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REAL K(π, 1) ARRANGEMENTS

FROM FINITE ROOT SYSTEMS

Mikhail Khovanov

A bstract . Consider the arrangement of codimension two subspaces of an
n-dimensional Euclidean space R

n = {(x1, ..., xn)|xi ∈ R}, that consists of
triple diagonals xi = xj = xk for all 1 ≤ i < j < k ≤ n. We answer posi-
tively A.Björner’s question whether the complement of this arrangement is
a K(π, 1) space. We construct some other K(π, 1) arrangements and show
that they come naturally from finite root systems.

0. Introduction

Take a complex n-dimensional space C
n and delete all diagonals zi = zj .

It is well-known that what remains is a K(π, 1) space with the fundamental
group isomorphic to the pure braid group ([FN]).

This paper originated from an idea for finding a real counterpart of this
construction. Starting from a real n-dimensional space R

n remove either
all real codimension two subspaces xi = xj = xk or all real codimension
two subspaces xi = xj , xk = xp for distinct integers i, j, k, p. Denote the
complements by Xn and Yn respectively. We prove here that these are
K(π, 1)’s.

The question of whether Xn is a K(π, 1) was posed by Anders Bjorner
([B1], page 362). Bjorner denoted this space MAn,3 .

The pure braid group is the kernel of a homomorphism from the braid
group to the symmetric group. Mirroring this, we explicitly realize the
fundamental groups of Xn and Yn as kernels of homomorphisms of certain
Coxeter groups to the symmetric group (the difference is that the braid
group is not a Coxeter group.) We call these Coxeter groups the twin
and the triplet groups respectively and their elements twins and triplets.
Intuitively, twin and triplet groups are real forms of the braid group.

The classical result that C
n without diagonals is a K(π, 1) admits the

following well-known generalization. Deligne [D] proved that the complex-
ification of a real simplicial hyperplane arrangement is a K(π, 1) arrange-
ment. In particular, the complexification of the reflection arrangement
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of a finite root system is a K(π, 1) complex arrangement. This theorem
and our results lead us to state a conjecture that certain real codimension
two arrangements naturally associated to finite root systems are K(π, 1)
arrangements (see §4).

Here is the plan of the paper. In §1 we describe a class of real codimen-
sion two arrangements and prove that all arrangements in this class are
K(π, 1) arrangements. As a special case, Xn is a K(π, 1) space. In §2 we
prove that Yn is homotopy equivalent to a bouquet of circles, and, conse-
quently, a K(π, 1) space. In §3 we describe fundamental groups of Xn,Yn

and several other similar spaces. In §4 we establish a relation between our
arrangements and finite root systems and propose a conjecture that would
clarify this relation.

Braids can be described combinatorially via their projections to a plane.
Similar realizations of twins and triples are given in §3.

The ideas of the paper have the following interesting development. Re-
call that braids relate to links via the closure operation. It turns out that
twins are related to doodles—collections of closed curves on the two-sphere
without triple intersections ([FT],[K1]). As the fundamental group of the
link complement is an invariant of a link, to a doodle there is associated
a ”fundamental” group ([K1]). The twin group on n arcs acts in a special
way on the free group of rank n + 1 so that the ”fundamental” group of
the closure of a twin is isomorphic to the quotient of the free group by the
automorphism associated to this twin ([K2]). These and other features of
doodles mirror those of links.

We would like to remark that Vassiliev’s ornaments [V] are equivalence
classes of doodles relative to triple intersections of one or two different
components (but not three different components).

Triplets are related to objects that we call noodles: fix a codimension 1
foliation (with singular points) on the two-sphere. Noodles are collections of
closed curves on the two-sphere such that no two intersection points belong
to the same leaf, there are no quadruple intersections and no intersection
point can occupy a singular point of the foliation. Noodles admit a group-
valued invariant which is of independent interest.

I am grateful to Anders Bjorner for stimulating discussions and encour-
agement and my advisor Igor Frenkel for his support.

1. Examples of real K(π, 1) arrangements

Recall that an Eilenberg-MacLane space (or a K(π, n) space) is a con-
nected cell complex with all homotopy groups except the n-th homotopy
group being trivial and the n-th homotopy group isomorphic to π.
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Let Vn(3) be the set of triples (i, j, k) of pairwise different integers be-
tween 1 and n. Let Vn(4) be the set of quadruples (i, j, k, l) of pairwise
different integers between 1 and n.

