Let R be a UFD and let K be its field of quotients. An element $r/s \in K$ is in lowest terms if r and s are relatively prime, and every element of K can be written in this way. We recall:

Lemma: Let R be a UFD and let $r \in R$, $r \neq 0$. Then r is irreducible \iff the ideal (r) is a prime ideal.

Let R be an integral domain (not necessarily a UFD). If I is an ideal of R, then we have the natural homomorphism $\pi: R \to R/I$ as well as $R[x] \to (R/I)[x]$, also denoted by π, which we sometimes call reduction mod I. We sometimes denote $\pi(f(x))$ by $\bar{f}(x)$. Note that $\deg \bar{f}(x) \leq \deg f(x)$, with equality \iff the leading coefficient of $f(x)$ is not in I.

Rational roots test: Let R be a UFD with field of quotients K and let $f(x) = a_n x^n + \cdots + a_0 \in R[x]$. Suppose that $p/q \in K$ with $p, q \in R$, $\gcd(p, q) = 1$, and p/q is a root of $f(x)$. Then $p|a_0$ and $q|a_n$.

Theorem: Let R be a UFD with field of quotients K and let $f(x) = a_n x^n + \cdots + a_0 \in R[x]$ have degree $n \geq 1$. Then there exist polynomials $g_1(x), h_1(x) \in K[x]$ with $\deg g_1(x) = d < \deg f(x)$ and $\deg h_1(x) = e < \deg f(x)$ such that $f(x) = g_1(x) h_1(x)$ if and only if there exist polynomials $g(x), h(x) \in R[x]$ with $\deg g(x) = d$ and $\deg h(x) = e$ such that $f(x) = g(x)h(x)$.

Corollary: Let R be a UFD with field of quotients K and let $f(x) \in R[x]$ have degree $n \geq 1$. If $f(x)$ does not factor into a product of polynomials in $R[x]$ of strictly smaller degrees, then $f(x)$ is irreducible in $K[x]$.

Lemma (holds for every integral domain R, not necessarily a UFD): Let R be an integral domain and let I be an ideal of R. Denote by $\bar{f}(x)$ the image of $f(x)$ in R/I.[x]. If $f(x) \in R[x]$ and the leading coefficient of $f(x)$ is not in I, and if $f(x) = g(x)h(x)$, then $\deg \bar{g}(x) = \deg g(x)$ and $\deg \bar{h}(x) = \deg h(x)$.

Theorem: Let R be a UFD with field of quotients K and let I be an ideal of R. Let $f(x) = a_n x^n + \cdots + a_0 \in R[x]$ have degree $n \geq 1$ and suppose that $\bar{f}(x) = \bar{a}_n x^n + \cdots + \bar{a}_0 \in (R/I)[x]$ is the reduction of $f(x)$ mod I. If $a_n \notin I$ and $\bar{f}(x)$ does not factor into a product of polynomials in $(R/I)[x]$ of strictly smaller degrees, then $f(x)$ does not factor into a product of polynomials in $R[x]$ of strictly smaller degrees, and hence $f(x)$ is irreducible in $K[x]$.

Theorem (Eisenstein criterion): Let R be a UFD with field of quotients K and let M be a maximal ideal of R. Let $f(x) = a_n x^n + \cdots + a_0 \in R[x]$ have degree $n \geq 1$. Suppose that
1. \(a_n \notin M \);
2. For all \(i < n \), \(a_i \in M \);
3. \(a_0 \notin M^2 \).

Then \(f(x) \) does not factor into a product of polynomials in \(R[x] \) of strictly smaller degrees, and hence \(f(x) \) is irreducible in \(K[x] \).

Proposition: Let \(p \) be a prime number and let \(\Phi_p(x) \in \mathbb{Q}[x] \) be the \(p \)th cyclotomic polynomial:

\[
\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + \cdots + x + 1.
\]

Then \(\Phi_p(x) \) is irreducible in \(\mathbb{Q}[x] \).

If \(f(x) = a_n x^n + \cdots + a_0 \in R[x] \) with \(f(x) \not= 0 \), we define the content \(c(f) \) to be the gcd of the coefficients \(a_n, \ldots, a_0 \). It is well defined up to a unit.

A nonzero polynomial \(f(x) \in R[x] \) is primitive if \(c(f) = 1 \). Every nonzero polynomial \(f(x) \in R[x] \) can be written as \(f(x) = c(f)f_0(x) \), where \(f_0(x) \) is primitive.

