Throughout this review sheet, F denotes a field.

Proposition: Every ideal in $F[x]$ is a principal ideal, i.e. if I is an ideal in $F[x]$, then there exists an $f(x) \in F[x]$ such that $I = (f(x))$.

Definition: Let $f(x), g(x) \in F[x]$ and assume that not both of $f(x), g(x)$ are zero. A greatest common divisor (gcd) of $f(x)$ and $g(x)$ is a polynomial $d(x)$ such that $d(x) \mid f(x), d(x) \mid g(x)$, and if $e(x)$ is any polynomial such that $e(x) \mid f(x)$ and $e(x) \mid g(x)$, then $e(x) \mid d(x)$. A gcd of $f(x)$ and $g(x)$ is unique up to a nonzero constant (and is unique if we require that it is monic).

Proposition: Let F be a field and let $f(x), g(x) \in F[x]$, not both zero. Then a gcd $d(x)$ of $f(x)$ and $g(x)$ exists. Moreover, there exist $p(x), q(x) \in F[x]$ such that $d(x) = f(x)p(x) + g(x)q(x)$. (We say that $d(x)$ is a linear combination of $f(x)$ and $g(x)$.)

Definition: Let $f(x), g(x) \in F[x]$, not both zero. Then $f(x)$ and $g(x)$ are relatively prime if the gcd of $f(x)$ and $g(x)$ is 1.

Corollary: Suppose that $f(x), g(x) \in F[x]$ are relatively prime and that $f(x) \mid g(x)h(x)$. Then $f(x) \mid h(x)$.

Definition: Let $p(x) \in F[x]$. Then $p(x)$ is irreducible in $F[x]$ if $p(x)$ is not 0 or a unit (i.e. is nonconstant) and, for all $f(x) \in F[x]$, if $f(x) \mid p(x)$, then either $f(x)$ is a unit or $f(x) = cp(x)$ for some $c \in F^*$. Clearly $p(x)$ is irreducible if and only if $p(x)$ is nonconstant and, if $p(x) = f(x)g(x)$, one of $f(x), g(x)$ has degree 0 and the other has degree equal to $\deg p(x)$.

Though we usually omit the qualification “in $F[x]$” from the adjective “irreducible,” it is very important, since irreducibility very much depends on the field F. For example, $x^2 + 1$ is irreducible in $\mathbb{R}[x]$ but not in $\mathbb{C}[x]$, since $x^2 + 1 = (x+i)(x-i)$ in $\mathbb{C}[x]$. A polynomial is reducible if it is not irreducible. A polynomial of degree $n \geq 1$ is reducible if and only if it is a product of two polynomials in $F[x]$ each of which has degree $< n$. A polynomial of degree one is always irreducible. A polynomial of degree two or three is reducible \iff it has a root in F. A polynomial of degree four is reducible \iff it has a root in F or is a product of two irreducible polynomials of degree two in $F[x]$.

If $p(x) \in F[x]$ is irreducible and $f(x) \in F[x]$, then either $p(x) \mid f(x)$ or $p(x)$ and $f(x)$ are relatively prime.
Corollary: Let \(p(x) \in F[x] \) be irreducible in \(F[x] \), and suppose that \(p(x) | f(x)g(x) \). Then either \(p(x) | f(x) \) or \(p(x) | g(x) \).

Theorem (Unique factorization in \(F[x] \)): Let \(f(x) \in F[x] \) be a nonconstant polynomial. Then:

(i) There exist irreducible polynomials \(p_1(x), \ldots, p_n(x) \) such that

\[f(x) = p_1(x) \cdots p_n(x). \]

(ii) This factorization is unique in the following sense: if \(p_i(x), q_j(x) \) are irreducible polynomials such that

\[p_1(x) \cdots p_n(x) = q_1(x) \cdots q_m(x), \]

then \(n = m \) and, after possibly reordering the \(q_j \), \(p_i(x) = cq_i(x) \) for some \(c \in F^* \).

Theorem: Let \(I \) be an ideal in \(F[x] \). Then the following are equivalent:

1. \(I \) is a maximal ideal.
2. \(I \) is a prime ideal and \(I \neq \{0\} \).
3. \(I = (f(x)) \) for an irreducible polynomial \(f(x) \).

