 2-
dimensional ball where they are given by:

ΓI = , ΓH = , Γ= = and Γ|| = .

The number of Tait colorings satisfies the following equation:

|adm(ΓI)| + |adm(Γ=)| = |adm(Γ||)| + |adm(ΓH)|.

The aim of this section is to categorify this relation. We consider four cobordisms:

• the neighborhood of a seam vertex from ΓI to ΓH denoted by FI→H , of degree 1,
• an unzip from ΓH to Γ= denoted by FH→=, of degree 1,
• a saddle from Γ= to Γ|| denoted by F=→||, of degree 2,
• and a zip from Γ|| to ΓI denoted by F||→I , of degree 1.

These foams are depicted in Fig. 22.

Lemma 4.11. Compositions FH→=◦FI→H , F=→||◦FH→=, F||→I◦F=→|| and FI→H◦F||→I

are mapped to 0 by the functor 〈•〉.

Proof. In each case, the foam obtained by composing the two cobordisms has no pre-
admissible coloring and therefore no admissible coloring. �



52 M. Khovanov, L.-H. Robert / Advances in Mathematics 376 (2021) 107433
We consider the following square of webs and web cobordisms

ΓI ΓH

Γ=Γ||

FI→H

F||→I FH→=

F=→||

(19)

Applying the functor 〈•〉 results in a 4-periodic complex

〈ΓI〉 〈ΓH〉

〈Γ=〉
〈
Γ||
〉

〈FI→H〉

〈
F||→I

〉
〈FH→=〉

〈
F=→||

〉
(20)

of graded R-modules. Differential in this complex is homogeneous relative to internal 
grading, of degrees 1, 1, 1, 2 respectively, going clockwise starting from the map on the 
left. It is not clear whether this square is always exact.

A similar square (a 4-periodic complex) can be obtained by applying the functor 〈•〉S
to square (19) for any base change ψ : R −→ S.

Proposition 4.12. The square obtained for the base change (ψD , R[D−1]) is exact.

Proof. We define four cobordisms (or foams) GH→I , GI→||, G=→H , and G||→= (the 
source and the target of these cobordisms should be clear from the notation) and we 
prove the following identities:

〈IdΓI
〉D = 〈GH→I ◦ FI→H〉D +

〈
F||→I ◦GI→||

〉
D
, (21)

〈IdΓH
〉D = 〈G=→H ◦ FH→=〉D + 〈FI→H ◦GH→I〉D , (22)

〈IdΓ=〉D =
〈
G||→= ◦ F=→||

〉
D

+ 〈FH→= ◦G=→H〉D , (23)〈
IdΓ||

〉
D

=
〈
GI→|| ◦ F||→I

〉
D

+
〈
F=→|| ◦G||→=

〉
D
. (24)

• The foam GH→I is the neighborhood of a seam vertex with one triangle on the facet 
bounding the internal edge of the H. It has degree −1.

• The foam GI→|| is an unzip with one triangle on the facet bounding the internal edge 
of the I. It has degree −1.

• The foam G||→= is a saddle with one square. It has degree −2.
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 �



Fig. 23. From left to right: GH→I , GI→||, G||→= and G=→H .

• The foam G=→H is a zip with one triangle on the facet bounding the internal edge of 
the I. It has degree −1.

These foams are depicted in Fig. 23.
The identities (24) and (23) are given by Lemma 4.10. The identities (21) and (22)

are essentially the same, so we only prove (21).
In this proof, we consider (pieces of) foams which are diffeomorphic to (pieces of) 

webs times an interval. In order to represent such foams in the computations, we will 
only draw the (pieces of) webs and indicate the dots on the edges.

Thanks to Proposition 2.27, we have:

〈GH→I ◦ FI→H〉D =
〈

�

〉
D

+
〈

�

〉
D

.

Thanks to Proposition 2.28,

〈
F||→I ◦GI→||

〉
D

=
〈

�

〉
D

+
〈

�

〉
.