For a subset S ⊂ Vn(4) define the space Xn,S :

Xn,S = R
n \ {(x1, ..., xn)|xi = xj = xk for 1 ≤ i < j < k ≤ l,

xi = xj , xk = xl for (i, j, k, l) ∈ S}.

Xn,S is obtained from R
n by deleting all triple diagonals xi = xj = xk

and deleting the real codimension 2 hyperplanes xi = xj , xk = xl with
(i, j, k, l) ∈ S.

Theorem 1.1. For any n > 1 and S ⊂ Vn(4) the space Xn,S is a K(π, 1)
space.

Proof. Fix n and S ⊂ Vn(4). We must show that for p > 1 any continu-
ous mapping of the p-dimensional sphere S

p to Xn,S is contractible.
To a number p, p > 1 and a mapping ψ : S

p → Xn,S we associate the
following data: Take a trivial line bundle S

p × R over S
p. Let ψ1, ...ψn

be the compositions of ψ with the projections pri of Xn,S ⊂ R
n onto the

coordinates of R
n:

pri : (x1, ..., xn) → xi, ψi
def= pri ◦ ψ, ψi : S

p → R.

In the trivial bundle S
p × R we get n continuous sections

φi : S
p → S

p × R, φi(y) = (y, ψi(y)) for y ∈ S
p.

The sections φ1(Sp), ..., φn(Sp) are n manifolds homeomorphic to S
p in-

side S
p × R.

The condition that ψ is a mapping into Xn,S is equivalent to the follow-
ing two conditions on φ1(Sp), ..., φn(Sp):
(i) Manifolds φ1(Sp), ..., φn(Sp) have only double points of intersection,
(ii) If for a point y ∈ S

p and a quadruple (i, j, k, l) ∈ S we have φi(y) =
φj(y) then φk(y) �= φl(y).

Also, ψ is a C∞-mapping iff the manifolds φ1(Sp), ..., φn(Sp) are C∞-
submanifolds of S

p × R.
Pick an integer p greater than 1 and a continuous mapping ψ : S

p →
Xn,S . We will prove that ψ is homotopic to a mapping into a point.

First, by a small deformation we can make ψ a C∞ mapping. Thus,
w.l.o.g. we suppose that ψ is C∞. Next, deforming ψ a little if necessary
(and keeping it C∞ during deformation), we suppose that for any i, j the
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intersection of ψ(Sp) and the diagonal xi = xj of R
n is a smooth manifold

(not necessarily connected) of dimension p − 1.
To ψ there is associated (as described above) n smooth sections

φ1(Sp), ..., φn(Sp) of the trivial bundle S
p × R. These n sections can have

only double intersections and the intersections are smooth manifolds of
dimension p − 1.

Denote by P1, ..., Pu the connected components of these intersections:

P1 ∪ P2 ∪ ... ∪ Pu = ∪i �=j(φi(Sp) ∩ φj(Sp)).

Manifolds P1, ..., Pu cut the p-dimensional spheres φ1(Sp), ..., φn(Sp) into
the union of connected manifolds L1, ..., Lv with boundary. Each L1, ..., Lv

has dimension p and the boundary of each L1, ..., Lv is a disjoint union of
some of P1, ..., Pu. Observe that under the projection of S

p × R onto the
base S

p each of L1, ..., Lv projects diffeomorphically onto a domain of S
p.

Because p > 1, for any i, 1 ≤ i ≤ n, among those L1, ..., Lv that are
submanifolds of φi(Sp) there is at least one with connected boundary. Take
a Riemannian metric on S

p.
There exists a number w between 1 and v such that the boundary of Lw

is connected and the projection of Lw on S
p ( onto the base of the bundle

S
p × R ) has the minimal volume among the volumes of all projections

p : Ll → S
p, l = 1, ..., v with the boundary of Ll connected.

