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DOODLE GROUPS

MIKHAIL KHOVANOV

ABSTRACT. A doodle is a finite number of closed curves without triple inter-
sections on an oriented surface. There is a “fundamental” group, naturally
associated with a doodle. In this paper we study these groups, in particular,
we show that fundamental groups of some doodles are automatic and give
examples of doodles whose fundamental groups have non-trivial center.

0. INTRODUCTION

A doodle is a collection of piecewise-linear closed curves without triple inter-
sections on a closed oriented surface. Two doodles are equivalent if they can be
connected by a finite sequence of local moves as shown in Figure 4, that is, by a
PL-homotopy without creating triple intersections at any time.

It is possible to transfer the basic concepts of link theory to the theory of doodles.
The twin group, defined in §1, plays the role of the braid group. Each doodle has
a group, called the fundamental group, which resembles the fundamental group of
a link complement.

In this paper, we construct examples of doodles on the two-sphere whose fun-
damental groups have nontrivial center. Also, for some special types of doodles,
we prove that their fundamental groups are automatic. The proof uses a theorem
of Gersten and Short [GS1], [GS2] that the fundamental group of a 2-complex of
non-positive curvature, modelled on equilateral triangles, is automatic.

The concept of a doodle is due to Fenn and Taylor [FT]. Their definition dif-
fers from ours by the extra condition that all curves are simple, that is, lack self-
intersections. The results of this paper indicate that it is natural to omit this
condition.

We will assume that all manifolds and maps between them are piecewise-linear.

1. TWIN GROUP

Take a Euclidean plane R? = {(z,y)|z,y € R} and consider two parallel lines
y =0 and y =1 on it. Pick n points on the line y = 1, say, points (1,1),..., (n,1).
Take n points (1,0),...,(n,0) on the line y = 0. Consider configurations of n arcs
in R x [0,1] that connect points (1,1),...,(n, 1) with points (1,0), ..., (n,0) in some
order. We require that
(i) the projection of each arc on the y-coordinate is a homeomorphism onto [0, 1]
i.e. arcs are monotonic.
(ii) no three arcs have a point in common.
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FIGURE 2

FIGURE 3

Figure 1 gives an example. ‘

Two configurations satisfying (i) and (ii) are called equivalent if one can be
deformed into the other by a homotopy of arcs in R X [0, 1] such that conditions (i)
and (ii) hold and the ends of the arcs are fixed throughout the homotopy.

Definition 1.1. A twin is an equivalence class of configurations satisfying (i) and
(ii).

The product of two twins on the same number of arcs is defined by putting one
on top of the other and squeezing the interval [0, 2] into [0, 1]. This operation turns
the set of twins on a fixed number of arcs into an associative semigroup. The unit
element is given by a configuration whose arcs do not intersect.

Let p; be a twin with only one double point (see Figure 2), Obviously, any
twin can be written as a product of p;’s. Note that p;p; = 1, because p? can be
homotoped to a configuration without intersections without producing triple points
(see Figure 3). Thus p;, and consequently every twin, has an inverse. Geometrically,
the inverse of a twin is its reflection with respect to the horizontal line y = % Hence,
the set of twins with n arcs is a group. We call it the twin group on n arcs and
denote it by TW,.
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Proposition 1.1. TW,, is generated by p;,i =1,...,n — 1, with defining relations
p?=1, i=1,2.n,

(1.1) o .
pip; =p;pi, li—j|>1, 4,j=1,.. n

Definition 1.2. The pure twin group on n arcs, denoted TWYD, is a subgroup of
the twin group TW,, consisting of twins with arcs connecting pairs of points (4,1)
and (4,0), 1 <i<n.

The pure twin group TWY is the kernel of a natural homomorphism from the twin
group TW,, to the group of permutations of the set {1,...,n}. The homomorphism
sends the twin p; to the transposition (¢,7 +1).

Consider the space

Xn=R*"\{(21,....,2n) ERws =xj = xp, i £ j £ k #4,4,5,k =1,...,n},

X, is R" minus the triple diagonals z; = z; = zj.