Lemmas used for proving the theorem stated after the rational roots test on the previous page:

Lemma 1: Let \(R \) be a UFD with field of quotients \(K \). Suppose that \(f(x), g(x) \in R[x] \) are both primitive and that there exists an \(\alpha \in K^* \) with \(\alpha f(x) = g(x) \). Then \(\alpha \in R \) and \(\alpha \) is a unit.

Lemma 2: Let \(R \) be a UFD with field of quotients \(K \). Suppose that \(f(x) \in K[x] \) with \(\deg f(x) \geq 1 \). Then there exists \(\alpha \in K^* \) such that \(\alpha f(x) \in R[x] \) and \(\alpha f(x) \) is primitive.

Lemma 3 (Gauss lemma): Let \(R \) be a UFD with field of quotients \(K \). Suppose that \(f(x), g(x) \in R[x] \) are both primitive. Then \(f(x)g(x) \) is primitive.

As a corollary of the theorem stated earlier, we also have:

Proposition: Let \(R \) be a UFD with field of quotients \(K \) and let \(f(x) \in R[x] \) be a polynomial of degree at least one. Then \(f(x) \) is irreducible in \(R[x] \) if and only if \(f(x) \) is primitive and \(f(x) \) is irreducible in \(K[x] \).

These results can also be used to prove:

Theorem: Let \(R \) be a UFD with field of quotients \(K \). Then \(R[x] \) is also a UFD. Moreover, the irreducibles in \(R[x] \) are either

1. irreducibles \(r \in R \), viewed as polynomials of degree 0, or
2. primitive polynomials \(f(x) \in R[x] \) such that \(f(x) \) is irreducible in \(K[x] \).

Corollary: The following rings are UFD’s: \(F[x_1, \ldots, x_n] \), where \(F \) is a field; \(\mathbb{Z}[x_1, \ldots, x_n] \); \(R[x_1, \ldots, x_n] \) where \(R \) is a UFD.

Throughout the rest of this review sheet, \(F \) denotes a field and \(E \) is an extension field of \(F \).

Definition: Let \(E \) be a finite extension of a field \(F \). Then the Galois group \(\text{Gal}(E/F) \) is the set of automorphisms \(\sigma: E \to E \) such that \(\sigma(a) = a \) for all \(a \in F \). It is a group under function composition. If \(H \) is a subgroup of \(\text{Gal}(E/F) \), then the fixed field \(E^H \) is

\[
E^H = \{ \alpha \in E : \sigma(\alpha) = \alpha \text{ for all } \sigma \in H \}.
\]

It is a subfield of \(E \) containing \(F \).

Clearly, if \(F \leq K \leq E \), then \(\text{Gal}(E/K) \leq \text{Gal}(E/F) \) and, if \(H_1 \leq H_2 \leq \text{Gal}(E/F) \), then \(E^{H_2} \leq E^{H_1} \). In other words, both constructions are order reversing.

Proposition: Suppose that \(E \) is a finite extension of \(F \). Let \(f(x) \in F[x] \), let \(\alpha \in E \), and let \(\sigma \in \text{Gal}(E/F) \). Then \(\alpha \) is a root of \(f(x) \iff \sigma(\alpha) \) is a root of \(f(x) \).

More generally, suppose that \(E \) is a finite extension of \(F \), \(f(x) \in F[x] \), and \(\alpha \in E \). Let \(\psi: E \to K \) be a homomorphism, where \(K \) is also a field, and let \(\psi(F) = F' \) be the corresponding subfield of \(K \). Then \(\alpha \) is a root of \(f(x) \iff \psi(\alpha) \) is a root of \(\psi(f)(x) \in F'[x] \).

Proposition: Let \(E \) be a finite extension of \(F \), let \(f(x) \in F[x] \), and let \(\alpha_1, \ldots, \alpha_k \in E \) be the set of all of the roots of \(f(x) \) in \(E \). Then for every \(\sigma \in \text{Gal}(E/F) \), \(\sigma \) permutes the set \(\{\alpha_1, \ldots, \alpha_k\} \). The function \((\sigma, \alpha_i) \mapsto \sigma(\alpha_i) \) defines an action of \(\text{Gal}(E/F) \) on the set \(\{\alpha_1, \ldots, \alpha_k\} \) and hence a homomorphism \(\rho: \text{Gal}(E/F) \to S_k \) (where \(S_k \) is the group of permutations of \(\{1, \ldots, k\} \) or equivalently of \(\{\alpha_1, \ldots, \alpha_k\} \)). Finally, if \(E = F(\alpha_1, \ldots, \alpha_k) \), then \(\rho \) is injective and thus identifies the group \(\text{Gal}(E/F) \) with a subgroup of the symmetric group \(S_k \).