Now we look at Lw and its boundary ∂Lw. We can deform n sections
φ1(Sp), ..., φn(Sp) of S

p × R so as to destroy the set ∂Lw of double points.
The deformation is schematically depicted on Figure 1.

wd L

wL

Figure  1

During the homotopy only two of the sections–those that contain ∂Lw

are deformed.
Because of the way we chose w, at any time during the homotopy condi-

tions (i) and (ii) are preserved. Thus, to this homotopy of sections there is
associated a homotopy of S

p inside Xn,S . After this homotopy the number
u of connected components of ∪i �=j(φi(Sp) ∩ φj(Sp)) diminishes by 1.
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Doing this type of homotopies (each time finding w satisfying conditions
as above) over and over we get to a mapping ψ̂ : S

p → Xn,S such that ψ̂(Sp)
does not intersect any of the diagonals xi = xj . Then the sphere ψ̂(Sp)
is contractible inside Xn,S . Mappings ψ and ψ̂ are homotopic. Thus, the
sphere ψ(Sp) is contractible inside Xn,S and Xn,S is an Eilenberg-Maclane
space. �

Denote by Xn the space Xn,S with S being the empty set. Xn is the
Euclidean space R

n without triple diagonals xi = xj = xk.

Corollary 1.2. Xn is a K(π, 1) space.

For integers n, r such that n > 1, r ≥ 0 denote by Vn,r(4) the set of
quadruples (i, j, k, l) of integers such that

i �= j, k �= l, 1 ≤ i, j ≤ n, 1 ≤ k, l ≤ r.

Pick an increasing sequence of length r of real numbers a1 < a2 < ... < ar

and two sets S and S′ where S ⊂ Vn(4), S′ ⊂ Vn,r(4). Remove from the
space Xn,S all points that belong to the union of the following (n − 2)-
dimensional subspaces of R

n:

ai = xj = xk for 1 ≤ i ≤ r, 1 ≤ j < k ≤ n

xi = ak, xj = al for (i, j, k, l) ∈ S′.

Denote the resulting space by Xn,S,S′(a1, ..., ar). Observe that for any two
sequences a1 < ... < ar and b1 < ... < br the manifolds Xn,S,S′(a1, ..., ar)
and Xn,S,S′(b1, ..., br) are diffeomorphic.

Theorem 1.3. For any n > 1, r ≥ 0, S ⊂ Vn(4), S′ ⊂ Vn,r(4) and a
sequence a1 < ... < ar the space Xn,S,S′(a1, ..., ar) is a K(π, 1)-space.

Proof is almost identical with the proof of theorem 1.1. To a mapping
ψ : S

p → Xn,S,S′(a1, ..., ar) we associate n sections φ1, ..., φn as before and,
in addition, r constant sections ζ1, ..., ζr:

ζi(y) = (y, ai), y ∈ S
p, 1 ≤ i ≤ r.

We perturb ψ so as to make it C∞. The n + r sections defined above have
only double intersections and, as in the proof of theorem 1.1, we remove
connected components of the set of double intersections one by one. We
omit technicalities. �

Theorem 1.3 specializes to theorem 1.1 when r = 0.
Recall that Vn(3) and Vn(4) are the sets of triples and quadruples of

pairwise different integers between 1 and n. Let Mn be disjoint union of
Vn(4) and Vn(3).
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Pick n > 0, r ≥ 0, S ⊂ Mn, S′ ⊂ Vn,r(4) and an increasing sequence
0 < a1 < ... < ar. Consider the following arrangements of codimension 2
subspaces of R

n :

xi = εxj = δxk, ε, δ ∈ {+1,−1}, 1 ≤ i < j < k ≤ n

xi = xj = 0, 1 ≤ i < j ≤ n

xi = εxj , xk = δxl for (i, j, k, l) ∈ S, ε, δ ∈ {+1,−1}
xi = 0, xj = εxk for (i, j, k) ∈ S, ε ∈ {+1,−1}
ai = εxj = δxk, 1 ≤ i ≤ r, 1 ≤ j < k ≤ n, ε, δ ∈ {+1,−1}
xi = εak, xj = δal for (i, j, k, l) ∈ S′, ε, δ ∈ {+1,−1}.

Denote the complement of this arrangement by Qn,S,S′(a1, ..., ar). When
r = 0 and, in consequence, the set S′ is empty, we also denote the comple-
ment by Qn,S .

Theorem 1.4. For any n, r, S, S′, a1, ..., ar as above Qn,S,S′(a1, ..., ar) is
a K(π, 1)-space.