The pure twin group on n arcs is isomorphic to the fundamental group of the
space X, which is a K (7, 1)-space. This is proven in [K]. Bjérner and Welker [BW]
showed (in a more general setting) that every H*(X,, Z) is free, H*(X,,, Z) # 0 iff

0<i<%, and Hl(Xn,Z) has rank E?:z <7Z> <Z ; 1)'

Remark. The twin group TW,, . is isomorphic to the Grothendieck n-dimensional
cartographical group as defined by Voevodsky [V] (also see [SV] for the case n = 2).

2. DOODLES

Definition 2.1. A doodle A is a collection of piecewise-linear closed curves (Ch, ...,
C',) without triple intersections on a closed oriented surface.

A triple point is either a common point of three curves, or a triple self-intersection
point of a curve, or a self-intersection point of a curve which lies on another curve.
Two doodles A and A° on a surface M are called equivalent iff there exists a
homotopy in M from the collection of curves representing A to the collection of
curves representing A® with no triple intersections throughout the homotopy.

Figure 4 gives two elementary transformations of doodle diagram, that can be
understood as local moves. Doodles are equivalent iff they can be connected by a
finite sequence of the moves shown in Figure 4.

An oriented doodle is a doodle with an orientation of each component. The
closure of a twin is a doodle on a two-sphere. The closure operation is given by
Figure 5.

Theorem 2.1. Every oriented doodle on a two-sphere is the closure of a twin.
- - ’

FIGURE 4
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FIGURE 6

FIGURE 7

Proof. Represent S? as R2Uoco. Let a € R? and A be a doodle. We want to deform
A to lie in R? \ a so that each segment is oriented clockwise around a. If such a
deformation exists, the result of cutting R?\ a along a ray emanating from a would
be a twin whose closure is A. Choose a diagram A; of A such that the following
conditions are satisfied:

(1) A; € R?\ {a}.

(2) No double point or angle point of A; is collinear with a and another angle or

double point.

Here by an angle point of A; we mean a vertex of an arc of A; viewed as a
polygon (Figure 6).
Consider each straight line segment I of A; separately.
(i) If I is oriented clockwise with respect to a, we will do nothing.
(ii) If I is oriented counter-clockwise, we will change the segment into a configu-
ration of clockwise segments. '
(a) If there are no double points of A, inside the triangle formed by the segment
I and the double point a, we change I into 2 clockwise segments as in Figure
7.
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FIGURE 8

FIGURE 9

(b) Suppose that the triangle formed by I and a contains the double points
dq,...,d;. Denote this triangle by T'(I,a). We cut I into 2k + 1 segments
Iy, ..., Iox 41 such that

(i) The triangles T'(I2;+1,a) do not contain any double points .

(ii) There is only one double point d; in the segment of the plane bounded by the
two rays connecting a with the ends of Iy;, and d; lies in the triangle formed
by a and I»; (Figure 8, case i = 1).

Such a subdivision of I is possible because of condition (2) on the diagram A;.
Varying 4 from 0 to k, we deform I»;4; into 2 segments going clockwise around a
as in Figure 7. We deform I;, so that no double points appear in any of the k —¢
triangles bounded by a and Iyj11,% < j < k.

By moving one of the points of I»; through co, we change Iy;, 1 < < k, into the
configuration in Figure 9. Note that each of the new segments is oriented clockwise
relative to a.
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FIGURE 10

We deformed I into a union of segments, each oriented clockwise. New dou-
ble points could appear after that deformation. A small perturbation produces a
new diagram satisfying conditions (1) and (2). The number of counter-clockwise
segments in the new diagram is one less than in the diagram A;. Repeating the
procedure several times produces a diagram with all segments oriented clockwise
with respect to a. This establishes the theorem. O

The minimal number of double points of a doodle diagram is a simply computable
invariant.

Theorem 2.2. A doodle has a unique (up to the transformation in Figure 10)
diagram with a minimal number of vertices (intersection points). This diagram
can be constructed from any other doodle diagram by applying only those moves in
Figure 4 that reduce the number of intersection points.

Proof. We start with

Definition 2.2. A doodle A is rigid if A does not have a diagram such that one of
the components is a simple curve, which does not intersect other components and
which bounds an empty disk in S§? (Figure 10 shows part of a non-rigid doodle).

