Modern algebra II, spring 2015.

NAME:

Quiz 2

Mark the boxes that are followed by correct statements.

□ Polynomial $x^2 - x + 1$ is irreducible over \mathbb{F}_3.

□ Any polynomial $f(x)$ with coefficients in a finite field \mathbb{F}_q is separable over that field.

□ Polynomial $(x^p - t)(x^p - 1)$ is separable over the field $\mathbb{F}_p(t)$, where t is a formal variable.

□ The automorphism group of the field \mathbb{F}_{27} is nontrivial.

□ Extension $\mathbb{F}_{16}/\mathbb{F}_2$ is Galois.

□ Any Galois extension is normal.

□ Any degree two field extension E/F is Galois.

□ Splitting field of the polynomial $(x^3 - 5)(x^5 - 7)(x^7 - 3)$ is a simple extension of \mathbb{Q}.

□ An extension E/F of degree 11 is Galois iff $\text{Gal}(E/F) \cong C_{11}$, where C_{11} is a cyclic group of order 11.

□ If $\text{Gal}(E/F)$ is abelian then, for any intermediate field K, $F \subset K \subset E$, the group $\text{Gal}(E/K)$ is abelian.

□ A Galois extension E/F has only finitely many intermediate subfields.