Proof is analogous to the proof of theorem 1.1. The difference is that now
we manipulate 2n + 2r sections φ±

1 , ..., φ±
n , ζ±1 , ..., ζ±r of the bundle S

p × R:

φ±
i (y) = (y,±ψi(y)), y ∈ S

p, 1 ≤ i ≤ n

ζ±i (y) = (y,±ai), y ∈ S
p, 1 ≤ i ≤ r

where ψi = pri ◦ ψ as in the proof of theorem 1.1. Again, we omit the
details. �
Corollary 1.5. For any S ⊂ Mn the space Qn,S is a K(π, 1)-space. �

Among arrangements Qn,S,S′(a1, ..., ar) the most interesting ones are
those with r = 0 and S = V3(n) or V4(n) or Mn (see §4), as they have the
biggest symmetry groups.

Fix n and S ⊂ Vn(4). Take the n-dimensional torus (S1)×n. We can
specify a point of (S1)×n by its coordinates (y1, ..., yn), yi ∈ S

1.
Consider the closed subset formed by (n − 2)-dimensional subtori of

(S1)×n consisting of points with coordinates

(1.2)
yi = yj = yk, 1 ≤ i < j < k ≤ n

yi = yj , yk = yl (i, j, k, l) ∈ S.

Theorem 1.6. For any n and any S ⊂ Mn the complement of (1.2) in
the n-dimensional torus (S1)×n is a K(π, 1)-space.

Proof is obtained from the proof of theorem 1.1 by changing R to S
1

everywhere. �
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2. K(π, 1) arrangements with a free fundamental group

Let A be a real hyperplane arrangement in R
n. Denote by A(2) the

arrangement consisting of intersections of all pairs of hyperplanes from A.
Hyperplanes from A cut R

n into the union of cells (each cell homeo-
morphic to the interior of a k-dimensional ball, 0 ≤ k ≤ n). This de-
composition, restricted to R

n \ A(2), partitions it into a union of n and
(n − 1)-dimensional open cells. The intersection of the closures (inside
R

n \ A(2)) of any subset of these cells is either empty or contractible. By
the nerve theorem [Bo] the space R

n \ A(2) has the homotopy type of a
wedge of circles.

Taking arrangement A to be xi = xj , 1 ≤ i < j ≤ n or

xi = εxj ε ∈ {1,−1}, 1 ≤ i < j ≤ n, xi = 0 1 ≤ i ≤ n

we conclude that the spaces Xn,Vn(4) and Qn,Mn
have the homotopy type

of a wedge of circles.
Denote by Yn the space

R
n \ {(x1, ..., xn)|xi = xj , xk = xl, i, j, k, l are pairwise different}

Yn is the Euclidean space R
n without the codimension two subspaces xi =

xj , xk = xl for all quadruples (i, j, k, l) of pairwise different integers between
1 and n. For symmetry reasons that will become apparent in proposition
3.2 we now prove

Theorem 2.1. Yn is homotopy equivalent to a bouquet of circles.

Proof. Hyperplane arrangement xi = xj , 1 ≤ i < j ≤ n decomposes R
n

into cells

xσ(1) < ... < xσ(j1) = ... = xσ(k1) < ... = xσ(ks) < ... < xσ(n)

where σ ∈ Sn. This decomposition, restricted to Yn, partitions Yn into
the union of n, (n − 1), (n − 2)-cells as follows

n-cells:xσ(1) < ... < xσ(n), σ ∈ Sn,

(n − 1)-cells:xσ(1) < ... < xσ(t) = xσ(t+1) < ... < xσ(n),

σ ∈ Sn, 1 ≤ t ≤ n − 1,

(n − 2)-cells: xσ(1) < ... < xσ(t) = xσ(t+1) = xσ(t+2) < ... < xσ(n),

σ ∈ Sn, 1 ≤ t ≤ n − 2.

Denote by SCn the set of these cells. Define a partial order on SCn such
that for c1, c2 ∈ SCn, c1 ≤ c2 iff the closure of c2 contains c1.
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It is easy to verify that the intersection of the closures of any subset
of cells from SCn is either empty or contractible. By the nerve theorem,
the space Yn has the homotopy type of the order complex K(SCn) of the
partially ordered set SCn. The vertices of the order complex K(SCn) has
vertices–elements of set SCn and simplices are formed by linearly ordered
subsets of SCn (see [O]).

The 2-dimensional CW-complex Γ0 we describe below is easily seen to
be homeomorphic to the order complex K(SCn).

Γ0 has n! vertices denoted (i1, ..., in), where i1, ..., in is a permutation of
1, 2, ..., n.