Denote the local moves in Figure 4 by +1, +2 depending on the number of double
points that appear/disappear. Thus, a + move creates 1 or 2 double points, while
a — move annihilates 1 or 2 double points.

If A’,A"” are diagrams representing the same doodle, there is a sequence of
diagrams A’ = A1, As,...,Ar = A” such that any two consecutive diagrams are
connected by one of £1, +2 moves.

Lemma 2.1. Let A be a rigid doodle. Then for any two diagrams A’, A" of A,
there is a sequence of diagrams A° = Aj,As,...,Ar = Al connected by 1,42
moves and with no + move preceding a — move. That is, for some j with 1 < j <k,

AL > |Ag] > ... > 4] < |Aj11] < .o < Ak
Here |Ag4| denotes the number of double points of the diagram A,.

Proof of Lemma 2.1. Start with any sequence of diagrams A’ = Aj;Ag, ..., A, =
A", connecting diagrams A’ and A”. Suppose that the move m; from A; to A1
is a + move, m;+1 : A;41 — Ajyo is a — move. The move m; creates one or two
double points. If m;,; does not destroy at least one double point created by m;,
we can change the order and do m;; first and then m;. All other cases are listed
below.
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FIGURE 11

(i) m; is a +1 move, m;41 is a —1 move. Because the doodle A is rigid, there is
only one possibility, depicted in Figure 11.
Thus, m; and m;41 cancel.
(ii) m; is a +1 move, m;4; is a —2 move. Then the composition m;y; om; is a
—1 move.
(iif) m; is a +2 move, m;11 is a —1 move. Then m; 1 om; is a +1 move.
(iv) m; is a +2 move, m;41 is a —2 move. These two moves cancel.

In each case, m; and m;41 cancel or they can be replaced by a single move.
Lemma 2.1 is established by induction on n. O

Lemma 2.1 implies that a rigid doodle has a unique diagram with a minimal
number of double points and that any other diagram can be obtained from the
minimal diagram using only + moves. This proves Theorem 2.2 for rigid doodles.
For nonrigid doodles, the same analysis applies except that the minimal diagram
is defined only up to the move in Figure 10. a

[F, Corollary 2.8.9] presents a result similar to Theorem 2.2.

3. DOODLES AND 2-COMPLEXES

By a 2-dimensional complez or a 2-complex we mean a topological space home-
omorphic to a two-dimensional finite CW-complex.

Consider a doodle A on a closed oriented surface M. We will associate a 2—
dimensional complex R(A!) to any diagram A! of a doodle A. This 2-complex will
admit cell decompositions, but, in general, no canonical cell decompositions, and
this is why we use the term 2-complex rather than 2-dimensional CW-complex. The
simple homotopy type of this complex will not depend on the choice of diagram.
Hence, it will be an invariant of A.

Let A! be a diagram of A. Denote the double points of Al by pt, ..., pta,
the edges of A! by edg;, ...,edg, and the regions of A' (connected components of
M\ edg; U... Uedgg) by regy, ..., regs.

The 2-complex R(A!) will consist of a surface PL-homeomorphic to M with
1-dimensional cells and 2-dimensional compact surfaces with boundary attached.
Take d 1-cells py,...,pq (one l-cell for every double point of Al) and s surfaces
T1,...,Ts Where surface r; is homeomorphic to the region reg;,1 < j < s.

First step: For i = 1,...,d we glue both ends of the 1-cell p; to the double point
pt; € M (see Figure 12). Denote this complex by PR(A') and the image of p; in
PR(A') by the same symbol p;. Fix an orientation of p; for every i.

Second step: For j = 1,...,s we glue the surface r; to PR(A!) as follows, see
Figures 13-16. Suppose first that r; is a disk. Moving in the clockwise direction
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FIGURE 12
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FIGURE 13

FIGURE 14

along the boundary of the 2-cell reg; € M we meet some double points and edges
of Al. For simplicity denote them pt;,edg;,pt, ..., Pti,edgr (the order is unique
up to permutation). Figure 13 gives an example with k = 3.