This gives:

〈GH→I ◦ FI→H〉D +
〈
F||→I ◦GI→||

〉
D

=
〈

�

〉
D

+
〈

�

〉
D

= 〈IdΓI
〉D ,

where the second equality comes from Proposition 4.9. �

Let Q(R) be the field of fractions of R. Note that Q(R) is naturally isomorphic to the 
field of fractions of RD as well. Given a projective RD -module P , define its rank rk(P )
as the dimension of the Q(R)-vector space P ⊗RD Q(R),

rk(P ) = dimQ(R)(P ⊗RD Q(R)).

P is finitely-generated iff it’s rank is finite.
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Proposition 4.13. The state space 〈Γ〉D is a projective RD-module of rank equal to the 
number |adm(Γ)| of Tait colorings of Γ.

Proof. We consider the square obtained by applying 〈•〉D to (19). The data of maps and 
homotopies in the localized theory, see proof of Proposition 4.12, can be encoded by the 
diagram below, with RD -modules V0, . . . , V3

V1 V2

V3V0

α1

β1

α2β2

α3

β3

α0 β0

with homogeneous maps αi, βi and index i ∈ Z/4 understood modulo 4, that satisfy

αi+1αi =0,

βiβi+1 =0,

βi+1αi+1 + αiβi =1Vi
.

Both α’s and β’s are differentials, and the four-periodic complex is both α-exact and β-
exact. Maps βiαi and αi−1βi−1 are mutually-orthogonal idempotents in End(Vi). These 
projections decompose Vi into the direct sum of two subspaces,

Vi
∼= im(βiαi) ⊕ im(αi−1βi−1).

The complex decomposes into the direct sum of four exact complexes

0 −→ im(βiαi)
∼=−→ im(αiβi) −→ 0.

There is a canonical isomorphism of RD -modules

V0 ⊕ V2 ∼= V1 ⊕ V3,

given by the mutually-inverse matrices of maps(
α0 β1
β3 α2

)
,

(
β0 α3
α1 β2

)
.
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Furthermore, Vi is isomorphic to the direct sum of two terms that are isomorphic to 
direct summands of Vi−1 and Vi+1, and the following lemma holds.

Lemma 4.14. If three out of the four Vi’s are projective graded RD-modules, then the 
fourth one is a projective graded RD-module as well. The following equality on their 
ranks holds

rk(V0) + rk(V2) = rk(V1) + rk(V3). (25)

We can now prove Proposition 4.13 by induction on the number of vertices of Γ. 
Proposition 4.13 is clear for Γ with no vertices (such graph is a union of circles). Such 
Γ has 3m Tait colorings, where m is the number of circles in Γ, and the rank of free 
RD -module 〈Γ〉D is 3m, in view of Proposition 3.12, which holds in the localized theory 
as well.

Hence, for a graph Γ without vertices, rk(〈Γ〉D) = |adm(Γ)|.
If graph Γ has a bridge, rk(〈Γ〉D) = 0 = |adm(Γ)|, since the localized state space 

〈Γ〉D = 0, as well as the state space itself, 〈Γ〉 = 0. At the same time, Γ has no Tait 
colorings.

If Γ has n > 0 vertices and a region with at most 4 sides, propositions in Section 3.3, 
which remain true in the localized theory, show that 〈Γ〉D is isomorphic to 〈Γ′〉D or a 
direct sum of two such state spaces for graphs Γ′ with fewer vertices.

Otherwise, any region of Γ has at least five sides. The graph Γ being planar, there 
necessarily exists a region with exactly five sides. Take one of the edges of a pentagon 
region, and modify a neighborhood of this edge to form three other graphs in the square 
(19) so that ΓI = Γ. Then graph ΓH contains a square region, so the statement of the 
proposition holds for it. Likewise, the remaining two graphs have fewer vertices than Γ
and satisfy the statement of the proposition. This implies the same property for Γ.