Γ0 has n!(n−1)
2 edges denoted (i1, ..., in; t) where i1, ..., in is a permutation

of 1, 2, ..., n; t is an integer between 1 and n − 1 and it < it+1. The edge
(i1, ..., in; t) connects vertices (i1, ..., in) and (i1, ..., it−1, it+1, it, it+2, ..., in).

Γ0 has n!(n−2)
6 two-dimensional cells denoted (i1, ..., in; t)′, where

i1, ..., in is a permutation of 1, 2, ..., n; t is an integer between 1 and n − 2
and it < it+1 < it+2. The 2-cell (i1, ..., in; t)′ is a hexagon whose 6 edges
are glued to the 1-cells

(i1, ..., in; t),

(i1, ..., it−1, it+2, it, it+1, it+3, ..., in; t + 1),

(i1, ..., in; t + 1),

(i1, ..., it−1, it+1, it+2, it, it+3, ..., in; t),

(i1, ..., it−1, it+1, it, it+2, ..., in; t + 1),

(i1, ..., it, it+2, it+1, it+3, ..., in; t)

of Γ0.
We will prove that Γ0 can be retracted onto a part of its 1-skeleton.

First, edges of Γ0 of the form (i1, ..., in; 1), where i1 < i2 < i3, belong to
the closure of only 1 two-dimensional cell: cell (i1, ..., in; 1)′.

Denote by β1 the union of open 1- and 2-cells (i1, ..., in; 1) and
(i1, ..., in; 1)′, i1 < i2 < i3. Denote by Γ1 the complement of β1 in Γ0.

More generally, define set βt, where 1 ≤ t ≤ n − 2 to be the union of
1-cells

(2.1) (i1, ..., in; t), it < it+1 < it+2

and 2-cells

(2.2) (i1, ..., in; t)′, it < it+1 < it+2.

Define inductively Γt as the complement of βt in Γt−1.



REAL K(π, 1) ARRANGEMENTS FROM FINITE ROOT SYSTEMS 269

Any 1-cell (2.1) of βt belongs to the closure of exactly one 2-cell (cell
(2.2)) of Γt−1 and this 2-cell also belongs to βt. Hence, Γt−1 and Γt =
Γt−1 \ βt are homotopy equivalent. The explicit homotopy is the identity
on Γt and contracts cells (2.1) and (2.2) onto ∂(i1, ..., in; t)′ \ (i1, ..., in; t).

Therefore, Γn−2 is homotopy equivalent to Γ0. Note that Γn−2 is one-
dimensional. Hence, CW-complex Γ0 has the homotopy type of a one-
dimensional CW-complex. That implies theorem 2.1 because Yn is homo-
topy equivalent to Γ0. �

3. Fundamental groups

Here we realize fundamental groups of Xn,Qn, Qn,Vn(4), Qn,Vn(3) as
normal subgroups of finite index of certain groups that admit simple de-
scription by generators and relations. Namely, in each case we have a
Coxeter group G, a Weil group W of the root system An or Bn and an
epimorphism G → W . The fundamental group of the space is isomorphic
to the kernel of this homomorphism.

Take a Euclidean plane R
2 = {(x, y)|x, y ∈ R} and two parallel lines

y = 1 and y = 0. Fix n ∈ {1, 2, ...}. Choose n points on the line y = 1, say,
points (1, 1), (2, 1), ..., (n, 1). Take n points (1, 0), (2, 0), ..., (n, 0) on the line
y = 0.

Denote by Fn the topological space of configurations of n continuous
arcs in the strip R × [0, 1] between the lines y = 0 and y = 1 such that
(i) arcs connect points (1, 1), ..., (n, 1) with (1, 0), ..., (n, 0) (in some order),
(ii) arcs descent monotonically and never go upward (i.e. each arc intersects
each line y = c (0 ≤ c ≤ 1) in one point),
(iii) no three arcs have a common point.

An example of such configuration is depicted on figure 2.

(2,1)(1,1) (n,1)

(n,0)(1,0) (2,0)

y=1

y=0

Figure 2
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Two elements a, b ∈ Fn are multiplied by putting one on top of the other
and squeezing the interval [0, 2] to [0, 1].

Definition 3.1. A twin on n arcs is a connected component of the space
Fn.