Separate the boundary of the 2-cell r; into 2k intervals, denote them (in the
clockwise order) Ii,...,Io;, and orient intervals Ip,Is, ..., Ior_; clockwise (Figure
14).
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FIGURE 15

FIGURE 16

Then we identify oriented segments I; and p1, I3 and pa,..., Iog—1 and pg. At
last identify segments I and edg;, I4 and edgs,..., Isx and edgi. These operations
are given in Figure 15 (k = 3).

Dashed arrows connecting the upper half of the picture with the lower half show
how we glue r; along its boundary to the previously constructed complex PR(AY).
If r; is not a disk, then it has more than one boundary component, and we glue r;
in a similar manner to PR(A?) along each boundary component. If a diagram A'
has a component C without double points, none of the 1-cells p;, ..., pq are attached
to C and part of the boundary of the corresponding r;’s is glued homeomorphically
to C as depicted in Figure 16.

Denote by R(A!) the complex that we obtained by gluing each of the surfaces
T1,...,7s to PR(A!) as explained above. R(A!) contains the surface M as a subcom-
plex. Define R(A!) as R(A!) with M contracted to a point, i.e. R(A!) 2 R(A!)/ ~



2306 MIKHAIL KHOVANOV

FIGURE 17

where for z1,z, € R(A'),z; ~ z3 iff 1 = 25 or x1,2o € M. The topology on
R(A?) is that induced from R(A1).

We will call R(A') the geometric realization of the diagram A! and R(A!) the
reduced geometric realization of Al.

Theorem 3.1. If Al and A? are two diagrams of a doodle A, then the 2-complex
R(A') is simple homotopy equivalent to R(A?) and the 2-complex R(A') is simple
homotopy equivalent to R(A?)

Proof. We have to check simple homotopy invariance of R(A!) and R(A!) under
the two elementary transformations of doodles (Figure 4). Let A! be a diagram
and let A? be obtained from A! by adding a curl. Let p be the 1-cell of R(A2)
corresponding to the new double point. Denote by reg the region of M bounded by
the curl and by r the corresponding disk of R(A?) glued to p and to the boundary
of reg.

In Figure 17 dashed lines show parts of the disk .

Then r Ureg is a subcomplex of R(A?) homeomorphic to a disk. The complex
R(A?)/(r U reg) obtained by contracting r U reg to a point is homeomorphic to
R(A?). The other move and the reduced case are treated similarly. O

Definition 3.1. The fundamental group of the 2-complex R(A%) is called the fun-
damental group of the doodle A represented by the diagram A! and is denoted
by 71(A). The fundamental group of the 2-complex R(A!) is called the reduced
fundamental group of the doodle A and is denoted by 7;(A).

Theorem 3.1 implies that 71(A) and 71 (A) are invariants of doodle. If A is a
doodle on a two-sphere, the groups 71 (A) and 7;(A) are canonically isomorphic.

4. THE FUNDAMENTAL GROUP OF A DOODLE

The fundamental group of a doodle A plays the role of the fundamental group
of a link. The construction of the 2-complex R(A) in §3 translates to an algorithm
that describes m;(A) by generators and relations. The algorithm goes as follows
(we restrict ourselves to the case of a doodle on the two-sphere):

Fix an orientation of S?. Let A be a doodle on S2.

Definition 4.1. A diagram A! of a doodle A is a disk diagram if the union of
curves (C1,...,Cy) which represent Al cuts the two—sphere into a union of disks.
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FIGURE 18

It is evident that disk diagrams exist for every doodle.

Take any disk diagram A; of A. Denote vertices of this diagram by a1, ag, ..., ai.
Abusing the notations, denote by ai,as, ..., ax the generators of the doodle group
m1(A) . Consider the regions regy, ..., reg, separated by A; on the sphere. To each
region we associate a relation among a1, ...,ar . Let the vertices of reg; taken in
the counter-clockwise order be a;,,a;,,...,a;, (up to a cyclic permutation) . Then
the relation associated to reg; is

A3, Ay ...Q5, = 1.

The fundamental group m;(A) of A is a group with generators aq,...,a; and
defining relations

Aiy Qjy...Q4, = 1

~

for all regions reg;,i = 1,2,...,p, of A;. Theorem 3.1 implies that m;(A) =
71(R(A)) does not depend on the choice of disk diagram A; of A.