Corollary: The ring \(F[x]/(f(x)) \) is a field if and only if \(f(x) \) is an irreducible polynomial.

Theorem: Let \(F \) be a field and let \(f(x) \) be an irreducible polynomial in \(F[x] \). Then there exists a field \(E \) containing (a subfield isomorphic to) \(F \) and an \(\alpha \in E \) such that \(f(\alpha) = 0 \), in other words there exists a root of \(f(x) \) in \(E \).

In fact, one can take \(E = F[x]/(f(x)) \) and \(\alpha = x + (f(x)) \), identifying \(F \) with the subfield \(\{ a + (f(x)) : a \in F \} \) of \(E \).

Corollary: Let \(F \) be a field and let \(f(x) \) be a nonconstant polynomial in \(F[x] \) (i.e. \(\deg f(x) \geq 1 \)). Then there exists a field \(E \) containing (a subfield isomorphic to) \(F \) and an \(\alpha \in E \) such that \(f(\alpha) = 0 \).

Corollary: Let \(F \) be a field and let \(f(x) \) be a nonconstant polynomial in \(F[x] \) (i.e. \(\deg f(x) = n \geq 1 \)). Then there exists a field \(E \) containing (a subfield isomorphic to) \(F \) and \(\alpha_1, \ldots, \alpha_n \in E \) and \(c \in F \) such that, in \(E[x] \),

\[f(x) = c(x - \alpha_1) \cdots (x - \alpha_n). \]
Definition: Let F be a field. Then an extension field of F is a field E containing F as a subfield.

Definition: Let E be an extension field of F and let $\alpha \in E$. Then α is algebraic over F if there exists a nonzero polynomial $f(x) \in F[x]$ such that $f(\alpha) = 0$. The element $\alpha \in E$ is transcendental over F, i.e. if $f(x) \in F[x]$ and $f(\alpha) = 0$, then $f(x) = 0$.

Proposition: Let E be an extension field of F and let $\alpha \in E$. Let $ev_\alpha : F[x] \to E$ be the evaluation homomorphism. Then exactly one of the following is true:

(i) α is transcendental over F and $\ker ev_\alpha = \{0\}$. In this case ev_α is an isomorphism from $F[x]$ to the image $\im ev_\alpha = F[\alpha] \subseteq E$. Hence, $F[\alpha]$ is not a subfield of E, and ev_α extends to an isomorphism from $F(x)$ to a subfield of E, denoted $F(\alpha)$.

(ii) α is algebraic over F and $\ker ev_\alpha \neq \{0\}$. In this case $\ker ev_\alpha = (p(x))$ for an irreducible polynomial $p(x) \in F[x]$, and, for all $f(x) \in F[x]$, $f(\alpha) = 0 \iff p(x) \mid f(x)$. Finally, $\im ev_\alpha = F[\alpha]$ is a subfield of E.

Definition: If E is an extension field of F and $\alpha \in E$, we let $F(\alpha)$ be the smallest subfield of E containing F and α. In case α is algebraic over F, $F(\alpha) = F[\alpha]$. In case α is transcendental over F, $F(\alpha) \neq F[\alpha]$, but every element of $F(\alpha)$ can be written as $p(\alpha)/q(\alpha)$, where $p(x), q(x) \in F[x]$ and $q(x) \neq 0$.

Definition: If $E = F(\alpha)$, then E is a simple extension of F.

Definition: (i) Let E be an extension field of F and let $\alpha \in E$ be algebraic over F. Then $\text{irr}(\alpha, F, x)$ is the unique monic generator of the ideal $\ker ev_\alpha$. It is irreducible and is the monic polynomial of smallest degree for which α is a root.

(ii) With E, F, α as above, we define the degree of α over F (written $\deg_F \alpha$) to be the degree of $\text{irr}(\alpha, F, x)$.

Proposition: Suppose that $E = F(\alpha)$ is a simple extension of F, where α is algebraic over F and $\deg_F \alpha = n$. Then every element of E can be uniquely written as $a_0 + a_1 \alpha + \cdots + a_{n-1} \alpha^{n-1}$ where $a_i \in F$.