The product in Fn descends to an associative product on the set of twins
on n arcs. Each twin can be written as a product of twins pi, depicted on
figure 3. The twin pi has a configuration with only one double point.

i+1i1 n

Figure 3

p2
i = 1 because the two configurations on figure 4 belong to the same

connected component of Fn.

i i+1 i i+1

Figure 4

Therefore, each twin has the inverse and twins constitute a group. We
call it the twin group on n arcs and denote TWn. The twin group TWn

admits a presentation by generators pi, 1 ≤ i ≤ n−1 and defining relations

p2
i = 1, 1 ≤ i ≤ n − 1

pipj = pjpi, |i − j| > 1, 1 ≤ i, j ≤ n − 1.

The Yang-Baxter relation pipi+1pi = pi+1pipi+1 is missing because we do
not allow triple intersections.

There is a natural homomorphism of the twin group to the symmetric
group Sn given by sending pi to the transposition (i, i + 1) ∈ Sn. The
kernel of this homomorphism is called the pure twin group on n arcs.

Proposition 3.1. The fundamental group of the space Xn (the Euclidean
space R

n without triple diagonals xi = xj = xk) is isomorphic to the pure
twin group on n arcs.
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Indeed, paths in Xn starting in the point (1, 2, ..., n) and terminating in
(σ(1), ..., σ(n)) (where σ ∈ Sn) are in one-to-one correspondence with con-
figurations of n arcs satisfying conditions described above (i.e. with points
of Fn). Next, the elements of the fundamental group of Xn (homotopy
classes of closed paths in Xn with the basepoint (1, 2, ..., n)) are in one-to-
one correspondence with the pure twins on n arcs. The multiplication of
twins coincides with the multiplication in π1(Xn). Proposition follows.�

Remark: A special case of the results of Bjorner and Welker [BW] says
that Hi(Xn, Z) are free, Hi(Xn, Z) �= 0 iff 0 ≤ i ≤ n

3 , and H1(Xn, Z) has

rank
∑n

i=3

(
n
i

)(
i − 1

2

)
.

The symmetric group Sn has a presentation by generators p1, ..., pn−1

and defining relations

(1) p2
i = 1, 1 ≤ i ≤ n − 1

(2) pipj = pjpi, |i − j| > 1, 1 ≤ i, j ≤ n − 1

(3) pipi+1pi = pi+1pipi+1 1 ≤ i ≤ n − 2.

For j = 1, 2, 3 denote by Gn,j the group with generators p1, ..., pn−1 and
defining relations (1) − (3) with relations (j) relaxed. For j = 1, 2, 3 the
mapping pi → (i, i+1), 1 ≤ i ≤ n−1 extends to a homomorphism of Gn,j to
the symmetric group Sn. Denote by G0

n,j the kernel of this homomorphism.

Proposition 3.2.
(a) Gn,1 is the braid group on n strings, G0

n,1 is the pure braid group on
n strings. The fundamental group of the K(π, 1) space C

n\{diagonals zi =
zj} is isomorphic to G0

n,1.

(b) G0
n,2 is isomorphic to the fundamental group of the K(π, 1) space

Yn.
(c) Gn,3 is the twin group, G0

n,3 is the pure twin group and is isomorphic
to the fundamental group of the K(π, 1) space Xn.

Part (a) is well-known, (c) is proposition 3.1, (b) is proved similar to
proposition 3.1 but now instead of twins we consider configurations of n
monotonic arcs without 4 arcs intersecting in a point and without two
multiple points on the same horizontal line. Connected components of
the space of such configurations are called triplets. Triplets on n strings
constitute a group isomorphic to Gn,2. Pure triplet group G0

n,2 is isomorphic
to the fundamental group of Yn.
�

Next we describe fundamental groups of Qn,Qn,Vn(4),Qn,Vn(3).
Consider the topological space of configurations of 2n continuous arcs in

the strip R × [0, 1] between the lines y = 0 and y = 1 such that
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(i) arcs connect points (±1, 1), ..., (±n, 1) with (±1, 0), ..., (±n, 0) (in some
order),
(ii) arcs descent monotonically and never go upward (i.e. each arc intersects
each line y = c (0 ≤ c ≤ 1) in one point),
(iii) configuration is symmetric relative to the line x = 0,
(iv) no three arcs have a common point.

Denote the space of all such configurations by Jn(1).
Denote by Jn(2) the subspace of Jn(1) consisting of configurations with
no three double points with non-zero x-coordinate on the same horizontal
line.
Denote by Jn(3) the subspace of Jn(1) consisting of configurations such
that a double point with zero x-coordinate is not on the same horizontal
line with another double point.
Denote by Jn(4) the space of configurations satisfying (i)-(iii) and extra
two conditions
(v) no three arcs have a common point unless it is a point on the line x = 0,
(vi) no 5 arcs have a common point
(note that Jn(4) is not a subspace of Jn(1)).