The degree equality follows from the equation (25). The same equation is satisfied by 
the number of Tait colorings of the four graphs:

|adm(Γ||)| + |adm(ΓH)| = |adm(ΓI)| + |adm(Γ=)|,

see also [8, Definition 2.1] for the corresponding defining relations on the chromatic 
polynomial of planar trivalent graphs at Q = 4.

These observations together complete the induction base and step and prove the 
proposition. �

4.4. Graded dimension

To get a numerical invariant out of our construction, we assign to a planar trivalent 
graph Γ the graded dimension of the graded finite-dimensional k-vector space 〈Γ〉k,

qdim(Γ) = gdim(〈Γ〉k).
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The graded dimension of a graded finite-dimensional vector space V = ⊕
n∈Z

Vn is given 

by

gdim(V ) =
∑
n∈Z

dim(Vn)qn.

We call the invariant qdim(Γ) the quantum dimension of Γ (or quantum SO(3) di-
mension). Quantum dimension takes values in the semiring Z+[q, q−1]. Direct sum 
decompositions from Section 3.3 allow to express the quantum dimension of a graph 
that contains a facet with four or fewer edges as a linear combination of quantum di-
mensions of its simplifications.

If a graph Γ is bipartite, it contains a facet with at most four edges and its reductions 
are bipartite as well, so that qdim(Γ) can be computed inductively.

Proposition 4.15. For any bipartite web Γ, the quantum dimension qdim(Γ) equals the 
Kuperberg bracket of Γ.

Proof. This is immediate, since the recursive relations are identical. Kuperberg bracket 
of Γ, defined in [14], is normalized here to lie in Z+[q, q−1], the same normalization as 
in [10]. Kuperberg bracket is also the graded dimension of the sl(3) link homology groups 
of Γ, see [10]. The latter space can be defined over any field, with the graded dimension 
independent of the field. �

When Γ is bipartite, its quantum dimension lies either in Z+[q2, q−2] or in 
qZ+[q2, q−2], that is, either only even or only odd powers of q have nonzero coeffi-
cients. The parity equals the parity of v(Γ)/2, where v(Γ) is the number of vertices of Γ, 
necessarily even.

Example 4.16. Here is an example of a graph where graded dimension fails the parity 
property.

qdim
(〈 〉

k

)
= qdim

(〈 〉
k

)
+ qdim

(〈 〉
k

)

= [2]qdim
(〈 〉

k

)
+ qdim

(〈 〉
k

)

= ([2] + 1)qdim
(〈 〉

k

)
= ([2] + 1)[2][3],

where [n] = qn−q−n

q−q−1 . In particular, the graded dimension of this graph above does not 
satisfy the parity property.
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Table 1
Values of the Yamada polynomial and the graded dimensions of 〈Γ〉

k
on basic 

graphs, showing a clear discrepancy that seems hard to realign. The second row 
shows the scaling coefficient when removing a digon face from a graph.

Γ Yamada polynomial qdim
(
〈Γ〉k

)
q−2 + 1 + q2 q−2 + 1 + q−2

vs.
q−2 + q2 q−1 + q

(q−2 + q2)(q−2 + 1 + q2) =
q−4 + q−2 + 2 + q2 + q4

(q−1 + q)(q−2 + 1 + q2) =
q−3 + 2q−1 + 2q + q3

There are potential variations on the quantum dimension qdim(Γ) given by using the 
original ring R or base changes other than the graded homomorphism R −→ k. One 
could define the quantum dimension as the graded dimension of 〈Γ〉 rather than 〈Γ〉k, 
normalized by dividing by the graded dimension of R; the latter is ((1 − q2)(1 − q4)(1 −
q6))−1. One can also first resolve 〈Γ〉 into a complex of free graded R-modules and then 
take its graded Euler characteristic. For Γ such that 〈Γ〉 is a free graded R-module all 
these definitions would result in the same graded dimension, but we don’t know whether 
〈Γ〉 has this property for any Γ. Lacking enough information about the structure of 
graded R-module 〈Γ〉 beyond the bipartite case we chose to restrict here to just one 
version of the quantum dimension.