Definition: Let F be a field. An F-vector space V consists of an abelian group $(V, +)$, whose elements are called vectors, together with a function $F \times V \to V$ called scalar multiplication, and whose value on a pair (α, v) is denoted by $\alpha \cdot v$ or simply αv, satisfying the following:
1. For all $\alpha, \beta \in F$ and $v \in V$, $(\alpha + \beta) \cdot v = (\alpha \cdot v) + (\beta \cdot v)$;

2. For all $\alpha \in F$ and $v, w \in V$, $\alpha \cdot (v + w) = (\alpha \cdot v) + (\alpha \cdot w)$;

3. For all $\alpha, \beta \in F$ and $v \in V$, $\alpha \cdot (\beta \cdot v) = (\alpha \beta) \cdot v$;

4. For all $v \in V$, $1 \cdot v = v$.

Proposition: Let F be a field and let E be an extension field of F. Then E is an F-vector space.

Definition: Let V be an F-vector space.

1. A subspace or vector subspace W of V is an abelian subgroup W of V such that, for all $w \in W$ and $\alpha \in W$, $\alpha \cdot w \in W$. With this closure property, W with the induced operations is a vector space in its own right.

2. If V_1 and V_2 are two F-vector spaces, a linear map $F: V_1 \to V_2$ is a homomorphism F of abelian groups such that, for all $\alpha \in F$ and $v \in V_1$, $F(\alpha v) = \alpha F(v)$.

3. Given $v_1, \ldots, v_k \in V$, a linear combination of v_1, \ldots, v_k is an element of V of the form $\sum_{i=1}^{k} \alpha_i v_i$ where $\alpha_1, \ldots, \alpha_k \in F$. The set of all linear combinations of v_1, \ldots, v_k, namely

$$\left\{ \sum_{i=1}^{k} \alpha_i v_i : \alpha_i \in F \right\}$$

is a vector subspace of V, called the span of v_1, \ldots, v_k. It contains v_1, \ldots, v_k and is the smallest vector subspace of V containing v_1, \ldots, v_k.

4. V is finite-dimensional if there exist $v_1, \ldots, v_k \in V$ such that the span of v_1, \ldots, v_k is V.

5. $v_1, \ldots, v_k \in V$ are linearly independent if, for all $\alpha_1, \ldots, \alpha_k \in F$, the linear combination $\sum_{i=1}^{k} \alpha_i v_i = 0$ if and only if $\alpha_i = 0$ for all i.

6. $v_1, \ldots, v_k \in V$ are a basis for V over F, or an F-basis, or simply a basis if F is clear from the context, if they are linearly independent and span V. $v_1, \ldots, v_k \in V$ are a basis for V over F if and only if every $v \in V$ can be written as $\sum_{i=1}^{k} \alpha_i v_i = 0$ for a unique choice of $\alpha_1, \ldots, \alpha_k \in F$.

4
Theorem: Let \(V \) be an \(F \)-vector space. Suppose that \(v_1, \ldots, v_k \in V \) are linearly independent and that \(w_1, \ldots, w_\ell \in V \) span \(V \). Then \(k \leq \ell \).

Corollary: If \(V \) is finite dimensional, then there exists a basis for \(V \). Moreover, every two bases have the same number of elements, and this number is called the dimension \(\dim_F V \) of \(V \).

Corollary: If \(V \) is finite dimensional and \(v_1, \ldots, v_k \in V \) are linearly independent, then \(v_1, \ldots, v_k \) can be completed to a basis of \(V \): there exist \(v_{k+1}, \ldots, v_n \) such that \(v_1, \ldots, v_n \) are a basis of \(V \). In particular, \(k \leq \dim_F V \).

Definition: Suppose that \(E \) is an extension field of \(F \). If \(E \) is a finite-dimensional \(F \)-vector space, then \(E \) is called a finite extension of \(F \). (Note: this does not mean that \(E \) is a finite set.) In this case, \(\dim_F E \) is called the degree of \(E \) over \(F \) and is written \([E : F] \).

Proposition: Suppose that \(E = F(\alpha) \) is a simple extension of \(F \). Then \(E \) is a finite extension of \(F \) if and only if \(\alpha \) is algebraic over \(F \). In this case \([F(\alpha) : F] = \dim_F F(\alpha) = \deg_F \alpha \) and \(1, \alpha, \ldots, \alpha^{n-1} \) is a basis of \(E \), where \(n = \deg_F \alpha \).