Corollary: If \(E \) is a finite extension of \(F \), then the group \(\text{Gal}(E/F) \) is finite.

Lemma: Let \(F \) be a field, let \(E = F(\alpha) \) be a simple extension of \(F \), where \(\alpha \) is algebraic over \(F \), and let \(K \) be an extension field of \(E \). Let \(f(x) = \text{irr}(\alpha, F, x) \). Then there is a one-to-one correspondence between homomorphisms \(\sigma: E \to K \) such that \(\sigma(a) = a \) for all \(a \in F \) and roots of the
polynomial $f(x)$ in K, defined by sending σ to $\sigma(\alpha)$ (which thus is a root of $f(x)$).

A slight generalization of the proof of the above lemma shows:

Lemma: Let F be a field, let $E = F(\alpha)$ be a simple extension of F, where α is algebraic over F, and let $\psi: F \to K$ be a homomorphism from F to a field K. Let $f(x) = \text{irr}(\alpha, F, x)$. Then there is a one-to-one correspondence between homomorphisms $\sigma: E \to K$ such that $\sigma(a) = \psi(a)$ for all $a \in F$ and roots of the polynomial $\psi(f)(x)$ in K, where $\psi(f)(x) \in K[x]$ is the polynomial obtained by applying the homomorphism ψ to the coefficients of $f(x)$.

Theorem (Isomorphism Extension Theorem): Let E be a finite extension of a field F. Let K be a field and let $\psi: F \to K$ be a homomorphism. Then:

(i) There exist at most $[E : F]$ homomorphisms $\sigma: E \to K$ extending ψ, i.e. such that $\sigma(\alpha) = \psi(\alpha)$ for all $\alpha \in F$.

(ii) There exists an extension field L of K and a homomorphism $\sigma: E \to L$ extending ψ.

(iii) If F has characteristic zero (or F is finite or more generally perfect), then there exists an extension field L of K such that there are exactly $[E : F]$ homomorphisms $\sigma: E \to L$ extending ψ.

Corollary: Let E be a finite extension of F. Then

$$\#(\text{Gal}(E/F)) \leq [E : F].$$

Definition. Let F be a field and let $f(x) \in F[x]$ be a polynomial of degree at least 1. Then an extension field E of F is a splitting field for $f(x)$ over F if the following two conditions hold:

For example, if F has characteristic zero or is finite or more generally is perfect, then every finite extension of F is separable.

Theorem (Primitive Element Theorem): Let E be a finite separable extension of the field F. Then E is a simple extension of F, i.e. there exists an $\alpha \in E$ such that $E = F(\alpha)$.

Definition: Let F be a field and let $f(x) \in F[x]$ be a polynomial of degree at least 1. Then an extension field E of F is a splitting field for $f(x)$ over F if the following two conditions hold:
(i) In $E[x]$, there is a factorization $f(x) = c \prod_{i=1}^{n}(x - \alpha_i)$. In other words, $f(x)$ factors in $E[x]$ into a product of linear factors.

(ii) With the notation of (i), $E = F(\alpha_1, \ldots, \alpha_n)$. In other words, E is generated as an extension field of F by the roots of $f(x)$.

Note: one can show that, if E_1 and E_2 are two splitting fields for $f(x)$ over F, then there exists an isomorphism $\varphi: E_1 \to E_2$ such that $\varphi(a) = a$ for all $a \in F$. Thus we can (and often do) speak of the splitting field for $f(x)$ over F.

Theorem: Let E be a finite extension of a field F. Then the following are equivalent:

(i) There exists a polynomial $f(x) \in F[x]$ of degree at least one such that E is a splitting field of $f(x)$.

(ii) For every extension field L of E, if $\sigma: E \to L$ is a homomorphism such that $\sigma(a) = a$ for all $a \in F$, then $\sigma(E) = E$, and hence σ is an automorphism of E, in fact $\sigma \in \text{Gal}(E/F)$.