Example. Let A be a trivial n-component doodle on the two-sphere. Consider
the diagram of A in Figure 18. The 2n — 2 intersection points of the diagram
yield 2n — 2 generators a1,b1,...,an_1, bp—1 of m(A), and the 2n regions cor-
respond to 2n relations that reduce to n — 1 relations a;b; = 1, agby = 1, ...,
Gn_1b,—1 = 1. Thus, 71(A) is a free group of rank n — 1.

More generally, we have

Proposition 4.1. Suppose that a doodle A; is obtained from a doodle A by adding
a trivial component. Then (A1) is the free product of m1(A) and Z.

Proof. Immediate. |

Example. Let A be a trivial (i.e. without self-intersections and bounding a disc)
one-component doodle on a closed oriented surface M. Then the reduced funda-
mental group of A is isomorphic to the fundamental group of the surface M, and
the fundamental group of A is isomorphic to 71 (M) * 71 (M).

Example. Consider the doodle A depicted in Figure 19.
If we take generators a,b for m;(A), we get the following defining relations

(a,bla’b = ba?, ab® = b%a, abab = baba).

The center of 71(A) is generated by b?,a?,b~2a"2abab and is isomorphic to Z &
237Z,.
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FIGURE 19

FIGURE 20

Proposition 4.2. Let A be a doodle on an oriented closed surface M. Then the
first homology groups Hi(m1(A),Z) and Hy(71(A), Z) of the fundamental group of
A and of the reduced fundamental group of A depend only on the conjugacy classes
of the components of A in the fundamental group of the surface M.

Proof. The proposition follows from the invariance of Hi(m(A),Z) and
H;(71(A), Z) under the triple point move depicted in Figure 20.

Corollary 4.3. For a k-component doodle A on a 2-sphere Hy(m1(A),Z) & ZF-1.
a

5. ABELIAN SUBGROUPS OF DOODLE GROUPS

Consider a doodle A. Denote by A™" the diagram of A with the minimal
possible number of double points. By Theorem 2.2 such a diagram is unique up to
the move in Figure 10.

Proposition 5.1. Let A be a doodle on the two-sphere. Suppose that A™" con-
tains a subdiagram, depicted in Figure 21, such that the segments s1, sy belong to
the different components of A. Then m1(A) contains a free abelian subgroup of rank
two.

Proof. Let a,b,c,d,e be the elements of m1(A) associated with double points of
the Figure 21 part of A™". Four regions of A™" shown in Figure 21 give four
- relations:

(5.1) eba=1, ecb=1, edc=1, ead=1
Excluding ¢,d and e, we get

(5.2) abab = baba.
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Note that (5.2) is equivalent to any of the two relations
(5.3) [abab,a] =1, [abab,b] = 1.

Consider the subgroup G of m1(A) generated by (ab)?, a. The first of relations (5.3)
tells us that G is abelian. The segments s1, sy belong to different components of
doodle A. This implies that the image of G in H;(m;(A), Z) has rank 2. Hence, G
is a rank 2 abelian subgroup of m;(A). O

Corollary 5.2. If a doodle A satisfies the hypothesis of Proposition 5.1, then w1 (A)
is not a word hyperbolic group.

Proof. Word hyperbolic groups do not contain rank two abelian subgroups [G]. O

Using identities (5.3), we construct doodles on the two-sphere whose fundamental
groups have nontrivial center. Let A(2n) be the doodle in Figure 22, and let
A(2n — 1) be the doodle in Figure 23. The doodle A(2n) has 2n + 2 components,
while A(2n — 1) has 2n + 1 components.

Proposition 5.3. For n > 1, the fundamental groups of the doodles A(2n) and
A(2n — 1) have infinite center.
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Proof. Let a1,b1,c¢1,d1, ..., @2n, b2n, Can, dan, be the elements of 71 (A(2n)) associated
with double crossings as in Figure 22. We claim that the element (bya;)? is in
the center of the fundamental group of A(2n). Indeed, by Proposition 5.1, for
i=1,...,2n, element (b;a;)? commutes with each of the four elements a;, b;,¢c;, d;.
Also, we have

(5.4) cobobia; = 1.