Proposition: Let \(E \) be an extension field of \(F \), and suppose that \(E \) is a finite dimensional vector space over \(F \), of dimension \(\dim_F E = [E : F] \). Let \(V \) be an \(E \)-vector space; note that we can also view \(V \) as an \(F \)-vector space. Then \(V \) is finite dimensional as an \(E \)-vector space if and only if \(V \) is finite dimensional as an \(F \)-vector space, and in this case

\[
\dim_F V = [E : F] \dim_E V.
\]

Corollary: Let \(E \) be an extension field of the field \(F \) and let \(K \) be an extension field of \(E \), i.e. \(F \leq E \leq K \). Then \(K \) is a finite extension of \(F \) if and only if \(K \) is a finite extension of \(E \) and \(E \) is a finite extension of \(F \), and in this case we have

\[
[K : F] = [K : E][E : F].
\]

Corollary: Let \(E \) be an extension field of the field \(F \) and let \(K \) be an extension field of \(E \), i.e. \(F \leq E \leq K \), and suppose that \(K \) is a finite extension of \(F \). Then \(K \) is a finite extension of \(E \) and \(E \) is a finite extension of \(F \), and in this case \([K : E]\) and \([E : F]\) both divide \([K : F]\).

Notation: if \(E \) is an extension field of \(F \), and \(\alpha, \beta \in E \), then \(F(\alpha, \beta) \) is the smallest subfield of \(E \) containing \(F, \alpha, \) and \(\beta \). Clearly \(F(\alpha, \beta) = F(\alpha)(\beta) = F(\beta)(\alpha) \). The field \(F(\alpha_1, \ldots, \alpha_n) \) is defined similarly.
Definition: if \(E \) is an extension field of \(F \), then \(E \) is an algebraic extension of \(F \) if, for every \(\alpha \in E \), \(\alpha \) is algebraic over \(F \).

Proposition: If \(E \) is a finite extension of \(F \), then \(E \) is an algebraic extension of \(F \).

Proposition-Definition: Let \(E \) be an extension field of \(F \), and let \(\alpha, \beta \in E \). If \(\alpha \) and \(\beta \) are algebraic over \(F \), then so are \(\alpha \pm \beta \), \(\alpha \beta \), and \(\alpha/\beta \) (if \(\beta \neq 0 \)). Thus the subset \(\{ \alpha \in E : \alpha \text{ is algebraic over } F \} \) is a subfield of \(E \), the algebraic closure of \(F \) in \(E \).

Definition: The algebraic closure of \(\mathbb{Q} \) in \(\mathbb{C} \) is a subfield of \(\mathbb{C} \), denoted by \(\overline{\mathbb{Q}} \) or by \(\mathbb{Q}^{\text{alg}} \). It is called the field of algebraic numbers.

Lemma: Let \(E \) be an extension field of \(F \). Then \(E \) is a finite extension of \(F \) \(\iff \) there exist \(\alpha_1, \ldots, \alpha_n \in E \), algebraic over \(F \), such that \(E = F(\alpha_1, \ldots, \alpha_n) \).

Corollary: Let \(F \leq E \leq K \) with \(E \) an algebraic extension of \(F \). If \(\alpha \in K \) and \(\alpha \) is algebraic over \(E \), then \(\alpha \) is algebraic over \(F \).

Corollary: Let \(F \leq E \leq K \). Then \(K \) is an algebraic extension of \(F \) \(\iff \) \(K \) is an algebraic extension of \(E \) and \(E \) is an algebraic extension of \(F \).

Definition: Let \(K \) be a field. Then \(K \) is algebraically closed if, for every \(f(x) \in K[x] \) of degree at least one, there exists \(\alpha \in K \) such that \(f(\alpha) = 0 \).

Proposition: Let \(K \) be a field. Then the following are equivalent:

1. \(K \) is algebraically closed.
2. If \(f(x) \in K[x] \) and \(\deg f(x) \geq 1 \), then \(f(x) \) is a product of linear factors.
3. If \(L \) is an algebraic extension of \(K \), then \(L = K \).

Famous fact (Fundamental Theorem of Algebra): \(\mathbb{C} \) is algebraically closed.

Definition: An algebraic closure of \(F \) is an extension field \(K \) of \(F \) such that (i) \(K \) is algebraically closed and (ii) \(K \) is algebraic over \(F \).