(iii) For every irreducible polynomial $p(x) \in F[x]$, if there is a root of $p(x)$ in E, then $p(x)$ factors into a product of linear factors in $E[x]$.

Definition: Let E be a finite extension of F. If any one of the equivalent conditions of the preceding theorem is fulfilled, we say that E is a normal extension of F.

Corollary: Let E be a finite extension of a field F. Then the following are equivalent:

(i) E is a separable extension of F (this is automatic if the characteristic of F is 0 or F is finite or perfect) and E is a normal extension of F.

Definition: A finite extension E of a field F is a Galois extension of F if and only if $\#(\text{Gal}(E/F)) = [E : F]$. Thus, the preceding corollary can be rephrased as saying that E is a Galois extension of F if and only if E is a normal and separable extension of F.

Important remark: There exist sequences of extensions $F \leq K \leq E$ where K is a normal extension of F and E is a normal extension of K, but E is not a normal extension of F. Likewise, there exist sequences of extensions
\(F \leq K \leq E \) where \(E \) is a normal extension of \(F \), but \(K \) is not a normal extension of \(F \). **Note:** It is automatic that, if \(F \leq K \leq E \) and \(E \) is a normal extension of \(F \), then \(E \) is a normal extension of \(K \).

Theorem (Main Theorem of Galois Theory): Let \(E \) be a Galois extension of a field \(F \). Then:

(i) There is a one-to-one correspondence between subgroups of \(\text{Gal}(E/F) \) and intermediate fields \(K \) between \(F \) and \(E \), given as follows: To a subgroup \(H \) of \(\text{Gal}(E/F) \), we associate the fixed field \(E^H \), and to an intermediate field \(K \) between \(F \) and \(E \) we associate the subgroup \(\text{Gal}(E/K) \) of \(\text{Gal}(E/F) \). These constructions are inverses, in other words

\[
\text{Gal}(E/E^H) = H; \\
E^{\text{Gal}(E/K)} = K.
\]

In particular, the fixed field of the full Galois group \(\text{Gal}(E/F) \) is \(F \) and the fixed field of the identity subgroup is \(E \): \(E^{\text{Gal}(E/F)} = F \) and \(E^{(1)} = E \). Finally, since there are only finitely many subgroups of \(\text{Gal}(E/F) \), there are only finitely many intermediate fields \(K \) between \(F \) and \(E \).

(ii) The above correspondence is order reversing with respect to inclusion.

(iii) For every subgroup \(H \) of \(\text{Gal}(E/F) \), \([E : E^H] = \#(H) \), and hence \([E^H : F] = (\text{Gal}(E/F) : H) \). Likewise, for every intermediate field \(K \) between \(F \) and \(E \), \(\#(\text{Gal}(E/K)) = [E : K] \) and hence

\[
(\text{Gal}(E/F) : \text{Gal}(E/K)) = [K : F].
\]

(iv) For every intermediate field \(K \) between \(F \) and \(E \), the field is a normal extension of \(F \) if and only if \(\text{Gal}(E/K) \) is a normal subgroup of \(\text{Gal}(E/F) \). In this case, \(K \) is a Galois extension of \(F \), and

\[
\text{Gal}(K/F) \cong \text{Gal}(E/F) / \text{Gal}(E/K).
\]

Let \(F \) be a field, which for simplicity we assume from now on to be of characteristic 0, and let \(f(x) \in F[x] \) be a nonzero polynomial. We define the Galois group of \(f(x) \) (over \(F \), if this is not clear from the context) to be the Galois group \(\text{Gal}(E/F) \), where \(E \) is a splitting field for \(f(x) \) over \(F \).
Proposition: Suppose that \(f(x) \) is an irreducible polynomial in \(F[x] \) of degree \(n \geq 1 \). Then \(n \) divides the order of the Galois group of \(f(x) \) and the order of the Galois group of \(f(x) \) divides \(n! \).

Definition: A Galois extension \(E \) of \(F \) is abelian if \(\text{Gal}(E/F) \) is an abelian group. In this case, every subgroup of \(\text{Gal}(E/F) \) is a normal subgroup, hence every intermediate subfield \(K \) (i.e. \(F \leq K \leq E \)) is a normal extension of \(F \).