Therefore,

(5.5) (b1a1)? = (c2b2) 72

Note that

(5.6) (cab2)? = (bacz)? = (azby)? = (b2a2)?.
Hence,

(5.7) (b1a1)? = (ba) 2.
Similarly,

(5.8) (bia;)? = (biy1ai11)7%,  i=1,.,2n—1.
Thus,

(5.9) (br1a1)? = (bsa;) T2, i=1,..,2n—1,

F depending on the parity of 7. It follows that ‘(bla1)2 commutes with a;, b;, ¢;, d;,
i =1,...,2n. Therefore, (bja;)? is central in 7;(A(2n)). The image of (ba;)? in
the first homology group of 7;(A(2n)) is nontrivial. Hence, (bja;)? has infinite
order in 71 (A(2n)). We proved Proposition 5.3 for A(2n). The case of A(2n — 1)
is worked out similarly. ' O

Remark. Our method also applies to another infinite family of doodles typiﬁed by
the one in Figure 24. The fundamental groups of these doodles also have infinite
centers.

Suppose that part of the minimal diagram of a doodle A on a two-sphere is as
depicted in Figure 25. We denote elements of 71 (A) associated with the double
points in Figure 25, by a, b,c1, ..., ¢p,d1, ..., dpn, Z1, ..., Tr. Let us read off the elements
of 71 (A) associated with the double points of the component [ starting with ¢; and
going counter-clockwise along /. We obtain an element of 71 (A)

(5.10) cica...crbdy .. dna,
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FIGURE 24
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which we denote by long(l) (the “longitude” of the component [). It is easy to see
that

(5.11) long(l) = z7 tzy o oxy tay te b a L

2n + 2 regions of A inside | give us 2n + 2 relations on a,b,ci, ..., cn,d1, ..., dn,
Z1,...,L,. Using these relations to exclude all generators but a,z1, ..., z,, we end
up with just one relation:

(5.12) aAr1T2..TnTnTn—1...L1 = L122...LnTnTn_1...-L10.
(5.13) is equivalent to
(5.13) [a,long(l)] = 1.

Thus, if the image of the subgroup generated by a,long(l) has rank 2 in H; (A, Z),
then the fundamental group of the doodle A contains an abelian subgroup of rank
2. That generalizes Proposition 5.1 and Corollary 5.2.

6. REDUCED FUNDAMENTAL GROUPS

For n > 1, let A, be the doodle on the torus shown in Figure 26.
The solid lines denote the doodle, while torus is shown as a rectangle. The
reduced fundamental group of A,, is isomorphic to

(a,b|(bab~ra"1)% = 1) for odd n,
(a,cla ' "ac™*! = 1) for even n.

Note that, for even n, 71 (A,,) is isomorphic to the Baumslag-Solitar group Gp+1,n-1
and is not automatic [ECHLPT]. From Theorem 2.2 we obtain that the doodle A,
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is equivalent to A,, if and only if n = m. However, we see that for odd n and m
T1(Ap) = 71 (Ap).

Moreover, A1, As, ... is an infinite sequence of pairwise inequivalent doodles with
the same reduced fundamental group.

These are indications that, for doodles on surfaces of genus greater than 0, the
reduced fundamental group is a “bad” group. To draw a parallel with links, define
the reduced fundamental group of a link ! in a handlebody Hy of genus g > 0 as
follows:

Let ¢ : 0Hy; — H, \ | be the embedding of the boundary of Hy to Hy \ I. Let ¢.
be the induced mapping of fundamental groups,

v : m1(8H,) — my(H, \ 1).

Define the reduced fundamental group, 71(l), as the quotient of 7 (Hy \ 1) by the
normal closure of ¢.(m1(0H,)). The reduced fundamental group of a typical link in
a handlebody of genus > 0 is a very bad object. Similarly, the reduced fundamental
groups of doodles on surfaces of genus > 0 are expected to be of little interest. The
natural object is the fundamental group.

7. CURVATURE OF DOODLE GROUPS
We use the following definitions from [GS1],{GS2]:

Definition 7.1. An A, complez is a 2—dimensional CW—complex equipped with a
metric with all 2—cells isometric to equilateral triangles.

Definition 7.2. An A, complex X has non-positive curvature if every cycle with-
out backtracking in the link of the vertex has length greater than or equal to 6.