Proposition: Let \(F \) be a field and let \(E \) be an extension field of \(F \) which is algebraically closed. Then the algebraic closure of \(F \) in \(E \) is an algebraic closure of \(F \).

Corollary: \(\mathbb{Q}^{\text{alg}} \) is algebraically closed, and is an algebraic closure of \(\mathbb{Q} \).

Fact (Existence of Algebraic Closures): Let \(F \) be a field. Then there exists an extension field \(E \) of \(F \) which is an algebraic closure of \(F \). Moreover, two algebraic closures of \(F \), say \(E_1 \) and \(E_2 \), are isomorphic; more precisely, there exists an isomorphism \(\sigma: E_1 \to E_2 \) such that \(\sigma(a) = a \) for all \(a \in F \).
Definition: For \(f(x) = \sum_{i=0}^{n} a_i x^i \in F[x] \), the formal derivative \(Df(x) \) of the polynomial is the polynomial \(Df(x) = \sum_{i=1}^{n}(i \cdot a_i)x^{i-1} \in F[x] \). It satisfies:

1. \(D: F[x] \to F[x] \) is \(F \)-linear, i.e. for all \(f, g \in F[x] \) and \(a \in F \),
 \[D(f + g) = Df + Dg \text{ and } D(af) = aDf. \]

2. (Product rule) For all \(f, g \in F[x] \), \(D(fg) = (Df)g + f(Dg) \).

3. (Power rule) For all \(f \in F[x] \) and \(n \in \mathbb{N} \), \(D(f^n) = n \cdot f^{n-1}Df \).

4. If \(F \) has characteristic \(p \), then \(D(x^p) = 0 \). In general, if \(F \) has characteristic \(0 \), then \(Df(x) = 0 \iff f(x) \) is constant. If \(F \) has characteristic \(p \), then \(Df(x) = 0 \), where \(f(x) = \sum_{i=0}^{n} a_i x^i \), \(\iff \) for all \(i \) such that \(a_i \neq 0 \), \(p|a_i \), \(f(x) = \sum_{j=0}^{m} a_{jp} x^{jp} \), \(\iff f(x) = g(x^p) \), where \(g(x) = \sum_{j=0}^{m} b_j x^{j} \) (we set \(b_j = a_{jp} \)).

We can restate (4) as: \(\text{Ker } D = F \) if the characteristic of \(F \) is 0, and \(\text{Ker } D = F[x^p] \) if the characteristic of \(F \) is \(p > 0 \).

Proposition: \(a \) is a multiple root of \(f(x) \) (i.e. \((x - a)^m \mid f(x) \) for some \(m \geq 2 \)) \(\iff f(a) = Df(a) = 0 \).

Lemma: Let \(E \) be an extension field of \(F \), and let \(f(x), g(x) \in F[x] \subseteq E[x] \).

(i) \(f(x) \) divides \(g(x) \) in \(F[x] \iff f(x) \) divides \(g(x) \) in \(E[x] \).

(ii) Let \(d(x) \in F[x] \). Then \(d(x) \) is a gcd of \(f(x) \) and \(g(x) \) in \(F[x] \iff d(x) \) is a gcd of \(f(x) \) and \(g(x) \) in \(E[x] \).

(iii) \(f(x) \) and \(g(x) \) are relatively prime in \(F[x] \iff f(x) \) and \(g(x) \) are relatively prime in \(E[x] \).

Proposition: Let \(f(x) \in F[x] \). Then \(f(x) \) and \(Df(x) \) are not relatively prime \(\iff \) there exists an extension field \(E \) of \(F \) such that \(f(x) \) has a multiple root in \(E \).

Corollary: Let \(f(x) \in F[x] \) be an irreducible polynomial. Then \(f(x) \) has a multiple root in some extension field \(E \) of \(F \iff Df(x) = 0 \). In particular, if the characteristic of \(F \) is zero, \(f(x) \) does not have a multiple root in any extension field \(E \) of \(F \).