Cyclotomic extensions: Let \(E \) be an extension field of \(F \) and suppose that \(E \) is a splitting field of \(x^n - 1 \), i.e. that \(\mu_n \subseteq E \). Since \(\mu_n \) is cyclic, there exists a \(\zeta_0 \in \mu_n \) which is a generator of \(\mu_n \), i.e. \(\mu_n = \langle \zeta_0 \rangle \), and hence \(E = F(\zeta_0) \). For every \(\sigma \in \text{Gal}(E/F) \), \(\sigma(\zeta_0) = \zeta_0^i \) for some \(i \) relatively prime to \(n \). Thus \(\text{Gal}(E/F) \) is isomorphic to a subgroup of \((\mathbb{Z}/n\mathbb{Z})^*\) and hence is abelian.

\(n \)th root extensions: suppose that \(\mu_n \subseteq F \), i.e. that \(x^n - 1 \) splits into linear factors in \(F[x] \). Let \(a \in F \) and let \(E \) be a splitting field of \(x^n - a \). If \(\alpha = \sqrt[n]{a} \) is some root of \(x^n - 1 \) in \(E \), then every root of \(x^n - a \) is of the form \(\zeta \alpha \), \(\zeta \in \mu_n \subseteq F \). Hence \(x^n - a = \prod_{\zeta \in \mu_n}(x - \zeta \sqrt[n]{a}) \) and \(E = F(\sqrt[n]{a}) \). For every \(\sigma \in \text{Gal}(E/F) \), \(\sigma(\sqrt[n]{a}) = \zeta \sqrt[n]{a} \) for a unique \(\zeta \in \mu_n \), and this defines an isomorphism from the Galois group \(\text{Gal}(E/F) \) to a subgroup of \(\mu_n \cong \mathbb{Z}/n\mathbb{Z} \). Thus (under the assumption that \(\mu_n \subseteq F \)) \(E \) is an abelian extension of \(F \).

The discriminant: Let \(f(x) \in F[x] \) have degree \(n \geq 1 \) and let \(E \) be a splitting field for \(f(x) \) over \(F \), so that the Galois group of \(f(x) \) over \(F \) is \(\text{Gal}(E/F) \). Suppose that the roots of \(f(x) \) in \(E \) are \(\alpha_1, \ldots, \alpha_n \), so that \(\text{Gal}(E/F) \) is identified with a subgroup of \(S_n \). We want to describe when the image of \(\text{Gal}(E/F) \) is actually contained in the subgroup \(A_n \) of \(S_n \) (here \(A_n \) is the alternating group). To do so, define the discriminant of \(f(x) \) by:

\[
\Delta = \Delta(f) = \left(\prod_{i<j}(\alpha_j - \alpha_i) \right)^2.
\]

Then there is a given square root \(\sqrt{\Delta} \) of \(\Delta \) defined by \(\sqrt{\Delta} = \prod_{i<j}(\alpha_j - \alpha_i) \), and \(\sqrt{\Delta} \in E \). From one of the definitions of the sign of a permutation, it is easy to see that, identifying an element \(\sigma \in \text{Gal}(E/F) \) with the corresponding permutation of \(\{\alpha_1, \ldots, \alpha_n\} \), or equivalently of \(\{1, \ldots, n\} \), then

\[
\sigma(\sqrt{\Delta}) = \pm \sqrt{\Delta} = \text{sign}(\sigma) \sqrt{\Delta},
\]

where \(\text{sign}(\sigma) \) (sometimes written \(\varepsilon(\sigma) \)) is the unique homomorphism \(S_n \to \{\pm 1\} \) whose kernel is \(A_n \). Then \(\sigma(\Delta) = \sigma(\sqrt{\Delta}^2) = (\pm \sqrt{\Delta})^2 = \Delta \) for
all \(\sigma \in \text{Gal}(E/F) \), hence \(\Delta \in E^{\text{Gal}(E/F)} = F \). Moreover, \(\sigma \in A_n \iff \sigma(\sqrt{\Delta}) = \sqrt{\Delta} \). Hence we see:

Proposition, with notation as above, \(\text{Gal}(E/F) \) is contained in \(A_n \iff \sigma(\sqrt{\Delta}) = \sqrt{\Delta} \) for all \(\sigma \in \text{Gal}(E/F) \iff \sqrt{\Delta} \in E^{\text{Gal}(E/F)} = F \iff \Delta \) is a square in \(F \).