Gersten and Short proved ([GS1],(GS2])

Theorem 7.1. The fundamental group of a finite Ay complex of non-positive cur-
vature is automatic. O

Using this theorem, we will prove that fundamental groups of some doodles
are automatic. For simplicity we restrict ourselves to the case of doodles on the
two-sphere.

Definition 7.3. A doodle A on the two-sphere is reducible if it can be represented
as the disjoint union of two doodles (Figure 27). Otherwise it is irreducible.
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FIGURE 27

Note that the disjoint union of two doodles is not uniquely defined — it depends on
the choice of diagrams of doodles and two regions along which we glue two-spheres
together.

Recall that a doodle is rigid if it does not contain a free component. Thus, every
irreducible doodle is rigid. By Theorem 2.2 an irreducible doodle has a unique
minimal diagram A™",

Definition 7.4. A doodle A on the two-sphere is called thick if it is irreducible
and each cycle of even length of A™" without backtracking has length greater than
or equal to 6.

Theorem 7.2. The fundamental group of any thick doodle A can be realized as the
fundamental group of a finite Ay complez of non-negative curvature, and (Theorem
7.1) is automatic.

Proof. Recall that for doodles on the two-sphere, the fundamental group is iso-
morphic to the reduced fundamental group. We start with an irreducible doodle
A. Consider the reduced geometric realization R(A™™) of the minimal diagram
of A (see §3). Note that the minimal diagram of an irreducible doodle is a disk
diagram (as in Definition 4.1). The reduced geometric realization R(A™™") is a
2-dimensional complex. It has one 0-cell, while the 1-cells are in one-to-one cor-
respondence with the double points of A™", and the 2-cells are in one-to-one
correspondence with the regions of A™". Because A™" is the minimal diagram,
each of its regions is bounded by at least 3 edges; otherwise we can apply one of
—1,—2 moves (as defined in §2) and the diagram is not minimal.

To make an Ay complex out of R(A™™) we try to triangulate each of the 2-cells
of R(A™™) and make all triangles equilateral. The triangulations we consider do
not introduce new O-cells, thus, if the region of A™" (=2-cell of R(A™™)) is an
n-gon (n > 3), the triangulation is a partition of this n-gon into n — 2 triangles.
If we triangulate all of the 2-cells of R(A™") like that, there is no obstruction to
make all triangles equilateral.

Fix an arbitrary such triangulation of the 2-cells of R(A™™). Denote the re-
sulting Ay complex by X (A™") (in this notation we suppress the dependence on
triangulations of the 2-cells). Then X (A™") has only one vertex.

The link of the vertex of X (A™i") is described as follows. It is a 1-dimensional
CW-complex with two 0-cells v* and v~ for each double point v of the diagram
A™"_ If two double points v; and v, of A™" are connected by an arc, there are
two 1-cells connecting v; with vy and v] with v .

Thus, cycles without backtracking in the link of the only vertex of X (A™™) are
in one-to-one correspondence with the cycles of even length without backtracking
of the diagram A™™, where A™" is considered as a 4-valent plane graph.
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FIGURE 28

Hence, if a doodle A is thick, for any triangulation as above of the 2-cells of
R(A™"), the resulting A, complex X (A™™) has non-negative curvature. Also
m1(A) = m(X(A™™)). Therefore, the fundamental group of a thick doodle is
automatic. O

We now give examples of thick doodles.

Let G be a trivalent graph without loops on the two-sphere. To such a graph
one can associate a doodle as follows. Pick a point on each edge of G. Connect
two points by an arc if the corresponding edges of G share a common point. If two
edges of G have two points in common, we connect the points corresponding to the
edges by two arcs. :

This gives us a 4-valent graph on the sphere. Denote this graph by D(G). An
example is given in Figure 28. The graph D(G) represents a doodle which we also
denote by D(G). The following proposition is immediate.

Proposition 7.3. If G is a trivalent graph on the two-sphere without cycles of
length less than 5, then the associated doodle D(G) is thick.

Therefore, if G is a graph as in Proposition 7.3, the fundamental group of the
doodle D(G) is automatic. It is easy to construct examples of trivalent graphs on
the two-sphere without cycles of length less than 5.