Let \(\mathbb{F} \) be a finite field. Then \(\mathbb{F} \) has characteristic \(p > 0 \), \(p \) a prime number, and the field \(\mathbb{Z}/p\mathbb{Z} \), which we will write henceforth as \(\mathbb{F}_p \), is a subfield of...
\(\mathbb{F} \). Since \(\mathbb{F} \) is finite, it is a finite-dimensional \(\mathbb{F}_p \)-vector space, of dimension \(n = [\mathbb{F} : \mathbb{F}_p] \), say. Thus \(\#(\mathbb{F}) = q = p^n \) is a prime power. Also, since \(\mathbb{F}^* \) is a finite subgroup of \(\mathbb{F}^* \), it is cyclic, say \(\mathbb{F}^* = \langle \alpha \rangle \), and so \(\mathbb{F} = \mathbb{F}_p(\alpha) \). More generally, if \(\mathbb{F}' \) is any subfield of \(\mathbb{F} \), then \(\mathbb{F} = \mathbb{F}'(\alpha) \). In particular, every finite extension of a finite field is a simple extension.

Definition: For a finite field \(\mathbb{F} \) of characteristic \(p \) (i.e. \(\#(\mathbb{F}) \) is a power of \(p \)), let \(\sigma_p : \mathbb{F} \to \mathbb{F} \) be the Frobenius homomorphism: \(\sigma_p(\alpha) = \alpha^p \). Since \(\mathbb{F} \) is finite and \(\sigma_p \) is injective, it is also surjective, hence an automorphism of \(\mathbb{F} \) with the property that \(\sigma_p(a) = a \) for all \(a \in \mathbb{F}_p \leq \mathbb{F} \). More generally, for a positive integer, we can define \(\sigma_{p^k}(\alpha) = \alpha^{p^k} \). By induction, we claim that \(\sigma_{p^k}(\alpha) = (\sigma_p)^k(\alpha) = \sigma_p(\sigma_p(\alpha)) = \sigma_p(\sigma_p(\alpha)) = \cdots = \sigma_p(\alpha_{p^{k-1}}) = (\alpha_{p^{k-1}})^p = \alpha^{p^k} = \sigma_{p^k}(\alpha) \). Thus \(\sigma_{p^k} \) is also an automorphism of \(\mathbb{F} \). In particular, for \(q = p^n = \#(\mathbb{F}) \), \(\sigma_q \) is an automorphism of \(\mathbb{F} \). If \(\mathbb{F} \) is a field with \(\#(\mathbb{F}) = q = p^n \), then, for all \(\alpha \in \mathbb{F} \), \(\alpha^q = \alpha \). Two equivalent formulations are (a) \(\alpha \) is a root of \(x^q - x \); (b) \(\sigma_q(\alpha) = \alpha \).

Theorem: Let \(p \) be a prime number.

(i) For every \(n \in \mathbb{N} \), if we set \(q = p^n \), then there exists a field \(\mathbb{F}_q \) with \(\#(\mathbb{F}_q) = q \).

(ii) If \(\mathbb{F}_1 \) and \(\mathbb{F}_2 \) are two finite fields with \(\#(\mathbb{F}_1) = \#(\mathbb{F}_2) \), then \(\mathbb{F}_1 \) and \(\mathbb{F}_2 \) are isomorphic.

(iii) Let \(\mathbb{F} \) be a field of order \(q = p^n \), and let \(\mathbb{F}' \) be a field of order \(q' = p^{m'n} \). Then \(\mathbb{F}' \) is isomorphic to a subfield of \(\mathbb{F} \) \(\iff \) \(m|n \) \(\iff \) \(q = (q')^d \) for some positive integer \(d \).

From now on in this review sheet, \(R \) denotes an integral domain. For \(r, s \in R \), we say that \(r \) divides \(s \) (written \(r|s \)) if there exists a \(t \in R \) such that \(s = rt \). We have defined units for \(R \), and the (multiplicative) group of all such is denoted \(R^* \). If \(r, s \in R \), then \(r \) and \(s \) are associates if there exists a unit \(u \in R^* \) such that \(r = us \). In this case, \(s = u^{-1}r \), and indeed the relation that \(r \) and \(s \) are associates is an equivalence relation. We say that \(r \in R \) is irreducible if \(r \neq 0 \), \(r \) is not a unit, and if \(s \) divides \(r \) then either \(s \) is a unit or \(s \) is an associate of \(r \). In other words, if \(r = st \) for some \(t \in R \), then either \(s \) or \(t \) is a unit (and hence the other is an associate of \(r \)).