For j = 1, 2, 3, 4 denote by Ψn(j) the set of connected components of the
space Jn(j). For j = 1, 2, 3, 4 the set Ψn(j) has a group structure given, as
in the case of twins, by the concatenation of diagrams.

The Weyl group of the root system Bn has a presentation by generators
σ, σ1, ..., σn−1 and relations

(1) σ2 = σ2
1 = ... = σ2

n−1

(2) σiσj = σjσi, |i − j| > 1

(3) σσi = σiσ for i �= n − 1

(4) (σσn−1)4 = 1

(5) (σiσi+1)3 = 1

Proposition 3.3. Groups Ψn(j), j = 1, 2, 3, 4 are presented by generators
σ, σ1, ..., σn−1 and some of the relations (1) − (4) above. Precisely,

relations (1), (2), (3) for Ψn(1),
relations (1) and (3) for Ψn(2),
relations (1) and (2) for Ψn(3),
relations (1), (2), (3), (4) for Ψn(4).

The configurations defining these generators are depicted on Figure 5.
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(-n,1) (-2,1) (-1,1) (1,1) (2,1) (n,1)

x=0

y=0

y=1
σ

σ
i

(i-n,1)(-n,1) (n,1)
y=1

y=0

(n-i,1)

Figure 5

Denote by Ψ0
n(j) the kernel of the natural homomorphism from Ψn(j)

to the Weyl group of the root system Bn.
Denote by Dn,3 the arrangement of codimension two subspaces of R

n

given by the equations

(3.1) xi = εxj = δxk, 1 ≤ i < j < k ≤ n, ε, δ ∈ {+1,−1}

Dn,3 is one of the arrangements studied in [BS].
The following proposition is proved is the same way as proposition 3.1.

Proposition 3.4. The fundamental group of the space Qn (respectively
Qn,Vn(4), Qn,Vn(3), R

n \ Dn,3) is isomorphic to Ψ0
n(1) (respectively Ψ0

n(2),
Ψ0

n(3), Ψ0
n(4).)

The spaces Qn,Qn,Vn(4),Qn,Vn(3) are K(π, 1) spaces (corollary 1.5). We
do not know how to answer the question of Anders Bjorner ([B2]) whether
R

n \ Dn,3 is a K(π, 1) space.
The fundamental groups of spaces Xn,Vn(4) and Qn,Mn

admit similar (to
propositions 3.1-3.4) descriptions but we omit them as we already know
from §2 that these groups are free.

4. Finite root systems

Let Λ be a finite irreducible root system in a Euclidean space R
n. Thus,

Λ is one of An, Bn, Cn, Dn, E6, E7, E8, F4, G2. Let W be the Weyl group and
{H1, ...Hk} be the set of reflecting hyperplanes of Λ.

Let {L1, ..., Lm} be the set of codimension two subspaces of R
n that are

intersections of pairs of reflecting hyperplanes of Λ.
Take a non-empty subset {Li1 , ..., Lis} of the set {L1, ..., Lm} such that

the union Li1 ∪ ... ∪ Lis is invariant under the action of the Weyl group.
That is, w(Li1 ∪ ... ∪ Lis) = Li1 ∪ ... ∪ Lis for any w ∈ W.



274 MIKHAIL KHOVANOV

Conjecture 4.1. For any Λ, Li1 , ..., Lis as above, R
n \ (Li1 ∪ ... ∪ Lis) is

a K(π, 1) space.

In the case Λ is the root system An, the space R
n \ (Li1 ∪ ... ∪ Lis) is

one of Xn,Xn,Vn(4),Yn. Thus, for Λ = An the conjecture follows from the
results of this paper.

When Λ is one of Bn, Cn, Dn, theorem 1.4 for r = 0 and
S ∈ {V3(n), V4(n), Mn} implies the conjecture for some of {Li1 , ..., Lis}.

Case Λ = G2 is trivial, case Λ = F4 follows from the Sphere theorem
[P].

In the case when {Li1 , ..., Lis} is the whole set {L1, ..., Lm}, the conjec-
ture follows from the discussion preceding theorem 2.1.
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