When a graph Γ is reducible using the rules given by Propositions 3.12, 3.13, 3.14 and 
3.15, 〈Γ〉 is a free graded R-module, and the reduced theory 〈Γ〉k has graded dimension 
equal to the graded rank of 〈Γ〉. The quantum dimension of such Γ can be computed 
using the relations from the decategorified versions of the above propositions.

Even restricting to such graphs, see Table 1, the quantum dimension is not given by 
the Yamada polynomial, which is the invariant coming from planar networks built out of 
the 3-dimensional irreducible representation V of quantum sl(2) and the one-dimensional 
space of invariants in the third tensor power of V , see [8,9].

4.5. Base change into PID

We don’t know whether 〈Γ〉 is always a graded free module, and it makes sense to 
consider graded base changes ψ : R −→ S with S a PID. There is a family of such 
base changes given by taking S = k′[E] where k′ is a field of characteristic two (a field 
extension of k) and deg(E) = 2. A degree-preserving homomorphism

ψλ : R −→ k′[E]
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is given by

ψλ(E1) = λ1E, ψλ(E2) = λ2E
2, ψλ(E1) = λ3E

3

where λ1, λ2, λ3 ∈ k′, and we denote λ = (λ1, λ2, λ3). Homomorphism ψλ is surjective 
iff λ1 �= 0 and k′ = k.

For the base change ψλ we can form the corresponding state space 〈Γ〉ψλ
or just 

〈Γ〉λ. It’s a finitely-generated graded k′[E]-module. Proposition 4.5 implies that 〈Γ〉λ is 
a finitely-generated free graded k′[E]-module. Its graded rank qdimλ(Γ) is an invariant 
of Γ.

When λ = (0, 0, 0), which is a degenerate case, the map ψ(0,0,0) factors through k:

R k k′ k′[E]
Ei �→ 0

ψ(0,0,0)

Hence, 〈Γ〉(0,0,0) ∼= 〈Γ〉k⊗kk′[E]. If 〈Γ〉 is a free graded R-module, the quantum dimension 
qdimλ(Γ) is the same for all λ and equals qdim(Γ) defined in Section 4.4.

We say that ψλ or λ is D-localizable if ψλ(D) �= 0. This is equivalent to λ3+λ1λ2 �= 0.

Proposition 4.17. If λ is D-localizable, the state space 〈Γ〉λ is a free k′[E]-module of rank 
equal to the number |adm(Γ)| of Tait colorings of Γ.

Proof. Note that the proposition is about the rank of 〈Γ〉λ, not its graded rank. For 
a D-localizable λ, compose ψλ with the inclusion of rings k′[E] ⊂ k′[E, E−1] to get a 
homomorphism

ψλ,D : R −→ k′[E,E−1].

This homomorphism factors through the inclusion R ⊂ R[D−1], since the image of D
under ψλ is a nonzero multiple of E3, so invertible in k′[E, E−1]. Hence, the analogues 
of results of Section 4.3, including Propositions 4.12 and 4.13 hold for the base change 
ψλ,D . Any graded projective module over k′[E, E−1] is graded free. In particular, 〈Γ〉λ
is a free module of rank the number of Tait colorings of Γ. �

A similar result holds for the homomorphism

φ : R −→ k′[E], deg(E) = 6

given by

φ(E1) = φ(E2) = 0, φ(E3) = E.
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The image φ(D) = φ(E3 + E1E2) = E is invertible in the localized ring k′[E, E−1].

Proposition 4.18. The state space 〈Γ〉φ is a free k′[E]-module of rank equal to the number 
|adm(Γ)| of Tait colorings of Γ.

Remark 4.19. When D is invertible and the ground ring is extended to contain 
X1, X2, X3, resulting in a fully decomposable theory, one obtains an unoriented ana-
logue of Lewark’s sl(3) foam colorings [15, Lemma 2.8].

It’s a very interesting problem, related to the four-color theorem, to understand the 
graded ranks of 〈Γ〉λ, 〈Γ〉φ, and, more generally, the structure of R-modules 〈Γ〉.
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