ACKNOWLEDGEMENTS

I am grateful to Misha Kapovich for getting me interested in automatic groups
and to Greg Kuperberg for reading the manuscript and making corrections.

REFERENCES

[BW] A. Bjorner, V. Welker, The homology of “k-equal” manifolds and related partition
lattices, Advances in mathematics 110 (2) (1995), 277-313. MR 95m:52029

[ECHLPT] D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, W.P. Thurston,
Word processing in groups, 1992. MR 93i:20036

[FT] R. Fenn, P. Taylor, Introducing doodles, Lect. Notes in Math., 722, pp. 37-43. MR
80k:57010

[F] R. Fenn, Techniques of geometric topology, London Math. Soc. Lect. Note Ser., 57,
1983. MR 87a:57002

[GS1] S.M. Gersten, H. Short, Small cancellation theory and automatic groups, Invent.

Math. 102 (1990), 305-334. MR 92¢:20058



(GS2]
[G]
(K]
[SV]

(V]

DOODLE GROUPS 2315

S.M. Gersten, H. Short, Small cancellation theory and automatic groups: Part II,
Invent. Math. 105 (1990), 641-662. MR 92j:20030

M. Gromov, Hyperbolic groups, Essays in group theory. Gersten, S.M. (ed.), MSRI
series, vol. 8, 1987, pp. 75-263. MR 89e:20070

M. Khovanov, Real K(m,1) arrangements from finite root systems, Math. Res. Let.,
3 (1996), 261-274. CMP96:11

G.B. Shabat, V. Voevodsky, Drawing curves over number fields, Grothendieck
Festchrift, v.III, 1990, pp. 199-227. MR 92f:11083

V. Voevodsky, Flags and Grothendieck cartographical group in higher dimensions,
CSTARCI Math. Preprint 05-90, Moscow, 1990.

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520
E-mail address: michaelk@math.yale.edu



	Cover Page
	Article Contents
	p.2297
	p.2298
	p.2299
	p.2300
	p.2301
	p.2302
	p.2303
	p.2304
	p.2305
	p.2306
	p.2307
	p.2308
	p.2309
	p.2310
	p.2311
	p.2312
	p.2313
	p.2314
	p.2315

	Issue Table of Contents
	Transactions of the American Mathematical Society, Vol. 349, No. 6, Jun., 1997
	Front Matter
	Ramanujan's Class Invariants, Kronecker's Limit Formula, and Modular Equations [pp.2125-2173]
	A Fixed Point Index for Generalized Inward Mappings of Condensing Type [pp.2175-2186]
	Resultants and the Algebraicity of the Join Pairing on Chow Varieties [pp.2187-2209]
	Proximity Inequalities and Bounds for the Degree of Invariant Curves by Foilations of P [pp.2211-2228]
	L-Homology over Traced -Algebras [pp.2229-2251]
	Second Variation of Superminimal Surfaces into Self-Dual Einstein Four-Manifolds [pp.2253-2269]
	Discrete Tomography: Determination of Finite Sets by X-Rays [pp.2271-2295]
	Doodle Groups [pp.2297-2315]
	Algebras Associated to Elliptic Curves [pp.2317-2340]
	Unramified Cohomology and Witt Groups of Anisotropic Pfister Quadrics [pp.2341-2358]
	A Finiteness Theorem for Low-Codimensional Nonsingular Subvarieties of Quadrics [pp.2359-2370]
	On Singly-Periodic Minimal Surfaces with Planar Ends [pp.2371-2389]
	The Stretch of a Foliation and Geometric Superrigidity [pp.2391-2426]
	On Roots of Random Polynomials [pp.2427-2441]
	Some Uniqueness and Exact Multiplicity Results for a Predator-Prey Model [pp.2443-2475]
	Degenerations of K3 Surfaces in Projective Space [pp.2477-2492]
	The Floer Homotopy Type of Height Functions on Complex Grassmann Manifolds [pp.2493-2505]
	Differential Operators on Stanley-Reisner Rings [pp.2507-2523]
	Herz-Schur Multipliers and Weakly Almost Periodic Functions on Locally Compact Groups [pp.2525-2536]
	Back Matter