Definition: \(R \) is a unique factorization domain (UFD) if (i) for every \(r \in R \) not 0 or a unit, there exist irreducibles \(p_1, \ldots, p_n \in R \) such that \(r = p_1 \cdots p_n \), and (ii) if \(p_i, 1 \leq i \leq n \) and \(q_j, 1 \leq j \leq m \) are irreducibles such
that $p_1 \cdots p_n = q_1 \cdots q_m$, then $n = m$ and, after reordering, p_i and q_j are associates.

Definition: R is a principal ideal domain (PID) if every ideal I of R is principal, i.e. for every ideal I of R, there exists $r \in R$ such that $I = (r)$.

Theorem (not proved): A principal ideal domain is a unique factorization domain.

Definition: Let R be an integral domain. Let $r, s \in R$, not both 0. A greatest common divisor (gcd) of r and s is an element $d \in R$ such that $d|r$, $d|s$, and if $e \in R$ and $e|r$, $e|s$, then $e|d$. If a gcd of r and s exists, it is unique up to a unit (i.e. any two gcd’s of r and s are associates). The elements r and s are relatively prime if gcd$(r, s) = 1$; equivalently, if $d \in R$ and $d|r$, $d|s$, then d is a unit.

Proposition: if R is a UFD, then the gcd of two elements $r, s \in R$, not both 0, exists.

Theorem: Let R be a PID, and let $r, s \in R$, not both 0. Then the gcd d of r and s exists. Moreover, d is a linear combination of r and s: there exist $a, b \in R$ such that $d = ar + bs$.

Note: for a general UFD, the gcd of two elements r and s will not in general be a linear combination of r and s.

Corollary (of Theorem): If R is a PID, $r, s \in R$ are relatively prime and $r|st$, then $r|t$.

Corollary: If R is a PID, and $r \in R$ is an irreducible, then for all $s, t \in R$, if $r|st$, then either $r|s$ or $r|t$.

The two corollaries above are true more generally in a UFD, with fairly straightforward proofs.

The following proves the uniqueness half of the assertion that a PID is a UFD:

Corollary: If R is a PID, then uniqueness of factorization holds in R: if $p_i, 1 \leq i \leq n$ and $q_j, 1 \leq j \leq m$ are irreducibles such that $p_1 \cdots p_n = q_1 \cdots q_m$, then $n = m$ and, after reordering, p_i and q_j are associates.

Definition: Let R be an integral domain. A Euclidean norm on R is a function $N: R - \{0\} \to \mathbb{Z}$ satisfying:

1. For all $r \in R - \{0\}$, $N(r) \geq 0$.

2. For all $a, b \in R$ with $a \neq 0$, there exist $q, r \in R$ with $b = aq + r$ and either $r = 0$ or $N(r) < N(a)$.

An integral domain R such that there exists a Euclidean norm on R is called a \textit{Euclidean domain}.

Definition: The Euclidean norm N is \textit{submultiplicative} if in addition N satisfies: For all $a, b \in R - \{0\}$, $N(a) \leq N(ab)$. It is \textit{multiplicative} if N satisfies: For all $a, b \in R - \{0\}$, $N(ab) = N(a)N(b)$. If N is multiplicative and $N(a) > 0$ for all $a \in R - \{0\}$, then N is submultiplicative.

Examples: $R = \mathbb{Z}$, $N(a) = |a|; R = F[x]$, F a field, and $N(f(x)) = \text{deg } f(x)$, defined for $f(x) \neq 0$. Here (1) is clear and (2) is the statement of long division in \mathbb{Z} or in $F[x]$. In fact, it is easy to see that N is submultiplicative in both cases.

Proposition: If R is a Euclidean domain, then R is a PID.

Lemma: Let R be an integral domain and let N be a submultiplicative Euclidean norm on R. For all $b \in R - \{0\}$, exactly one of the following holds:

1. b is not a unit and $N(a) < N(ab)$ for all $a \in R - \{0\}$.
2. b is a unit and $N(a) = N(ab)$ for all $a \in R - \{0\}$.

Proposition: If R is a Euclidean domain with a submultiplicative Euclidean norm and $r \in R$ is not 0 or a unit, then r is a product of irreducibles.

Corollary: If R is a Euclidean domain, then R is a UFD.

(Of course, this follows from the more general fact that a PID is a UFD.)